Blatt 3

 $\boxed{13}$ Zeigen Sie für beliebige reelle x und y die Relationen

$$\cos(iy) = \cosh(y), \quad \sin(iy) = i\sinh(y), \quad \sin(x+iy) = \sin x \cosh y + i\cos x \sinh y.$$

In den folgenden beiden Aufgaben diskutieren wir — wie in der VO besprochen — die beiden Zweige der Quadratwurzel in der geschlitzten Ebene \mathbb{C}^- , also holomorphe Funktionen $f_1, f_2 \colon \mathbb{C}^- \to \mathbb{C}$ mit der Eigenschaft $f_1(z)^2 = z = f_2(z)^2$ für alle $z \in \mathbb{C}^-$. In diesem Sinne gilt mit $\sqrt{z} := f_1(z)$ oder $\sqrt{z} := f_2(z)$ also stets $(\sqrt{z})^2 = z$.

- $\boxed{\mathbf{14}}$ (a) Geben Sie konkrete Formeln für f_1 und f_2 mittels Polarkoordinaten an. (Es ist günstig, f_2 mit Hilfe des ersten Nebenzweiges $\log z + 2\pi i$ des Logarithmus darzustellen.)
- (b) Begründen Sie, warum f_1 und f_2 die einzigen Möglichkeiten für eine holomorphe Quadratwurzel auf \mathbb{C}^- darstellen.
- 15 Wie steht es eigentlich um die Gültigkeit einer Formel $f_j(z^2) = z$, also formal $\sqrt{z^2} = z$, in Abhängigkeit von j und der Lage von z^2 bzgl. \mathbb{C}^- ?
- 16 Anwendungen der Cauchyschen Integralformel für Kreise:
- (a) Was ergibt sich daraus jeweils für den Funktionswert im Kreismittelpunkt?

 (Sogenannte Mittelwerteigenschaft.)
- (b) Wie kann die Formel z.B. bei der bequemen Auswertung von $\int_{C_r(0)} \frac{e^w dw}{w^2 + 2w} \text{ helfen?}$ Wir nehmen hierbei an, dass r > 2 ist. (Hinweis: $\frac{1}{w^2 + 2w} = \frac{1}{2}(\frac{1}{w} \frac{1}{w+2})$.)
- [17] (a) Wir suchen eine holomorphe Funktion $f: \mathbb{C} \to \mathbb{C}$ mit Re $f(x+iy) = x^2 y^2$. Gibt es so eine? Wenn ja, können Sie alle angeben?
- (b) Berechnen Sie mit den Funktionen aus (a) das Integral $\int_{C_1(0)} \frac{f(w)}{w-z}$ für |z| < 1.
- 18 Begründen Sie, warum $f: \mathbb{C} \setminus \{-1\} \to \mathbb{C} \setminus \{1\}$ mit f(z) := (z-1)/(z+1) holomorph und bijektiv ist. Bestimmen Sie die Umkehrfunktion $g := f^{-1}$. Ist diese holomorph auf $\mathbb{C} \setminus \{1\}$? Geben Sie die Potenzreihenentwicklungen (und Konvergenzradien) von f und g mit Entwicklungspunkt $z_0 = 0$ an.