Blatt 7

 $\boxed{\bf 37}$ Weisen Sie direkt mittels Definition 2.1 aus der VO nach, dass das kartesische Produkt $M\times N$ von C^r -Teilmannigfaltigkeiten $M\subseteq \mathbb{R}^m$ und $N\subseteq \mathbb{R}^n$ der Dimensionen k und l eine C^r -Teilmannigfaltigkeit der Dimension k+l von \mathbb{R}^{m+n} ist. Zeigen Sie weiters, dass in diesem Fall $T_{(x,y)}(M\times N)=T_xM\times T_yN$ für beliebige $x\in M$ und $y\in N$ gilt.

 $\boxed{\bf 38}$ Wir haben in der VO bereits überlegt, warum für $x \in S^{n-1}$ stets $T_x S^{n-1} \subseteq \{x\}^{\perp}$ gelten muss. Vervollständigen nun die Argumentation für die Behauptung $T_x S^{n-1} = \{x\}^{\perp}$.

39 Weisen Sie direkt mittels Definition 2.1 aus der VO nach, dass der Zylinder $M:=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2=1\}$ eine 2-dimensionale C^{∞} -Teilmannigfaltigkeit ist. Benützen Sie dazu die offene Überdeckung $M\subseteq U_-\cup U_+$ mit $U_\pm:=E_\pm\times\mathbb{R},\,E_\pm:=\mathbb{R}^2\setminus\{(x,0)\mid \pm x\leq 0\},$ und die Abbildungen $\Phi_\pm\colon U_\pm\to V_\pm,\,(x,y,z)\mapsto (\arg_\pm(x,y),z,1-x^2-y^2)$ mit geeigneten offenen Mengen $V_\pm\subseteq\mathbb{R}^3$, wobei \arg_\pm die Winkelkomponente einer lokalen Inversen der Polarkoordinatenabbildung auf E_\pm bezeichnet.

40 Wir verwenden wieder die Bezeichnungen aus der vorigen Aufgabe und studieren die Abbildungen $F_{\pm}: U_{\pm} \to U_{\pm}, F_{\pm}(\xi) = f_{\pm}(\xi) \cdot \xi$ mit $f_{\pm}: U_{\pm} \to]0, \infty[$ gegeben durch $f_{\pm}(x,y,z) := \sqrt{x^2 + y^2 + z^2}/\sqrt{x^2 + y^2}.$

(a) Interpretieren Sie den skalaren Faktor $f_\pm(x,y,z)$ in Kugelkoordinaten und zeigen Sie, dass $G_\pm\colon U_\pm\to U_\pm$ mit

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} \mapsto \sqrt{u^2 + v^2} \cdot \begin{pmatrix} \cos \arg_{\pm}(u, v) \cdot \cos \theta(u, v, w) \\ \sin \arg_{\pm}(u, v) \cdot \cos \theta(u, v, w) \\ \sin \theta(u, v, w) \end{pmatrix}, \theta(u, v, w) := \arctan \frac{w}{\sqrt{u^2 + v^2}},$$

die Umkehrabbildung von F_{\pm} ist, somit F_{-} und F_{+} also C^{∞} -Diffeomorphismen sind.

(b) Es sei S die Menge S^2 ohne Nord- und Südpol, was als (relativ) offene Teilmenge von S^2 gemäß VO selbst eine Teilmannigfaltigkeit ist. Zeigen Sie, dass $F_{\pm}(S \cap U_{\pm}) = M \cap U_{\pm}$ gilt, wobei M der Zylinder aus der vorigen Aufgabe ist.

41 Wir verwenden weiterhin die Bezeichnungen der beiden vorangegangenen Aufgaben. Argumentieren Sie mit Hilfe der obigen Resultate, warum die Abbildung $F\colon S\to M$, $F(x,y,z):=1/\sqrt{x^2+y^2}\cdot(x,y,z)$ nun gemäß VO als bijektive C^∞ -Abbildung der Teilmannigfaltigkeit S auf den Zylinder M erkannt ist. Bemerkung: Dies erzeugt übrigens eine winkeltreue Weltkarte nach Gerhard Mercator 1569. Die entsprechende Inverse $F^{-1}\colon M\to S$ ist ebenfalls C^∞ in diesem Sinne und lässt sich lokal recht praktikabel in zylindrischen Koordinaten (φ,h) für $(\cos\varphi,\sin\varphi,h)\in M$ auch so beschreiben: $(\varphi,h)\mapsto 1/\cosh h\cdot (\cos\varphi,\sin\varphi,\sinh h)$.

42 Wieder in den Bezeichnungen der vorigen Aufgabe(n): Berechnen Sie für einen beliebigen Punkt $(x, y, z) \in S$ die Tangentialabbildung $T_{(x,y,z)}F: T_{(x,y,z)}S \to T_{F(x,y,z)}M$ mit Hilfe von Satz 2.2(2). Ist $T_{(x,y,z)}F$ ein Isomorphismus von Vektorräumen?