
PERKINS EMBEDDING FOR GENERAL STARTING LAWS

ANNEMARIE GRASS

Abstract. The Skorokhod embedding problem (SEP) is to represent a given probability
measure as a Brownian motion B at a particular stopping time. In recent years particu-
lar attention has gone to solutions which exhibit additional optimality properties due to
applications to martingale inequalities and robust pricing in mathematical finance.

Among these solutions, the Perkins embedding sticks out through its distinct geometric
properties. Moreover is the only optimal solution to the SEP which so far has been limited
to the case of Brownian motion started in a dirac distribution.

In this paper we provide for the first time an optimal solution to the Skorokhod em-
bedding problem for the general SEP which leads to the Perkins solution when applied
to Brownian motion with start in a dirac. This solution to the SEP also suggests a new
geometric interpretation of the Perkins solution which better clarifies the relation to other
optimal solutions of the SEP.

1. Introduction

Let µ be a probability measure on the real line with finite second moment and write
(Bt)t≥0 for a Brownian motion started according to a probability measure λ, i.e. B0 ∼ λ.
The Skorokhod embedding problem ([33, 34]) is to find a stopping time τ such that the
measure µ can be represented in the sense that

Bτ ∼ µ, and E[τ] < ∞. (SEPλ,µ)

Skorokhod [33, 34] gave a solution in the case where Brownian motion is started in an
atom. A necessary and sufficient condition for the SEPλ,µ to admit a solution is for λ
to be prior to µ in convex order, i.e.

∫
f (x)λ(dx) ≤

∫
f (x)µ(dx) for any convex function

f : R → R. This follows by combining Skorokhod’s results with Strassen’s theorem [35]
on the existence of martingales with given marginals. We will tacitly assume this condition
throughout the paper. The condition E[τ] < ∞ is imposed to exclude trivial solutions.

Skorokhod’s work initiated an active field of research. Obłój’s survey [27] provides
a comprehensive overview of the developments up to 2004 and describes more than 20
different solutions to the Skorokhod problem given by different authors.

During the 2000’s a particular stimulous for the field has come from the connection
with robust finance which was discovered in Hobson’s seminal paper [21], see also [22].
In view of these applications, it is of particular importance to construct stopping times
which optimize certain functionals subject to satisfying the embedding constraint. This
question is known as the optimal Skorokhod embedding problem and has been considered
extensively, see [9, 12, 11, 13, 14, 19, 28, 4, 5, 17, 10, 2, 16, 3, 15, 6] among others.

Perkins Embedding. In this article we focus on a particular solution to (SEPλ,µ) estab-
lished by Perkins [29] for the deterministic start case where B0 = 0, i.e. λ = δ0. The
Perkins embedding solves an optimal Skorokhod embedding problem: It has the character-
istic optimality property of minimizing the law of the running maximum Bτ := maxt≤τ Bt of
the underlying Brownian motion while simultaneously maximizing the law of the running
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(A) Perkins solution in the λ = δ0 case.
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(B) Perkins solution with general starting.

Figure 1. Examples of Perkins solutions to (SEPλ,µ).

minimum Bτ := mint≤τ Bt among all solution to (SEPλ,µ). Here (and below) maximization
/ minimization of laws is understood with respect to first order stochastic dominance.

The Perkins embedding is of importance for robust pricing of barrier and lookback op-
tions, see [7, 21, 22]. While other solutions to the optimal Skorokhod embedding problem
have been given in the case of a general starting distribution B0 ∼ λ or admit direct exten-
sions to this case, there is no known solution in the general starting case which extends the
Perkins embedding.

In [23] Hobson and Pedersen propose a solution to (SEPλ,µ) allowing for a general
starting law which minimizes the law of the running maximum. Remarkably, the Hobson-
Pederson embedding bears some resemblance to the Azéma-Yor [1] embedding. As pointed
out in [23], the Hobson-Pederson embedding does not maximize the running minimum in
the B0 = 0 case and specifically differs from the Perkins embedding also in this case. A
further difference between the Hobson-Pederson embedding and the Perkins embedding,
is that the latter does not require external randomization (unless µ(0) > 0, see Section 3.2).

Of specific interest is the geometric structure of Perkins solution. In the λ = δ0 case it
can be identified as a hitting time of the process (B, B) of a specifically structured target set
R ⊆ R2, see Figure 1 (A). The set R is a union of ‘lines’ of two types:

(v) vertical lines which start below the diagonal and terminate in the diagonal. These
lines will be depicted in ‘violett’.

(h) lines which start on the right of the diagonal. They move horizontally until being
reflected by the diagonal and continue to move vertically towards −∞. These lines
will be depicted in ‘hot pink’.

We will say that R has vh-barrier structure. Note that traditionally the Perkins picture
is drawn without the horizontal lines being reflected downwards. These downward lines
are irrelevant in the deterministic starting case however become crucial when allowing for
general starting as we will see below.

Our main contribution is to extend the Perkins solution to the case of general starting
law. Specifically, setting (λ ∧ µ)(A) := infB⊆A, B measurable

(
λ(B) + µ(A \ B)

)
we have:

Theorem 1. There exists a vh-barrier R ⊆ R2 such that the stopping time τP defined by
P[τP = 0, B0 ∈ A] = (λ ∧ µ)(A) for Borel A ⊆ R and on {τP > 0} by

τP = inf
{
t ≥ 0 :

(
Bt, Bt

)
∈ R
}

(1.1)
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is a solution to (SEPλ,µ). Moreover τP minimizes the law of the running maximum B and
further maximizes the law of the running minimum B among all these solutions.

If λ and µ are mutually singular measures we have τP > 0 almost surely and τP is
adapted to the filtration generated by the underlying Brownian motion.

The solution τP will be unique in the sense that if τ̃ is another stopping time of the form
(1.1) then we have τP = τ̃ almost surely.

A possible realization of a general starting Perkins solution can be seen in Figure 1 (B).
We point out two important properties of this solution. Firstly external randomization is
only needed at time 0 and only if the two measure λ and µ share mass. This answers a
question raised in [23, Remark 2.3] concerning the existence of adapted solutions in this
setting. Secondly this solutions features the same representation as the hitting time of
the process (B, B) as the original Perkins solution and recovers it in the λ = δ0 case as
illustrated in Figure 1.

We will focus on discussing the Perkins solution from a barrier type solution viewpoint.

Barrier Type Solutions. A barrier type solution to (SEPλ,µ) is traditionally of the form

τR = inf {t ≥ 0 : (At, Bt) ∈ R} (1.2)

for a sufficiently regular processes At and a Borel set R ⊆ R2 featuring some additional
barrier structure.

Barrier type solutions not only come with natural geometric interpretations, we also see
that all these solution are adapted to the filtration of the underlying Brownian motion (apart
from potential additional randomization at time 0 if λ and µ share mass). Furthermore,
barrier type solutions feature the following intrinsic uniqueness property highlighted by
Loynes [26]: if S ⊆ R2 is another barrier such that τS solves (SEPλ,µ) then we have τR = τS

almost surely. Prototypical barrier type solutions and also the solutions to originally coin
the notion of a barrier resp. inverse barrier are the solutions by Root [30] and Rost [31, 32].
A (Root) barrier is a set R ⊆ R+ × R such that (s, x) ∈ R implies (t, x) ∈ R for all t > s
while for an inverse barrier S ⊆ R+ × R we require that (s, x) ∈ S implies (t, x) ∈ S for all
t < s. The Root resp. Rost solution is then given as the hitting time

τRoot = inf {t ≥ 0 : (t, Bt) ∈ R} resp. τRost = inf {t ≥ 0 : (t, Bt) ∈ S }

and is known for minimizing resp. maximizing E[τ2] among all solutions to (SEPλ,µ) (see
[25] and [32]). To be precise, in the Rost case, if the initial and the terminal law share
mass, this shared mass might need to be stopped immediately, i.e. P [τRost = 0, B0 ∈ A] =
(λ ∧ µ)(A).

Another barrier type solution to (SEPλ,µ) worth mentioning here is the Azéma-Yor solu-
tion [1] which is known for maximizing the law of the running maximum of the underlying
Brownian motion. This solution is also given as the hitting time of a barrier in the Root
sense, however of the joint process (maxs≤t Bs, Bt), thus

τAY = inf
{
t ≥ 0 :

(
max

s≤t
Bs, Bt

)
∈ R
}
.

A general starting law version was found by Hobson in [20] and - as in the Root case -
the barrier type representation of the solution did not change. See Figure 2 for examples
of Root, Rost and Azéma-Yor barrier type solution. As both the Perkins solution and the
Hobson-Pedersen solution minimize the law of the running maximum of the underlying
Brownian motion, they can be seen as a pendant to the Azéma-Yor embedding in a similar
way as the Rost embedding can be seen as a pendant to the Root embedding.

Further barrier type solutions to (SEPλ,µ) are e.g. the Vallois embedding [36], the Jacka
embedding [24] or the cave embedding [4]. We also refer to [4] for a unifying framework
for barrier type solutions.

Notably it is not possible to find a process (At) such that the Perkins solution can be
represented as a barrier type solution in the classical sense (1.2), that is as a hitting time
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Figure 2. Barrier type solutions to (SEPλ,µ).

of the joint process (At, Bt). However, it is possible to identify it as a hitting time of the
process (B, B) of a vh-barrier as described above.

In [4] the authors use ideas and concepts of optimal mass transport to give existence
results for solutions to (SEPλ,µ) featuring additional extremal properties and moreover
provide techniques on how connections between these additional properties of the solu-
tions and their geometric characterizations as barrier type solutions can be made. Minor
variations of these techniques will allow us prove Theorem 1 and moreover to identify
the right kind of phase space to interpret the Perkins embedding as the hitting time of a
Rost inverse barrier, completing the Azéma-Yor↔Perkins - Root↔Rost analogy described
earlier. Furthermore this representation will enable us to prove a Loynes-type uniqueness
result for this solution.

Outline of the Article. In Section 2 we recall notation and results of [4] and extend them
to a multifold optimization problem over solutions to (SEPλ,µ). These results will be ap-
plied in Section 3 to obtain existence of a Perkins embedding with general starting law
as a solution to (SEPλ,µ) with the desired additional extremal properties. In Section 4 we
discuss uniqueness of barrier type solutions and propose a setting in which these results
can be applied to the Perkins embedding. This will conclude the proof of Theorem 1.

2. Multifold Optimal Skorokhod Embedding

For this article we will adopt the underlying assumptions of [4], that is, we will work
on a stochastic basis Ω = (Ω,G, (Gt)t≥0, P) which is rich enough to support a Brownian
motion B and a uniformly distributed G0-random variable independent of B.

2.1. Optimal Skorokhod Embedding. The theory of finding solutions to the Skorokhod
embedding problem featuring some optimality properties is presented from a systematic
viewpoint in [4], see also [18]. Historically it was also common to find a new solution to
(SEPλ,µ) and to only later establish its additional optimality property. In [4] this was turned
around by imposing an optimization problem to the Skorokhod embedding problem and
then to derive structural properties of the embedding problem from a ‘first order condition’.

For this we consider the set of stopped paths.

Definition 2.1 (stopped paths). We define the set of stopped paths

S := {( f , s) : s ≥ 0, f ∈ C([0, s],R)} .

The optimal Skorokhod embedding is formulated in the following way:

Definition 2.2 (optimal Skorokhod embedding problem). For a function

γ : S → R
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the optimal Skorokhod embedding problem is to find a stopping time τ on Ω solving the
following optimization problem

inf
{
E
[
γ((Bt)t≤τ, τ)

]
: τ solves (SEPλ,µ)

}
. (OptSEPλ,µ)

We will always assume (OptSEPλ,µ) to be well posed in the sense that for all stopping
times solving (SEPλ,µ), we have that E

[
γ((Bt)t≤τ, τ)

]
exists, that E

[
γ((Bt)t≤τ, τ)

]
∈ (−∞,∞]

and that there is at least one stopping time τ such that E
[
γ((Bt)t≤τ, τ)

]
< ∞.

The solutions presented in the introduction can be recovered as solutions to the optimal
Skorokhod embedding problem in the following way. The Root solution can be obtained
by choosing γ(( f , s)) := s2, the Rost solution by γ(( f , s)) := −s2 and the Azéma-Yor
solution by γ(( f , s)) := − f = maxt≤s f (t). Many more classic solutions to the Skorokhod
embedding problem can be represented this way, see [4].

As pointed out in the introduction, the Perkins solution stands out due to its two fold op-
timality property. The optimal Skorokhod embedding problem as described above will not
suffice to describe this special embedding. Also, in the construction of optimal solutions
it is often useful to impose additional auxiliary optimality conditions in order to guaran-
tee uniqueness of solutions. Thus we consider the following multifold optimal Skorokhod
embedding problem.

Definition 2.3 (multifold optimal Skorokhod embedding problem). Let n ∈ N and consider
a function

γ = (γ1, . . . , γn) : S → Rn.

Let Opt(1)
γ be the set of all G-stopping times τ on Ω solving the following optimization

problem
inf
{
E
[
γ1((Bt)t≤τ, τ)

]
: τ solves (SEPλ,µ)

}
. (OptSEP(1)

λ,µ)

For j ∈ {2, . . . , n} define Opt( j)
γ as the set of all stopping times τ ∈ Opt( j−1)

γ that solve the
optimization problem

inf
{
E
[
γ j((Bt)t≤τ, τ)

]
: τ ∈ Opt( j−1)

γ

}
. (OptSEP( j)

λ,µ)

We call (OptSEPλ,µ) := (OptSEP(n)
λ,µ) the multifold optimal Skorokhod embedding problem.

The optimization problem (OptSEP(1)
λ,µ) is well posed if for all stopping times solving

(SEPλ,µ), we have that E
[
γ1((Bt)t≤τ, τ)

]
exists, that E

[
γ1((Bt)t≤τ, τ)

]
∈ (−∞,∞] and that

there is at least one stopping time τ so that E
[
γ1((Bt)t≤τ, τ)

]
< ∞. We call (OptSEPλ,µ) well

posed, if (OptSEP(1)
λ,µ) is well posed and for all j ∈ {2, . . . , n} the problem (OptSEP( j)

λ,µ) is

well posed in the above sense (considering stopping times in Opt( j−1)
γ ).

2.2. Randomized Stopping Times. The requirement of solutions to (SEPλ,µ) to be stop-
ping times with respect to the filtration generated by Brownian motion is often too restric-
tive (as seen for the Hobson-Pedersen solution in the next section).

The key idea of linking the Skorokhod embedding problem to optimal transport is to
think of a stopping time τ as a transport plan, mapping the mass of a trajectory (Bt(ω̃))t≥0 in
the space (C(R+),Wλ) (whereWλ denotes the law of a Brownian motion started according
to the distribution λ) to the endpoint Bτ(ω̃)(ω̃) in R. Even tough optimal transport theory
cannot be applied directly, the appropriate analogues for this setup are developed in [4].

The necessary relaxation of this problem is to consider so called randomized stopping
times which can be seen as stopping times in the usual sense but on a probability space that
is possibly enlarged.

The idea of randomized stopping times is made precise by defining them as a subset of
subprobability measures on C(R+) × R+, for details we refer to [4, Chapter 3.2].
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Definition 2.4 (randomized stopping times). A subprobability measure ξ on C(R+)×R+ is
called a randomized stopping time (of Brownian motion with initial distribution λ) if

(i) projC(R+) ≤Wλ.
(ii) Given the disintegration (ξω)ω∈C(R+) of ξ w.r.t. the first coordinate ω ∈ C(R+), Ãt(ω) =

ξω([0, t]) is F a
t -measurable for all t ∈ R+ (Here (F a) denotes the natural augmented

filtration on C(R+)).
For the probability measure µ on R we define the subset RSTλ(µ) which consists of those
ξ ∈ RSTλ such that

(i) projC(R+) =Wλ,
(ii) For all A ∈ G we have ξ({(ω, t) ∈ C(R+) × R+ : ω(t) ∈ A}) = µ(A).

2.3. Existence of an Optimizer. One important result of [4] is to establish existence of
optimizers under fairly general conditions. Even though the main proofs were carried out
for n = 1 (Theorem 4.1) and generalizations are provided for n = 2 (Theorem 6.1), we
can generalize in precisely the same way to arbitrary n ∈ N. Let us formulate the optimal
Skorokhod embedding problem for randomized stopping times and then give the existence
results for this generalized problem.

Definition 2.5 ((OptSEP⋆λ,γ)). Let n ∈ N and consider a function

γ = (γ1, . . . , γn) : S → Rn.

Let Opt⋆(1)
γ be the set of all randomized stopping times solving the following optimization

problem

inf
{∫

C(R+)×R+
γ1((ω|[0,t], t))dξ((ω, t)) : ξ ∈ RSTλ(µ)

}
. (OptSEP⋆(1)

λ,µ)

For j ∈ {2, . . . , n} define Opt⋆( j)
γ as the set of all stopping times τ ∈ Opt⋆( j−1)

γ wich solve
the optimization problem

inf
{∫

C(R+)×R+
γ j((ω|[0,t], t))dξ((ω, t)) : ξ ∈ Opt⋆( j−1)

γ

}
. (OptSEP⋆( j)

λ,µ)

We define (OptSEP⋆λ,µ):= (OptSEP⋆(n)
λ,µ).

Theorem 2 (Existence of a minimizer, cf. [4], Theorem 4.1). Let γ : S → Rn be lsc and
bounded from below in the following sense:

For all j ∈ {1, . . . , n} there exist constants a j, b j, c j ∈ R+ such that

−

(
a j + b jt + c j max

s≤t
B2

s

)
≤ γ j((Bs)s≤t, t)). (2.1)

holds on C(R+) × R+.
Then (OptSEP⋆λ,µ) admits a minmizer ξ ∈ RSTλ(µ).

The following lemma provides equivalence between optimization over stopping times
on our enlarged probability space and optimization over randomized stopping times.

Lemma 2.6 (cf. [4], Lemma 3.11). Let τ be a (Gt)t≥0-stopping time and consider the map

Φ : Ω→ C(R+) × R+, ω 7→ ((Bt(ω))t≥0, τ(ω)).

Then ξ := Φ#P ∈ RSTλ and for any measurable map γ : S → R we have∫
γ(( f , s))dr#ξ(( f , s)) = EP

[
γ((Bt)t≤τ, τ)

]
(⋆)

for the function
r : C(R+) × R+ → S , (ω, t) 7→ (ω|[0,t], t).

For any randomized stopping time ξ ∈ RSTλ we can find a (Gt)t≥0-stopping time τ such
that ξ := Φ#P and (⋆) holds.
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2.4. Monotonicity Principle. In optimal transport theory it was an important develop-
ment to be able to identify optimal transport plans by the geometry of its support - see
c-cyclical monotonicity. A monotonicity principle (‘first order condition’) similar to c-
cyclical monotonicity for optimal Skorokhod embeddings is given in [4]. We define the
support of a stopping time τ as a subset Γ ⊆ S such that

P [((Bt)t≤τ, τ) ∈ Γ] = 1.

Specific properties of this set Γ will be crucial to our geometric approach to the Skorokhod
embedding problem.

We will consider possible continuations of a given path and therefore define an operation
of concatenation.

Definition 2.7 (concatenation of paths). For two paths ( f , s), (g, t) ∈ S we define an oper-
ation of concatenation ⊕ by

( f ⊕ g)(r) :=

 f (r) r ∈ [0, s]
f (s) − g(0) + g(r − s) r ∈ (s, s + t].

Definition 2.8 (going paths). For any set of stopped paths Γ ⊆ S we define the set of initial
segments of this paths as

Γ< :=
{
( f , s) ∈ S : ∃( f̃ , s̃) ∈ Γ such that s < s̃ and f |[0,s] = f̃ |[0,s]

}
and call it the set of going paths.

In the multifold optimal Skorokhod embedding problem we consecutively optimize over
functions of stopped paths. We will soon learn that it is interesting and useful to derive
structural arguments about the sets of stopped paths satisfying these optimality conditions.
In order to do this, we would like to have a strategy for dealing with different paths stopping
at the same value. Among those paths we would like to identify those paths that should be
stopped and those paths that should be allowed to continue - keeping in mind our optimiza-
tion problem. This leads us to the notion of stop-go pairs, which by considering possible
continuations of the paths gives a rule on how to decide on which one to stop and which
one to allow to continue.

Definition 2.9 (Stop-Go Pair). A pair of paths (( f , s), (g, t)) ∈ S × S is called a stop-go
pair with respect to γ (short: SG-pair) if

(i) f (s) = g(t)
(ii) E

[
γ( f ⊕ (Bu)u≤σ, s + σ)

]
+ γ(g, t) > γ( f , s) + E

[
γ(g ⊕ (Bu)u≤σ, t + σ)

]
in the lexicographic ordering of Rn for every (F B

t )t≥0-stopping time σ such that
E[σ] ∈ (0,∞), both sides are well defined and the left-hand side is finite in every
component.

For the set of all SG-pairs we will write

SGγ := {(( f , s), (g, t)) ∈ S × S : (( f , s), (g, t)) is a stop-go pair with respect to γ} ,

and for j ∈ {1, . . . , n} we will call

E
[
γ j( f ⊕ (Bu)u≤σ, s + σ)

]
+ γ j(g, t) ≥ γ j( f , s) + E

[
γ j(g ⊕ (Bu)u≤σ, t + σ)

]
the j-th stop-go condition (SGC j).

We now want to identify sets of stopped paths, such that it is not advantageous to stop
any of these paths earlier in comparison to the other paths in this set. In other words, the
stopping rule cannot be improved within this set.

Definition 2.10 (γ-Monotonicity). A set of stopped paths Γ ⊆ S is called γ-monotone if

SGγ ∩ (Γ< × Γ) = ∅
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Theorem 3 (Monotonicity Principle). Let γ : S → Rn be Borel measurable and let τ be a
minimizer of (OptSEPλ,µ). Then there exists a γ-monotone Borel set Γ ⊆ S such that

P [((Bt)t≤τ, τ) ∈ Γ] = 1.

Similar to the existence result also the monotonicity principle can be formulated for
randomized stopping times. As these technicalities are not important for the rest of this
paper we will refer the reader to [4] for further details.

We will see that the monotonicity principle is the key to the geometric approach to
optimal Skorokhod embedding problems.

3. The Perkins Embedding

3.1. Perkins Embedding with Deterministic Starting. We will first give a precise for-
mulation of the original Perkins solution in a barrier type formulation. Finding a geometric
interpretation of this solution in the case of λ = δ0 is feasible with the methods established
in [4], see Theorem 6.8 therein.
We will give the following slight reformulation of this theorem in order to stress our in-
terest in the specific structure of the target set. In addition to the barriers defined in the
introduction we will furthermore consider an upwards barrier, that is a set R ⊆ R2 such
that (s, x) ∈ R implies (s, y) ∈ R for all y > x.

Theorem 4 (The Perkins embedding, cf. [29]). Let λ = δ0 and assume µ({0}) = 0. Let φ :
R2
+ → R be a bounded continuous function which is strictly increasing in both arguments.

Then there exists a stopping time τP0 which minimizes

E
[
φ
(
Bτ,−Bτ

)]
over all solution to (SEPλ,µ) and which is of the form

τP0 = inf
{
t ≥ 0 : (Bt, Bt) ∈ R

}
.

Here R ⊆ R × R− will be a vh-barrier which can be represented as R = R1 ∪ R2 with R1
being an upwards barrier induced by (v)-lines and R2 being an inverse barrier induced by
(h)-lines. Moreover the boundaries of R1 and R2 are both given by decreasing functions
R− → R (see Figure 1 A).

The solution τP0 will in fact coincide almost surely for each choice of the auxiliary
function φ thus giving first order stochastic dominance.

Unfortunately, some of the arguments in the proof of this theorem do not extend to the
random starting case. Foremost it is no longer possible to optimize over the running min-
imum and the running maximum simultaneously. The stopping rule of Perkins’ problem
will only stop paths when they reach a new running extremum. This justifies the repre-
sentation of τP0 as a hitting time of the process (B, B). Note that since we do not allow
µ to hold any mass in 0, we have τP0 > 0 and by properties of Brownian motion then
BτP0

> BτP0
a.s. These two facts imply that whenever we consider two paths stopped by

this stopping rule at the same terminal value, either their running minima or their running
maxima coincide. However, now it becomes very easy to decide on which one of those
two paths to stop if we look at the other running extremum.

If we now allow for random starting we can also encounter (among other problems) the
following situation: Two paths ( f , s), (g, t) ∈ S stop at the same value, that is f (s) = g(t),
however - lets say f - does so by reaching a new running minimum and g by reaching a
new running maximum. Then f > g and f > g. It is therefore no longer obvious, which
of those two paths should be stopped and we can see that the solution can no longer be
identified as the hitting time of a set serving both optimization problems simultaneously.
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Bt

Bt

(BτHP , BτHP ) = (Bτg , Bτg)

(BτHP , BτHP ) = (BτG , BτG)

(B0, B0)

(B0, B0)

Figure 3. The Hobson-Pedersen solution to (SEPλ,µ) with non-
deterministic starting law λ. We see the lower path being stopped by
τg due to hitting the barrier and the upper path being stopped by τG.

3.2. Perkins Embedding with Random Starting.

The Hobson-Pedersen Solution. A first take on Perkins’ embedding with random starting
is due to Hobson and Pedersen in [23]. We will give a brief sketch of their solution.

The authors define a function g : R → R and a random variable G which is indepen-
dent of the randomly started Brownian motion (Bt). Both are explicitly determined by the
measures λ and µ. They further define the two stopping times

τG = inf
{
t > 0 : Bt ≥ G

}
and τg = inf

{
t > 0 : Bt ≤ g(Bt)

}
,

where one should note the resemblance to the Azéma-Yor solution of the second stopping
time. The solution to the Perkins problem with random starting is then given by

τHP = τG ∧ τg,

see Figure 3 for an illustration. Due to this external randomization given via the random
variable G this solution is not adapted to the filtration of the underlying Brownian motion.
Moreover this external randomization generally remains to be needed in the deterministic
case of λ = δ0 as seen in Figure 4. In particular, the original solution by Perkins is not a
special case of the Hobson-Pedersen solution. The authors also discover that simultaneous
optimization is no longer possible for general initial distributions and choose to prioritize
minimizing the law of the running maximum.

Existence of a Perkins Embedding Allowing for a General Starting Law. By interpreting
Perkins’ problem with general starting law as an (OptSEPλ,µ) for a well chosen γ as in-
troduced in Section 2 we can use the methods and results therein to prove existence of a
solution that is given as the hitting time of the process (B, B) of a specifically structured
target set.

It was explained above why we can no longer optimize simultaneously over the running
minimum and the running maximum. We will therefore decide - as in the Hobson-Pederson
solution presented above - that from now on the running maximum is more important to us.
However, it should be obvious that all following results and calculations work analogously
if our choice fell on the running minimum instead.

The following theorem provides a generalization of Perkins’ theorem in the slightly
weaker formulation of optimization in expectation over an auxiliary function φ. While this
is needed in order to apply the results of the previous section, the proof of Theorem 1 can
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(BτHP , BτHP )

(BτHP , BτHP

Bt

Bt

0

−1

(BτHP , BτHP )

Bt

Bt

0

−1

Figure 4. The Hobson-Pedersen solution to (SEPλ,µ) for λ = δ0 and µ =
U[−1, 1] (see Example A in [23]). We see that external randomization is
still needed (otherwise paths could only stop in [−1, 0]) even though the
measures λ and µ are mutually singular.

be concluded in the next chapter by showing that all such solutions must coincide almost
surely independently of the choice of φ. Thus our solution will optimize over all such φ
which will conclude optimization in first order stochastic dominance.

We no longer exclude the possibility of λ and µ sharing mass. This leads to the situation
of some randomization needed at time 0.

Theorem 5. Let φ : R → R be a continuous bounded strictly increasing function. Then
there exists a stopping time τ̃ which minimizes E

[
φ
(
Bτ
)]

over all solutions of (SEPλ,µ) and

maximizes E
[
φ
(
Bτ
)]

over all stopping times satisfying the former. For A ∈ B(R) we have

P [τ̃ = 0, B0 ∈ A] = (λ ∧ µ)(A)

and there exists a set R ∈ R2 such that on {τ̃ > 0} we have

τ̃ = inf
{
t ≥ 0 :

(
Bt, Bt

)
∈ R
}
.

Proof. We will consider the function γ = (γ1, γ2, γ3, γ4) : S → R4 given by

γ1(( f , s)) := φ( f ),
γ2(( f , s)) := −φ( f ),

γ3(( f , s)) := −φ( f ) f (s)2,

γ4(( f , s)) := −φ(− f ) f (s)2.

Then all γ j are bounded from below in the sense of (2.1) (due to the boundedness of φ).
Thus Theorem 2 guarantees the existence of a minimizer τ̃ ∈ RSTλ(µ) which by Theorem
3 is supported by a γ-monotone Borel set Γ ⊆ S .
The stop-go conditions amount to the following:
Let (( f , s), (g, t)) ∈ S × S such that f (s) = g(t), then

E
[
φ
(

f ∨
(

f (s) + Bσ
))]
+ φ(g) ≥ φ( f ) + E

[
φ
(
g ∨
(
g(s) + Bσ

))]
, (SGC1)

E
[
φ
(

f ∧
(

f (s) + Bσ
))]
+ φ(g) ≤ φ( f ) + E

[
φ
(
g ∧
(
g(s) + Bσ

))]
, (SGC2)
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E
[
φ
(

f ∨
(

f (s) + Bσ
))

( f (s) + Bσ)2
]
+ φ(g)g(t)2 ≤

φ( f ) f (s)2 + E
[
φ
(
g ∨
(
g(t) + Bσ

))
(g(t) + Bσ)2

]
, (SGC3)

E
[
φ
(
− f ∧

(
f (s) + Bσ

))
( f (s) + Bσ)2

]
+ φ(−g)g(t)2 ≤

φ(− f ) f (s)2 + E
[
φ
(
−g ∧

(
g(t) + Bσ

))
(g(t) + Bσ)2

]
. (SGC4)

Let us first consider {τ̃ > 0}. By standard properties of Brownian motion we then may
assume that for ( f , s) ∈ Γ we have f > f .

To legitimate that on {τ̃ > 0} the stopping time τ̃ is given as the hitting time of the
process (B, B) we will start by showing that τ̃ will only stop Brownian motion when it is
reaching a new running minimum or running maximum.

Consider a path which stops somewhere between its current running extrema, that is a
path ( f , s) ∈ S such that f < f (s) < f . Let r be the time where f hits its last new extremum.
As f does not reach a new extremum at time s we can consider the initial segment of this
path up to a time point s̃ < r such that f (s̃) = f (s) and either f

s̃
= f or f s̃ = f , where

f s̃ = max
u≤s̃

f (u) and f
s̃
= min

u≤s̃
f (u).

Let f̃ := f |[0,s̃], then we claim that (( f̃ , s̃), ( f , s)) ∈ SGγ.

1. Case: f
s̃
= f and f s̃ < f as depicted in Figure 5, that is the last new extremum hit

was a new maximum.
Assume f s̃ < f (s̃) + Bσ, then f s̃ ∨

(
f (s̃) + Bσ

)
= f (s̃) + Bσ and (SGC1) reads

E
[
φ
(

f (s̃) + Bσ
)]
+ φ( f ) ≥ φ( f s̃) + φ( f ) if f ≥ f (s) + Bσ

E
[
φ
(

f (s̃) + Bσ
)]
+ φ( f ) ≥ φ( f s̃) + E

[
φ
(

f (s) + Bσ
)]

if f < f (s) + Bσ

and we see that in both cases a strict inequality holds due to our assumptions.
On the other hand, if f s̃ ≥ f (s̃)+Bσ, then f s̃∨

(
f (s̃) + Bσ

)
= f s̃ as well as f ∨

(
f (s) + Bσ

)
=

f and this leads to an equality in (SGC1). Since f
s̃
= f we also have an equality in (SGC2)

and therefore jump to our third condition (SGC3):

E
[
φ( f s̃)( f (s̃) + Bσ)2

]
+ φ( f ) f (s)2 ≤ φ( f s̃) f (s̃)2 + E

[
φ( f )( f (s) + Bσ)2

]
Again, due to our assumptions f (s̃) = f (s), f s̃ < f and as φ is strictly increasing, a strict
inequality holds and thus (( f̃ , s̃), ( f , s)) ∈ SGγ.

2. Case: f s̃ = f and f
s̃
> f , that is the last new extremum hit was a new minimum.

Now (SGC1) as well as (SGC3) will always exhibit an equality and conditions (SGC2) and
(SGC3) can be treated analogously to the previous case.

As now due to γ-monotonicity (( f̃ , s̃), ( f , s)) < Γ<×Γ it follows that Γ∩
{
( f , s) ∈ S : f < f (s) < f

}
=

∅, that is, when stopped we will almost surely have reached a new running minimum or a
new running maximum.

Summing up, we now know that τ̃ stops paths of Brownian motion only when they reach
a new running minimum or a new running maximum.

We will denote the set of stopped paths satisfying this condition by

S̃ :=
{
( f , s) ∈ S : f (s) = f or f (s) = f

}
.

This justifies to consider the phase space (B, B). All possible paths will lie below the
diagonal, i.e. in the set HD :=

{
(x, y) ∈ R2 : x ≥ y

}
.
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s̃ sr t

Bt

f(s̃) = f(s)

f

f s̃

f̃ ⊕ B > f s̃ f ⊕ B < f

Figure 5. Stop-Go pairs: We see possible continuations of our path f .
If these continuations are attached at time s the running maximum of f
remains unchanged. Attached at time s̃ however, the running maximum
of ( f̃ , s̃) = ( f |[0,s̃], s̃) will be increased.

We propose that there are two sets of points r1, r2 ⊆ HD, such that R = R1 ∪ R2, where

R1 :=
{
{x} × [y, x] : (x, y) ∈ r1

}
, and R2 :=

{(
[y, x] × {y}

)
∪
(
{y} × [y,∞)

)
: (x, y) ∈ r2

}
.

Let us legitimate this target set structure:
Assume we know that there is a path ( f , s) ∈ Γ such that s > 0 and f (s) = f , that is we stop
at a new running maximum. We claim that it is impossible for a trajectory of the process
(B, B) to traverse the { f } × [ f , f ) line-segment and then be stopped as seen in Figure 6 (A).

Consider a path (g, t) ∈ S̃ such that g(0) ∈ ( f , f ], g ≥ f and g > f . Then there has

to exist a timepoint t̃ ≤ t such that g(t̃) = gt̃ = f = f (s) and note that still g
t̃
> f has

to hold. However, this situation equals the 1. case of the above discussion, hence again
((g, t̃), ( f , s)) ∈ SGγ. By γ-monotonicity it now follows that (g, t̃) < Γ<, therefore (g, t) < Γ
and our claim is proven.
It becomes clear that by choosing r1 :=

{
( f , f ) : ( f , s) ∈ Γ and f (s) = f

}
the definition of

R1 as above is reasonable. Now assume we know that there is a path ( f , s) ∈ Γ such that

s > 0 and f (s) = f , that is we stop at a new running minimum. We claim that it is

impossible for a trajectory of the process (B, B) to traverse either the [ f , f ) × { f } or the
{ f } × [ f ,∞) line-segment and then be stopped as seen in Figure 6 (B).

Consider a path (g, t) ∈ S̃ such that g ∈ [ f , f ) and g ≤ f . Let us first assume g(0) ∈

[ f , f ). Then again there has to exist a time point t̃ ≤ t such that g(t̃) = g
t̃
= f = f (s) while

gt̃ < f . Again ((g, t̃), ( f , s)) ∈ SGγ as in the 1. case above.
Now assume g(0) < f . It is then possible to find a timepoint t̃ < t such that g(t̃) = gt̃ =

f = f (s) and still gt̃ < f . We remember that (SGC1) exhibits an equality if gt̃ ≥ g(t̃) + Bσ,

which in our setting is equivalent to Bσ = 0. If on the other hand Bσ > 0, we will have
a strict inequality. However as trivial stopping times are excluded, the later will always
happen with positive probability and thus taking the expectation (SGC1) will always lead
to a strict inequality, implying that ((g, t̃), ( f , s)) ∈ SGγ.
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Bt

Bt

f

g

∈ r1

⊆ R1

(A) The path ( f , s) is stopped at a new
running maximum.

Bt

Bt

f
g

g

g(0) < f

f > g(0) > f

∈ r2

⊆ R2

(B) The path ( f , s) is stopped at a new
running minimum.

Figure 6

This concludes the proof of (g, t) < Γ.
Again, in analogy to the above let us take r2 :=

{
( f , f ) : ( f , s) ∈ Γ and f (s) = f

}
to justify

the definition of R2.

Now define the following two target sets

RCL := R = R1 ∪ R2,

ROP :=
{
{x} × (y, x] : (x, y) ∈ r1

}
∪
{(

[y, x) × {y}
)
∪
(
{y} × [y,∞)

)
: (x, y) ∈ r2

}
.

and consider

τCL := inf
{
t ≥ 0 : (Bt, Bt) ∈ RCL

}
≤ τOP := inf

{
t ≥ 0 : (Bt, Bt) ∈ ROP

}
.

Note that since Γ is Borel, the sets r1 and r2 are analytic sets since they are continuous
images of Borel sets. This implies that R1 and R2 are analytic sets and we see that τCL and
τOP are stopping times.

We would like to show that τCL = τ̃ = τOP a.s. as our claim then follows.
As Γ ∩

{
( f , s) ∈ S : f < f (s) < f

}
= ∅ it is obvious that τCL ≤ τ̃ a.s. by definition of τCL.

To show that τ̃ ≤ τOP a.s. let us assume that this is not the case. Choose ω ∈ Ω
such that ((Bt(ω))t≤τ̃(ω), τ̃(ω)) ∈ Γ and assume τOP(ω) < τ̃(ω). Then there has to exist
an s ∈ [τOP(ω), τ̃(ω)) such that for f = (Bt(ω))t≤s we have ( f , f ) ∈ ROP. As s ≤ τ̃(ω)
it follows, that ( f , s) ∈ Γ<, that is ( f , s) is a going path. By definition of τOP we can
find find a point (x, y) ∈ r1 such that ( f , f ) ∈ {x} × (y, x] or a point (x, y) ∈ r2 such that

( f , f ) ∈
(
[y, x)× {y}

)
∪
(
{y} × [y,∞)

)
. However, we then find ourselves in the same situation

of traversing line-segments as above. More precisely, by considering the path (g, t) ∈ Γ
corresponding to this r1 respectively r2 point we again find a SG-pair contradicting the
γ-monotonicity of Γ. Hence τ̃ ≤ τOP a.s.

By standard properties of Brownian motion now τOP = τCL a.s. which concludes the
proof in the {τ̃ > 0} case.
Let us now consider stopping in time 0. Note that P [τ̃ = 0, B0 ∈ A] ≤ (λ∧ µ)(A). We want
to show that a strict inequality stands in conflict with the γ-monotonicity. If P [τ̃ = 0, B0 ∈ A] <
(λ ∧ µ)(A) then there has to exists some x ∈ A such that there are paths in Γ starting in x
but not immediately stopping and also paths which stop in x ∈ A at a strictly positive time.
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By above discussion we see that this would constitute SG-pairs and we can conclude

P [τ̃ = 0, B0 ∈ A] = (λ ∧ µ)(A).

□

4. Uniqueness

In the previous section we have seen that the Perkins solution with random starting
is given as a hitting time of the process (B, B) of a specifically structured target set. As
mentioned in the introduction it was proved by Loynes [26] that Root’s barrier type solution
is essentially unique. In this chapter we will briefly discuss the extension of this argument
to barrier type solutions of the form

τR = inf {t ≥ 0 : (At, Bt) ∈ R}

for sufficiently regular processes At.
We will then propose a setting in which the Perkins solution with random starting can

also be seen as a barrier type solutions and show how the Loynes argument extends to this
setting. This will enable us to conclude the proof of Theorem 1.

4.1. The Loynes Uniqueness Result. Root initially defined barriers as topologically closed
subsets of R. Loynes uniqueness argument relies on this fact by using that we are actually
inside the barrier when we stop. A suitable generalization for our purposes would be to ask
our process At to be sufficiently regular such that (At, Bt) is jointly Markov satisfying the
Blumenthal-Getoor 0-1-law. Instead of topological closures we then consider fine closures
with respect to the process (At, Bt).

The fine closure of a set R ⊆ R2 with respect to a jointly Markov process (At, Bt) will be
denoted by R∗ and is defined as

R∗ := R ∪
{
(t, x) ∈ R2 : P

[
τR = 0

∣∣∣(A0, B0) = (t, x)
]
= 1
}
.

By this definition follows τR = τR∗ a.s. and (AτR∗ , BτR∗ ) ∈ R∗ by Blumenthal-Getoor.
Moreover we also have AτR ∼ AτR∗ and BτR ∼ BτR∗ .
For details on fine closures refer to [8], see also the arguments in [4].
We see that taking fine closures does not alter the stopping properties and we will therefore
assume without loss of generality that our barriers are always finely closed with respect to
(At, Bt).

Proposition 4.1. Let R and S be two barriers such that

τR := inf {t ≥ 0 : (At, Bt) ∈ R} and τS := inf {t ≥ 0 : (At, Bt) ∈ S }

are stopping times both generating the same law µ. Then R ∪ S also generates µ and the
corresponding stopping time is given by

τR∪S = τR ∧ τS .

Proof. Consider the set

K := {z ∈ R : inf {y ∈ R : (y, z) ∈ R} < inf {y ∈ R : (y, z) ∈ S }} ,

and define

RK := {(x, y) ∈ R : y ∈ K} , RKc := {(x, y) ∈ R : y ∈ Kc} ,

S K := {(x, y) ∈ S : y ∈ K} , S Kc := {(x, y) ∈ S : y ∈ Kc} .

Note that S K ⊆ RK as well as RKc ⊆ S Kc .
Now assume that BτS ∈ K. By definition of τS and by the above discussion we have

(AτS , BτS ) ∈ S K ⊆ RK . This means, τR ≤ τS and it is now impossible to have (AτR , BτR ) ∈
RKc (otherwise BτS would have stopped in Kc). This implies that we cannot have BτR ∈ Kc
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and therefore P[BτS ∈ K, BτR ∈ Kc] = 0.
As BτR ∼ BτS we have:

P
[
BτR ∈ K

]
= P
[
BτR ∈ K, BτS ∈ K

]
+ P
[
BτR ∈ K, BτS ∈ Kc]

= P
[
BτS ∈ K, BτR ∈ K

]
+ P
[
BτS ∈ K, BτR ∈ Kc] = P

[
BτS ∈ K

]
,

and altogether
0 = P

[
BτR ∈ K, BτS ∈ Kc] = P

[
BτS ∈ K, BτR ∈ Kc] .

It is now clear that the sets

Ω1 :=
{
BτR ∈ K, BτS ∈ K

}
where τR ≤ τS

and
Ω2 :=

{
BτR ∈ Kc, BτS ∈ Kc} where τS ≤ τR

are essentially disjoint and their union has full probability. Therefore τR∪S = τR ∧ τS a.s.
That τR∪S generates the same law is now obvious (due to decomposition into Ω1 and Ω2).

□

Corollary 4.2. If τ is a barrier type solution to the (SEPλ,µ), then τ is a.s. unique.

Proof. For any solution τ to (SEPλ,µ) we have E[τ] < ∞ and thus E[B2
τ] = E[τ]. Now if τ̃

is another solution to (SEPλ,µ) and τ̃ ≤ τ, then E[τ̃] = E[B2
τ̃] = E[B2

τ] = E[τ], hence τ = τ̃
a.s. and we call such a solution minimal. Let R be the barrier inducing the solution τ = τR

and let τS be a different solution induced by the barrier S . By Proposition 4.1 we have
that τR ∧ τS is also a solution to the (SEPλ,µ). Since trivially τR ∧ τS ≤ τR we have that
τR ∧ τS = τR due to the minimality observation before. Now analogously τR ∧ τS = τS ,
hence τR = τS a.s. concluding the proof of uniqueness. □

We see that this uniqueness result cannot immediately be applied to the solutions found
in Theorem 5. However, an analogous uniqueness result holds in this setting. The target
set constructed in the proof of Theorem 5 can be seen as an inverse barrier in the sense of
Rost and the Loynes type uniqueness result can be extended to this setting.

4.2. Uniqueness of the Perkins Solution. To give a Loynes type uniqueness result for the
Perkins embedding we need to identify the right space and setting to be able to consider vh-
barriers as barriers in the classic sense. We aim to represent vh-barriers as inverse barriers
in the Rost sense.

Let (R′,⪯) be a disjoint copy of the real numbers where the order is flipped, i.e. for
x, y ∈ R′ we have x ⪯ y if and only if x ≥ y in the usual order of the real numbers. We
keep R′ distinguishable from R. Consider D := R′ ∪ R and define an order ≤D on D in the
following way.

x, y ∈ D, then x ≤D y :⇔


x ∈ R′ and y ∈ R
x, y ∈ R′ and x ⪯ y
x, y ∈ R and x ≤ y

This order enables us to depict the set D as linearly ordered from left to right. Moreover
we can consider R′ as the left half of D while considering R as the right half of D. To
emphasize this we consider the map

ι : R→ R′, ι(x) = x

which embeds R into R′. Then

· · · ≤D ι(1) ≤D · · · ≤D ι(0) ≤D · · · ≤D ι(−1) ≤D · · · ≤D −1 ≤D · · · ≤D 0 ≤D · · · ≤D 1 ≤D · · · ,

thus we may consider R′ as R reflected in the origin.
We will now construct barriers in D×R = (R′ × R)∪ (R × R). Note that in the proof of

Theorem 5 the vh-barrier R was established as R = R1 ∪ R2 where R1 was induced by r1,
the endpoints of paths being stopped at a new running maximum while R2 was induced by
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ψ

Figure 7. Translating the Perkins barrier picture in Figure 1 (B) into
D × R.

r2, the endpoints of paths being stopped at a new running minimum. While R is a barrier in
R2 we can also use r1 and r2 to define a corresponding barrier RD ⊆ D×R in the following
way. For every (x, y) ∈ r1 we have (x, y) ∈ R′×R ⊆ D×R and also (x̃, y) ∈ RD for all x̃ ∈ D
such that x̃ ≤D x. Note that as x ∈ R′ of course we have x̃ ∈ R′ for all x̃ ≤D x. Analogously
for (x, y) ∈ r2 we have (x, y) ∈ R × R ⊆ D × R and also (x̃, y) ∈ RD for all x̃ ∈ D such that
x̃ ≤D x. Note that this especially implies (x̃, y) ∈ RD for all x̃ ∈ R′.

Thus every path stopped at a new running maximum creates a line in the left half of
D × R while every path stopped at new running minimum creates a line in the right half of
D×R which continues on into the left half creating a structure of Rost barrier type. Figure
7 gives an illustration of how the vh-barrier picture in Figure 1 (B) translates into a barrier
in D × R which will be of inverse barrier structure.

We want to consider the path (B, B) in D × R, more precisely we want to consider the
path on the lhs R′ × R as well as on the rhs R × R of D × R separately but simultaneously.
So we define the following two maps embedding R2 into the respective space.

ψ : R2 → R′ × R, ψ(x, y) = (ι(y), x)

ψ : R2 → R × R, ψ(x, y) = (x, y)

While ψ will plainly embed the path (B, B) into the right half R × R, the map ψ will reflect

the path (B, B) along the main diagonal before embedding it into the left half R′ × R. As
we have ‘flipped’ the order on R′ we will perceive the action of ψ as a counter clockwise
rotation by 90◦. Due to the order defined on D these two paths will now both travel from
left to right. In the left half the path ψ

((
Bt, Bt

))
will move vertically upwards whenever

a new running maximum is reached and will move only horizontally when a new running
minimum is reached. Furthermore this implies that the barrier can only be hit when a new
running maximum is reached and no stopping will happen in the left hand side due to a new
running minimum. In the right half the path ψ

((
Bt, Bt

))
will move vertically downwards

whenever a new running minimum is reached but will travel perfectly horizontal at the
level of the current running minimum when a new running maximum is reached. In other
words, all stopping due to new running maxima will happen on the left hand side R′ × R
while all stopping due to new running minima will happen on the right hand side R × R.
We consider the respective stopping times of the embedded processes

τR := inf
{
t ≥ 0 : ψ

((
Bt, Bt

))
∈ RD

}
,

τR := inf
{
t ≥ 0 : ψ

((
Bt, Bt

))
∈ RD

}
.
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Now if R ⊆ R2 and RD ⊆ D × R are both induced by the same sets r1 and r2 found in
Theorem 5, then

τR = inf
{
t ≥ 0 :

(
Bt, Bt

)
∈ R
}
= τR ∧ τR,

thus both representations of the hitting time of the barrier will be equivalent. We will
assume RD to be finely closed with respect to ψ

((
Bt, Bt

))
as well as ψ

((
Bt, Bt

))
and give a

Loynes type uniqueness argument for the stopping time τR.

Theorem 6. Let R, S ⊆ R2 be two vh-barriers and let τR resp. τS denote their hitting times
by the process

(
Bt, Bt

)
. If τR and τS both embed the same law µ, then τR = τS a.s.

Proof. Note that by the above discussion we must have inverse barriers RD, S D ⊆ D × R
corresponding to the vh-barriers R resp. S such that τR = τR ∧ τR and τS = τS ∧ τS .
Analogously to Proposition 4.1 and Corollary 4.2 the almost sure equality τR = τS will
follow by defining a set K ⊆ R of those levels where barrier R is ‘longer’ than barrier S
and showing that

P
[
BτS∧τS

∈ K, BτR∧τR
∈ Kc
]
= 0. (4.1)

Considering the order ≤D on D as well as the fact that RD respectively S D are both inverse
barriers we define

K :=
{
z ∈ R : sup {x ∈ D : (x, z) ∈ RD} >D inf {x ∈ D : (x, z) ∈ S D}

}
.

Thus now we can consider the subset

RK := {(x, y) ∈ RD : y ∈ K} ⊆ RD

and define RKc
, S K and S Kc

analogously. Then we have S K ⊆ RK and RKc
⊆ S Kc

.
Consider BτS∧τS

∈ K, then it is crucial to observe that our stopping times will only stop
Brownian motion at a new running minimum or running maximum, hence by definition of
the respective stopping times we will either have BτS∧τS

= BτS or BτS∧τS
= BτS

, thus either

ψ
((

Bt, Bt

))
∈ S K ⊆ RK or ψ

((
Bt, Bt

))
∈ S K ⊆ RK .

Assume BτS∧τS
= BτS . Then τS ≤ τS and τR ≤ τS by the definition of K, hence τR ∧ τR ≤

τS ∧ τS and it is impossible to have BτR∧τR
∈ Kc as otherwise BτS∧τS

would have stopped
in Kc as well. We have the analogous result when BτS∧τS

= BτS
, hence (4.1) is clear. We

can conclude the proof analogously to the proof of Proposition 4.1 and Corollary 4.2. □

We can now complete the proof of Theorem 1.

Proof. For an arbitrary choice of φ consider τP := τ̃ as found in Theorem 5. Let τ be
another stopping time constructed as in Theorem 5 but for a different choice of φ.

First note that the behaviour in 0 is independent of φ, hence for A ∈ B(R) we have

P [τP = 0, B0 ∈ A] = (λ ∧ µ)(A) = P
[
τ = 0, B0 ∈ A

]
.

Now note that on {τP > 0} = {τ > 0} both stopping times are given as hitting times of
vh-barriers and embed the same law µ, hence by Theorem 6 we have τP = τ a.s. Since the
choices for φ were arbitrary we must have optimality for any such φ, thus we can conclude
that τR minimizes resp. maximizes Bτ̃ resp. Bτ̃ in law. □

4.3. An Example. We will illustrate the occurrences of the different type of lines of the
Perkins barrier solution in the following simple atomic example. Consider the initial mea-
sure

λ =
1
4
δ−1 +

1
2
δ0 +

1
4
δ1,

and for α ∈ [0, 1] the terminal measure

µ =
1 − α

2
δ−2 + αδ0 +

1 − α
2

δ2.

Depending on the size α of the atom in {0} we have the following different cases.
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Bt

−∞
−∞

D

Figure 8. The Perkins embedding of µ for α ∈
[
0, 1

2

]
.

Bt

Bt

Bt

Bt

Bt

Bt

−∞
−∞

D

Figure 9. The Perkins embedding of µ for α ∈
(

1
2 ,

5
8

]
.

α ∈
[
0, 1

2

]
: The measure λ and µ share mass µ({0}) = α ≤ 1

2 = λ({0}) in {0}, thus (λ∧µ)({0}) =
α and all mass needed in {0} will get stopped immediately while all other mass
will be left to run to ±2 as illustrated in Figure 8.

α ∈
(

1
2 ,

5
8

]
: Since µ({0}) = α > 1

2 = λ({0}) we have (λ ∧ µ)({0}) = 1
2 . Hence all mass available

in {0} will be stopped immediately but then still a little more mass is needed. An
additional v-line in 0 where some of the paths starting in B0 = −1 will stop upon
reaching a new running maximum in 0 will provide this missing mass as illustrated
in Figure 9. Note that by adding this additional v-line we can at maximum acquire
an additional 1

8 of mass in {0}, hence resulting in a maximal atom size of 5
8 to be

embedded this way.
α ∈
(

5
8 ,

3
4

]
: As seen in the previous case we have (λ∧ µ)({0}) = 1

2 and all mass available in {0}
will be stopped immediately. However as discussed above merely adding a v-line
will no longer suffice to acquire the α > 5

8 atom in {0}. Hence we also need to
stop (some) paths starting in B0 = 1 upon reaching a new running minimum in {0}
via an h-line in {0} as illustrated in Figure 10. Note that by adding this horizontal
line we can at most acquire an additional 1

8 of mass in {0} from the paths started in
B0 = 1, adding up to a total atom size of 3

4 that could be embedded this way.
α ∈
(

3
4 , 1
]
: The measures λ fails to be prior to µ in the convex order when α > 3

4 . While
technically we could provide vh-barriers such that the corresponding hitting time
would embed the measure µ, the resulting stopping time would no longer be inte-
grable hence not be a solution to (SEPλ,µ).
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[19] P. Henry-Labordère, J. Obłój, P. Spoida, and N. Touzi. The maximum maximum of a martingale with given

n marginals. Ann. Appl. Probab., 26(1):1–44, 2016.
[20] D. Hobson. The maximum maximum of a martingale. In Séminaire de Probabilités, XXXII, volume 1686 of
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