
CHAPTER II

CONTINUOUS FUNCTIONS
OF A REAL VARIABLE
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§5. CONTINUITY

In this section we study real (valued) functions1 on subsets of R, i.e., maps f : D → R,
where D ⊆ R. Recall that the graph 〈Graph〉 of f is defined as the following subset of R2:

G(f) := {(x, f(x)) ∈ R2 : x ∈ D}.

5.1. Examples: 1) Let c ∈ R arbitrary, then f : R → R, f(x) := c for all x ∈ R

defines a constant function.
y

x

c
G(f)

2) The identity map 〈identische Abbildung〉 on R is given by idR : R → R, x 7→ x.

y

x

y = x

G(idR)

Slightly more general are linear functions l : R → R, x 7→ a ·x, where a ∈ R gives the slope
of the graph:

y

x

G(l)

1The mathematical term, “function” (from the Latin functio, meaning performance, execution) was
first used by Leibniz in 1694 to describe curves.
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3) The absolute value (function) 〈Betragsfunktion oder Absolutbetrag〉 is defined by
abs : R → R, x 7→ |x|.

y

x

G(abs)

4) floor : R → R, x 7→ ⌊x⌋, where (as on page 44) ⌊x⌋ = max{n ∈ Z : n ≤ x}.

y

x

G(floor)

The floor function is sometimes called Gauß bracket2 〈Gaußklammer〉 and the values are
also denoted by [x] (x ∈ R).

5) The square root sqrt : [0,∞] → R, x 7→ √
x

x

y

2Carl Friedrich Gauß (1777–1855) [kaKl "fri:trIç gaUs], one of the most outstanding German mathemati-
cians
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6) The exponential function exp : R → R, x 7→ exp(x) as defined in 4.23.

x

y

1

7) Polynomial functions 〈Polynomfunktionen〉: Let m ∈ N and a0, a1, . . . , am ∈ R. We
define

p : R → R by p(x) := amx
m + am−1x

m−1 + . . . a1x+ a0 ∀x ∈ R.

The constants a0, . . . am are called the coefficients 〈Koeffizienten〉 of the polynomial function.
If am 6= 0 then p is said to be of degree m 〈vom Grad m〉.
For example, when m = 2 and a0 = 0, a1 = −1, a2 = 1 we obtain p(x) = x2 − x

x

y

8) Rational functions 〈rationale Funktionen〉: Let p and q be polynomial functions, that is

p(x) = amx
m + . . .+ a1x+ a0 and q(x) = bnx

n + . . .+ b1x+ b0

with given coefficients a0, . . . , am, b0, . . . bn ∈ R. Then a rational function is the quotient
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function with domain D := {x ∈ R : q(x) 6= 0}, defined by

r : D → R, x 7→ p(x)

q(x)
.

Note that polynomial functions are just rational functions with denominator q ≡ 1.

For example, here is the graph of the rational function r : R \ {1} → R, r(x) = x2/(x− 1)

x

y

9) Simple functions (or step functions) 〈Treppenfunktionen〉: Let a, b ∈ R with a < b. A
function ϕ : [a, b] → R is called a simple function (or step function), if there is a finite
partition a = t0 < t1 < . . . < tn−1 < tn = b of the interval [a, b] and coefficients c1, . . . cn ∈
R such that

ϕ(x) = ck when x ∈ ]tk−1, tk[ (1 ≤ k ≤ n).

Therefore ϕ is constant on each open subinterval ]tk−1, tk[ (1 ≤ k ≤ n) but the finitely
many values ϕ(tk) (0 ≤ k ≤ n) are arbitrary.

x

y

t0 = a t1 t2 t3 t4 b = t5
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Note that the restriction floor |[a,b] of the floor function provides an example of a simple
function.

10) The characteristic function of Q 〈charakteristische Funktion von Q〉 or Dirichlet function3

is given by

1Q : R → R, 1Q(x) =

{

1 x ∈ Q

0 x /∈ Q.

In this case the graph is

G(1Q) = {(q, 1) : q ∈ Q} ∪ {(s, 0) : s ∈ R \ Q},

which would be somewhat hard to depict . . .

5.2. Review of basic operations with functions:

Let f, g : D → R be functions on D ⊆ R and λ ∈ R.

• Then the functions

f + g : D → R, λf : D → R, f · g : D → R

are defined in terms of the corresponding pointwise operations (with real numbers)
for all x ∈ D by

(f + g)(x) := f(x) + g(x),

(λf)(x) := λ · f(x),

(f · g)(x) := f(x) · g(x).

Remark: It is easy to check that the set F(D) := {f : D → R} of all real valued
functions on the set D together with the addition and scalar multiplication as defined
by the first two lines above forms a vector space over R.

• Let D′ := {x ∈ D : g(x) 6= 0}. The quotient function is defined by

f

g
: D′ → R, x→ f(x)

g(x)
.

• Let E ⊆ R such that f(D) ⊆ E and h : E → R. Recall that the composition of f
and h is given by

h ◦ f : D → R, (h ◦ f)(x) := h(f(x)) ∀x ∈ D.

3Johann Peter Gustav Lejeune Dirichlet (1805–1859) ["jo:han "pe:t@5 "gUstaf l@"Zœn diöi"kle], German
mathematician with Belgish origins (the French words Lejeune Dirichlet literally mean “the young chap
from Richelet”)
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Examples: 1) If q : R → R, q(x) = x2, then q = id · id.

2) More generally, if p is a polynomial function, given by

p(x) = amx
m + . . . a1x+ a0,

then

p = am · (id · id · · · id)
︸ ︷︷ ︸

m factors

+ . . . a1 · id +1,

where 1 denotes the constant function 1(x) = 1 for all x ∈ R.

3) With q as in example 1) we have abs = sqrt ◦ q, since for all x ∈ R

(
sqrt ◦ q

)
(x) =

√
x2 = |x| = abs(x).

5.3. Continuity 〈Stetigkeit〉: The notion of continuity of a function is a precise way
to express an intuitive requirement, which is often implicitly made in model applications:
Namely, that small perturbations of a function argument should not result in extreme
changes of the function values.

How to specify such a property for a given function f near a point x0 of its domain?
It might seem practically desirable to first prescribe the acceptable tolerance around the
value f(x0) and then to look for a safety interval around the argument x0 on which function
values near f(x0) within tolerance are guaranteed. If the tolerance is given in terms of an
interval ]f(x0) − ε, f(x0) + ε[ with ε > 0 and the safety interval is sought in the form
]x0 − δ, x0 + δ[ with δ > 0 we obtain the following picture:

x

y

x0

f(x0)Uε(f(x0))

{

︸ ︷︷ ︸

Uδ(x0)

By requiring that for every tolerance ε > 0 — chosen arbitrarily small — an appropriate
safety guard δ > 0 can (in principle) be found we arrive at the notion of continuity.
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Definition: Let x0 ∈ D ⊆ R and f : D → R. The function f is continuous 〈stetig〉 at
x0 if

(5.1) ∀ε > 0 ∃δ > 0 : ∀x ∈ D : |x− x0| < δ =⇒ |f(x) − f(x0)| < ε.

Equivalently, upon recalling that ]x0 − δ, x0 + δ[ = Uδ(x0) and ]f(x0) − ε, f(x0) + ε[ =
Uε(f(x0)), we can define the continuity of f at x0 in terms of neighborhoods:

∀ε > 0 ∃δ > 0 : f
(
Uδ(x0) ∩D

)
⊆ Uε

(
f(x0)

)
.

The function f is said to be continuous (on D) if it is continuous at each point in D. If f
is not continuous at a point b ∈ D then f is said to be discontinuous 〈unstetig〉 at b.

Examples: 1) Clearly, a constant function f is continuous (at every point x0 in its
domain), since f(x) − f(x0) = 0 and therefore (5.1) is satisfied for all ε > 0 and δ > 0
arbitrary.

2) Every linear function f : R → R, x 7→ ax, is continuous (at every x0 ∈ R): If a = 0
this is clear from Example 1), hence consider a 6= 0. Let ε > 0. From the preparatory
observation |f(x) − f(x0)| = |a||x− x0| we learn that we can simply choose δ := ε/|a| to
achieve (5.1): Indeed, if |x− x0| < δ = ε/|a| then

|f(x) − f(x0)| = |a| |x− x0| < |a| δ = ε.

3) The exponential function exp : R → R is continuous: Let x0 ∈ R and ε > 0. By the
properties of the exponential function we have

| exp(x) − exp(x0)| = exp(x0) | exp(x− x0) − 1|,

where exp(x0) > 0. From (4.5) we obtain for |x− x0| ≤ 1 that

| exp(x− x0) − 1| ≤ 2|x− x0|.

Thus, putting δ := min(1, ε
2 exp(x0)

) and combining the above inequalities we obtain for all

x with |x− x0| < δ the required estimate

| exp(x) − exp(x0)| ≤ 2 exp(x0) |x− x0| < 2 exp(x0) δ = ε.

4) abs: R → R, x 7→ |x|, is continuous: Let x0 ∈ R and ε > 0. Put δ := ε then we have
for all x ∈ Uδ(x0)

| abs(x) − abs(x0)| = ||x| − |x0|| ≤ |x− x0| < δ = ε.

5) The Dirichlet function 1Q [Example 5.1, 10)] is discontinuous at every point in R: Let
x0 ∈ R and put ε = 1/2.
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If x0 ∈ R \ Q then 1Q(x0) = 0. By the density of Q in R, for every δ > 0 we might choose
the interval Uδ(x0) = ]x0 − δ, x0 + δ[ will always contain some (in fact, many) rational
number(s) r [cf. 0.7 or the Corollary in ??]. In other words, we can find r with |r−x0| < δ
but

|1Q(r) − 1Q(x0)| = |1 − 0| = 1 ≥ 1

2
= ε.

If x0 ∈ Q then 1Q(x0) = 1. Recall that also R \ Q is dense in R [cf. 0.7]. Hence for every
δ > 0 we can find s ∈ Uδ(x0) ∩ (R \ Q), which implies

|1Q(s) − 1Q(x0)| = |0 − 1| = 1 ≥ 1

2
= ε

while |s− x0| < δ.

Knowing that a specific value of a continuous function has positive distance to a certain
real number c already guarantees that the function values will stay away from c in a whole
neighborhood. In the following statement we formulate this for the special case with c = 0.
This can easily be adapted to the case c 6= 0 by a simple translation of the function graph.

xx0
︸ ︷︷ ︸

Uδ(x0)

5.4. Lemma: Let f : D → R be continuous at x0 ∈ D
and assume that f(x0) 6= 0. Then there is δ > 0 such that
for all x ∈ Uδ(x0) ∩D we have f(x) 6= 0.

Proof. Put ε := |f(x0)|/2. Then clearly ε > 0 and by con-
tinuity there exists some δ > 0 such that for all x ∈ D with
|x− x0| < δ we have |f(x) − f(x0)| < ε = |f(x0)|/2. Therefore x ∈ Uδ(x0) ∩D implies

|f(x)| = |f(x0) + f(x) − f(x0)| ≥ |f(x0)| − |f(x) − f(x0)| > |f(x0)| − ε =
|f(x0)|

2
> 0.

5.5. Continuity test by sequences:

Theorem: Let a ∈ D ⊆ R and f : D → R. The following are equivalent:

(i) f is continuous at a.

(ii) For every sequence (xn) with xn ∈ D we have: if lim xn = a then lim f(xn) = f(a).

Proof. (i) ⇒ (ii): Let xn ∈ D (n ∈ N) with lim xn = a and let ε > 0. Choose δ > 0 such
that the continuity condition (5.1) is satisfied. There exists n0 ∈ N such that |xn − a| < δ
holds for all n ≥ n0. Thus (5.1) implies

|f(xn) − f(a)| < ε ∀n ≥ n0,
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which proves that lim f(xn) = f(a).

(ii) ⇒ (i): (proof by contradiction) Assume that (ii) holds but (5.1) is false. That is,

∃ε > 0 ∀δ > 0 : ∃x ∈ Uδ(a) ∩D : f(x) /∈ Uε(f(a)).

In particular, with this same ε > 0, we can choose the δ-values to be 1/n (n ∈ N, n ≥ 1)
successively and obtain:

∀n ∈ N, n ≥ 1 : ∃xn ∈ D : |xn − a| < 1

n
, but |f(xn) − f(a)| ≥ ε.

Therefore lim xn = a whereas f(xn) 6→ f(a) (n→ ∞) — a contradiction � .

Example: The function floor: R → R, x 7→ ⌊x⌋ is continuous in R\Z and discontinuous
in all points a ∈ Z.

If a ∈ Z then ⌊a⌋ = a and the sequence xn := a − 1
n

(n ≥ 1) has limxn = a but
lim⌊xn⌋ = lim(a− 1) = a− 1 6= ⌊a⌋.
If a ∈ R \ Z then ⌊a⌋ < a < ⌊a⌋ + 1. Hence for every sequence (xn) with lim xn = a there
exists some n0 such that ⌊a⌋ < xn < ⌊a⌋ + 1 when n ≥ n0. Therefore ⌊xn⌋ = ⌊a⌋ for all
n ≥ n0, in particular lim⌊xn⌋ = ⌊a⌋.

5.6. Basic operations and continuity: The following results show that we do
not leave the class of continuous functions when applying the basic operations summarized
in 5.2 to continuous functions. In other words, we can generate many “new” continuous
functions from a set of given continuous functions simply by pointwise addition, scalar
multiplication, multiplication, division (when the denominator does not vanish), and com-
position (where the images and domains match appropriately).

Proposition: (i) Let a ∈ D ⊆ R and λ ∈ R. If f, g : D → R are continuous at a then
also

f + g : D → R, λf : D → R, f · g : D → R

are continuous at a. Furthermore, if a ∈ D′ := {x ∈ D : g(x) 6= 0} then

f

g
: D′ → R

is continuous at a.

(ii) Let D ⊆ R, E ⊆ R and f : D → R, g : E → R such that f(D) ⊆ E. If f is continuous
at a ∈ D and g is continuous at b := f(a) ∈ E then the composition g ◦ f : D → R is
continuous at a.
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Proof. (i) Let (xn) be a sequence in D, respectively D′, such that xn → a. Then by the
corresponding properties of basic operations with convergent sequences in 2.10 we obtain
that

(f + g)(xn) = f(xn) + g(xn) → f(a) + g(a) = (f + g)(a) (n→ ∞)

and similarly for the other types of operations. Thus Theorem 5.5 proves continuity at a.

(ii) Let (xn) be a sequence in D such that xn → a. Since f is continuous at a we have
yn := f(xn) → f(a) = b. Continuity of g at b implies g(yn) → g(b). Therefore

lim
n→∞

(g ◦ f)(xn) = lim g(f(xn)) = lim g(yn) = g(b) = g(f(a)) = (g ◦ f)(a)

and again by Theorem 5.5 the continuity at a follows.

Corollary: Polynomial functions and rational functions are continuous (on their
respective domains).

Proof. By 5.3, Examples 1) and 2), constant functions and the identity map id : R → R

are continuous. In 5.2, Example 2), we noted that polynomial functions are just finite
linear combinations of products of id by itself plus a constant function, thus the above
Proposition (i) shows continuity.

Rational functions are quotients of polynomial functions, defined where the denominator
does not vanish, and are therefore also continuous by the second part of (i) in the above
Proposition.

Example: 1) p(x) := −x2 defines a continuous function on R and exp is continuous
on R. Hence the function exp ◦ p : R → R, x 7→ exp(−x2) is continuous R → R.

2) The hyperbolic sine and cosine 〈hyperbolischer Sinus und Cosinus〉 are defined by

sinh(x) :=
exp(x) − exp(−x)

2
and cosh(x) :=

exp(x) + exp(−x)
2

(x ∈ R),

hence are continuous functions on R.

5.7. Limit of a function: Recall that a ∈ R is an adherent point of D ⊆ R if and
only if there exists a sequence (xn) in D (i.e., xn ∈ D for all n) such that xn → a (n→ ∞).
If a is an element of D then the latter condition is clearly satisfied by the constant sequence
xn = a for all n. In general, an adherent point of D need not be a member of the set D.

Definition: Let f : D → R and a an adherent point of D. The function f has limit
c ∈ R as x tends to a, if every sequence (xn) in D such that xn → a (n → ∞) satisfies
lim

n→∞
f(xn) = c. A short-hand notation for this fact is

lim
x→a

f(x) = c or f(x) → c (x→ a).
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We also define c ∈ R to be the limit of f at a from the right 〈rechtsseitiger Grenzwert〉

lim
xցa

f(x) = c, or also lim
x→a+

f(x) = c

if a is an adherent point of D ∩ [a,∞[ and for all sequences (xn) with xn ∈ D and xn > a
such that xn → a we have lim f(xn) = c.
The notion of limit from the left 〈linksseitiger Grenzwert〉 lim

xրa
f(x), also denoted by lim

x→a−
f(x),

is defined analogously using ] −∞, a] ∩D and xn < a instead.

Finally, we define limits of f at infinity as follows:

lim
x→∞

f(x) = c

means that D is unbounded from above and for every sequence (xn) with xn ∈ D and
xn → ∞ we have lim f(xn) = c.
We define lim

x→−∞
f(x) similarly when D is unbounded from below using xn → −∞.

Of course, we will often find it convenient to also use the above notions with improper
limits c = ±∞. The required adaptations of the definition should be routine and are left
to the reader.

Examples: 1) For the rational function f : R \ {1} → R, f(x) = (x2 − 1)/(x− 1), we
have

lim
x→1

f(x) = 2.

Indeed, if xn → 1 with xn 6= 1 then

f(xn) =
(xn − 1)(xn + 1)

xn − 1
= xn + 1 → 2 (n→ ∞).

2) lim
xց1

⌊x⌋ = 1, since ⌊xn⌋ = 1 when 1 < xn < 2. On the other hand, lim
xր1

⌊x⌋ = 0 as

⌊xn⌋ = 0 when 0 ≤ xn < 1.

We conclude that lim
x→1

⌊x⌋ does not exist, because otherwise the limits from the left and

from the right would have to be equal.

3) Let m ∈ N, m ≥ 1, and p : R → R be a polynomial function of the form

p(x) = xm + am−1x
m−1 + . . .+ a0.

Then we have lim
x→∞

p(x) = ∞ and lim
x→∞

1

p(x)
= 0.

To see this, we first note that for all x > 0 we have the estimate

p(x) = xm
(
1 +

am−1

x
+ . . .+

a0

xm

)
≥ xm

(
1 − |am−1|

|x| − . . .− |a0|
|xm|

)
.
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Let x ≥M := 2m · max(1, |am−1|, . . . , |a0|), then the above inequality implies

p(x) ≥ xm
(
1 −m · 1

2m

)
=
xm

2
(in particular, p(x) ≥ 1

2
).

Let xn → ∞ and choose n0 ∈ N such that xn ≥ M for all n ≥ n0. Then we obtain for
n ≥ n0

p(xn) ≥ xm
n

2
→ ∞ (n→ ∞),

therefore lim p(xn) = ∞, which proves the first assertion above. The second assertion
follows immediately from the first, if we note that 1/p(x) is well-defined for x ≥M (since
p(x) ≥ 1/2 then, as noted above).

Remark: Note that if a ∈ D and lim
x→a

f(x) exists then the limit has to be f(a) (since

xn = a is a special sequence in D converging to a).

Warning: The notion of ‘limit of a function’ is not used in exactly the same way as we do here

throughout the literature. Some texts (e.g. [Heu88]) require the admissible sequences (xn) in the

definition to be in D \ {a}, so that the special choice xn = a is excluded even in the case where a

belongs to D. If a is an adherent point of D and does not belong to D, both notions give the same

result concerning existence and value of the function limit. However, if a ∈ D the conclusions

may differ, as can be seen from the following example: Let D := R \{0} and define f : D → R by

f(x) := 1 if x 6= 0, and f(0) := 0. Then in the sense of our definition f does not have a limit at 0,

whereas we obtain for all sequences (xn) with xn 6= 0 and xn → 0 that lim f(xn) = 1 (note that

this value differs from f(0)), which would give existence of the limit of f at 0 in the alternative

definition.

Since the notion of ‘limit of a function’ is essentially a short-hand notation to describe
the way how a function translates converging sequences into sequences of corresponding
function values, we can rephrase the sequence test of continuity 5.5 in these terms.

Proposition: A function f : D → R is continuous at a point a ∈ D if and only if

lim
x→a

f(x) = f(a).

Proof. This is immediate from Theorem 5.5 and the remark made above.
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5.8. The intermediate value property 〈Zwischenwertsatz〉:

x

yTheorem: Suppose f : [a, b] → R is continuous and c ∈ R

lies between f(a) and f(b), that is f(a) ≤ c ≤ f(b) or f(b) ≤
c ≤ f(a). Then there exists x0 ∈ [a, b] such that f(x0) = c.

In other words, a continuous function on [a, b] attains every
value between f(a) and f(b) at least once — there are no gaps
in f([a, b]).

An important special case of the Theorem is the following: If f : [a, b] → R is continuous
and f(a) < 0 and f(b) > 0 (resp. f(a) > 0 and f(b) < 0), then f has a zero 〈Nullstelle〉 in
[a, b], i.e., ∃x0 ∈ [a, b]: f(x0) = 0.

Example of an Application: Let p : R → R be a polynomial function of odd
degree m = 2n+ 1 (with n ∈ N), say,

p(x) = b2n+1x
2n+1 + b2nx

2n + . . .+ b0 (x ∈ R),

where b2n+1 6= 0. Then p has at least one real zero.

To show this, we first write

p(x) = b2n+1 ·
(
x2n+1 +

b2n

b2n+1

x2n + . . .+
b0

b2n+1

)
= b2n+1 · q(x),

where the polynomial function q is of the form q(x) = x2n+1 + a2nx
2n + . . .+ a0

(with aj = bj/b2n+1 for j = 0, . . . , 2n).

By 5.7, Example 3), we have lim
x→∞

q(x) = ∞, hence there exists x+ > 0 such that q(x+) > 0.

Similarly, upon observing that

q(−x) = −x2n+1 + a2nx
2n − . . .+ a0 = −(x2n+1 − a2nx

2n + . . .− a0)

we obtain that lim
x→−∞

q(x) = −∞, hence there exists x− < 0 such that q(x−) < 0.

Since q |[x−,x+] : [x−, x+] → R is continuous and q(x−) < 0 < q(x+), the above Theorem
implies that there exists x0 ∈ [x−, x+] such that q(x0) = 0 (in fact, x− < x0 < x+, because
the values of q at x± are known to be nonzero). Therefore also p(x0) = b2n+1 q(x0) = 0.

Proof of the Theorem.

WLOG (:= without loss of generality) 〈OBdA (:= ohne Beschränkung der Allgemeinheit)〉 we
may assume that f(a) < c < f(b). [otherwise we just have to consider −f instead]

If c 6= 0 we can reduce the statement to that of the special case of a zero by putting
f1(x) := f(x) − c. Then f1(a) = f(a) − c < 0 and f1(b) = f(b) − c > 0 and the assertion
of the Theorem is equivalent to the existence of a zero x0 ∈ [a, b] of the function f1.
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So, again WLOG we may assume that c = 0 and f(a) < 0 < f(b). We have to show that
there is some x0 ∈ [a, b] such that f(x0) = 0.

We will find x0 by constructing a sequence of nested intervals in the fashion of a so-called
bisection method. To be more precise, we claim that we can define [an, bn] ⊆ [a, b] for all
n ∈ N with the following properties:

1. ∀n ∈ N: [an, bn] ⊆ [an−1, bn−1]

2. bn − an =
b− a

2n

3. f(an) < 0 and f(bn) ≥ 0.

Put a0 := a and b0 := b, then properties 2 and 3 are satisfied. We proceed inductively
and assume that [a0, b0], . . ., [an, bn] have been defined satisfying properties 1-3. Let m :=
(bn − an)/2 (this is the midpoint of [an, bn]) and distinguish two cases:

If f(m) ≥ 0 put an+1 := an and bn+1 := m

If f(m) < 0 put an+1 := m and bn+1 := bn.

Then properties 1–3 are valid for [an+1, bn+1] as well. By the principle of nested intervals we
obtain that (an) and (bn) converge to the same limit x0 ∈ [a, b], that is lim an = lim bn = x0.
Since f is continuous we have that

f(x0) = lim f(an) = lim f(bn).

By property 3 we obtain in addition

f(x0) = lim f(an) ≤ 0 ≤ lim f(bn) = f(x0),

which proves that f(x0) = 0.

Corollary: Let I ⊆ R be a nonempty interval and f : I → R be continuous. Then
f(I) ⊆ R is an interval as well.

Proof. Let A := inf f(I) and B := f(I), where we allow for the improper values A = −∞
(unbounded below) and B = ∞ (unbounded above). If A = B then f(I) contains just a
single point, in which case the statement is true. So we henceforth assume that A < B.

We assert that ]A,B[ ⊆ f(I): Let y ∈ ]A,B[, then there exist r, s ∈ I such that f(r) < y <
f(s). By the above Theorem we have some x0 ∈ I such f(x0) = y. Therefore y ∈ f(I).

To summarize, ]A,B[ ⊆ f(I) ⊆ [A,B], hence f(I) equals one of the intervals ]A,B[ or
]A,B] or [A,B[ or [A,B].



65

5.9. Continuous functions on bounded closed intervals:

Definition: A function f : D → R is called bounded 〈beschränkt〉 if the image set
f(D) ⊆ R is bounded, i.e.,

∃M > 0 ∀x ∈ D : |f(x)| ≤M.

Theorem: Let f : [a, b] → R be continuous. Then f is bounded and attains maximum
and minimum values, i.e., there exist x1, x2 ∈ [a, b] such that

f(x1) = min f([a, b]) = min {f(x) : x ∈ [a, b]} (= inf f([a, b]))

f(x2) = max f([a, b]) = max {f(x) : x ∈ [a, b]} (= sup f([a, b])).

Remark: (i) In the hypothesis of this theorem it is essential that the interval [a, b],
where f is defined and continuous, is bounded (i.e., −∞ < a ≤ b < ∞) and closed (i.e.,
the boundary points a and b belong to the interval). Otherwise the statement is not true
in general as can be seen from the following examples: Consider the continuous functions

f1 : ]0, 1] → R, x 7→ 1

x
, f2 : ]0, 1[ → R, x 7→ x, f3 : [0,∞[ → R, x 7→ x.

Then f1 and f3 are unbounded and do not attain a maximum, f2 does neither attain a
maximum nor a minimum.

(ii) As is shown by the simple example of a constant function, the locations x1 and x2 of
a minimum or a maximum need not be unique.

Proof of the Theorem. It suffices to give the proof for boundedness from above and con-
cerning the maximum, the case of minimum and boundedness from below can be reduced
to the latter by switching to −f .

Let A := sup f([a, b]) ∈ R ∪ {∞}, then there exists a sequence (an) in [a, b] such that
f(an) → A (n→ ∞).

Since [a, b] is a bounded subset of R the Theorem of Bolzano-Weierstraß implies that there
is a convergent subsequence (ank

)k∈N. Let x2 := lim
k→∞

ank
∈ [a, b].

Since f is continuous we obtain that

R ∋ f(x2) = lim
k→∞

f(ank
) = A = sup f([a, b]).

In particular, f([a, b]) is bounded above and the supremum is a maximum, which is attained
by f at x2 ∈ [a, b].



66

5.10. Uniform continuity: If we are to check continuity of a real valued function
f at a certain point x0 in its domain D, then for given ε > 0 we have to find δ > 0 such
that the condition |f(x) − f(x0)| < ε is met whenever x ∈ D satisfies |x − x0| < δ. We
observe that, in general, δ will dependend on ε > 0 as well as on the point x0. Consider the
following example, where the range of possible values for δ is strictly shrinking as ε gets
smaller or x0 varies: Let D =]0, 1] and f : D → R with f(x) = 1/x, which is continuous in
every point x0 ∈ D.

Fix some x0 ∈ D and ε > 0 arbitrarily and let
us test the allowed tolerance in varying the
argument in 0 < x ≤ x0 while maintaining
|f(x) − f(x0)| < ε. For every 0 < δ < x0 let
xδ := x0 − δ. Then

|f(xδ) − f(x0)| =
1

xδ
− 1

x0

=
x0 − xδ

x0 xδ
=

δ

x0 (x0 − δ)
.

Thus requiring |f(x) − f(x0)| < ε for all x ∈
]0, 1] with |x − x0| < δ implies ε > δ

x2
0
−x0δ

.

Equivalently, εx2
0 − εx0δ > δ and hence

δ <
εx2

0

1 + ε x0

< εx2
0.

This shows that the smaller x0 > 0 is the
smaller we have to choose δ > 0 (even at fixed
value of ε > 0).

y

x0

1

x

1

1

︸︷︷︸

δ
︸︷︷︸

δ

We thus obtain a stronger form of continuity notion, if we require that for each ε > 0 a
suitable δ > 0 can be found which guarantees the typical ε-δ-estimate to hold for all pairs
of points in the domain of relative distance less than δ.

Definition: Let D ⊆ R. A function f : D → R is uniformly continuous 〈gleichmäßig

stetig〉 (in D), if the following holds:

∀ε > 0 ∃δ > 0 ∀x, x′ ∈ D : |x− x′| < δ =⇒ |f(x) − f(x′)| < ε.

Remark: It is immediate from the definition that every uniformly continuous function
is continuous (at every point in the domain). The converse is not true as is illustrated by
the example above with D = ]0, 1], f(x) = 1/x: If xn = 1/n and x′n = 1/(2n) (n ∈ N,
n ≥ 1) then

|xn − x′n| =
1

n
− 1

2n
=

1

2n
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is arbitrarily small when n is sufficiently large, but

|f(xn) − f(x′n)| = 2n− n = n

is unbounded, hence will never stay below a given ε-tolerance.

However, as the following theorem will show, there is no distinction between continuity
and uniform continuity if D is a bounded closed interval.

Theorem: If f : [a, b] → R is continuous then f is uniformly continuous (on [a, b]).

Proof. (by contradiction) If f is not uniformly continuous then

∃ε > 0 ∀n ∈ N, n > 0 ∃xn, x
′
n ∈ [a, b] : |xn − x′n| <

1

n
and |f(xn) − f(x′n)| ≥ ε.

The sequence (xn) is bounded, thus by the Theorem of Bolzano-Weierstraß possesses a
convergent subsequence (xnk

)k∈N. Let x0 := lim xnk
∈ [a, b].

Since |xnk
− x′nk

| < 1/nnk
→ 0 (k → ∞) we have that limx′nk

= lim xnk
= x0. Then the

continuity of f at x0 yields

0 < ε ≤ |f(xnk
) − f(x′nk

)| → 0 (k → ∞),

— a contradiction � .

5.11. Approximation by step (or simple) functions: As an application
of the above Theorem 5.10 we show that “the area under the graph of a continuous function”
can be approximated by sums over areas of small vertical rectangles. This will be used
later in the chapter on integration theory.

a b

ϕ

ψ

The rectangles can be represented as graphs of step or simple functions and the approxi-
mation result is stated in terms of these as a uniform approximation from above and from
below.
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Proposition: Let f : [a, b] → R be continuous. For every ε > 0 there exist simple
functions ϕ, ψ : [a, b] → R with the following properties valid for all x ∈ [a, b]:

(a) ϕ(x) ≤ f(x) ≤ ψ(x)

(b) |ϕ(x) − ψ(x)| = ϕ(x) − ψ(x) ≤ ε.

Proof. By Theorem 5.10 f is uniformly continuous on [a, b]. Therefore we can find δ > 0
such that

∀x, x′ ∈ [a, b] : |x− x′| < δ =⇒ |f(x) − f(x′)| < ε.

Choose n ∈ N large enough to ensure (b− a)/n < δ and define partition points

tk := a + k · b− a

n
(k = 0, . . . , n).

In this way we obtain an equidistant partition of [a, b]

a = t0 b = tn. . .

by t0 = a < t1 < . . . < tn = b with

tk − tk−1 =
b− a

n
< δ.

As heights of the approximating rectangles we choose the maximum or minimum values
of f on the corresponding subintervals [tk−1, tk] (k = 1, . . . , n) of the partition, that is we
define

ck := max{f(x) : tk−1 ≤ x ≤ tk}, c′k := min{f(x) : tk−1 ≤ x ≤ tk}.

By Theorem 5.9 there exist ξk, ξ
′
k ∈ [tk−1, tk] such that f(ξk) = ck and f(ξ′k) = c′k (k =

1, . . . , n). Since |ξk − ξ′k| < δ we have |ck − c′k| < ε from the uniform continuity property
noted in the beginning.

Finally, we define the simple functions ϕ, ψ : [a, b] → R as follows:

Let ϕ(a) := f(a) and ψ(a) := f(a),

for tk−1 < x ≤ tk we set ϕ(x) := ck and ψ(x) := c′k (k = 1, . . . , n).

Then the conditions (a) and (b) follow by construction of ϕ and ψ.
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5.12. Continuous inverse function: Let A,B ⊆ R. Assume that the function
f : A → B is bijective, then the inverse function f−1 : B → A exists. If we know that f is
continuous, does this imply that f−1 is also continuous? In general, the answer is ‘no’ (see
the exercises for an example).

It turns out that there is a positive answer to the above question under the two additional
hypotheses of strict monotonicity on f and that A is an interval.

Recall that f is strictly increasing (resp. decreasing) if x1 < x2 implies f(x1) < f(x2) (resp.
f(x1) > f(x2)) and that a strictly monotone function necessarily is injective.

Theorem: Let I ⊆ R be an interval and f : I → R be continuous and strictly increasing
(resp. decreasing). Then f maps the interval I bijectively onto the interval J := f(I) and
the corresponding inverse function J → I is also continuous and strictly increasing (resp.
decreasing).

(Strictly speaking, we deal here with the inverse of the map f̃ : I → J , x 7→ f(x); but
we will follow the common abuse of language and denote f̃ again by f and its inverse by
f−1 : J → I.)

Proof. We present the proof for the case that f is strictly increasing, the case where f is
strictly decreasing is reduced to this by considering −f instead.

Corollary 5.8 implies that J = f(I) is an interval. Since f is strictly increasing it is
injective, hence f is bijective as a map I → J . Let f−1 : J → I denote the inverse of this
map.

Note that for x1, x2 ∈ I the inequality f(x1) < f(x2) in turn implies x1 < x2 (since then
x1 = x2 is impossible with different function values and x1 > x2 contradicts the fact that
f increases), therefore we have

∀x1, x2 ∈ I : x1 < x2 ⇐⇒ f(x1) < f(x2),

which shows that f−1 is strictly increasing as well.

It remains to prove that f−1 is continuous at every point b ∈ J .

Case 1, if b ∈ J is not a boundary point of J : Let a := f−1(b) ∈ I. Then a is not a
boundary point of I (for otherwise by monotonicity b would have to be boundary point
of J). Choose ε > 0 so small that both a − ε and a + ε belong to I. Since f is strictly
increasing we have

f(a− ε) < f(a) = b < f(a+ ε).

Thus we can find δ > 0 such that

f(a− ε) < b− δ < b+ δ < f(a+ ε),

which simply means that
f−1(Uδ(b)) ⊆ Uε(f

−1(b))
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and therefore proves the continuity of f−1 at b.

Case 2, if b ∈ J is the left boundary point of J : Then a := f−1(b) has to be the left
boundary point of I (since f is strictly increasing). We can copy the proof of case 1 with
the only changes that we use Uδ ∩ J and Uε(f

−1(b))∩ I as neighborhoods and the chain of
inequalities reads f(a) = b < b+ δ < f(a+ ε).

Case 3, if b ∈ J is the right boundary point of J : Similarly to case 2.

I

I ′

Remark: The second part of the above proof shows,
in fact, the following result: If I ⊆ R is an interval and
f : I → R is strictly increasing (not necessarily contin-
uous!), then f−1 : f(I) → I is continuous. But f(I)
need not be an interval, if f is discontinuous:

Root functions: As an application of the above Theorem we consider for any
k ∈ N, k ≥ 1, the functions4

f2k : [0,∞[ → [0,∞[, x 7→ x2k, and f2k+1 : R → R, x 7→ x2k+1.

All these functions are continuous, strictly increasing, and bijective, therefore the corre-
sponding inverse functions

f−1
2k : [0,∞[ → [0,∞[ and f−1

2k+1 : R → R

are continuous and strictly increasing. We use the the following notation for their function
values (for x in the appropriate domain)

n ≥ 2 : n
√
x = x

1

n := f−1
n (x).

4Altough the origin of the radical symbol
√

is rather unclear, many believe that it is an abbreviation

of the Latin word radix (root). The symbol was first used in Germany in the 16th century without the
winkulum (i.e. the term

√
a + b was originally denoted by

√
(a + b))



§6. ELEMENTARY TRANSCENDENTAL FUNCTIONS

6.1. Proposition: The exponential function exp : R → R is continuous, strictly
increasing, and exp(R) = ]0,∞[. Its inverse function log : ]0,∞[ → R is continuous, strictly
increasing and is called the natural logarithm 〈natürlicher Logarithmus〉.1 Furthermore, the
following functional equation holds for all x, y ∈ ]0,∞[:

(6.1) log(x · y) = log(x) + log(y).

1

1

x

y
exp x

log x

1Logarithms have been introduced by the Scottish mathematician John Napier in 1614, the term loga-
rithm being derived from the Greek words λόγος (“proportion”) and ἀριθμός (“number”).
Nowadays, there are different notations used for logarithmic functions: While mathematicians often write
log(x) for the natural logarithm and logb(x) for the base-b logarithm, in many calculus textbooks a nota-
tions such as ln(x) can be found for the natural logarithm, lg(x) for the base-10 logarithm etc. In these
lecture notes we will always use log(x) to denote the natural logarithm and logb(x) for the base-b logarithm.

71



72

Proof. The continuity of exp has already been established in the previous section.

Step 1: We show that exp is strictly increasing.

For every ξ > 0 we have

exp(ξ) = 1 + ξ +
∞∑

k=2

ξk

k!
> 1 + ξ > 1.

Let x1 < x2 then ξ := x2 − x1 > 0 and

exp(x2) = exp(x1 + ξ) = exp(x1) · exp(ξ) > exp(x1).

Step 2: We show that exp(R) = ]0,∞[.

Since exp(x) > 0 for all x ∈ R [4.23] we have exp(R) ⊆ ]0,∞[. To show the reverse inclusion
relation, it suffices to show that

lim
n→∞

exp(n) = ∞ and lim
n→∞

exp(−n) = 0,

since then by the intermediate value theorem all values in ]0,∞[ are indeed attained.

For n ∈ N we had shown exp(n) = en. Since e > 2 we therefore have en → ∞ (n → ∞),
which implies that

exp(−n) =
1

exp(n)
=

1

en
→ 0 (n→ ∞).

We may thus define the function f : R →]0,∞[, f(x) := exp(x), which is again continuous
and strictly increasing. Due to Theorem 5.12 the inverse function log := f−1 : ]0,∞[→ R

is also continuous and strictly increasing.

Step 3: We prove the functional equation (6.1).

Let x, y ∈ ]0,∞[ and put ξ := log(x), η := log(y). Then exp(ξ+η) = exp(ξ) · exp(η) = x · y
and therefore

log(x · y) = ξ + η = log(x) + log(y).

As a simple consequence we obtain

log(xk) = k log(x) for all x > 0 and k ∈ N.

6.2. Real powers and general exponentials: We can use the exponential
function and the logarithm to give a simple definition of expressions of the form rs when r >
0 and s ∈ R. Observe that if s is a natural number then rs = exp(log(rs)) = exp(s log(r)).
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Definition: (i) Let r > 0 and s ∈ R then

rs := exp(s log(r)) ∈ ]0,∞[.

As an immediate consequence of this definition we thus obtain the formula

log(rs) = s log(r) (r > 0, s ∈ R).

(ii) For any α ∈ R we define general power or root functions wα : ]0,∞[→ R by

x 7→ xα = exp(α log(x)).

(iii) The Exponential function with base a ∈ ]0,∞[ is given by

expa : R → R, expa(x) := ax = exp(x log(a)).

Note that exp(x) = expe(x) = ex for all x ∈ R.

We list the basic properties of exponential function with base a > 0, which are immediate
consequences of those for the exponential function and the logarithm.

Proposition: expa is continuous on R and we have the following:

(i) If a > 1 then expa is strictly increasing, if 0 < a < 1 then expa is strictly decreasing.

(ii) The functional equation: ax+y = ax · ay for all x, y ∈ R.

(iii) Let a > 0. For all m ∈ Z: expa(m) = am = a · a · · ·a (m factors).
(In other words, the notation am is consistent with the algebraically defined integer powers.)

(iv) Let a > 0. If p ∈ Z and q ∈ N, q ≥ 1, then a
p

q = q
√
ap = (ap)

1

q .
(Consistency with the root functions as defined in 5.12.)

(v) Let a > 0. For all x, y ∈ R: (ax)y = axy = (ay)x.

(vi) For all a > 0, b > 0, and x ∈ R: ax · bx = (a · b)x.

(vii) Let a > 0. For all x ∈ R: (
1

a
)x = a−x.

Proof. Immediate from the definition.

6.3. A collection of useful limits:

1) For all k ∈ N: lim
x→∞

ex

xk
= ∞.

We may assume that x > 0, which yields ex =
∞∑

n=0

xn

n!
>

xk+1

(k + 1)!
. Therefore

ex

xk
>

x

(k + 1)!
→ ∞ as x→ ∞.
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2) For all k ∈ N: lim
x→∞

xk

ex
= 0. (Follows directly from 1).)

3) For all k ∈ N: lim
xց0

xke1/x = ∞.

Writing y = 1/x gives lim
xց0

xke1/x = lim
y→∞

ey

yk
= ∞ (by 1)).

4) lim
x→∞

log(x) = ∞ and lim
xց0

log(x) = −∞.

Both assertions follows from Proposition 6.1, which implies that log : ]0,∞[→ R is strictly
increasing and bijective.

5) For all α > 0: lim
xց0

xα = 0 and lim
xց0

x−α = ∞.

The second assertion follows from the first. To prove the first we write x = e−y/α (equiva-
lently, y = −α log(x)) and compute

lim
xց0

xα = lim
y→∞

e−y = 0.

6) For all α > 0: lim
x→∞

log(x)

xα
= 0.

We may assume that x > 0 and write xα = ey (equivalently, y = α log(x)) to obtain

lim
x→∞

log(x)

xα
=

1

α
· lim

y→∞

y

ey
= 0.

7) For all α > 0: lim
xց0

xα log(x) = 0.

Upon writing x = 1/y (so that y → ∞) we have xα log(x) = − log(y)/yα, then use 6).

8) lim
x→0

x 6=0

ex − 1

x
= 1

The remainder term estimate (4.4), (4.5) for the exponential sum gives for all x with
|x| ≤ 3/2 that

|ex − (1 + x)| ≤ 2
|x|2
2!

= |x|2.

In other words, if 0 < |x| ≤ 3/2 then

|e
x − 1

x
− 1| =

|ex − 1 − x|
|x| ≤ |x| → 0 as x→ 0.
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6.4. The Landau-symbols2 — comparison of asymptotic growth:

Definition: (i) Let a ∈ R and f, g : ]a,∞[→ R. We write

f(x) = o(g(x)) (x→ ∞),

to mean that ∀ε ∃R > a: |f(x)| ≤ ε |g(x)| holds for all x ≥ R.
(“f(x) is a little-oh of g(x) as x tends to infinity”.)

We write
f(x) = O(g(x)) (x→ ∞),

to mean that ∃K > 0 ∃R > a: |f(x)| ≤ K |g(x)| holds for all x ≥ R.
(“f(x) is a big-oh of g(x) as x tends to infinity”.)

(ii) Let D ⊆ R and x0 be an adherent point of D. We write

f(x) = o(g(x)) (x→ x0, x ∈ D),

to mean that ∀ε > 0 ∃δ > 0: |f(x)| ≤ ε |g(x)| holds ∀x ∈ Uδ(x0) ∩D.

We write
f(x) = O(g(x)) (x→ x0, x ∈ D),

to mean that ∃K > 0 ∃δ > 0: |f(x)| ≤ K |g(x)| holds ∀x ∈ Uδ(x0) ∩D.

Remark: (i) If, for example, g(x) 6= 0 for all x near x0 and lim
x→x0

f(x)

g(x)
= 0, then f(x) =

o(g(x)) (x→ x0).

(ii) We will occasionally make use of a notation like

f(x) = h(x) +O(g(x))

to mean that f(x) − h(x) = O(g(x)).

Examples: 1) If α > 0 then log(x) = o(xα) (x→ ∞) [cf. 6.3.6)].

2) ex = 1 + x+O(x2) (x → 0), since |ex − 1− x| ≤ |x|2 when |x| ≤ 3/2 [as seen in 6.3.8)].

3) f(x) = f(x0) + o(1) (x→ x0) ⇐⇒ lim
x→x0

f(x) = f(x0) ⇐⇒ f is continuous at x0.

4) If p is a polynomial function of degree m, then p(x) = O(xm) (x→ ∞).

2Edmund Georg Hermann Landau (1877–1938) ["EdmUnt "ge;O5k "he5man "landaU], German mathemati-
cian
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6.5. A digression into basic analysis on C:

Let z = x + iy ∈ C, so that x = Re(z), y = Im(z) and z = x+ iy ∈ C. Then the product
zz = (x+ iy)(x− iy) = x2 +y2 always gives a non-negative real number and we may define
the absolute value of z by

|z| :=
√
zz =

√

x2 + y2 =
√

Re(z)2 + Im(z)2.

Note that, since real numbers x are embedded as complex numbers3 of the form x + i0,
the absolute value of x as a real number is the same as its absolute value as a complex
number.

Lemma: The absolute value as a map |.| : C → R has the following properties, valid for
all z, z1, z2 ∈ C:

(i) |z| ≥ 0 and |z| = 0 ⇔ z = 0

(ii) |z| = |z|
(iii) |z1 · z2| = |z1| · |z2|
(iv) |Re(z)| ≤ |z| and | Im(z)| ≤ |z|
(v) |z1 + z2| ≤ |z1| + |z2| (triangle inequality).

Proof. Let z = x+ iy, zk = xk + iyk (k = 1, 2).

(i): |z| ≥ 0 and |0| = 0 is immediate. If |z| = 0, then 0 ≤ x2 ≤ x2 + y2 = 0 as well as
0 ≤ y2 ≤ x2 + y2 = 0, hence x = 0 and y = 0.

(ii): Clear from the definition.

(iii): |z1z2|2 = (z1z2)(z1z2) = (z1z1)(z2z2) = |z1|2|z2|2.
(iv): |x|2 = x2 ≤ x2 + y2 and |y|2 = y2 ≤ x2 + y2.

(v): |z1 + z2|2 = (z1 + z2)(z1 + z2) = |z1|2 + 2 Re(z1z2) + |z2|2 ≤ [by (iv)]
|z1|2 + 2|z1||z2| + |z2|2 = (|z1| + |z2|)2.

(a) Convergence in C:

Definition: (i) Let z0 ∈ C and ε > 0, then the ε-neighborhood Uε(z0) of z0 is defined
by

Uε(z0) := {z ∈ C : |z − z0| ≤ ε}.

In a planar representation of the complex numbers, Uε(z0) is an open disk with radius ε
around z0:

3Square roots of negative numbers were “invented” by the Italian mathematicians Gerolamo Cardano
and Raffaele Bombelli. In modern mathematics, complex numbers are generally denoted by z = a + bi or
sometimes z = a + bj.
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x

y

z0

ε

(ii) A sequence of complex numbers is a map c : N → C. We use the notation (cn)n∈N with
cn := c(n).

(iii) The complex sequence (cn) converges to z0 ∈ C, denoted by cn → z0 (n → ∞) or
lim

n→∞
cn = z0, if

∀ε > 0 ∃n0 ∈ N ∀n ≥ n : |cn − z0| < ε.

Equivalently, we may require that

∀ε > 0 ∃n0 ∈ N ∀n ≥ n : cn ∈ Uε(z0).

Proposition: Let (cn) be a complex sequence. Then the following are equivalent:

(i) (cn) is convergent (in C).

(ii) Both sequences (Re cn) and (Im cn) converge (in R).

In this case we have lim cn = lim Re cn + i lim Im cn.

Proof. Let an := Re cn, bn := Im cn (n ∈ N).

(i) ⇒ (ii): Let c := lim cn, a := Re c and b := Im c.

If ε > 0 is given arbitrarily, we can find n0 ∈ N such that |cn − c| < ε holds for all n ≥ n0.
Therefore we have for all n ≥ n0

|an − a| = |Re(cn − c)| ≤ |cn − c| < ε as well as |bn − b| = |Re(cn − c)| ≤ |cn − c| < ε,

which proves that an → a and bn → b.

(ii) ⇒ (i): Let ε > 0. Put a := lim an, b := lim bn, and c := a + ib. Choose n0 ∈ N such
that |an − a| < ε/2 and |bn − b| < ε/2 holds for all n ≥ n0. Then we have for n ≥ n0

|(an + ibn) − (a + ib)| = |(an − a) + i(bn − b)| ≤ |an − a| + |bn − b| < ε

2
+
ε

2
= ε,

thus cn → c (n→ ∞).
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Corollary: If (cn) is a convergent complex sequence, then lim cn = lim cn.

Proof. lim cn = lim Re cn − i Im cn = lim Re cn + i lim Im cn = lim cn.

Precisely as in the case of real sequences one proves the following rules for basic operations
with convergent sequences:

If (cn), (dn) are convergent complex sequences and λ ∈ C, then

lim(cn + dn) = lim cn + lim dn

lim(λcn) = λ lim cn

lim(cndn) = (lim cn)(lim dn)

lim
cn
dn

=
lim cn
lim dn

(if dn 6= 0 for almost all n).

Theorem (Completeness of C): A sequence (cn) of complex numbers con-
verges if and only if it is a Cauchy sequence, i.e.,

(6.2) ∀ε > 0 ∃n0 ∈ N ∀n,m ≥ n0 : |cn − cm| < ε.

Proof. (6.2) ⇔ both (Re cn) and (Im cn) are Cauchy sequences in R ⇔ both (Re cn) and
(Im cn) are convergent in R ⇔

[Prop.]
(cn) is convergent in C.

(b) Complex series:

Definition: Let (cn) be a sequence of complex numbers. The series

∞∑

k=0

ck is conver-

gent, if the corresponding sequence (sn) of partial sums sn :=
n∑

k=0

ck is convergent (in C).

The series
∞∑

k=0

ck is absolutely convergent, if the (real) series
∞∑

k=0

|ck| converges (in R).

Proposition: (i) Basic comparison test: Let (an) be a sequence with an ≥ 0 (thus,
real!) and such that

∑
an is convergent. If (cn) is a complex sequence with the property

∃n0 ∈ N ∀n ≥ n0 : |cn| ≤ an,

then the series
∑

n=0

∞
cn is absolutely convergent.

(ii) The root test and the ratio test both are valid for complex sequences literally as stated
in Section 4. In particular, if a complex sequence (cn) with cn 6= 0 (for almost all n)
satisfies

∃θ ∈ [0, 1[:

∣
∣
∣
∣

cn+1

cn

∣
∣
∣
∣
≤ θ,

then the series
∑

n=0

∞
cn is absolutely convergent.
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(iii) The Proposition concerning the Cauchy product for absolutely convergent series holds
literally as stated in Section 4.

Proof. Can be literally copied from those of the corresponding statements about real series.

(c) Continuity of functions of a complex variable:

Definition: Let D ⊆ C, z0 ∈ C. A function f : D → C is continuous at z0, if

∀ε > 0 ∃δ > 0 ∀z ∈ D : |z − z0| < δ =⇒ |f(z) − f(z0)| < ε,

or equivalently
∀ε > 0 ∃δ > 0 : f(Uδ(z0) ∩D) ⊆ Uε(f(z0)).

f is said to be continuous on D, if f is continuous at all points in D.

Remark: As in the case of functions on R, continuity can be tested by sequences (the
proof is also a literal translation of that in the real case): f : D → C is continuous at
w ∈ D if and only if or all sequences (zn) with zn ∈ D and zn → w (n→ ∞) we have that
lim f(zn) = f(w). We also express the latter fact by lim

z→w
f(z) = f(w).

6.6. The complex exponential function:

Theorem: (i) For all z ∈ C the series
∞∑

k=0

zk

k!
is absolutely convergent. We thus define

the complex exponential function exp : C → C by

exp(z) = ez :=
∞∑

k=0

zk

k!
(z ∈ C).

When restricted to R it coincides with the exponential function defined in Section 4. We
will continue to use the same notation for both functions.

(ii) For all N ∈ N

exp(z) =

N∑

k=0

zk

k!
+RN+1(z),

where

|RN+1(z)| ≤ 2
|z|N+1

(N + 1)!
(z ∈ C, |z| ≤ 1 +

N

2
).

(iii) We have the functional equation

∀z1, z2 ∈ C : exp(z1 + z2) = exp(z1) · exp(z2).
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(iv) For all z ∈ C: exp(z) = exp(z).

(v) For all z ∈ C: exp(z) 6= 0.

(vi) lim
z 6=0,z→0

ez − 1

z
= 1.

(vii) exp : C → C is continuous (at all points of C).

Proof. (i): If z = 0 the assertion is trivial. If z 6= 0 we apply the ratio test with cn = zk/k!.
For all n ≥ 2|z| we have

∣
∣
∣
∣

cn+1

cn

∣
∣
∣
∣
=

∣
∣
∣
∣

zn+1n!

zn(n+ 1)!

∣
∣
∣
∣
=

|z|
n + 1

≤ 1

2
< 1,

which proves absolute convergence.

If we temporarily use the notation expR for the (real) exponential function defined in

Section 4, then for x ∈ R we have exp(x+ i0) =
∑∞

k=0
xk

k!
= expR(x).

(ii), (iii): Literally as in the corresponding proofs in Section 4.

(iv): Let sn(z) :=
∑n

k=0 z
k/k! and use 6.5(a): exp(z) = lim sn(z) = lim sn(z) = exp(z).

(v): The functional equation gives exp(z) exp(−z) = exp(z − z) = exp(0) = 1, hence
exp(z) 6= 0.

(vi): By (ii) we have |ez − 1 − z| ≤ 2 |z|2

2
= |z|2 for all |z| ≤ 3/2, hence

∣
∣
∣
∣

ez − 1

z
− 1

∣
∣
∣
∣
≤ |z| → 0 (z → 0).

(vii): By (vi) we have ez − 1 = o(z) (z → 0). Therefore limz→0 exp(z) = 1 = exp(0), which
shows continuity of exp at 0.

Let w ∈ C arbitrary and assume that (zn) is a sequence in C such that zn → w (n→ ∞).
Then zn − w → 0, thus

1 = exp(0) = lim
n→∞

exp(zn − w) = lim
n→∞

exp(zn) exp(−w),

which implies that lim exp(zn) = exp(w), hence the continuity of exp at w.
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6.7. Trigonometric functions 〈trigonometrische Funktionen oder Winkelfunktionen〉4:

Definition: We define the cosine (function) 〈Cosinus (Funktion)〉 by

cos: R → R, cos(x) := Re(exp(ix)) = Re(eix),

and the sine (function) 〈Sinus (Funktion)〉 by

sin : R → R, sin(x) := Im(exp(ix)) = Im(eix).

Basic properties: (i) Since eix = Re(eix) + i Im(eix) we obtain Euler’s formula

(6.3) ∀x ∈ R : eix = cos(x) + i sin(x).

Furthermore, cos and sin are continuous R → R, since exp(ixn) → exp(ia) if and only if
Re(exp(ixn)) → Re(exp(ia)) and Im(exp(ixn)) → Im(exp(ia)).

(ii) Geometric interpretation: Since any real t gives |eit|2 = eit · (eit) = eite−it = e0 = 1, we
obtain

|eit| = 1 ∀t ∈ R.

Therefore every number of the form eit lies on the unit circle

S1 := {z ∈ C : |z| = 1} ∼= {(x1, x2) ∈ R2 : x2
1 + x2

2 = 1}

and (cos(t), sin(t)) represents the (Cartesian) coordinates in the plane. In particular, we
have the relation

(6.4) cos2(x) + sin2(x) = 1 ∀x ∈ R.

cos x

si
n

x

eix

4These so-called trigonometric functions have a very long history: They were first used by the Babylo-
nians in around 1900 BC and later in the Hellenistic world, in medieval India, in the Islamic Persia and
in the medieval Europe. The terms sine and cosine (from the Latin sinus, i.e. “arch ”) were introduced by
the German mathematician Georg von Peuerbach.
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Remark: Note that we avoided any reference to notions like arc length 〈Bogenlänge〉 or angle

〈Winkel〉 in defining the trigonometric functions for reasons of a deductive presentation. Arc

length will be introduced rigorously, and in more generality, later during the course (based on

the notion of integrals along curves), but it certainly is useful to have the intuitive meaning at

hand already as suggested by the above geometric interpretation.

(iii) Recall that for any complex number w the real and imaginary part can be obtained
from Re(w) = (w + w)/2 and Im(w) = (w − w)/2i. Therefore we have

cos(x) =
eix + e−ix

2
, sin(x) =

eix − e−ix

2i
,

which in turn implies

cos(−x) = cos(x) and sin(−x) = − sin(x),

telling that cos is an even 〈gerade〉 function (the graph is symmetric with respect to the
vertical axis) and sin is an odd 〈ungerade〉 function (the graph is reflected by lines through
the origin (0, 0)).

(iv) The fundamental relations for the addition of arguments (“angles”) 〈Additionstheoreme〉
are the following: For all x, y ∈ R

cos(x+ y) = cos(x) cos(y) − sin(x) sin(y)

sin(x+ y) = cos(x) sin(y) + sin(x) cos(y)

and

cos(x) − cos(y) = −2 sin
x+ y

2
sin

x− y

2

sin(x) − sin(y) = 2 cos
x+ y

2
sin

x− y

2
.

Proof. The first two equations are obtained by taking real and imaginary parts in the
relation

ei(x+y) = eix · eiy.

The third (resp. fourth) equation follows from the first (resp. second) equation upon setting
u = (x+ y)/2 and v = (x− y)/2 (⇔ x = u+ v, y = u− v):

cos(x) − cos(y) = cos(u+ v) − cos(u− v)

= cos(u) cos(v) − sin(u) sin(v) −
(
cos(u) cos(v) + sin(u) sin(v)

)

= −2 sin(u) sin(v) = −2 sin
x+ y

2
sin

x− y

2
,

and similarly for the last equation.
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(v) The natural integer powers of i show a simple repetitive pattern: Since i2 = −1,
i3 = i2i = −i, i4 = i3i = −i2 = 1, we have for n ∈ N that

in =







1 if n = 4m for some m ∈ N (⇔ n ≡ 0 mod 4)

i if n = 4m+ 1 for some m ∈ N (⇔ n ≡ 1 mod 4)

−1 if n = 4m+ 2 for some m ∈ N (⇔ n ≡ 2 mod 4)

−i if n = 4m+ 3 for some m ∈ N (⇔ n ≡ 3 mod 4).

Therefore we obtain for all x ∈ R

cos(x) + i sin(x) = eix =
∞∑

n=0

(ix)n

n!
=

∞∑

n=0

inxn

n!

=
∞∑

k=0

(−1)k x2k

(2k)!
︸ ︷︷ ︸

Re(eix)

+ i ·
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
︸ ︷︷ ︸

Im(eix)

,

which proves the following series expansions for cosine and sine:

cos(x) =
∞∑

k=0

(−1)k x2k

(2k)!
, sin(x) =

∞∑

k=0

(−1)k x2k+1

(2k + 1)!
.

(vi) Suppose we are to use the above series expansions to approximate cosine and sine
for small x by simply dropping all terms that contain x to quadratic or higher order. If
justified, this would give the following simple heuristic relations when |x| is small:

cos(x) ≈ 1 and sin(x) ≈ x.

As a matter of fact, we have the limit equations

lim
x 6=0,x→0

cos(x) − 1

x
= 0, lim

x 6=0,x→0

sin(x)

x
= 1.

Proof. By Theorem 6.6(vi) we have that

1 + i · 0 = lim
x→0

eix − 1

ix
= lim

x→0
Re(

eix − 1

ix
) + i · lim

x→0
Im(

eix − 1

ix
).

Therefore we have for x ∈ R as x→ 0

cos(x) − 1

x
= − Im(

cos(x) − 1 + i sin(x)

ix
) = − Im(

eix − 1

ix
) → 0

sin(x)

x
= Re(

cos(x) − 1 + i sin(x)

ix
) = Re(

eix − 1

ix
) → 1.
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6.8. Definition of π: We will show that cos is strictly decreasing on the interval
[0, 2] and possesses a unique zero x0 in that interval. We will define π as the value of 2x0.
We postpone the precise identification of π with the (length of the) circumference of the
unit circle until integration theory allows us to provide a simple calculation.5

cos

1
2

x0 x

cos 2 < 0

Lemma: (i) cos(0) = 1 and cos(2) ≤ −1/3.

(ii) If 0 < x ≤ 2 then sin(x) > 0.

(iii) cos is strictly decreasing on [0, 2].

Proof. (i): We clearly have cos(0) = Re(ei0) = 1.

The series expansion for the cosine function gives the alternat-
ing sum

cos(2) = 1 − 22

2!
+

∞∑

k=2

(−1)k 22k

(2k)!
= −1 + r,

where r represents the error when approximating cos(2) by the partial sum s1 = −1. Thus
the error estimate (4.2) from the Leibniz criterion tells that |r| is bounded by the absolute
value of the first neglected term. Therefore we have

cos(2) ≤ −1 + |r| ≤ −1 +
24

4!
= −1 +

16

24
= −1 +

2

3
= −1

3
.

(ii): Let 0 < x ≤ 2. We have the alternating sum for the sine
function

sin(x) = x+
∞∑

k=1

(−1)k x2k+1

(2k + 1)!
= x+ r(x),

where r(x) now denotes the error when approximating sin(x) by the partial sum s1(x) = x.
We apply again the estimate (4.2), which now reads

|r(x)| ≤ x3

3!
= x · x

2

6
≤ x · 4

6
=

2x

3
,

and therefore

sin(x) ≥ x− |r(x)| ≥ x− 2x

3
=
x

3
> 0.

(iii): Let 0 < x1 < x2 ≤ 2, then 0 < (x1 + x2)/2 ≤ 2 as well as
0 < (x2 −x1)/2 ≤ 2. By 6.7(iv) and property (ii) proved above

5This constant was first named “π” by the Welsh scientist William Jones in 1706 because it is the first
letter of the Greek words περιφερεία (“periphery”) and περίμετρος (“circumference”). This notation was
later adopted by Euler.
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we obtain

cos(x2) − cos(x1) = −2 · sin x2 + x1

2
︸ ︷︷ ︸

>0

· sin x2 − x1

2
︸ ︷︷ ︸

>0

< 0,

hence cos(x2) < cos(x1).

Proposition: There exists a unique x0 ∈ [0, 2] such that cos(x0) = 0.

Proof. By the above lemma, cos is strictly decreasing on [0, 2], hence cos |[0,2] is injective.
Furthermore, the same lemma gives that cos(0) > 0 and cos(2) < 0. Since cos is continuous,
the intermediate value theorem implies the existence of a zero x0 ∈ [0, 2]. This zero must
be unique, since cos is injective on that interval.

Definition: Let x0 denote the unique zero of cos in the interval [0, 2] (according to
the above proposition). Then the real number π is defined by π := 2x0.

The properties of cos and sin established above can now be reformulated in more familiar
terms: For example, we obtain that

cos(x) > 0 for 0 ≤ x <
π

2
, cos(

π

2
) = 0, cos(x) < 0 for

π

2
< x ≤ 2.

Since sin2(π
2
) = 1 − cos2(π

2
) = 1 and sin(π

2
) > 0 (by the above lemma), we have

sin(
π

2
) = 1 and ei π

2 = cos(
π

2
) + i sin(

π

2
) = i.

Im

Re

eix = cosx+ i sin x

Taking integer powers for all k ∈ Z we obtain eik π
2 =

(
ei π

2

)k
= ik. In particular,

ei 0 = 1 = cos(0) + i sin(0), ei π
2 = i = cos(

π

2
) + i sin(

π

2
), eiπ = −1 = cos(π) + i sin(π),

ei 3π
2 = −i = cos(

3π

2
) + i sin(

3π

2
), ei2π = 1 = cos(2π) + i sin(2π),

which is summarized in the table

x 0 π
2

π 3π
2

2π

sin(x) 0 1 0 −1 0
cos(x) 1 0 −1 0 1



86

6.9. Further properties of the trigonometric functions: For all x ∈ R

we have the following properties:

(a) cos and sin are periodic 〈periodisch〉 with period 〈Periode〉 of 2π, i.e.,

cos(x+ 2π) = cos(x), sin(x+ 2π) = sin(x).

This follows from 6.7(iv) and the fact that cos(2π) = 1, sin(2π) = 0:

cos(x+ 2π) = cos(x) cos(2π) − sin(x) sin(2π) = cos(x).

(b) Since cos(x + π) = cos(x) cos(π) − sin(x) sin(π) = − cos(x), and a similar calculation
for sin, we have

cos(x+ π) = − cos(x), sin(x+ π) = − sin(x).

(c) By sin(π
2
−x) = sin(π

2
) cos(−x)+ cos(π

2
) sin(−x) = cos(x), and a similar calculation for

cos, we obtain

sin(
π

2
− x) = cos(x), cos(

π

2
− x) = sin(x).

(d) sin(x) = 0 ⇐⇒ x ∈ πZ := {k π : k ∈ Z}

Proof. By 2π-periodicity it suffices to show the assertion for x ∈ [0, 2π[.

Let 0 < x < π arbitrary, then π
2
− x ∈ ] − π

2
, π

2
[ and therefore sin(x) = cos(π

2
− x) > 0.

Furthermore, note that ]π, 2π[= {r + π : 0 < r < π} and sin(x+ π) = − sin(x) < 0.

Thus, 0 and π are the only zeros of sin in the interval [0, 2π[, which proves the assertion.

(e) cos(x) = 0 ⇐⇒ x ∈ {π
2
} + πZ := {π

2
+ k π : k ∈ Z}

Proof. Use cos(x) = − sin(x− π
2
) and apply (d).

(f) eix = 1 ⇐⇒ x ∈ 2πZ := {2k π : k ∈ Z}

Proof. We have eix − 1 = ei x
2 ·

(
ei x

2 − e−i x
2

)
= 2i ei x

2 sin x
2

and 2i ei x
2 6= 0. Therefore

eix = 1 ⇐⇒ sin(
x

2
) = 0 ⇐⇒ x

2
∈ πZ ⇐⇒ x ∈ 2πZ.

Using the above list of basic properties of cos and sin we can get a good qualitative picture
of their graphs. Note in particular the following features: a shift of the graph of cos by π

2

along the horizontal axes gives the graph of sin; cos is even and strictly decreasing on [0, π]
(thus increasing on [−π, 0]), sin is odd and strictly increasing on [−π

2
, π

2
]; besides the zeros
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we can read off locations of maximum and minimum values, where each functions changes
monotonicity type from increasing to decreasing or vice versa.

cos

sin

−2π −3π

2
−π −π

2

π

2
π

3π

2
2π

−1

x

Definition: (i) The tangent (function)6 〈Tangens (-Funktion)〉 tan: R \ (π
2

+ πZ) → R

is given by

tan(x) :=
sin(x)

cos(x)
.

(ii) The cotangent (function) 〈Cotangens (-Funktion)〉 cot : R \ πZ → R is given by

cot(x) :=
cos(x)

sin(x)
.

A geometric interpretation of tan(x), when −π
2
< x < π

2
, is easy by comparing the right-

angled triangles in the following illustration:

cosx

si
n

x

eix 




tanx

6The term tangent was first used by the Danish mathematician Thomas Fincke in 1583.
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Here is the part of the graph of tan above the interval ] − π
2
, π

2
[, whose basic qualitative

features can be derived from the properties of cos and sin:

π

2
−π

2

Note that tan(x + π) = sin(x+π)
cos(x+π)

= − sin(x)
− cos(x)

=

tan(x), so that the complete graph of tan
can be obtained from shifts of the basic part
on ] − π

2
, π

2
[ by integer multiples of π.

6.10. Inverse trigonometric functions 〈Arcusfunktionen〉:
Arc cosine: We assert that cos is strictly decreasing on [0, π] and cos([0, π]) = [−1, 1].

Indeed, that cos is strictly decreasing on [0, π
2
] follows from the

Lemma in 6.8; since cos(π − x) = − cos(x) the same follows
for the interval [π

2
, π]; by continuity and injectivity, cos([0, π]) =

[cos(π), cos(0)] = [−1, 1].

Thus cos is continuous, strictly decreasing, and bijective as a map
[0, π] → [−1, 1], hence possesses a strictly decreasing continuous
inverse function

arccos : [−1, 1] → [0, π],

called the arc cosine (function) 〈Arcus Cosinus〉.
We have for all x ∈ [0, π] that arccos(cos(x)) = x and cos(arccos(y)) = y for all y ∈ [−1, 1].

Of course we could have constructed similar inverses on any interval of strict monotonicity
for cos. Unless stated otherwise we will usually refer to the one constructed above as
arccos.

Arc sine: Using sin(x) = cos(π
2
−x) and (i) we deduce the following:

sin is strictly increasing on [−π
2
, π

2
] and sin([−π

2
, π

2
]) = [−1, 1]. The

corresponding inverse function

arcsin : [−1, 1] → [−π
2
,
π

2
],

called the arc sine (function) 〈Arcus Sinus〉, is continuous and strictly
increasing.
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Arc tangent: We claim that tan is strictly increasing on ]− π
2
, π

2
[ and tan(]− π

2
, π

2
[) = R.

Proof. Since

tan(−x) =
sin(−x)
cos(−x) =

− sin(x)

cos(x)
= − tan(x),

it suffices to consider the subinterval [0, π
2
[. If 0 ≤ x < x′ < π

2
then sin(x) < sin(x′) and

cos(x) > cos(x′) > 0, hence

tan(x) =
sin(x)

cos(x)
<

sin(x′)

cos(x′)
= tan(x′).

Note that cos(x)
sin(x)

> 0 for all x ∈ ]0, π
2
[ and that

lim
xրπ

2

cos(x)

sin(x)
=

cos(π
2
)

sin(π
2
)

= 0.

Therefore we obtain that tan(x) → ∞ as xր π
2

and by the intermediate value theorem (tan
is continuous!) that tan([0, π

2
[) = [0,∞[. By symmetry of tan we obtain that tan(]−π

2
, π

2
[) =

] −∞,∞[.

We conclude that the restriction of tan to ]− π
2
, π

2
[ has a continuous and strictly increasing

inverse function arctan: R →] − π
2
, π

2
[, called arc tangent (function) 〈Arcus Tangens〉.
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6.11. Polar coordinates7 for complex numbers: If z = x + iy ∈ C we
may interpret the absolute value |z| =

√

x2 + y2 as the distance of z to the origin in the
plane:

x

y

|z| x+ iy

eiϕ

1

How do we obtain information on the direction towards
z as seen from the origin with respect to the positive
real axis (the x-axis)?

Recall that for any ϕ ∈ R we have |eiϕ| = 1 and eiϕ =
cos(ϕ) + i sin(ϕ).

Furthermore, the points where the unit circle S1 inter-
sects the Cartesian axes are given by ei0 = 1, ei π

2 = i,
eiπ = −1, ei 3π

2 = −i and we have 2π-periodicity

ei(ϕ+2π) = eiϕ.

Let z 6= 0 and set w := z
|z|

. Then w lies on the unit circle and can be written in the form

w = ξ + i η, where ξ, η ∈ R such that 1 = |w|2 = ξ2 + η2.

Therefore ξ ∈ [−1, 1] and α := arccos(ξ) ∈ [0, π] and we have

sin2(α) = 1 − cos2(α) = 1 − ξ2 = η2,

hence sin(α) = η or sin(α) = −η. If we define

ϕ :=

{

α if sin(α) = η

−α if sin(α) = −η,

then we obtain w = cos(ϕ) + i sin(ϕ) = eiϕ, which in turn yields the polar representation
〈Polardarstellung〉 of z in the form

z = |z| · eiϕ.

In this representation ϕ, the so-called the argument 〈Argument〉 of z, ϕ = arg(z), is unique
up to an addition of integer multiples of 2π.

7The history of polar coordinates is about as long as the one of trigonometry. The term polar coordinates
was introduced by 18th-century Italian mathematicians.
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