Übungen zu "Lineare Algebra und Geometrie 1"
Sommersemester 2011
Freitag, 10.15-11.45 Uhr, Hörsaal 3
Beurteilungskriterien
- 2 Tests zu je 12 Punkten am 8. April und 10.
Juni 2011 (am Anfang der Stunde, d.h. 10.15 Uhr!), je 12 Punkte.
- Freiwillige Tafelmeldungen: bis 3 Punkte pro Beispiel
- Unfreiwillige Tafelleistungen: bis 3 Punkte am Ende des Semesters
- "Kreuzerlliste": Elektronische "Kreuzerlliste" auf
http://www.univie.ac.at/nuhag-php/kreuz .
Die Beispiele sollten jeweils bis 9.45 Uhr am Tag der
Übungseinheit angekreuzt und in der Stunde mit Unterschrift bestätigt werden.
(Eine unentschuldigt nicht durch eine Unterschrift bestätigte "Kreuzerlzeile" wird
gelöscht.) Änderungen in der Stunde sind möglich, so lange sie sich
in Grenzen halten.
Wenn ein Beispiel zur Bearbeitung dran kommt, rufe ich entweder anhand der
"Kreuzerlliste" jemanden auf (das Aufrufen erfolgt nicht zufällig, sondern
zyklisch), oder ich sage: "Das ist ein freiwilliges Beispiel mit n Punkten." Dabei ist
n=1, 2 oder 3 möglich; fürhe ein nur teilweise richtiges Beispiel werden
entsprechend weniger Punkte vergeben.
Normalerweise gibt es 1-2 "freiwillige" Beispiele pro Übungseinheit, aber nach
den Tests und an Tagen, an denen wenige da sind (Fenstertage, vor Ferien usw.), pflegen
sie sich zu häufen. Vor dem ersten Test werden Personen bevorzugt, die noch keine
Punkte von freiwilligen Beispielen haben, nach dem Test wird Personen mit wenig
Testpunkten bevorzugt die Möglichkeit geboten, eine freiwillige Tafelmeldung
zu absolvieren.
Unfreiwillige Tafelleistungen dienen einerseits dazu, die Kreuzerlliste zu
überprüfen (Wenn sich herausstellt, dass jemand ein Beispiel nicht
vorbereitet hat, werden die ganzen Kreuze der Stunde oder zumindest das betreffende
Beispiel gelöscht; ein falsches Beispiel oder ein Beispiel mit Lücken hat
keinen direkten Einfluss) und andererseits dazu, dass ich mir ein Bild von den
Kenntnissen der Studierenden mache.
Voraussetzung für eine positive Beurteilung sind mindestens 13 Punkte,
welche sich zusammensetzen aus den beiden Tests und den Zusatzpunkten aus freiwilligen
Tafelmeldungen, und 50% aus der Kreuzerlliste (Prozentsatz aus den Beispielen des gesamten
Semesters).
Sind diese Voraussetzungen für einen positiven Abschluss erfüllt, so
gibt es einerseits bis zu 3 Punkte für meinen Eindruck aus den unfreiwilligen
Tafelleistungen und der sonstigen Mitarbeit
(wobei 0 Punkte eigentlich nicht vorkommen sollten), andererseits
werden Zusatzpunkte für den Kreuzerlprozentsatz P ermittelt:
50%≤P≤75%: keine Zusatzpunkte
75%<P≤90%: +1 Punkt
P>90%: +2 Punkte
Weitere Hinweise: Versäumte Tests können individuell nachgeholt werden.
Wenn am Ende des Semesters die 50% nicht erreicht werden, können Beispiele von
versäumten Stunden nachgebracht werden, um auf die 50% zu kommen (aber nicht, um
(mehr) Zusatzpunkte zu erhalten).
Wenn ein Beispiel in einer Einheit nicht mehr dran kommt, wird es von der
Kreuzerlliste gestrichen und auf die neue Kreuzerlliste gesetzt. Wenn jemand ein solches
Beispiel angekreuzt hat, aber bei der darauf folgenden Übungseinheit abwesend ist,
werden diese Kreuzerln von mir händisch nachgetragen.
Die Eintragung der Punkte von freiwilligen Meldungen und von Änderungen in
der Kreuzerlliste erfolgt im Normalfall im Laufe einer Woche nach der entsprechenden
Übungseinheit - bitte um Mitteilung, wenn ich etwas vergesse oder falsch eintrage!
Notenschlüssel
<13 Punkte: Nicht genügend
13-16 Punkte: Genügend
16.5-20 Punkte: Befriedigend
20.5-24 Punkte: Gut
>24 Punkte: Sehr gut
Stoff für den 1. Test am 8. April 2011
In Klammern sind die zum jeweiligen Punkt gehörenden Beispielnummern angegeben.
- Matrix einer linearen Abbildung bezüglich zweier Basen (67,80)
- Dimension (68, 69, 78)
- Drehungen (im R^2, oder im R^3 um eine Koordinatenachse) (71, 91): Anwendung
einer Drehung auf eine Teilmenge des jeweiligen Raumes
- Unitäre Matrizen (72): zeigen, dass eine Matrix unitär ist, bestimmen,
ob eine Matrix unitär ist, oder fehlende Einträge in einer Matrix so
bestimmen, dass sie unitär ist (um den Rechenaufwand in Grenzen zu halten, nur im
Reellen, d.h. orthogonale Matrizen)
- Orthogonale Projektion (75, 76, 85): insbesondere Bestimmung der orthogonalen
Projektion auf einen gegebenen Teilraum
- Biorthogonalsystem (85): nicht am 8.4.
- Gram-Schmidt-Verfahren (86, 93, 94)
Testangaben vom 8. April 2011 ,
Lösungen
Ersatztermin für den 1. Test (für Personen, die den Test am 8. April versäumt
haben oder sich das Ergebnis verbessern wollen): 29. April 2011, 10.15 Uhr, SR D103
Testangaben vom 29. April 2011 ,
Lösungen
2. Ersatztermin für den 1. Test: Mittwoch, 11. Mai 2011, 11.00 Uhr, Zi. C514
Falls jemand außer den drei Angemeldeten noch teilnehmen möchte, bitte um Mitteilung
(bis eine Stunde vor dem Termin), weil ich dann einen größeren Raum benötige!
Testangaben vom 11. Mai 2011 ,
Lösungen
Stoff für den 2. Test am 10. Juni 2011, ca. 10.15 Uhr
In Klammern sind die zum jeweiligen Punkt gehörenden Beispielnummern angegeben.
- Berechnung einer Determinante (96, 98, 108, 109)
- Eigenwerte, Eigenvektoren, charakteristisches Polynom, geometrische und
algebraische Vielfachheit, Diagonalisierung, (Orthonormal-)Basen der Eigenräume ...
(101, 102, 110, 112, 118-121, 125, 128,
132, 133)
- Darstellung einer Spiegelung als lineare bzw. affine Abbildung (112, 113)
- Methode der Normalgleichungen (123)
Testangaben vom 10. Juni 2011 , Lösungen
Zur Punktevergabe
Beim Kreuzerlprozentsatz wurde (wieder) der bessere von den Prozentsätzen mit und ohne letzte Stunde herangezogen.
Weil die unfreiwilligen Tafelleistungen im Großen und Ganzen in Ordnung waren, wurden in der Rubrik "Unfreiwillige Tafelleistungen und Mitarbeit" für alle, die beide
Tests mitgeschrieben haben, mindestens 2 Punkte vergeben. 3 Punkte wurden vergeben, wenn die unfreiwilligen Tafelauftritte besonders überzeugend waren, sonstige nützliche
Bemerkungen in der Übungsstunde getätigt wurden oder ich mir notiert habe, dass die betreffende Person sich zu freiwilligen Beispielen gemeldet hat, zu denen ich
andere dran genommen habe.