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Abstract. The robust option pricing problem is to find upper and lower bounds on fair prices
of financial claims using only the most minimal assumptions. It contrasts with the classical,
model-based approach and gained prominence in the wake of the 2008 financial crisis, and can
be used to understand the extent to which a model-based price is sensitive to the underlying
model assumptions. Common approaches involve pricing exotic derivatives such as variance
options by incorporating market data through implied volatility. The existing literature focuses
largely on incorporating implied volatility information corresponding to the maturity of the
exotic option. In this paper, we aim to explain how intermediate data can and should be
incorporated.

It is natural to expect that this additional information will improve the robust pricing
bounds. To investigate this question, we consider variance options, where the bounds of the
informed robust pricing problem are known. We proceed to conduct an empirical study uncov-
ering a surprising finding: Contrary to common belief, the incorporation of more information
does not lead to an improvement of the robust pricing bounds.

Key words. variance option; robust pricing; Skorokhod embedding problem; Root barrier;
Rost barrier.
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1. Introduction

It is well understood by market participants and regulators that the problem of pricing fi-
nancial derivatives is highly susceptible to model risk — that is, the risk associated with using
incorrect pricing models. One aspect of reducing model risk is to ensure that pricing models ac-
curately reflect quoted market prices (calibration), however by itself, this is insufficient to remove
all model risk, since there are typically multiple models which can fit the same set of market
prices. It is therefore necessary to understand the set of all models which calibrate to a given
set of market prices. By increasing the set of prices that we require a model to calibrate to, we
reduce the class of models which can calibrate to the data, and we would therefore expect to get
a smaller class of models that are consistent with increased market data, and therefore a better
understanding of possible behaviour implied by market prices.

A natural question that arises in practice is: given all relevant prices, can I significantly reduce
the range of models which are consistent with observed market prices? In this paper, we will
consider this question in the case of market prices for options on variance, given market infor-
mation in the form of the implied variance term-structure, with information about all available
maturities up to the maturity date of the variance option.
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Classical approaches to derivative pricing rely on calibrating a class of parametric models to
market prices of vanilla options (for example, in the equity context, European Call options). In
practice, this process leads to inconsistencies, since parametric models are generally insufficient
to capture all possible market features, across multiple maturities for both long- and short-dated
maturities. On the other hand, more flexible models (such as Dupire’s Local Volatility model [36])
offer greater versatility, but are known not to match market dynamics well, [44], and as a result,
are not always reliable models for pricing exotic options.

An alternative approach lies in methods generally called robust, or model-independent pricing.
In this approach, dating back to the seminal paper of Hobson [51], one looks to find prices
corresponding to models which are extremal, while imposing as few bounds on the price of
options as possible. In this context, one is typically able to identify structural properties of
extremal models, as well as potential super- or sub-hedging strategies which are robust to model-
misspecification. Since the original paper of Hobson, a substantial literature has been developed
on this topic, see for example, [16, 19,23,24,25,47,55] among others.

In the robust setting, one looks for hedging strategies which will work in any market scenario
which is possible, given the possibility of trading in any liquid options. If one increases the
set of liquid options that can be used to super-replicate a given exotic option, clearly one has
a larger class of possible trading strategies, and therefore a lower model-independent super-
replication price. Hence increasing the class of traded options both reduces the minimal super-
replication price, and increases the maximal sub-replication price. As a consequence, including
more options into the set of liquid options should tighten the bounds on the set of prices which are
admissible without (model-independent) arbitrage. By a duality argument (and as a consequence
of e.g. [18]), one can also see this as a reduction in the set of pricing models which are consistent
with observed market prices.

In general, this perspective allows us to understand inclusion of additional liquid options
as a method of potentially generating tighter pricing bounds, and therefore getting a tighter
constraint on the extent of model-risk inherent in a given price of an exotic option.

In this paper, we consider the case of options on variance, and in particular, variance calls, that
is, options which pay the holder (VT −K)+, where V is the integrated quadratic variation of the
log-asset price, that is, if σt is the observed volatility process of the stock price (Pt)t∈[0,T ], then
VT =

∫ T

0
σ2
t dt. These derivatives are of interest due in part to their close connection to other

options on variance/volatility such as the VIX index, and also in the model-independent context
because the variance swap (VT − K), is well known to have a model-free replication strategy
(see [30]). As a result, we might expect model-independent approaches to be informative about
(although not completely fix) prices of, for example, variance calls.

We consider specifically whether the model-independent pricing bounds narrow with the in-
corporation of additional information contained in European call options with maturity earlier
than the maturity date of the variance call options. The essence of our approach relies on a
construction which allows us to identify the optimal models with the construction of certain
space-time boundaries. We are able to informally equate the presence of additional (useful) in-
formation of earlier marginals with geometric properties of the underlying boundary structure.
Moreover, by fitting market data, we are able to compute the space-time boundaries of market
data, and conduct an empirical study which indicates that, at least at the times tested, the ad-
ditional information content coming from earlier marginal information appears to be negligible,

2



indicating that incorporating information contained in the full implied volatility surface is of
little benefit for understanding the model risk inherent in variance call options.

One implication of our results is that market participants who look to robustly hedge variance
call options using vanilla options to mitigate their risk (see for example [24]) will not see sub-
stantial benefit through the use of call options from earlier maturities. Since model-independent
trading strategies of variance call options are known for single maturity options due to [27], this
suggests that these trading strategies are sufficient for many practical situations.

We proceed as follows. We first summarise the model-independent, or robust approach to
determining worst case bounds for option prices subject to model risk. Then we explain how
this connects the case of options on variance to the solutions of Root and Rost of the Skorokhod
embedding problem in the single and multiple-marginal settings, and how these solutions can be
numerically computed to reveal their geometric structure. In Section 3, we describe the market
data which we will use to assess our findings. In particular, in order to get reliable numerical
results for the underlying geometric structure, we need to smooth market prices, which are
inherently noisy, as well as renormalisation to identify appropriate estimates for interest rate
and dividend parameters. Our approach to this relies on calibrating market data to well known
models, where we can reliable interpolate complete distributions. This is explained in Section 3.2.
We conclude by presenting our numerical results, and showing that the resulting models do not
appear to offer any evidence that the multi-marginal setting offers any benefit over calibration
for the single marginal setting.

1.1. Worst Case Bounds. Throughout this article we denote the price process of our under-
lying asset by (Pt)t∈[0,T ]. We consider a pay-off function F : C[0, T ] → R and are interested in
determining a fair price FT of the claim F

(
(Pt)t∈[0,T ]

)
with maturity T > 0.

Focusing on pricing these derivatives with maximum caution we could consider all possible
models for (Pt)t∈[0,T ] satisfying only the most minimal assumptions. That is, under a pricing
measure a price process is a continuous, non-negative martingale process which agrees with
the present-day market value P0. Let us denote the set of all such martingales by MP0 . It
is important to note here, for the sake of simplicity of this discussion, we currently assume
zero interest rates and dividend yields as otherwise (Pt)t∈[0,T ] will only be a martingale after
discounting. We will, however, give all necessary details for non-zero interest rates and dividend
yields in Section 3.

Worst Case Bound or robust bound pricing entails computing an upper and lower limit of all
possible prices. We then find the following bounds for the price of the derivative FT :

inf
M∈MP0

E
[
F
(
(Mt)t∈[0,T ]

)]
≤ FT ≤ sup

M∈MP0

E
[
F
(
(Mt)t∈[0,T ]

)]
. (1.1)

It, however, quickly becomes apparent that this class MP0 is too extensive to make much sense
of such bounds. Numerous authors have suggested and contributed various restrictions of MP0

to some sensible subclasses. For instance [1,14,29] consider the case where information on a finite
number of financial derivatives is available. If a continuum of European call options at multiple
time points is liquidly traded, market data yields information about the marginal distribution of
the price process by the Breeden-Litzenbeger theorem [15]. The corresponding pricing problem
has been studied from a martingale transport perspective, see [10, 12, 18, 40, 54] among many
others. It is well known that under mild technical conditions, the upper limit of prices is equal
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to the minimal model-independent super-hedging price, and vice versa, the lower limit is equal
to the maximal model-independent sub-hedging price, see for example [9, 34].

In this article we adopt an approach first proposed by Hobson in [51] to address this challenge.
Said method uses market given European call option data to inform on our set of plausible models,
to then establish connections to specific solutions to the so called Skorokhod embedding problem
to find concrete optimizer of (1.1).

We give more details in the next section and also refer readers to [52] for an extensive survey.
Furthermore, we will give an example of a class of claims, namely variance options, which can
be examined very rigorously with methods developed in the recent years. While incorporating
time T market data to refine the set MP0 is a well studied problem, only recently the necessary
theory was developed which allows to extend such results to considering all available European
call option data up to time T .

Our aim is to investigate if, in fact, this additional information would indeed results in tighter
robust bounds, as one would expect. In Section 3 we carry out an in-depth empirical study
on variance options using real market data quoted for multiple maturities, examining this very
question.

2. Market-Informed Robust Pricing and the Skorokhod Embedding Problem

It is a well-established perspective, as articulated in early works like [35, 36] by Dupire, to
no longer perceive European call options merely as derivatives of underlying assets to be priced
and instead to view them as independent assets with their prices given by market dynamics.
Adopting this sentiment we can invoke the Breeden-Litzenberger Theorem [15], stating that
under the assumption that European call options are computed as the discounted payoff under
a pricing measure µ,

C(K,T ) = Eµ

[
(PT −K)

+
]

for every strike price K ∈ (0,∞) and maturity T > 0, and furthermore assuming that the pricing
function C is twice differentiable we can recover the pricing measure µ via

µ(PT ∈ dK) =
∂2

∂K2
C(K,T ).

We can hence refine our set of plausible models MP0 to MP0
µ , the set of those continuous, non-

negative martingale models that adhere to the time-T market-given marginal distribution µ,
precisely

MP0
µ :=

{
(Mt)t∈[0,T ] is a continuous, non-negative martingale such that M0 = P0 and MT ∼ µ

}
.

This allows us to refine the uninformed worst case bounds (1.1) to the following market-
informed robust bounds

F := inf
M∈MP0

µ

E
[
F
(
(Mt)t∈[0,T ]

)]
≤ FT ≤ sup

M∈MP0
µ

E
[
F
(
(Mt)t∈[0,T ]

)]
=: F . (2.1)

Let now (Xt)t≥0 denote a continuous, non-negative martingale subject to X0 = P0. Consider a
stopping time τ and define the time-changed martingale (Mt)t≥0 as follows

Mt := X t
T−t∧τ . (2.2)

Note that MT = Xτ , thus we have the equivalence

(Mt)t≥0 ∈ MP0
µ ⇔ Xτ ∼ µ. (2.3)
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Such stopping times are precisely the solutions to the (generalized) Skorokhod embedding problem
(SEPX,µ), where given a process (Xt)t≥0 and a measure µ the task is to find a stopping time τ

such that
Xτ ∼ µ. (SEPX,µ)

This problem was initially proposed and solved by Skorokhod himself [65,66] in the early 1960s.
However, it continues to be a subject of extensive research, with numerous distinct solutions being
established in recent years. More than 20 different solutions are surveyed in [60], and substantial
contributions have emerged thereafter, notably in [5, 6, 7, 8, 11, 21, 26, 27, 28, 41, 42, 43, 45, 47, 58].
Most of these solutions to (SEPX,µ) distinguish themselves through unique additional extremal
properties, particular examples will be presented in the next section.

The application of these solutions to the robust pricing problem (2.1) has been pioneered by
Hobson in [51]. The idea, initially focused on lookback options, is to cleverly select (Xt)t≥0 and
a corresponding specific τ solutions to (SEPX,µ) such that the bounds in (2.1) are attained by
the martingale (Mt)t≥0 defined in (2.2).

This idea has been extended in subsequent works, such as [47]. Other types of options have
been considered, Barrier options were treated in [16, 24], forward-start digital options in [55],
double touch/no-touch options in [24,25] and options on leverage exchange traded funds in [22,23].

Of particular interest to our study are the extensions to options on variance, as explored
in [17,27,28,53,56] among others. Further details on this topic will be provided in the subsequent
section.

2.1. Options on Variance. We now turn our focus to a special class of financial derivatives,
namely variance options. Variance options are contracts written on the quadratic variation of
the log price process ⟨logP ⟩T , more precisely for some function f : [0,∞) → R, a variance option
has a payoff of the form

f (⟨logP ⟩T ) .
Frequently considered examples areq F = f(⟨logP ⟩T ) = ⟨logP ⟩T −K, a variance swap orq F = f(⟨logP ⟩T ) = (⟨logP ⟩T −K)+, a variance call.

It is worth noting that the quadratic variation of the log price process is invariant under dis-
counting.

Intriguingly, in [37] and more recently in [17,27,28] the authors connected the robust pricing
problem of variance options to two early and illustrative solutions to (SEPX,µ), namely the
Root [62] and Rost [63] solutions. We state an existence theorem of these solutions and refer to
Figure 1 for a graphical illustration.

Theorem 2.1 ( [27, 28, 41, 42, 43, 62, 63]). Let (Xt)t≥0 denote a continuous Markov martingale.
Consider a measure µ and an increasing convex function f : [0,∞) → [0,∞). Thenq there exists a (Root) barrier R ⊆ R2 such that

τRoot = inf
{
t ≥ 0 : (t,Xt) ∈ R

}
is a stopping time solving the (SEPX,µ). A (Root) barrier is a set R such that (t, x) ∈ R

implies (s, x) ∈ R for any s ≥ t.
Moreover τRoot minimizes E[f(τ)] among all solutions τ to (SEPX,µ).
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Figure 1. Illustration of a Root (left) resp. Rost (right) solution to (SEPX,µ).

q there exists an inverse (Rost) barrier R̄ ⊆ R2 such that

τRost = inf
{
t ≥ 0 : (t,Xt) ∈ R̄

}
is a stopping time solving the (SEPX,µ). An inverse (Rost) barrier is a set R̄ such that
(t, x) ∈ R̄ implies (s, x) ∈ R̄ for any s ≤ t.

Moreover τRost maximizes E[f(τ)] among all solutions τ to (SEPX,µ).

We will use these two concrete solutions to (SEPX,µ) and use observation (2.3) to construct
two concrete candidate models contained in MP0

µ .
Let (Xt)t≥0 denote a geometric Brownian motion started in X0 = P0. Precisely, let (Bt)t≥0

denote a Brownian motion, then Xt will satisfy the SDE

dXt = XtdBt, X0 = P0. (GBM)

It is explained in great detail in [52, Section 5.2] as well as [28, Section 1] and [27, Section 2]
that any candidate price process can be represented as a geometric Brownian motion run at a
different speed, using a clever time-change argument. Conversely, we can construct candidate
price processes as time-changed geometric Brownian motions. A martingales defined in the
following way

Mt := X t
T−t∧τ , t ∈ [0, T ] (2.4)

where τ is a solution to (SEPX,µ) satisfies the followingq M0 = P0,q MT = Xτ ∼ µ,q and most importantly, the quadratic variation of the log price process has the following
representation ⟨logM⟩T = τ .

Given the Root solution τRoot (resp. Rost solution τRost) to (SEPX,µ) provided by Theorem
2.1 we can define the two candidate prices processesq MRoot

t := X t
T−t∧τRoot

, t ∈ [0, T ],q MRost
t := X t

T−t∧τRost
, t ∈ [0, T ],

and call them Root and Rost model respectively. We can now state that the market-informed
robust bounds (2.1) are attained by these models.

Theorem 2.2 ( [17, 27, 28, 56]). For an increasing convex function f : [0,∞) → [0,∞) consider
the variance option F

(
(Pt)t∈[0,T ]

)
= f(⟨logP ⟩T ). Then for any price FT of this claim we have
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the following robust bounds

E
[
F
(
MRoot)] = inf

M∈MP0
µ

E
[
F
(
(Mt)t∈[0,T ]

)]
≤ FT ≤ sup

M∈MP0
µ

E
[
F
(
(Mt)t∈[0,T ]

)]
= E

[
F
(
MRost)]

(2.5)
More precisely, the lower and upper bound on these options on variance are attained by a Root
and Rost model respectively.

Given the nice graphical properties of Root and Rost solutions to (SEPX,µ), Theorem 2.2 offers
a possibility of gaining deeper insights into the behaviour of such extremal models attaining the
robust pricing bounds.

While the early works on Root and Rost stopping times were purely existential, various more
recent works like [27,28,31,41,42] offer the necessary tools to analyse such models more concretely
and in-depth.

Incorporating the market-given marginal at the expiration time T is a well studied problem
with established results. But before we apply this theory to market data we aim to generalize the
results to not only incorporate the time T marginal at expiration, but to furthermore incorporate
all maturities available on the market before said time T .

This extension will be explored in the following section.

2.2. Incorporating Multiple Maturities. The market informed robust pricing problem has
been well studied for the class of plausible models MP0

µ , making the asset adhere to the market-
informed time T marginal distribution at times of expiration.

However, European call options are traded liquidly and frequently with maturities on numer-
ous stocks and indices expiring several times per week.

Given this rich supply of data it becomes apparent that we are very likely able to use more
data for our robust pricing problem than the time T market informed marginals, namely the
marginal distributions for all expiries quoted in between. Consequently, it is reasonable to assert
that our plausible model should conform to all these intermediate marginal constraints, thereby
tightening the robust bounds on the pricing problem.

To formalize this, let T1, . . . , Tn = T denote the available maturities leading up to the ex-
piration time T . Correspondingly, we denote the associated marginals recovered through the
Breeden-Litzenberger theorem by (µ1, . . . , µn).

Then we can define the set of all plausible martingale models adhering to the market given
marginals by

MP0

(µ1,...,µn)
:= {(Mt)t∈[0,T ] is a continuous, non-negative martingale

such that M0 = P0 and Mk ∼ µk, k = 1, . . . , n}

and consider the refined robust bounds

F := inf
M∈MP0

(µ1,...,µn)

E
[
F
(
(Mt)t∈[0,T ]

)]
≤ FT ≤ sup

M∈MP0
(µ1,...,µn)

E
[
F
(
(Mt)t∈[0,T ]

)]
=: F . (2.6)

Similarly to the single-marginal case, we can again establish a connection between models
in MP0

(µ1,...,µn)
and solutions to a Skorokhod embedding problem. An analogous observation to

the equivalence (2.3) can be made if instead of the (SEPX,µ) we consider its multi-marginal
extension:
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For a sequence of measures (µ1, . . . µn) and a process (Xt)t≥0 the multi-marginal Skorokhod
embedding problem (MMSEPX,(µ1,...µn)) is to find a sequence of stopping times τ1 ≤ · · · ≤ τn
such that

Xτk ∼ µk for k = 1, . . . , n. (MMSEPX,(µ1,...µn))

Let (Xt)t≥0 denote a continuous martingale subject to X0 = P0. Given a sequence of market-
given marginals (µ1, . . . µn), denote by (τ1, . . . , τn) a solution to (MMSEPX,(µ1,...µn)). With
such solution, analogously to the single marginal case we can construct a martingale (Mt)t≥0 ∈
MP0

(µ1,...,µn)
in the following way. Set T0 = τ0 = 0 and define

Mt :=

n∑
i=1

X
τi−1+

t−Ti−1
Ti−t ∧(τi−τi−1)

11t∈(Ti−1,Ti] + P0. (2.7)

Then analogously to the single marginal case, a model defined in this way will satisfy the followingq M0 = P0,q MTk
= Xτk ∼ µk for k = 1, . . . , n,q ⟨logM⟩T = τn.

The existence of multi-marginal Root and Rost solution to (MMSEPX,(µ1,...µn)) are ensured
by [8, 20, 26]. It is furthermore established in [8] that these solutions still exhibit the same
extremal properties necessary to identify Root and Rost solutions as optimizers of the right kind
of optimization problem.

More precisely, for an increasing convex function f : [0,∞) → [0,∞), the sequence of Root so-
lutions (τRoot

1 , . . . , τRoot
n ) minimizes E [f(τk)] simultaneously for all k = 1, . . . , n among all other

sequences of stopping times (τ1, . . . , τn) solving the (MMSEPX,(µ1,...µn)). Similarly, a sequence
of Rost solutions (τRost

1 , . . . , τRost
n ) maximizes E [f(τk)] simultaneously for all k = 1, . . . , n.

We can now define a multi-marginal Root (resp. Rost) model. Let (Xt)t≥0 denote a geo-
metric Brownian motion (GBM) started in X0 = P0. Given the multi-marginal Root solution
τRoot1 , . . . , τRootn (resp. multi-marginal Rost solution τRost

1 , . . . , τRost
n ) to (MMSEPX,(µ1,...µn))

we can utilize Definition (2.7) to propose the two candidate prices processesq MRoot
t :=

∑n
i=1 XτRoot

i−1 +
t−Ti−1
Ti−t ∧(τRoot

i −τRoot
i−1 )

11t∈(Ti−1,Ti] + P0, t ∈ [0, T ],q MRost
t :=

∑n
i=1 XτRost

i−1 +
t−Ti−1
Ti−t ∧(τRost

i −τRoot
i−1 )

11t∈(Ti−1,Ti] + P0, t ∈ [0, T ],

and call them multi-marginal Root and multi-marginal Rost model respectively.

For an increasing convex function f : [0,∞) → [0,∞) let us now consider the variance option
F
(
(Pt)t∈[0,T ]

)
= f(⟨logP ⟩T ). Then any fair price FT of this claim will adhere to the following

robust bounds informed by the market-given marginals (µ1, . . . , µn) as follows

E
[
F
(
MMM-Root)] = inf

M∈MP0
(µ1,...,µn)

E
[
F
(
(Mt)t∈[0,T ]

)]
≤ FT ≤ sup

M∈MP0
(µ1,...,µn)

E
[
F
(
(Mt)t∈[0,T ]

)]
= E

[
F
(
MMM-Rost)] . (2.8)

It is noteworthy that the inclusion MP0

(µ1,...,µn)
⊆ MP0

µ implies that we have E
[
F
(
MMM-Root

)]
≥

E
[
F
(
MRoot

)]
as well as E

[
F
(
MMM-Rost

)]
≤ E

[
F
(
MRost

)]
.

Therefore, incorporating more market given marginal into the robust pricing problem should
possibly refine the bounds.
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In the next section we summarize the results required for numerical examination of such
extremal models achieving the robust pricing bounds informed by the market-given marginals
(µ1, . . . , µn).

2.3. Analysis of Root and Rost Models. We come to the main objective of this article, to
investigate the behaviour of those models for which the bounds of the robust pricing problem
(2.6), incorporating multiple market given marginals are attained.

These models, namely the multi-marginal Root and Rost models defined in Section 2.2 are
characterized by the respective sequences of barriers which need to be passed by the candidate
price processes consecutively. Hence, we believe that analysing these barriers might offer valuable
insights into the underlying models.

While the original results of Root [62] and Rost [64] are purely of existential nature and
concrete barriers were not known save for a few very simple examples, these solutions later
became computationally tractable thanks to [27,28,31,41,42] among others.

In this single-marginal case, where the robust bounds are only informed by the time T marginal
distribution at time of expiration as outlined in Section 2.1, a thorough numerical investigation of
the Root and Rost models was conducted in [27] using simulated market data. Below, we extend
these results to the multi-marginal case. In order to perform a similar meaningful analysis of
the multi-marginal Root and Rost models attaining the bounds of the robust pricing problem
(2.6) informed by multiple maturities, tractable representations of multi-marginal Root and Rost
solutions are essential. A computable multi-marginal Root solution is provided in [26], while a
computable multi-marginal Rost solution, to the best of our knowledge, has only been developed
recently in [20].

We will give a brief summary of the well-established single-marginal results and proceed to
state their extensions to multiple marginals.

Single-Marginal Results. Let (Xt)t≥0 represent a geometric Brownian motion (GBM). Given
a measure µ let τRoot be a Root solution to (SEPX,µ), induced by the Root barrier R. Throughout
this paper we consistently assume the process (Xt)t≥0 to start according to the starting measure
λ = δP0

, however more general starting measure can be considered. We refer to the original
papers for details.

Define the function u(t, x) := −E [|XτRoot∧t − ex|], and for a measure m, let Um(x) :=
∫
|x−

y|dm(y) denote its potential. The Root barrier R now also has the following representation

R = {(t, ex) : u(t, x) = Uµ(e
x)} . (2.9)

However, it is crucial to know and the main result in [28] that the function u(t, x) can be recovered
without any knowledge of τRoot and R as a solution to the following PDE in variational form

max

{
1

2

∂2u

∂x2
(t, x)− 1

2

∂u

∂x
(t, x)− ∂u

∂t
(t, x), Uµ(e

x)− u(t, x)

}
= 0,

u(0, x) = Uλ(e
x).

(2.10)

This gives a concrete method for the numerically computing Root barriers by solving Equation
(2.10) and recovering the Root barrier R via Equation (2.9).

Similarly, let τRost denote a Rost solution to (SEPX,µ), induced by the Rost barrier R̄ and
consider the function v(t, x) := Uµ(e

x) + E [|XτRost∧t − ex|]. Then the Rost barrier R̄ also has
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the following representation

R̄ = {(t, ex) : v(t, x) = Uµ(e
x)− Uλ(e

x)} . (2.11)

Moreover, similar to the Root case and as discovered in [27, 31] the function v(t, x) can also be
recovered as the solution to the following PDE in variational form

max

{
1

2

∂2u

∂x2
(t, x)− 1

2

∂u

∂x
(t, x)− ∂u

∂t
(t, x), (Uµ − Uλ)(e

x)− v(t, x)

}
= 0,

v(0, x) = (Uµ − Uλ)(e
x).

(2.12)

Multi-Marginal Results. The preceding results allow for analysis of Root and Rost models
associated to options on variance when considering the market given marginal at time of maturity
T . However, extending this analysis to a multi-marginal context, to the best of our knowledge,
has remained unexplored.

In Section 2.2 it was explained how the bounds of the robust pricing problem informed by
multiple maturities as formulated in (2.6) are attained by a multi-marginal Root and Rost model
respectively. In order to perform a similarly meaningful investigation of such models as in the
single-marginal case it remains to establish a method of numerical analysis analogous to the
above. For the multi-marginal Root case a computable representation is know due to [26],
while [20] recently introduced a similar representation for multi-marginal Rost solutions. Both
these works give an optimal stopping characterization of multi-marginal Root and Rost solutions
and state results for embedding into a Brownian motion.

It remains to discuss the application of these results to a geometric Brownian motion (GBM)
and how to establish at a PDE representation similar to (2.10) and (2.12). The process of
deriving a PDE representation in variational form starting from an optimal stopping problem is
well known due to [13], we also refer to Section 5.2 in [61] for a more accessible explanation.

To extend such results form a Brownian motion to a geometric Brownian motion we utilize
the same methods as described in [28, Section 4.3] where the authors propose the change of
variables (t, x) 7→ (t, ex). While the transitions densities of a Brownian motion must satisfy the
heat equation, the transition densities of the (GBM) will in turn, after said change of variables
satisfy a drift-diffusion equation as seen on the left hand side of the PDEs in variational form
(2.10), (2.12) (2.13) and (2.14). For more details we refer to the proof of [28, Theorem 4.6] and
the preceding discussion therein.

Altogether, this leads us to the following characterizations of multi-marginal Root and Rost
solutions to (MMSEPX,(µ1,...µn)) as solutions to PDEs in variational form.

Consider now a geometric Brownian motion (GBM) (Xt)t≥0 and a sequence of measures
µ1, . . . , µn.

We first consider the multi-marginal Root case, hence let (τRoot
1 , . . . , τRoot

n ) be a multi-marginal
Root solution to (MMSEPX,(µ1,...µn)) induced by the sequence of Root barriers R1, . . . , Rn.

For k = 1, . . . , n define the function uk(t, x) = −E
[
|XτRoot

k ∧t − ex|
]

as well as u0(t, x) =

Uλ(e
x) = UδP0

(ex).
Then the k-th Root barrier Rk corresponding to the k-th Root stopping time τRoot

k has the
following representation

Rk =
{
(t, ex) : uk−1(t, x)− uk(t, x) =

(
Uµk−1

− Uµk

)
(ex)

}
.
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Similar to the single-marginal case, the functions uk(t, x) for k = 1, . . . , n can be recovered
inductively as the solution of the following PDE in variational form

max

{
1

2

∂2uk

∂x2
(t, x)− 1

2

∂uk

∂x
(t, x)− ∂uk

∂t
(t, x), uk−1(t, x)− uk(t, x)−

(
Uµk−1

− Uµk

)
(ex)

}
= 0,

uk(0, x) = Uλ(e
x).

(2.13)
A similar result holds in the multi-marginal Rost case. For k = 1, . . . , n define the function
vk(t, x) = Uµk

(ex)−E
[
|XτRost

k ∧t − ex|
]

as well as v0(t, x) = (Uµk
−Uλ)(e

x) = (Uµk
−UδP0

)(ex).

Then the k-th Rost barrier R̄k corresponding to the k-th Rost stopping time τRost
k also has the

following representation

R̄k =
{
(t, ex) : vk−1(t, x)− vk(t, x) =

(
Uµk−1

− Uµk

)
(ex)

}
.

Again, the functions vk(t, x) for k = 1, . . . , n can be recovered inductively as the solution to the
following PDE in variational form

max

{
1

2

∂2vk
∂x2

(t, x)− 1

2

∂vk
∂x

(t, x)− ∂u

∂t
(t, x), vk−1(t, x)− vk(t, x)−

(
Uµk−1

− Uµk

)
(ex)

}
= 0,

vk(0, x) = (Uµk
− Uλ)(e

x).

(2.14)
Hence, provided market-given marginal (µ1, . . . , µn) the above allows us to compute the concrete
barriers the Root and Rost models must adhere to. As these barriers each have to be passed
through consecutively, this possibly gives us valuable insight into the behaviour of these extremal
models.

Computation of robust bounds. We conclude this section by explaining the computation of
prices for variance options given Root and Rost barriers. For a function f : [0,∞) → [0,∞) we
consider the variance option F

(
(Mt)t∈[0,T ]

)
= f(⟨logM⟩T ).

For a Root barrier R we define a corresponding barrier function R(x) as follows

R(x) := inf{t ≥ 0 : (t, x) ∈ R},

while for a Rost barrier R̄ such a function will be defined via

R̄(x) := sup{t ≥ 0 : (t, x) ∈ R̄}.

Let us now assume that µ is atomless and the barrier functions R(x) and R̄(x) are well defined
and continuous. In this case, we particularly note that

τ = R(Xτ ).

Recall that for our martingale model (Mt)t∈[0,T ] defined via (2.4) or (2.7) we have ⟨logM⟩T = τ

where τ denotes the Root (resp. Rost) barrier corresponding to the terminal maturity T .
Thus, under such a Root (resp. Rost) model, a fair price FT of our variance option can be

easily computed as

FT = E [f(τ)] =

∫
f(R(x))dµT (x). (2.15)

We carry out an empirical study on real market data in the next section.
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Figure 2. Market given European call and put option prices on the S&P500.

3. Empirical Study

We conduct an empirical study utilizing European put and call options data quoted on the
S&P500 index as of March 19, 2019, acquired from the CBOE Datashop.

We opt for using closing quotes from the dataset for our study, investigating the 12 available
(non-weekly) expiries which mature every third Friday of the month.

The shortest expiry within our dataset is 31 days to maturity (0.085 years to maturity), while
the longest maturity extends to 1005 days (2.75 years to maturity). Furthermore, there are
between 83 and 296 prices quoted per maturity, ranging between 100$ and 4200$ in strike value
while the closing spot price of the S&P500 was provided by CBOE as P0 = 2833$.

The prices sourced from CBOE are provided as bid-ask quotes, for our further analysis we
compute and work with the mid-point prices. These quoted (mid-point) call and put options
prices are illustrated in Figure 2.

While the exact interest rates and dividend yield used for option pricing were not disclosed by
CBOE, we estimate a constant implied interest rate, denoted as r, at r = 0.0265, and a constant
implied dividend yield, denoted as q, at q = 0.0185. Details on our estimation methods can be
found in Appendix A. It is noteworthy, however, that these estimated values are in alignment
with the T-bill rates quoted by the U.S. Department of the Treasury, as well as reported annual
dividend yields of the S&P500, promoting confidence in the validity of our empirical setup.

In Section 3.1 we take the necessary preparations in order to compute multi-marginal Root
and Rost barriers as detailed in Section 2.3. The numerical results will be presented in Section
3.2.

3.1. Preparation of the data. Market-quoted data is inherently noisy, occasionally disrupted
by reporting delays or inaccuracies. These irregularities can introduce problems like artificial
arbitrage opportunities within the data, which may not accurately represent real market con-
ditions. Moreover, while the prices themselves may appear orderly, closer examination reveals
increasing levels of noise in their first and second derivatives, as depicted in Figure 3.

12



0 1000 2000 3000 4000

strike

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

First Derivatives

0 1000 2000 3000 4000

strike

−0.004

−0.002

0.000

0.002

0.004

0.006

Second Derivatives

T=0.08

T=0.16

T=0.26

T=0.34

T=0.41

T=0.51

T=0.76

T=0.84

T=1.01

T=1.26

T=1.75

T=2.75

spot price

Figure 3. First and second derivatives of market given call prices.

In the context of numerical solutions to partial differential equation, as introduced in Section
2.3, these noisy derivatives pose a great challenge, usually resulting in failure of the algorithm.

There are several possibilities to tackling this problem, we choose to investigate two possible
calibration scenarios, both calibrating a Black-Scholes model and a Heston model to the market
given data. Our rationale for this choice is as follows: Despite its recognized limitations, the
Black-Scholes model remains a widely used method for pricing European call options by numerous
financial institutions.

The Heston model [50] is know to overcome some of the limitations of the Black-Scholes
model while remaining tractable, hence being a favored alternative to the Black-Scholes model
by practitioners. Heston models can in practice demonstrate exact fits to market data in part
due to its widespread use by market participators.

In sum, rather than considering market prices as direct indicators, we view the market as
providing the underlying pricing parameters for widely used pricing models.

This approach is not necessary, provided alternative approaches to smoothing the market data
can be used. Other potential methods include [32] or arbitrage free spline smoothing as suggested
in [39], but we have not implemented these methods to date.

Forward prices. Our dataset provides European call option quoted on the spot price process
(Pt)t≥0. However, as presented in Section 2, it is essential to consider call option prices quoted on
the forward price process. Therefore, the final step in our data preparation requires appropriate
modification of the quotes.

Given a strike price x and a maturity T we will by C(x, T ) denote the price of a European call
option on the asset (Pt)t≥0. We furthermore assume this price to be given under a risk neutral
(martingale) measure via

C(x, T ) = e−rTE
[
(PT − x)

+
]

where r denotes the constant and deterministic risk-free interest rate.
As the S&P500 is a stock index consisting of 500 different stocks, each paying dividends at

individual times throughout the year we choose to model a continuously paid dividend which can
effectively be seen as an average of all the different dividends paid by the different companies at
various times.
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Assuming such a continuously compounded dividend yield q, we consider the forward price
process (St)t≥0

St := e(q−r)tPt,

which is a martingale under the pricing measure.
By c(x, T ) we will denote the time-zero price of a call option on the discounted process (St)t≥0

with strike x and maturity T ,
c(x, T ) := E

[
(ST − x)+

]
.

We then observe the following relationship between C(x, T ) and c(x, T )

c(x, T ) = E
[(

e(q−r)TPT − x
)+

]
= eqT

(
e−rTE

[(
PT − e−(q−r)Tx

)+
])

= eqTC
(
e−(q−r)Tx, T

)
.

(3.1)
Hence, we use Equation (3.1) to compute prices quoted on the forward price process given a
pricing function C.

The forward prices associated to our market given data can be seen in Figure 4 (c) resp.
Figure 8 (c) using a pricing function obtained via calibration of a Black-Scholes resp. Heston
pricing model to the market given data.

As presented in Section 2.3, the necessary input for the computation of Root and Rost barriers
are the potentials Uµk(x) corresponding to market implied measures µk, k ∈ {1, . . . , n}. Note
that the potential of a measure can easily be recovered from the call prices (3.1) in the following
way

Uµk(x) = P0 − 2c(x, Tk)− x,

we show the potentials for our data in Figure 4 (c) resp. Figure 8 (c).

3.2. Numerical Results. In this section we calibrate both a Black-Scholes and a Heston model
to our market-given data. This calibration process enables us to use the respective call prices as
a smoothed approximation of our market prices to inform on the robust pricing problem (2.6).

The effectiveness of the respective calibration can be seen in Figure 4 (a) and Figure 8 (a)
where we show a comparison of the calibrated prices to the market-given prices. Additionally,
we observe the indeed very well-behaved first and second derivatives of the calibrated prices in
Figure 4 (b) and Figure 8 (b).

Using a classic Euler numeric differentiation scheme we first solve the single-marginal embed-
ding problem given in (2.10) resp. (2.12) for each maturity. Here the stopping time embedding
the k-th marginal is not required to wait for the stopping time embedding the (k−1)-th marginal.
The results are depicted on the left side in Figure 5 (a) and (c) resp. Figure 9 (a) and (c). On
the right these same figures show the numerical solution to the multi-marginal problem given in
(2.13) resp. (2.14), namely in Figure 5 (b) and (d) resp. Figure 9 (b) and (d).

We conduct a more extensive discussion of the resulting barriers in Section 3.3.

3.2.1. Black-Scholes Data.
Calibration Results. Calibrating a Black-Scholes model to the market data yields the pricing
parameter σ = 0.153.

We want to point out that the fit of the calibrated model to the market given data as seen in
Figure 4 (a) seems unfavourable and not ideal. The Black-Scholes model does however provide
very smooth derivatives, depicted in Figure 4 (b) that allow for easy application of the Root
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(a) Comparing calibrated prices to market given prices.
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(b) First and second derivatives of calibrated prices.
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(c) Forward prices and the associated potentials.

Figure 4. Black-Scholes model calibration results.

and Rost barrier computation algorithm. The Black-Scholes forward prices and the associated
potential functions used for the algorithm can be seen in Figure 4 (c).

Root and Rost Barriers. We give the numerical results obtained by solving both the PDE in
variational form (2.10) resp. (2.12) as well as (2.13) resp. (2.14) using an explicit Euler scheme.

It is important to note that the algorithm exhibits certain challenges when dealing with
situations where the potential associated with the time Tk marginal closely approaches the initial
potential −|x− P0|.
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(c) Single marginal Rost barriers
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(d) Multi marginal Rost barriers

Figure 5. Root (top) and Rost (bottom) barriers embedding the market implied
marginals of the S&P500.

Consequently, we depict the region where these potentials remain a minimum distance of
ϵ = 0.01 away from the initial potential using solid lines. The remaining portions of the barrier
are shown transparently. However, it is worth mentioning that we believe this boundary behavior
to be an artifact of the numerical scheme and not indicative of the true behavior of the barriers.

In the case of the Root barriers, this is very easy to see. It is straightforward to verify that
the case of constant barrier functions will recover exactly the Black-Scholes model. Hence when
trying to compute the barrier function corresponding to the Black-Scholes model, we would
expect to recover a constant barrier. This is exactly the behaviour of the barriers shown in
Figure 5, at least in the likely region, corresponding to the ‘thick’ lines in the figures.

Prices. We use the barriers obtained above to establish robust bounds for a variance call, as
detailed in Section 2.3 and Equation (2.15). Given a maturity T and a strike price K, our
objective is to price the variance call defined as

f(⟨logM⟩T ) = (⟨logM⟩T −K)
+
.

We consider both an intermediate maturity, T = 1.01 as well as the terminal maturity T =

2.75. As the single-marginal and the multi-marginal barriers coincide, the resulting bounds are
identical, regardless of whether we employ the single-marginal or multi-marginal model.

In Figure 6 we illustrate the option prices for these variance calls for a wide range of possible
strike prices. Notably, while the upper and lower bounds coincide for the strike price 0, the gap
between the upper and lower robust pricing bounds widens notably for increasing strike prices.
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Figure 6. Upper and lower robust bounds on variance call prices for two different
maturities.

3.2.2. Heston Data.
Calibration Results. Calibrating a Heston model to the market data yields the following
pricing parameters.

Parameter Calibration Result Parameter Meaning
v0 0.0158 initial volantility
v̄ 0.0361 long-run mean variance
ρ -0.5199 corellation of asset BM and volatility BM
κ 2.6280 speed of mean reversion
σ 0.7902 vol of vol

Table 1. Calibration Results

The fit of the Heston prices to the market given data has improved substantially over the
Black-Scholes model as seen in Figure 8 (a), but can still not be considered ideal.

However, most common implementation of the Heston pricing functionals such as the python
package QuantLib seem to exhibit numerical instability in the tails, especially prominent in the
derivatives as depicted in Figure 7. To mitigate this problem it was necessary to smooth out
the tails in a sensible manner. Just before the convexity assumption of the Heston prices breaks
down, we replace the Heston tails with exponential tails fitted to the function values as well as
the first derivatives. This approach seems to provide a surprisingly nice fit.

Nevertheless, this truncation of course leads to a loss of confidence in the behavior of the bar-
riers at the boundaries regions. We will later on depict these replaced sections with transparency
to highlight the uncertainty.

In Figure 8 (b), we present the first and second derivatives following the tail correction. Figure
8 (c) illustrates the associated forward prices and potentials.

Root and Rost Barriers. We give the numerical results obtained by solving both the PDE in
variational form (2.10) resp. (2.12) as well as (2.13) resp. (2.14) using an explicit Euler scheme
and the tail-corrected Heston data.
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(a) Comparing calibrated prices to market given prices.
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(b) First and second derivatives of calibrated prices.

Figure 7. Heston model calibration results before tail correction.

As already pointed out in the discussion of the Black-Scholes model, the Euler scheme does
not seem to return the result we would expect when the potential associated with the time Tk

marginal too closely approaches the initial potential −|x− P0|.
The algorithm does, however, seem to remain stable for a little while longer than in the

Black-Scholes case, we depict the region where these potentials remain a minimum distance of
ϵ = 0.0002 away from the initial potential and no tail correction has taken place in solid lines.
The remaining portions of the barrier are shown transparently.

Prices. We use the barriers obtained above to establish robust bounds for a variance call, as
detailed in Section 2.3 and Equation (2.15). Given a maturity T and a strike price K, our
objective is to price the variance call defined as

f(⟨logM⟩T ) = (⟨logM⟩T −K)
+
.

We consider both an intermediate maturity, T = 1.01 as well as the terminal maturity T =

2.75. As the single-marginal and the multi-marginal barriers coincide, the resulting bounds are
identical, regardless of whether we employ the single-marginal or multi-marginal model.

In Figure 10 we illustrate the option prices for these variance calls for a wide range of possible
strike prices. Notably, similar to the Black-Scholes case, while the upper and lower bounds
coincide for the strike price 0, the gap between the upper and lower robust pricing bounds
widens notably for increasing strike prices.
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(a) Comparing calibrated prices to market given prices.
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(b) First and second derivatives of calibrated prices.
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(c) Forward prices and the associated potentials.

Figure 8. Heston model calibration results.

Additionally, it is evident that the bounds computed here differ greatly from those computed in
the Black-Scholes section, demonstrating a certain sensitivity of the robust bounds to variations
in the data inputs.

3.3. Discussion. In both calibration regimes, the Root and Rost barriers adhering to the market
given data which emerge from our numerical analysis appear to be in perfect consecutive order.
In the case of the Root construction for the Black-Scholes model, this should not be surprising
since (as noted above), the optimal barriers correspond to barriers which are constant in time for
the time-changed model, and therefore convex ordering will imply ordering of the corresponding
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Figure 9. Root (top) and Rost (bottom) barriers embedding the market implied
marginals of the S&P500.
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Figure 10. Upper and lower robust bounds on variance call prices for two different
maturities.

barriers. For the barriers based on the Heston model, it would be natural to conjecture that the
barriers are ordered when the call prices come from the same parameters at different maturities
(as indicated here), however it does not appear to be possible to prove this easily.

The fact that our multi-marginal barriers align precisely with their single-marginal counter-
parts indicates that the incorporation of earlier maturities yields no additional information for
future maturities and the requirement for these barriers to be traversed chronologically imposes
no additional constraints on the extremal models. As a consequence, the evidence we have col-
lected suggests that under normal market regimes, it would be natural to assume that it would
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be sufficient to compute model-independent bounds based only on the terminal marginal in-
formation, and there is limited useful information contained in earlier marginals. It would be
interesting to establish whether this behaviour is preserved in extreme market scenarios.

We have carried out similar analysis on prices collected during the 2020 Covid crash. Although
our results were similar to those presented, we encountered the following problems during the
investigation. Firstly, while the estimation of the option-implied interest rate yielded results
somewhat aligned with the T-bill rates reported by the U.S. Department of the Treasury, the
corresponding implied dividend yields deviated significantly and, notably, presented as negative.
This suggests a potential flaw in our underlying setup for this scenario. Furthermore, the fit of
the resultant calibrated models is regrettably poor, rendering them unsuitable for serious consid-
eration. A different smoothing procedure may reveal a different answer and a more systematic
review of abnormal market conditions may also reveal some periods where this behaviour breaks
down.

The primary result from our study is that the robust pricing paradigm, when only considering
the inclusion of marginal information about price-processes, do not substantially reduce price
bounds beyond the information contained in the marginal law at the maturity time. This suggests
that robust pricing is inherently limited in the extent to which the upper or lower bounds can be
used for pricing, without the addition of further information which can reduce the class of models,
for example through the knowledge of prices of more complex derivatives. Another alternative is
to reduce the class of models under which pricing can happen. However, this approach also has
potentially limited scope for reducing pricing bounds. Work of [33] showed that provided the
class of models which are included in the “robust” set includes some stochastic volatility model
with additional noise relative to the asset, and under mild technical conditions, then the class
of possible pricing measures is essentially the set of all calibrated measures, that is, we cannot
significantly reduce the class MP0 without making strong assumptions on the dynamics of the
true model.

In practice, and as is well established, this means that robust methods are of limited practical
application for pricing, a fact which has been well known for many years. Rather, the main
applications of such methods should come through more sophisticated approaches to penalisation.

For a completely different approach to these problems, employing modern machine learning
techniques see for example [46] using neural SDE models, while e.g. in [57] a machine learning
approch to the discrete time problem was proposed.

Another recent methodology, often referred to as “sensitivity analysis”, consists of restricting
to models within a small “distance” to some reasonable reference model, see, e.g., [3, 48, 49] for
results in continuous time and [2, 4, 38, 59] for results in discrete time, as well as the references
therein.

We note, however that such methods are again subject to (more subtle notions of) model-risk,
and may again expose institutions adopting these metrics to unanticipated risks. More generally,
it seems that model-risk is a phenomena which is unavoidable for accurate pricing and hedging.

4. Conclusion

In this paper we considered robust pricing bounds for options on variance. We considered
the classical solutions to the robust pricing of variance options given vanilla options with the
same maturity as the variance options, and (through the application of appropriate smoothing
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of market prices), we were able to identify the underlying geometric structure which identifies
the optimal model.

Further, by incorporating market data on vanilla options with earlier maturity dates, we were
able to show that, contrary to some expectations, and through explicit calculation of the geomet-
ric structure relating to the extremal models, that the extremal prices of variance options do not
appear to change when we include this additional information. As a consequence, we conclude
that there is some evidence that robust pricing bounds for variance options are not significantly
changed when additional market information coming from vanilla options is incorporated. We
conclude that there is no simple approach to eliminating model risk when pricing and hedging
exotic options.

Appendix A. Estimating Implied Interest Rate and Dividend Yield.

In instances where interest rates and dividend yields used in pricing are unavailable, as is
the situation with the data obtained from the CBOE Datashop, there exist several methods for
approximating these quantities. A commonly used technique is utilizing the put-call parity

C(K,T )− P(K,T ) = P0e
−qT −Ke−rT . (A.1)

Then taking the first derivative in the strike price K yields the following formula for the implied
interest rate given (K,T )

∂

∂K
(C(K,T )− P(K,T )) = −e−rT ⇔ r = r(K,T ) = − 1

T

∂

∂K
(P(K,T )− C(K,T )) .

Let X ⊆ [0,∞)2 denote the set of market given strike-maturity pairs (K,T ) and let N denote
its cardinality. Then we estimate the implied interest rate r̂ as

r̂ :=
1

N

∑
(K,T )∈X

r(K,T ). (A.2)

Given an interest rate r (or an estimate thereof) we estimate the implied dividend yield given
(K,T ) analogously

q(K,T ) = − 1

T
log

(
1

P0

(
C(K,T )− P(K,T ) +Ke−rT

))
, (A.3)

hence we can define q̂ by

q̂ :=
1

N

∑
(K,T )∈X

q(K,T ). (A.4)
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