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Abstract. We prove that Picard-Lindelöf iterations for an arbitrary smooth

normal Cauchy problem for PDE converge if we assume a suitable Weissinger-
like sufficient condition. This condition includes both a large class of non-

Gevrey PDE or initial conditions, and more classical real analytic functions.

The proof is based on a Banach fixed point theorem for contractions with loss
of derivatives. From the latter, we also prove an inverse function theorem

for locally Lipschitz maps with loss of derivatives in arbitrary graded Fréchet

spaces, not necessarily of tame type or with smoothing operators.

1. Introduction

Starting from the work of H. Lewy [21], it is clear that a general Picard-Lindelöf-
Cauchy-Lipschitz theorem (PLT) for Cauchy problems of the form:∂d

t y(t, x) = F

[
t, x, (∂α

x ∂
γ
t y)|α|≤L

γ≤p

]
,

∂j
t y(t0, x) = y0j(x) j = 0, . . . , d− 1,

(1.1)

is not possible (see also e.g. [5] and references therein for the more general problem
of solvability of partial differential operators). In (1.1), we consider y, y0j , F as
arbitrary (Rm-valued) smooth functions, (t, x) ∈ T ×S ⊆ R×Rs, α ∈ Ns, γ ∈ N, p,
L ∈ N, d ∈ N>0, and we assume that p < d. In this paper, we show the convergence
of Picard-Lindelöf iterations of the general problem (1.1) under a suitable sufficient
condition depending both on the initial conditions y0j and the function F . We
also prove that this condition includes non-trivial cases where F could be non-
Gevrey, and a large class of smooth non-Gevrey initial conditions y0j . These cases
are not covered by the Ovsjannikov-Nirenberg-Nishida extension of the Cauchy-
Kowalewsky theorem, see [28, 26, 29, 27], where only continuity in the variable t,
but analyticity in x, are assumed.

According to [7, 8], one of the main problems in trying to solve (1.1) using Picard-
Lindelöf iterations is that the corresponding fixed point integral operator P has L ∈
N loss of derivatives, i.e. satisfies

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k
≤ αkn ∥P (y0)− y0∥k+nL

for all k, n ∈ N (here we are using the notion of “loss of derivatives” as in [25, 7, 8],
and not as e.g. in [30, 18, 19]; see Def. 4 below for a formal definition). For
this reason, in Sec. 3, we first generalize the Banach fixed point theorem (BFPT)
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to contractions with loss of derivatives, and we will see that the aforementioned
sufficient condition corresponds to a Weissinger-like assumption, [39]. In Sec. 4, we
hence apply this BFPT to prove an inverse function theorem in arbitrary graded
Fréchet spaces (not necessarily of tame type or with smoothing operators, like
in Nash-Moser theorem, see [25, 15]) and for locally Lipschitz maps with loss of
derivatives (non necessarily differentiable maps, like in Ekeland inverse function
theorem, see [7]). In Sec. 5, this BFPT with loss of derivatives is used to prove a
PLT for normal PDE. In Sec. 6, we apply this PLT to a family of PDE including
both a non-Gevrey F or non-Gevrey initial conditions. Finally, in Sec. 7, we present
a preliminary study of the notion of contraction with loss of derivatives.

In the following, we say that the Cauchy problem (1.1) is in normal form to
specify that the highest derivative in t (called normal variable) can be isolated on
the left hand side of the PDE (some authors call this problem in Kowalewskyan
form).

If y : X −→ Rm, then yh : X −→ R is the h = 1, . . . ,m component of y, and
in N = {0, 1, 2, . . .} we always include zero. Therefore, the notations (∂α

x ∂
γ
t y) (t, x)

used in (1.1) include cases where some αj = 0, j = 1, . . . , s, or γ = 0. Finally,
Ck(X,Rm) denotes the set of all the Ck functions f : X −→ Rm, whereas Ck(X) :=
Ck(X,R).

2. Main results presented in the paper

The problem (1.1) is always considered in the domain [t0 − a, t0 + b] × S =:

T × S ⋐ R1+s for a, b ∈ R>0 and for F ∈ C∞
(
T × S × Rm·L̂,Rm

)
, y0j ∈

C∞ (S,Rm), j = 0, . . . , d − 1, where L̂ := Card{(α, γ) ∈ Ns × N≤p | |α| ≤ L} and
p ≤ d − 1 denotes the maximum order of derivatives ∂γ

t y(t, x) ∈ Rm appear-
ing on the right hand side of (1.1). For PDE, the starting point of the Picard-

Lindelöf iterations is the function i0(t, x) :=
∑d−1

j=0
y0j(x)

j! (t− t0)
j . These iterations

are defined in B̄R(i0) := {u ∈ Cp
t C∞

x (T × S,Rm) | ∥u− i0∥k ≤ rk ∀k ∈ N}, where
Cp
t C∞

x is the space of functions which are of class Cp in t and smooth in x (see
Def. 9 for the precise definition) and with the related supremum norm ∥y∥k :=
max1≤h≤m max

|β|≤k
β1≤p

max(t,x)∈T×S

∣∣∂βyh(t, x)
∣∣; the radii rk ∈ R>0 ∪ {+∞} and R :=

(rk)k∈N. We use the simplified notation G(t, x, y) := F

[
t, x, (∂α

x ∂
γ
t y)|α|≤L

γ≤p

(t, x)

]
.

Like in the case of ODE, we finally need a locally Lipschitz condition on F : we
say that G is is Lipschitz on B̄R(i0) with loss of derivatives (LOD) L and Lipschitz
factors Λk ∈ C0(T × S) if∣∣∂ν

xG
h(t, x, u)− ∂ν

xG
h(t, x, v)

∣∣ ≤ Λk(t, x) · max
l=1,...,m

max
|α|≤k+L

γ≤p

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣

for all u, v ∈ B̄R(i0), |ν| ≤ k and (t, x) ∈ T × S.
The Picard-Lindelöf-Cauchy-Lipschitz theorem for PDE can be stated as follows:

Theorem 1. In the previous notations, assume that S̊ is dense in S. Define
P : B̄R(i0) → Cp

t C∞
x (T × S,Rm) by

P (y)(t, x) := i0(t, x) +

ˆ t

t0

dsd d. . .

ˆ s2

t0

G(s1, x, y) ds1.



BEYOND CAUCHY-KOWALEWSKY: A PICARD-LINDELÖF THEOREM FOR SMOOTH PDE3

Assume that G is Lipschitz on B̄R(i0) with loss of derivatives L and Lipschitz
factors Λk ∈ C0(T × S), and for all (t, x) ∈ T × S, all n ∈ N and all j = 1, . . . , d,
set

Λj
k,0 := 1,

Λj
k,n+1(t, x) :=

∣∣∣∣ˆ t

t0

dsj
j. . .

ˆ s2

t0

Λk(s1, x) · max
0<l≤d

Λl
k+L,n(s1, x) ds1

∣∣∣∣ , (2.1)

Λ̄k,n := max
x∈S

0<j≤d

Λj
k,n(t0 +max(a, b), x).

Finally, assume that the following conditions are fulfilled for all k ∈ N:
(i) Pn(i0) ∈ B̄R(i0) for all n ∈ N;

(ii)
+∞∑
n=0

Λ̄k,n · ∥P (i0)− i0∥k+nL < +∞.

Then, there exists a smooth solution y ∈ B̄R(i0) ∩ C∞(T × S,Rm) of the problem∂d
t y(t, x) = F

[
t, x, (∂α

x ∂
γ
t y)|α|≤L

γ≤p

]
,

∂j
t y(t0, x) = y0j(x) j = 0, . . . , d− 1,

(2.2)

given by y = limn→+∞ Pn (i0) in
(
Cp
t C∞

x (T × S,Rm) , (∥−∥k)k∈N
)
, which satisfies

∀k,m ∈ N : ∥y − Pm (i0)∥k ≤
+∞∑
n=m

Λ̄k,n · ∥P (i0)− i0∥k+nL .

The proof, like in the case of ODE, is based on a Banach fixed point theorem
for contractions with LOD (see Def. 4 and Thm. 6).

We immediately recognize that the main assumptions of this result are (i) and
(ii), e.g. because we have to avoid the possibility that rk → 0 and hence the ball
B̄R(i0) = {i0}. We therefore show that these conditions are satisfied for the follow-
ing class of examples:

∂d
t y(t, x) = p(t) · ∂µ

x∂
γ
t y(t, x) + q(t, x), (2.3)

where y(t, x) ∈ Rm, µ ∈ Ns, |µ| = L > 0, 0 ≤ γ < d, p ∈ C∞(T,Rm×m) is
an arbitrary smooth function, and q is a smooth function with uniformly bounded
derivatives in x:

∃Q ∈ R>0 ∀ν ∈ Ns ∀(t, x) ∈ T × S : |∂ν
xq(t, x)| ≤ Q. (2.4)

We have the following results:

Theorem 2. If the initial conditions y0j, j = 0, . . . , γ − 1, are arbitrary smooth
functions, whereas y0j for j = γ, . . . , d− 1 are analytic or they satisfy

∥y0j∥k+(n+1)L ∼ (nL)σjnL, σj > 0 ∀j = γ, . . . , d− 1 ∀k ∈ N

where d > σjL (therefore, y0j is not an analytic function, but it is Gevrey of class
s > σj), then there exists a smooth solution of (2.3) in B̄R(i0) for T̄ sufficiently
small and all x ∈ S. We note that, if the function p is non-Gevrey, then any
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solution such that ∂µ
x∂

γ
t y ̸= 0 cannot be of Gevrey class. Moreover, if we set

Id [f(t)] :=

ˆ t

t0

dsd d. . .

ˆ s2

t0

f(s1) ds1

µj−γ,0(t) := p(t) · (t− t0)
j−γ

µj−γ,h+1(t) := Id [p(t) · ∂γ
t µj−γ,h(t)]

η0(t, x) := q(t, x)

ηh+1(t, x) := Id [p(t) · ∂µ
x∂

γ
t ηh(t, x)] ,

the solution y is given by the formula:

y(t, x) =

γ−1∑
j=0

y0j(x)

j!
(t− t0)

j +

+∞∑
h=0

d−1∑
j=γ

∂hµ
x y0j(x)

(j − γ)!
µj−γ,h(t) +

+∞∑
h=0

ηh(t, x). (2.5)

In particular, if the functions p and q are constant, then

y(t, x) =

γ−1∑
j=0

y0j(x)

j!
(t− t0)

j +

+∞∑
h=0

d−1∑
j=γ

∂hµ
x y0j(x)

(j − γ)!
ph+1 (t− t0)

h(d−γ)+j−γ

[h(d− γ) + j − γ]!
(j − γ)! + q.

Note that, even if these assumptions on the initial conditions y0j are not covered by
the Ovsjannikov-Nirenberg-Nishida extension of the Cauchy-Kowalewsky theorem,
unfortunately in (2.3) we do not have dependence of the function p on the variable
x or the unknown y.

3. A Banach fixed point theorem with loss of derivatives

The idea to extend the classical Banach fixed point theorem to sequentially
complete subsets X of Hausdorff locally convex linear spaces (E, (| − |)α∈Λ) dates
back to [3]. Here, a contraction is a map P : X −→ X satisfying

∀α ∈ Λ ∃kα ∈ [0, 1)∀x, y ∈ X : |P (x)− P (y)|α ≤ kα|x− y|α.

The notion of contraction has also been extended to uniform spaces ([33, 34]) and
to condensing maps on Hausdorff locally convex linear spaces via the notion of
measure of non-compactness (see e.g. [2] and references therein). See also [1] for a
recent survey, and [10, 37, 6, 38] for updated references framed in locally convex
linear spaces.

In the present section, we want to prove a Banach fixed point theorem for con-
tractions with loss of derivatives in graded Fréchet spaces. In this paper, by a
graded Fréchet space

(
F , (∥ − ∥k)k∈N

)
we mean a Hausdorff, complete topological

vector space whose topology is defined by an increasing sequence of seminorms:
∥ − ∥k ≤ ∥ − ∥k+1 for all k ∈ N. We denote by Bk

r (x) := {y ∈ X | ∥x− y∥k < r}
the ball of radius r ∈ R>0 defined by the k-norm.

A first trivial and well known result we will use is the following:

Lemma 3. Let (F , τ) be a topological space, P : X → F be a continuous function
defined in X ⊆ F , and assume that there is y0 ∈ X such that Pn(y0) ∈ X for
all n ∈ N and ∃ limn→+∞ Pn(y0) ∈ X. Then limn→+∞ Pn(y0) is a fixed point of
P. In particular, this applies if F is a Fréchet space and (Pn(y0))n∈N is a Cauchy
sequence of points of X, where X ⊆ F is a Cauchy complete subspace.
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Proof. The usual proof works: y := limn→+∞ Pn(y0) ∈ X exists by assumption,
and since P : X −→ F is continuous we have

P (y) = P

(
lim

n→+∞
Pn(y0)

)
= lim

n→+∞
Pn+1(y0) = y. □

In particular, this general Lem. 3 applies to contractions with loss of derivatives
in Fréchet spaces: A key idea in defining this notion is that it has to depend on the
starting point y0 of the iterations:

Definition 4. Let
(
F , (∥ − ∥k)k∈N

)
be a Fréchet space, X be a closed subset of

F , y0 ∈ X and L ∈ N. We say that P is a contraction with L loss of derivatives
starting from y0 (and we simply write P ∈ C (X,L, y0)) if the following conditions
are fulfilled:

(i) P : X −→ F is continuous;
(ii) Pn(y0) ∈ X for all n ∈ N;
(iii) For all k, n ∈ N there exist αkn ∈ R>0 such that∥∥Pn+1 (y0)− Pn (y0)

∥∥
k
≤ αkn ∥P (y0)− y0∥k+nL ; (3.1)

(iv) For all k ∈ N, the following Weissinger condition holds:

+∞∑
n=0

αkn ∥P (y0)− y0∥k+nL < +∞. (W)

Note that if we actually have only one norm ∥−∥k = ∥−∥0 and L = 0 (ODE case),
then (W) reduces to the classical Weissinger condition, [39].

We first note that condition (3.1) trivially holds for n = 0 by taking αk,0 = 1. On
the other hand, thinking at (W), we are clearly interested only at the asymptotic
behavior of αkn as n → +∞. Secondly, Def. 4 is weaker than the usual definition
of contraction because of the following first three remarks:

(i) We will see only in Sec. 6 that condition Def. 4(i) is not a simple generalization
of the usual stronger P : X −→ X, but is essential for the choice of the radii
in the PL Thm. 14.

(ii) Both conditions (3.1) and (W) depend on the initial point y0 ∈ X. In contrast
to the classical BFPT, this underscores, in an abstract setting, that for PDE
the property to have a contraction with loss of derivatives depends on the
initial condition y0 ∈ X. Moreover, in this paper we are solely interested
in existence results for fixed points of contractions with loss of derivatives;
uniqueness results would require conditions closer to the classical BFPT (see
e.g. Lemma 5).

(iii) Since we want to take n → +∞, a condition such as Def. 4(iii) intuitively
implies that we have to consider all the derivatives controlled by ∥ − ∥k for
all k ∈ N. It is for this reason that in the present work we deal only with
smooth solutions of (1.1).

(iv) We have a loss L ≥ 0 of derivatives. If L = 0, Def. 4 actually tells us that,

for all k ∈ N, there exists Nk ∈ N such that
∑+∞

n=Nk
αkn < 1. If we consider

only n ≥ Nk, the following Lem. 5 states that we essentially have the classical
notion of contraction.

More classically, contraction property (3.1) is implied by one of the following
stronger conditions:
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Lemma 5. Let X, y0 and L be as in Def. 4. Then, the following sufficient condi-
tions hold:

(i) If P : X −→ F satisfies the property

∀k, n ∈ N ∃αkn ∈ R>0 ∀u, v ∈ X : ∥Pn (u)− Pn (v)∥k ≤ αkn ∥u− v∥k+nL , (3.2)

then condition Def. 4(iii) holds for all y0 ∈ X with the same contraction
constants αkn. Moreover, P : X −→ F is continuous.

(ii) If (3.2) holds only for n = 1 with αk := αk1, then condition Def. 4(iii) holds

for all y0 ∈ X with contraction constants α̃kn :=
∏n−1

j=0 αk+jL.

Moreover, if L = 0 and y1, y2 are fixed points of P , then ∥y1 − y2∥k = 0 for all
k ∈ N. In particular, if at least one of || − ||k is a norm, this entails that y1 = y2.

Proof. (i): In fact, (3.2) yields∥∥Pn+1 (y0)− Pn (y0)
∥∥
k
= ∥Pn (P (y0))− Pn (y0)∥k ≤ αkn ∥P (y0)− y0∥k+nL .

Taking n = 1 in (3.2), we have ∥P (u) − P (v)∥k ≤ αk,1∥u − v∥k+L and hence

P
(
Bk

r/αk,1
(u) ∩X

)
⊆ Bk

r (P (u)) ∩X, so that P is continuous.

(ii): If (3.2) holds only for n = 1, then we can prove the claim by induction on
n. For n = 0 the conclusion is trivial since α̃k0 = 1. For the inductive step, we
have

∥Pn+2(y0)− Pn+1(y0)∥k = ∥P (Pn+1(y0))− P (Pn(y0))∥k
≤ αk∥Pn+1(y0)− Pn(y0)∥k+L

≤ αk

n−1∏
j=0

αk+L+jL∥P (y0)− y0∥k+L+nL

=

 n∏
j=0

αk+jL

 ∥P (y0)− y0∥k+(n+1)L.

Finally, if P (yl) = yl, then ∥Pn(y1)−Pn(y2)∥k = ∥y1 − y2∥k ≤ αkn∥y1 − y2∥k ≤
∥y1 − y2∥k because the convergence

∑+∞
n=0 αkn < +∞ implies αkn ≤ 1 for some

n ∈ N. Thereby, ∥y1 − y2∥k = 0, which entails y1 = y2 if ∥−∥k is a norm. □

In Thm. 13 and in the proof of Thm. 14, we will see that for the normal smooth
Cauchy problem (1.1), the corresponding fixed point integral operator P always sat-
isfies the stronger condition (3.2). Therefore, in all these cases the real dependence
on y0 actually lies in conditions (W) and (ii).

Even in the simple case of the transport equation ∂ty = c · ∂xy, where c, y ∈
C∞([0, a]×S), S ⋐ R, we can recognize the appearance of a loss of derivative L = 1
due to the occurrence of the term ∂xy on the right hand side of the PDE. In fact,

set P (u)(t, x) := y0(x) +
´ t
0
c(s, x) · ∂xu(s, x) ds for a fixed y0 ∈ C∞(S) and for any

u ∈ C∞([0, a]× S). Considering on C∞([0, a]× S) the family of norms

∥u∥k := max
|α|+|β|≤k

max
(t,x)∈[0,a]×S

∣∣∂α
t ∂

β
xu(t, x)

∣∣ ,
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we would like to argue in the following way (where, for simplicity, we consider only
the case n = 1 in property (3.2)):

∥P (u)− P (v)∥k =

∥∥∥∥ˆ t

0

c · ∂x(u− v) ds

∥∥∥∥
k

≤

≤ a · ∥c∥k · ∥∂x(u− v)∥k ≤ a · ∥c∥k · ∥u− v∥k+1. (3.3)

The problem in this deduction is that the first inequality is generally false for these
norms: if k > 0 then any derivative ∂t deletes the integration, so that the factor a
(which is important to get a local solution) cannot appear in (3.3) (see Sec. 5.1 for
more details). We will fix this problem by taking another family of norms which,
anyway, respect the same basic ideas (see Def. 9), and where the estimates (3.3)
hold.

Def. 4 has been tuned to allow the proof of the following result, whose proof is
surprisingly simple:

Theorem 6 (BFPT with loss of derivatives). In the assumptions of Def. 4, if
P ∈ C (X,L, y0), then (Pn(y0))n∈N is a Cauchy sequence, and hence

y := lim
n→+∞

Pn(y0) ∈ X

is a fixed point of P . Moreover, for all k, n ∈ N we have that

∥y − Pn (y0)∥k ≤
+∞∑
j=n

αkj ∥P (y0)− y0∥k+jL .

Proof. If we prove that (Pn(y0))n∈N is a Cauchy sequence, the claim follows from
Lem. 3. Let m, n, k ∈ N with m > n. Then

∥Pm (y0)− Pn (y0)∥k ≤
∥∥Pm (y0)− Pm−1 (y0)

∥∥
k
+ · · ·+

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k

≤αk,m−1 ∥P (y0)− y0∥k+(m−1)L + · · ·+ αkn ∥P (y0)− y0∥k+nL

=

m−1∑
j=n

αkj ∥P (y0)− y0∥k+jL . (3.4)

We conclude using (W) of Def. 4. The final claim holds by taking m → +∞ in
(3.4) as y = limm→+∞ Pm(y0). □

Clearly, the chain of inequalities in (3.4) could be stopped in several different ways.
For example, as ∥P (y0)− y0∥k+jL ≤ ∥P (y0)− y0∥k+(m−1)L, we can continue ar-

riving at a final term of the form ∥P (y0)− y0∥k+(m−1)L ·
∑+∞

j=n αkj . Actually, this

would lead us to consider a limit of the form limn,m→+∞
n≤m

pm · qn, which never exists

if pm → +∞ and qn = an, because we can take n → +∞ depending on pm. On
the contrary, in condition (W) the summation index n links the two factors in the
series; looking at Lem. 5 and next Thm. 13, we can also say that condition (W)
links the right hand side F and the initial conditions y0j of the Cauchy problem
(1.1). This link is important because without setting growing conditions on the
derivatives of y0j , in general the problem (1.1) has no solution (see Sec. 6, where
we prove condition (W) for a class of problems, with non-Gevrey solutions, which
are not covered by the Ovsjannikov-Nirenberg-Nishida extension of the Cauchy-
Kowalewsky theorem). On the other hand, it is clear that the proof of previous
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Thm. 6 is quite standard, and this underscores that the key step lies in Def. 4 of
contraction with loss of derivatives L starting from y0.

4. Solutions of equations

In this Section, we want to use the Banach fixed point Thm. 6 with loss of
derivatives to solve equations of the form F (u) = v in arbitrary graded Fréchet
spaces. We can also inscribe this problem as the proof of local surjection in inverse
function theorems. In order to facilitate the comparison with other local surjection
theorems, only in this section we use notations similar to those of [7, 8].

In the following, given a sequence R = (rk)k∈N, rk ∈ R>0 ∪ {+∞}, ℓ ∈ N, and a
point u0 in a graded Fréchet space F , we set

B̄+ℓ
R (u0) := {u ∈ X | ∥u− u0∥s+ℓ ≤ Rs+ℓ ∀s ∈ N} . (4.1)

In particular, if ℓ = 0, we simply use the notation B̄R(u0) := B̄+0
R (u0). Note that

B̄+ℓ
R (u0) is closed in F as it is the intersection of closed sets. Moreover, B̄R(u0)

trivially generalizes the space usually used in the proof of the PLT for ODE, where
we only have rk = r0 < +∞. We also note that we can have B̄R(u0) = {u0} if
rk → 0+: This underscores that a key point in these results is exactly the choice of
radii rk so that rk ̸→ 0+; we will see in Thm. 21 that this is possible in a non trivial
class of examples. The first trivial consequence of Thm. 6 reformulates F (u) = v
as a fixed point of the map P (u) := u− F (u) + v:

Corollary 7. Let
(
F , (∥ − ∥k)k∈N

)
be a graded Fréchet space. Let X be a closed

subset of F , F : X −→ F be a continuous map, v ∈ F and L ∈ N. Set P (u) :=
u− F (u) + v and assume that for all k, n ∈ N, we have

Pn(u0) ∈ X, (4.2)

∃αkn ∈ R>0 :
∥∥Pn+1 (u0)− Pn (u0)

∥∥
k
≤ αkn ∥P (u0)− u0∥k+nL , (4.3)

+∞∑
n=0

αkn · ∥P (u0)− u0∥k+nL < +∞, (4.4)

then, there exists u ∈ X such that F (u) = v.

In spite of its triviality, we will see in Sec. 6 that this result allows us to solve PDE
with the same scope of the next PL Thm. 14 (which, on the other hand, already
includes in its proof the verification of property (4.3)). Moreover, let us now note
that in Cor. 7 we do not require differentiability of f let alone the existence of some
inverse of its differential df(u).

Generalizing the derivation of the inverse function theorem from the classical
BFPT in Banach spaces (see e.g. [16, 4, 20]), we obtain the following theorem,
where we can think D(u0) = DF (u0) (in the case where F is differentiable) and
L(u0) a right inverse of DF (u0).

Theorem 8. Let
(
X , (∥ − ∥k)k∈N

)
,
(
Y, (| − |k)k∈N

)
be graded Fréchet spaces, u0 ∈

X , and R := (Rk)k∈N, T := (Tk)k∈N be sequences of strictly positive or infinite real
numbers. Let F : B̄R(u0) −→ Y be a map, D(u0) : X −→ Y and L(u0) : Y −→ X
be linear maps depending only on u0. Assume that:

(i) ∥L(u0)F (u+h)−L(u0)F (u)−h∥k ≤ αk · ∥h∥k+m for all k ∈ N, u ∈ B̄R(u0),
h ∈ X such that u+ h ∈ B̄R(u0), where αk > 0 and m ∈ N;
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(ii) L(u0) is a right inverse of D(u0), i.e. D(u0)L(u0)k = k for all k ∈ Y;
(iii) |D(u0)h|k ≤ ak ·∥h∥k+d for all k ∈ N and all h ∈ X , where ak > 0 and d ∈ N;
(iv) ∥L(u0)k∥k ≤ bk · (1 + ∥u0∥k+ℓ)|k|k+ℓ for all k ∈ N and all k ∈ Y, where

bk > 0 and ℓ ∈ N;
(v) Rk+m ≤ Rk and Tk+ℓ ≤ Rk+m(1−αk)

bk·(1+∥u0∥k+ℓ)
for all k ∈ N;

(vi)
∑+∞

n=0

∏n−1
j=0 αk+jm · ∥L(u0)[F (u0) − v]∥k+nm < +∞ for all k ∈ N and all

v ∈ B̄+ℓ
T (F (u0)).

Then, the following properties hold:

(a) |F (u0 + h) − F (u0)|k ≤ ak (αk+d∥h∥k+d+m + ∥h∥k+d) for all k ∈ N and all
h ∈ X such that u0 + h ∈ B̄R(u0), and therefore F is continuous;

(b) |F (u0 + h)− F (u0)|k+ℓ ≥ 1
bk·(1+∥u0∥k+ℓ)

(∥h∥k − αk∥h∥k+m) for all k ∈ N and

all h ∈ X such that u0 + h ∈ B̄R(u0);
(c) If both F and L(u0) are continuous, then

∀v ∈ B̄+ℓ
T (F (u0))∃u ∈ B̄R (u0) : F (u) = v.

(d) For all u ∈ B̄R(u0) and all v ∈ Y, if F (u) = v, then for all k ∈ N we must
have

∥u− u0∥k − αk∥u− u0∥k+m

bk · (1 + ∥u0∥k+ℓ)
≤ |v − F (u0)|k+ℓ

|v − F (u0)|k ≤ ak (αk+d∥u− u0∥k+d+m + ∥u− u0∥k+d) .

In other words, if at least one of these inequalities does not hold, then the
equation F (u) = v does not have a solution u in B̄R(u0).

Note that we do not require that the spaces X , Y are tame or admit smoothing
operators like in the Nash-Moser theorem, see [15]; in principle, we also do not
require that F is differentiable as in Ekeland inverse function theorem [7]. Moreover,
its proof is a generalization of [16], so that it includes the inverse function theorem
for Lipschitz maps in Banach spaces if m = d = ℓ = 0 and rk = r0 for all k ∈ N.

Proof. (a): From (ii), (iii) and linearity of D(u0), for k ∈ N we can write

|F (u0 + h)− F (u0)|k = |D(u0)L(u0)F (u0 + h)−D(u0)L(u0)F (u0)|k
≤ ak∥L(u0)F (u0 + h)− L(u0)F (u0)∥k+d

= ak∥L(u0)F (u0 + h)− L(u0)F (u0)− h+ h∥k+d

≤ ak (αk+d∥h∥k+d+m + ∥h∥k+d) ,

where we used (i). Considering that ∥h∥k+d ≤ ∥h∥k+d+m, from this property we
have that F : B̄R(u0) −→ Y is continuous.
(b): Once again from (i) and k ∈ N, we get

∥h∥k ≤ ∥L(u0)F (u0 + h)− L(u0)F (u0)− h∥k + ∥L(u0)F (u0 + h)− L(u0)F (u0)∥k
≤ αk∥h∥k+m + bk · (1 + ∥u0∥k+ℓ)|F (u0 + h)− F (u0)|k+ℓ

because of (iv) and the linearity of L(u0).
(c): Properties (iv) and (a) imply the continuity of the map Pv(u) := u −

L(u0) [F (u)− v], Pv : B̄R(u0) −→ X , for any fixed v ∈ Y. We now prove that
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Pv : B̄R(u0) −→ B̄R(u0) if v ∈ B̄+ℓ
T (F (u0)). Take u ∈ B̄R(u0) and k ∈ N, then

∥Pv(u)− u0∥k = ∥u− L(u0) [F (u)− v]− u0∥k
= ∥u− u0 − L(u0) [F (u)− F (u0) + F (u0)− v] ∥k
= ∥u− u0 − L(u0) [F (u)− F (u0)]− L(u0) [F (u0)− v] ∥k
≤ ∥u− u0 − L(u0) [F (u)− F (u0)] ∥k + ∥L(u0)F (u0)− L(u0)v∥k
≤ αk∥u− u0∥k+m + bk · (1 + ∥u0∥k+ℓ)|F (u0)− v|k+ℓ (4.5)

≤ αk ·Rk+m + bk · (1 + ∥u0∥k+ℓ) ·
Rk+m(1− αk)

bk · (1 + ∥u0∥k+ℓ)
= Rk+m ≤ Rk,

(4.6)

where in (4.5) we used (i) with h = u − u0, and (iv) with k = F (u0) − v; in (4.6)

we used |F (u0)− v|k+ℓ ≤ Tk+ℓ ≤ Rk+m(1−αk)
bk·(1+∥u0∥k+ℓ)

.

For all u, ū ∈ B̄R(u0), property (i) yields

∥Pv(u)−Pv(ū)∥k = ∥L(u0)F (ū)−L(u0)F (u)−(ū−u)∥k ≤ αk ·∥u−ū∥k+m ∀k ∈ N.
(4.7)

Therefore, Lem. 5(ii) implies that the map Pv has contraction constants α̃kn :=∏n−1
j=0 αk+jm with loss of derivatives m. Assumption (vi) is exactly Weissinger

condition for this map, and hence the BFPT with loss of derivatives Thm. 6 proves
claim (c).

(d): These inequalities are resp. (b) and (a) with h := u− u0; □

Even if the previous statement allows us to take rk = +∞, it is now Weissinger
condition (vi) that forces to take v near F (u0): the factor ∥Pv(u0) − u0∥k+nm =
∥L(u0) [F (u0)− v] ∥k+nm is small if v is near F (u0); note also that (vi) is implied

by the stronger condition
∑+∞

n=0 αknrk+nL < +∞ because Pv : B̄R(u0) −→ B̄R(u0).
On the other hand, assumption (vi) is in principle compatible with growing term
∥Pv(u0)−u0∥k+nm as k+nm → +∞, even if the Lipschitz factors αkn must keep the
series convergent. Note also that the assumption Tk+ℓ > 0 and (v) imply αk < 1.

5. A Picard-Lindelöf theorem for PDE

In the following, considering the Cauchy problem (1.1), we always set and assume

L̂ := Card{(α, γ) ∈ Ns × N≤p | |α| ≤ L}
a, b ∈ R>0, [t0 − a, t0 + b]× S =: T × S ⋐ R1+s (5.1)

F ∈ C∞
(
T × S × Rm·L̂,Rm

)
y0j ∈ C∞ (S,Rm) ∀j = 0, . . . , d− 1,

where p ≤ d−1 denotes the maximum order of derivatives ∂γ
t y(t, x) ∈ Rm appearing

on the right hand side of (1.1).

5.1. Supremum norms of integral functions. We have already mentioned that
the first inequality in (3.3) is generally wrong. Let us construct a counter ex-
ample for the space of one variable functions C∞([0, a]) with the norms ∥u∥k :=
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max h≤k
t∈[0,a]

∣∣u(h)(t)
∣∣. Take e.g. a = 1

2 and consider the straight line y = 1. Then∥∥∥∥∥
ˆ (−)

0

y

∥∥∥∥∥
1

= max

(
max
t∈[0, 12 ]

∣∣∣∣ˆ t

0

1

∣∣∣∣ , max
t∈[0, 12 ]

|1|

)
= 1

and

∥y∥1 = max

(
max
t∈[0, 12 ]

|1| , max
t∈[0, 12 ]

|0|

)
= 1,

therefore ∥∥∥∥∥
ˆ (−)

0

1

∥∥∥∥∥
1

= 1 > a · ∥y∥1 =
1

2
.

It is not hard to prove that, actually, ∥
´ (−)

0
y∥k > a · ∥y∥k for all k ≥ 1.

This remark allows us to understand, once again, why in the classical proof of
the smooth PLT we consider only the space C0([0, a]) of continuous functions with
the supremum norm ∥ − ∥0: in fact, even if we aim to get a smooth solution y (so
that we would have to control all its derivatives), the normal form of the equation
recursively yields the smoothness of y starting from a continuous solution of the
corresponding integral problem.

Similarly, we can argue for normal PDE: considering the corresponding integral
problem

y(t, x) = i0(t, x) +

ˆ t

t0

dsd d. . .

ˆ s2

t0

F

[
s1, x, (∂

α
x ∂

γ
t y)|α|≤L

γ≤p

]
ds1, (5.2)

i0(t, x) : =

d−1∑
j=0

y0j(x)

j!
(t− t0)

j . (5.3)

we only need that the function y is of class Cp in t and smooth in x: smoothness
in t recursively follows from (5.2), and we only have to control all its derivatives in
x. This motivates the introduction of a space with this kind of functions.

5.2. Spaces of separately regular functions. As we mentioned above, instead
of considering functions which are jointly regular in both variables (t, x), we need
to consider separate degree of regularity in each variable.

Definition 9.

(i) If X ⊆ Rn is an arbitrary subset and q ∈ N∪{∞}, we say that f ∈ Cq(X,Rm)
if for each x ∈ X there exists an open neighborhood x ∈ U ⊆ Rn and a
function F ∈ Cq(U,Rm) such that F |U∩X = f |U∩X .

(ii) Let T × S ⋐ R1+s. Set

N1+s
p :=

{
β ∈ N1+s | β1 ≤ p

}
, (5.4)

and denote by Cp
t C∞

x (T × S,Rm) the set of continuous functions y ∈ C0(T ×
S,Rm) such that

∀β ∈ N1+s
p : ∃ ∂βy ∈ C0(T × S,Rm).

The functions in Cp
t C∞

x (T × S,Rm) are called separately Cp
t C∞

x regular. This
space is endowed with the countable family of norms ∥−∥k, k ∈ N, defined
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by

∥y∥k := max
1≤h≤m

max
|β|≤k

β∈N1+s
p

max
(t,x)∈T×S

∣∣∂βyh(t, x)
∣∣ . (5.5)

In problem (1.1), we could also consider a reduction to first order: setting y1 := y,
yj+1 := ∂ty

j , j = 1, . . . , p, problem (1.1) is equivalent to∂tY (t, x) = F̄

[
t, x,

(
∂α
xY

γ+1
)
|α|≤L
γ≤p

]
,

Y (t0, x) = Y0(x),

(5.6)

where, as usual, we mean ∂α
xY

γ+1 = ∂α
xY

γ+1(t, x), and

Y (t, x) := (y1(t, x), . . . , yp+1(t, x))

Y0(x) := (y00(x), . . . , y
d−1
0 (x))

F̄ d

[
t, x, (uα,γ)|α|≤L

γ≤p

]
:= F

[
t, x, (uα,γ)|α|≤L

γ≤p

]
F̄ j

[
t, x, (uα,γ)|α|≤L

γ≤p

]
:= yj+1

for j = 1, . . . , p. In the corresponding integral problem (5.2), we could assume d = 1
and hence we only need that the function y is of class C0

t C∞
x . On the one hand,

this would simplify our next statements. However, we would obtain a PLT with
assumptions that are clear only for d = 1, and to prove from this a corresponding
result for d > 1 is not so easy. For this reason, we prefer to directly proceed with
the generic problem (5.2) without implementing a reduction to first order.

Lemma 10. In the notations of Def. 9,
(
Cp
t C∞

x (T × S,Rm) , (∥−∥k)k∈N
)
is a graded

Fréchet space.

Proof. The only non trivial property to check is that the topology induced by the
family of norms (∥−∥k)k∈N is Cauchy complete. Let (yn)n∈N be a Cauchy sequence

in
(
Cp
t C∞

x (T × S,Rm) , (∥−∥k)k∈N
)
, so that for k = 0, the sequence (yn)n∈N con-

verges uniformly. Let y : T × S → Rm be the continuous function defined by

y(t, x) := lim
n→+∞

yn(t, x) ∀(t, x) ∈ T × S. (5.7)

For all β ∈ N1+s
p , we have ∥∂βyl − ∂βyn∥0 ≤ ∥yl − yn∥h and hence

(
∂βyn

)
n∈N

is a uniformly convergent Cauchy sequence in C0 (T × S,Rm) that converges to
∂βy ∈ C0 (T × S,Rm). This shows that y ∈ Cp

t C∞
x (T × S,Rm). It remains to prove

that yn → y with respect to the norms defined in (5.5). For k = 0, we simply recall
that the limit in (5.7) is actually a uniform limit. For k > 0, we note that for all
β ∈ N1+s

p with |β| ≤ k, the sequence
(
∂βyn

)
n∈N converges uniformly in T × S to

∂βy. □

Exactly because we have β1 ≤ p < d in (5.4), we can now have the desired estimate
in considering the norm of an integral function:

Lemma 11. Let f ∈ C0
t C∞

x (T × S,Rm) and, for every k ∈ N, let Mk ∈ C0(T × S)
be such that ∣∣∂ν

xf
h(t, x)

∣∣ ≤ Mk(t, x) (5.8)
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for all (t, x) ∈ T × S, h = 1, . . . ,m, and all ν ∈ Ns such that |ν| ≤ k. Set

M̄kj(t, x) :=

∣∣∣∣ˆ t

t0

dsj
j. . .

ˆ s2

t0

Mk(s1, x) ds1

∣∣∣∣ ∀(t, x) ∈ T × S ∀j = 1, . . . , d.

Then, with respect to the norms in the space Cp
t C∞

x defined as in (5.5), we have

(i)

∥∥∥∥∥
ˆ (−)

t0

dsd d. . .

ˆ s2

t0

f(s1,−) ds1

∥∥∥∥∥
k

≤ max
x∈S

0<j≤d

M̄kj(t0 +max(a, b), x).

In particular, if Mk = ∥f∥k:

(ii)

∥∥∥∥∥
ˆ (−)

t0

dsd d. . .

ˆ s2

t0

f(s1,−) ds1

∥∥∥∥∥
k

≤ max(a, b) · ∥f∥k.

Proof. (i): Clearly, the notation
´ (−)

t0
dsd d. . .

´ s2
t0

f(s1,−) ds1 denotes the function(
(t, x) ∈ T × S 7→

ˆ t

t0

dsd d. . .

ˆ s2

t0

f(s1, x) ds1 ∈ Rm

)
∈ Cp

t C∞
x (T × S,Rm)

(actually, this is a Cd
t C∞

x -function, but in the statement we are considering the
norms ∥ − ∥k of the space Cp

t C∞
x ). For some β ∈ N1+s

p with |β| ≤ k, and some
h = 1, . . . ,m, we have∥∥∥∥∥
ˆ (−)

t0

dsd d. . .

ˆ s2

t0

f(s1,−) ds1

∥∥∥∥∥
k

=

= max
(t,x)∈T×S

∣∣∣∣∂β

ˆ t

t0

dsd d. . .

ˆ s2

t0

fh(s1, x) ds1

∣∣∣∣ . (5.9)

But β1 ≤ p < d, and hence, setting ν := (β2, . . . , βs), the operator ∂β = ∂ν
x∂

β1

t

deletes β1 integrals in (5.9); set ȷ̄ := d− β1 > 0. Differentiation under the integral
sign yields∥∥∥∥∥

ˆ (−)

t0

dsd d. . .

ˆ s2

t0

f(s1,−) ds1

∥∥∥∥
k

=

= max
(t,x)∈T×S

∣∣∣∣ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

∂ν
xf

h(s1, x) ds1

∣∣∣∣
≤ max

(t,x)∈T×S
sgn(t− t0)

ȷ̄

ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

∣∣∂ν
xf

h(s1, x)
∣∣ ds1

≤ max
(t,x)∈T×S

sgn(t− t0)
ȷ̄

ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

Mk(s1, x) ds1

= max
(t,x)∈T×S

M̄kȷ̄(t, x)

≤ max
x∈S

0<j≤d

M̄kj(t0 +max(a, b), x).

Note that if t > t0, then t0 < sȷ̄ < t; if t < t0, then t < sȷ̄ < t0, and in both
cases sgn(t− t0) = sgn(sȷ̄ − t0). Similarly, we can proceed for the other integration
variables sq.
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(ii): Condition (5.8) holds if Mk = ∥f∥k, and we have

M̄kj(t, x) = ∥f∥k
(t− t0)

j

j!
.

Thereby, maxx∈S
j≤d

M̄kj(t0 +max(a, b), x) = max(a, b)∥f∥k. □

To solve problem (1.1) or, equivalently, the integral problem (5.2), let us intro-
duce the following simplified notation

G(t, x, y) := F

[
t, x, (∂α

x ∂
γ
t y)|α|≤L

γ≤p

(t, x)

]
∈ Rm, (5.10)

for all (t, x) ∈ T × S and all y ∈ Cp
t C∞

x (T × S,Rm). Explicitly note that the

smooth function G(t, x, y) is given by composition of F

[
t, x, (zα,γ)|α|≤L

γ≤p

]
with the

derivatives (∂α
x ∂

γ
t y) (x, t) = zα,γ ∈ Rm that actually appear in (1.1). On the

contrary, when we use the variables G(t, x, z), we mean that z = (zα,γ)|α|≤L
γ≤p

∈

Rm·L̂.
We now introduce the following definition of Lipschitz map:

Definition 12. Let B ⊆ Cp
t C∞

x (T × S,Rm). We say that a map G : T × S ×B →
Rm is Lipschitz on B with loss of derivatives (LOD) L and Lipschitz factors (Λk)k∈N
if

(i) ∀y ∈ B : G (−,−, y) ∈ Cp
t C∞

x (T × S,Rm);
(ii) Λk ∈ C0(T × S) for all k ∈ N;
(iii) If k ∈ N, ν ∈ Ns, |ν| ≤ k, h = 1, . . . ,m, u, v ∈ B, (t, x) ∈ T × S, then∣∣∂ν

xG
h(t, x, u)− ∂ν

xG
h(t, x, v)

∣∣ ≤ Λk(t, x) · max
l=1,...,m

max
|α|≤k+L

γ≤p

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣ .

(5.11)

We simply say that G is Lipschitz on B with LOD L if the previous conditions (ii)
and (iii) hold for some (Λk)k∈N.

Note that if B = B̄R(x0) but rk → 0+, then B = {x0} and (5.11) is trivial: Once
again, this underscore that a key problem is the choice of the radii rk ̸→ 0+. In the
next theorem, we prove that if G is defined by (5.10) and all the radii rk < +∞,
then G is always Lipschitz with respect to constant factors (Λk)k∈N in the space

B̄R(i0) ⊆ Cp
t C∞

x (T × S,Rm) defined in (4.1) and with loss of derivatives L given, as
in (1.1), by the maximum order of derivatives in x that appears in our PDE. The
space B̄R(i0) is suitable for the proof of the PLT if we are also able to prove that
for these finite radii the Picard iterates Pn(i0) ∈ B̄R(i0). On the other hand, in
Sec. 6 we will show examples of PDE with constant Lipschitz factors Λk but where
we are free to also take rk ≤ +∞. In other words, the following result is only a
sufficient condition.

Theorem 13. Let rk ∈ R>0 for all k ∈ N. Set R := (rk)k∈N, i0 as in (5.3) and
B̄R(i0) as in (4.1), i.e:

B̄R(i0) := {u ∈ Cp
t C∞

x (T × S,Rm) | ∥u− i0∥k ≤ rk ∀k ∈ N} . (5.12)

Then the function G defined in (5.10) is Lipschitz in B̄R(i0) with loss of derivatives
L and constant Lipschitz factors.
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Proof. We only have to prove condition (iii) of Def. 12, so that we consider k ∈ N,
α ∈ Ns, |ν| ≤ k, h = 1, . . . ,m, u, v ∈ B̄R(i0), (t, x) ∈ T × S. Note that

∂ν
xG

h(t, x, u) = ∂ν
x

{
Fh

[
t, x, (∂α

x ∂
γ
t u)|α|≤L

γ≤p

]}
. (5.13)

We first prove the case |ν| = 0. Since u ∈ B̄R(i0), we have ∥u− i0∥L+p ≤ rL+p and

hence ∂α
x ∂

γ
t u(t, x) ∈ BrL+p

(∂α
x ∂

γ
t i0(S)) =: C0α,γ ⊆

⋃
|α|≤L
γ≤p

C0α,γ =: C0 ⋐ Rm for

all |α| ≤ L and γ ≤ p because rL+p < +∞. Similarly, ∂α
x ∂

γ
t v(t, x) ∈ C0. Thereby,

using (5.13), we have∣∣∂ν
xG

h(t, x, u)− ∂ν
xG

h(t, x, v)
∣∣ ≤ ∥F∥1 · max

l=1,...,m
max
|α|≤L
γ≤p

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣ ≤

≤ ∥F∥1 · max
l=1,...,m

max
|α|≤k+L

γ≤p

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣ ,

where the norm ∥F∥1 is taken on T × S × CmL̂
0 ⋐ RD, D := dim(dom(F )) =

1 + s+mL̂. We firstly set Λ̃k(ν) := ∥F∥1, and now consider the case |ν| > 0.
From Faà di Bruno’s formula

∂ν
xG

h(t, x, u) =
∑

1≤|η|≤|ν|

∂ηFh

[
t, x, (∂α

x ∂
γ
t u)|α|≤L

γ≤p

]
·Bην

[
(∂µ

x∂
γ
t u(t, x))µγ

]
, (5.14)

where Bηβ((zµγ)µγ) are Bell’s like polynomials such that |µ| ≤ |ν|+ |α| ≤ k+L for
all µ. For simplicity, set

∂ηFh (t, x, u) := ∂ηFh

[
t, x, (∂α

x ∂
γ
t u)|α|≤L

γ≤p

]
(5.15)

Qην(t, x, u) := Bην

[
(∂µ

x∂
γ
t u(t, x))µγ

]
, (5.16)

so that we can estimate∣∣∂ν
xG

h(t, x, u)− ∂ν
xG

h(t, x, v)
∣∣ =

=

∣∣∣∣∣∑
η

∂ηFh(t, x, u) ·Qην(t, x, u)−
∑
η

∂ηFh(t, x, v) ·Qην(t, x, v)

∣∣∣∣∣ ≤
≤

∣∣∣∣∣∑
η

∂ηFh(t, x, u) ·Qην(t, x, u)−
∑
η

∂ηFh(t, x, u) ·Qην(t, x, v)

∣∣∣∣∣+
+

∣∣∣∣∣∑
η

∂ηFh(t, x, u) ·Qην(t, x, v)−
∑
η

∂ηFh(t, x, v) ·Qην(t, x, v)

∣∣∣∣∣ .
For some Lην > 0 depending on Qην , the first summand yields∣∣∂ηFh(t, x, u)

∣∣ · |Qην(t, x, u)−Qην(t, x, v)| ≤

≤ ∥F∥k · Lην · max
l=1,...,m

max
|µ|≤k+L

∣∣∂µ
x∂

γ
t (u

l − vl)(t, x)
∣∣ .



BEYOND CAUCHY-KOWALEWSKY: A PICARD-LINDELÖF THEOREM FOR SMOOTH PDE16

The second summand gives∣∣∂ηFh(t, x, u)− ∂ηFh(t, x, v)
∣∣ · |Qην(t, x, v)| ≤

≤ ∥F∥k+1 · max
l=1,...,m

max
|α|≤k+L

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣ ·Nk,

where Nk := max|η|≤|ν|≤k max(t,x,v)∈T×S×Ck
ην

|Qην(t, x, v)| and, as we did above,

v ∈ B̄R(i0) yields some Ck
ην ⋐ Rm such that ∂α

x ∂
γ
t v(t, x) ∈ Ck

ην for all α ∈ Ns such
that |α| ≤ k + L. We finally obtain

∣∣∂ν
xG

h(t, x, u)− ∂ν
xG

h(t, x, v)
∣∣ ≤ ∑

1≤|η|≤|ν|

(
∥F∥k · max

|η|≤|ν|≤k
Lην + ∥F∥k+1 ·Nk

)
·

· max
l=1,...,m

max
|α|≤k+L

∣∣∂α
x ∂

γ
t (u

l − vl)(t, x)
∣∣ .

Setting

Λ̃k(ν) :=
∑

1≤|η|≤|ν|

(
∥F∥k · max

|η|≤|ν|≤k
Lην + ∥F∥k+1 ·Nk

)
Λk := max

|ν|≤k
Λ̃k(ν),

we get the conclusion. □

5.3. The Picard-Lindelöf theorem for smooth normal PDE. A natural meth-
od to solve PDE is to transform it into an infinite-dimensional ODE and then apply
a PLT, see e.g. [31]. On the other hand, our approach can be considered simpler
because we do not transform partial derivatives into ordinary ones in infinite di-
mensional spaces.

We can now state our main local existence result for smooth normal systems of
PDE (recall the general assumptions (5.1)).

Theorem 14. Let Λk ∈ C0(T × S), rk ∈ R>0 ∪ {+∞} for all k ∈ N, and assume

that S̊ is dense in S. Define R := (rk)k∈N, B̄R(io) as in (5.12), and P : B̄R(i0) →
Cp
t C∞

x (T × S,Rm) by

P (y)(t, x) := i0(t, x) +

ˆ t

t0

dsd d. . .

ˆ s2

t0

G(s1, x, y) ds1.

Assume that G is Lipschitz on B̄R(i0) with loss of derivatives L and Lipschitz
factors (Λk)k∈N, and for all (t, x) ∈ T × S, all n ∈ N and all j = 1, . . . , d, set

Λj
k,0 := 1,

Λj
k,n+1(t, x) :=

∣∣∣∣ˆ t

t0

dsj
j. . .

ˆ s2

t0

Λk(s1, x) · max
0<l≤d

Λl
k+L,n(s1, x) ds1

∣∣∣∣ , (5.17)

Λ̄k,n := max
x∈S

0<j≤d

Λj
k,n(t0 +max(a, b), x).

Finally, assume that the following conditions are fulfilled for all k ∈ N:
(i) Pn(i0) ∈ B̄R(i0) for all n ∈ N;

(ii)

+∞∑
n=0

Λ̄k,n · ∥P (i0)− i0∥k+nL < +∞.



BEYOND CAUCHY-KOWALEWSKY: A PICARD-LINDELÖF THEOREM FOR SMOOTH PDE17

Then, there exists a smooth solution y ∈ B̄R(i0) ∩ C∞(T × S,Rm) of the problem∂d
t y(t, x) = F

[
t, x, (∂α

x ∂
γ
t y)|α|≤L

γ≤p

]
,

∂j
t y(t0, x) = y0j(x) j = 0, . . . , d− 1,

(5.18)

given by y = limn→+∞ Pn (i0) in
(
Cp
t C∞

x (T × S,Rm) , (∥−∥k)k∈N
)
, which satisfies

∀k,m ∈ N : ∥y − Pm (i0)∥k ≤
+∞∑
n=m

Λ̄k,n · ∥P (i0)− i0∥k+nL .

In particular, if Mk ∈ C0(T × S), we set

M̄kj(t, x) :=

∣∣∣∣ˆ t

t0

dsj
j. . .

ˆ s2

t0

Mk(s1, x) ds1

∣∣∣∣ ,
and we also assume

(iii) |∂ν
xG(t, x, u)| ≤ Mk(t, x) for all u ∈ B̄R(i0), (t, x) ∈ T × S and all ν ∈ Ns

such that |ν| ≤ k;
(iv) max

x∈S
0<j≤d

M̄k,j(t0 +max(a, b), x) ≤ rk;

Then P : B̄R(i0) −→ B̄R(i0) and hence (i) always holds.

Proof. We prove that P actually satisfies the stronger contraction property (3.2)
with contraction constants Λ̄kn. We firstly show, by induction on n ∈ N, that for
each k ∈ N, u, v ∈ B̄R(i0), (t, x) ∈ T ×S, h = 1, . . . ,m, and β ∈ N1+s

p with |β| ≤ k,
we have∣∣∂β

[
Pn(u)h − Pn(v)h

]
(t, x)

∣∣ ≤ ∥u− v∥k+nL · max
0<j≤d

Λj
kn(t, x). (5.19)

For n = 0, (5.19) reduces to
∣∣∂β(uh − vh)(t, x)

∣∣ ≤ ∥u − v∥k · max0<j≤d Λ
j
k,0(t, x)

which holds because |β| ≤ k and Λj
k,0 = 1. To prove the inductive step, we consider

∣∣∂β
[
Pn+1(u)h − Pn+1(v)h

]
(t, x)

∣∣ ≤ ∣∣∣∣∂β

{ˆ t

t0

dsd d. . .

ˆ s2

t0

Gh(s1, x, P
n(u)) ds1

−
ˆ t

t0

dsd d. . .

ˆ s2

t0

Gh(s1, x, P
n(v)) ds1

}∣∣∣∣ =: (1∗) (5.20)

Since β ∈ N1+s
p , we can write ∂β = ∂ν

x∂
β1

t , where ν := (β2, . . . , βs) and β1 ≤ p < d.

The operator ∂β1

t deletes β1 integrals in (5.20); set ȷ̄ := d − β1 > 0, and take ∂ν
x

inside the integrals to get

(1∗) ≤ sgn(t− t0)
ȷ̄

ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

∣∣∂ν
xG

h(s1, x, P
n(u))− ∂ν

xG
h(s1, x, P

n(v))
∣∣ ds1

=: (2∗).

Since G is Lipschitz on B̄R(i0) with factors (Λk)k∈N, we get

(2∗) ≤ sgn(t− t0)
ȷ̄

ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

Λk(s1, x)·

· max
l=1,...,m

max
|α|≤k+L

γ≤p

∣∣∂α
x ∂

γ
t

[
Pn(u)l − Pn(v)l

]
(s1, x)

∣∣ ds1 =: (3∗).
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Using inductive hypothesis (5.19) (with k+L instead of k and (γ, α) instead of β)

(3∗) ≤ sgn(t− t0)
ȷ̄

ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

Λk(s1, x) · ∥u− v∥k+L+nL·

· max
0<l≤d

Λl
k+L,n(s1, x) ds1

= ∥u− v∥k+(n+1)L ·
∣∣∣∣ˆ t

t0

dsȷ̄
ȷ̄. . .

ˆ s2

t0

Λk(s1, x)·

· max
0<l≤d

Λl
k+L,n(s1, x) ds1

∣∣∣∣
= ∥u− v∥k+(n+1)L · Λȷ̄

k,n+1(t, x)

≤ ∥u− v∥k+(n+1)L · max
0<j≤d

Λj
k,n+1(t, x),

which proves our claim.
Finally, we prove (3.2): for some β ∈ N1+s

p , |β| ≤ k, some h = 1, . . . ,m and some
(t, x) ∈ T × S, from (5.19) we have

∥Pn(u)− Pn(v)∥k =
∣∣∂β

[
Pn(u)h − Pn(v)h

]
(t, x)

∣∣ ≤
≤ ∥u− v∥k+nL · max

0<j≤d
Λj
kn(t, x) ≤

≤ ∥u− v∥k+nL · Λ̄kn.

This shows the claim on P with contraction constants Λ̄kn. The conclusion with
y ∈ B̄R(i0) hence follows fromWeissinger condition (ii) and Thm. 6. It only remains
to prove that actually y is smooth. Since y is a fixed point of P , we have

y(t, x) = i0(t, x) +

ˆ t

t0

dsd d. . .

ˆ s2

t0

G(s1, x, y) ds1 (5.21)

= i0(t, x) +

ˆ t

t0

dsd d. . .

ˆ s2

t0

F

[
s1, x, (∂

α
x ∂

γ
t y)|α|≤L

γ≤p

(s1, x)

]
ds1.

But y ∈ Cp
t C∞

x (T × S,Rm) and hence (∂α
x ∂

γ
t y)|α|≤L

γ≤p

∈ C0(T × S,Rm). By induction

(5.21) proves that y is smooth at interior points of T×S and hence also at boundary

points by continuity of derivatives on T̊ × S̊.
In particular, if we assume both (iii) and (iv), we can prove that P : B̄R(i0) −→

B̄R(i0) using Lem. 11. In fact, for any u ∈ B̄R(i0) and k ∈ N, from (iii) and (iv)
we have

∥P (u)− i0∥k =

∥∥∥∥∥
ˆ (−)

t0

dsd d. . .

ˆ s2

t0

G (s1,−, u) ds1

∥∥∥∥∥
k

≤ max
x∈S

0<j≤d

M̄k(t0 +max(a, b), x) ≤ rk.

□

Note that, on the contrary with respect to the more classical conditions (iii) and
(iv) (inherited from the classical PLT for ODE) depending both on the choice of
upper bounds Mk and radii rk, assumption (i) depends only on the radii rk. In
Sec. 6, we will see that requirement (i) leads us to the correct choice of these radii
rk (one more time, depending on the initial conditions rk = rk(i0)).
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If the radii rk < +∞, we can also consider as bounds Mk of (iii) and (iv) the
minimal constant functions. This is considered in the following result, which allows
us to understand that to have a local solution using the latter part of the PLT, we
have to avoid that rk

Mk
→ 0:

Corollary 15. Let Λk ∈ C0(T × S), rk ∈ R>0 for all k ∈ N. Assume that S̊ is
dense in S and G is Lipschitz on B̄R(i0) with loss of derivatives L and Lipschitz
factors (Λk)k∈N, define Λ̄kn as in (5.17) and

Ck := T × S ×
⋃

|ν|≤k+L
γ≤p

Brk+L+p
(∂ν

x∂
γ
t i0(T × S))

Mk := max
(t,x,z)∈Ck

max
|ν|≤k

|∂ν
xG(t, x, z)|

Finally, assume that the following conditions are fulfilled:

(i) max(a, b) ≤ infk∈N
rk
Mk

;

(ii)
∑+∞

n=0 Λ̄kn · ∥P (i0)− i0∥k+nL < +∞ for all k ∈ N.
Then, there exists a smooth solution y ∈ B̄R(i0)∩C∞(T ×S,Rm) of problem (5.18).

Proof. Note explicitly that Ck ⋐ R1+s+m because rk+L+p < +∞. As we proved in
Thm. 13, for all u ∈ B̄R(i0), all |ν| ≤ k + L and all γ ≤ p, we have

|∂ν
x∂

γ
t u(t, x)− ∂ν

x∂
γ
t i0(t, x)| ≤ ∥u− i0∥|ν|+γ ≤ ∥u− i0∥k+L+p ≤ rk+L+p,

and hence ∂ν
x∂

γ
t u(t, x) ∈ Ck. Thereby, condition Thm. 14(iii) holds for the chosen

constant Mk (see also Rem. 16 just below). Therefore, M̄kj(t, x) =
(t−t0)

j

j! Mk and

max x∈S
0<j≤d

M̄k(t0 +max(a, b), x) = max(a, b) ·Mk ≤ rk for all k ∈ N by (i). We can

finally apply Thm. 14. □

Remark 16. To avoid misunderstandings, we explicitly note that the simplified
notation ∂ν

xG(t, x, z) denotes the function obtained by the following process:

(i) Consider and arbitrary u ∈ B̄R(i0), and the derivative ∂ν
x (G(t, x, u)) (t, x)

given by (5.14);
(ii) In the formula (5.14) obtained after the computation of this derivative, substi-

tute the variables zαγ := (∂α
x ∂

γ
t u)|α|≤L

γ≤p

and zµγ := (∂µ
x∂

γ
t u(t, x))µγ to obtain

∂ν
xG(t, x, z), where the variable z represents all the zαγ and zµγ .

For example, for the PDE ∂d
t y = a(t) · ∂L

x ∂
γ
t y, we calculate the derivatives as

∂ν
xG(t, x, u) = a(t) · ∂ν+L

x ∂γ
t u(t, x), and here substituting z for ∂ν+L

x ∂γ
t u(t, x) we

get ∂ν
xG(t, x, z) = a(t)·z. For the PDE ∂d

t y =
(
∂L
x ∂

γ
t y
)2
, we have e.g. ∂xG(t, x, u) =

2∂L
x ∂

γ
t u(t, x)∂

L+1
x ∂γ

t u(t, x), and ∂xG(t, x, z0, z1) = 2z0z1.

On the contrary with respect to the Cauchy-Kowalewsky theorem, in the PL
Thm. 14, it would appear that we do not need to assume d ≥ L. However, this
clearly cannot hold in general, and in Sec. 6 we show that such type of assumption is
implicitly contained in the convergence request of Weissinger condition Thm. 14(ii).
A first partial confirmation going in this direction, can be glimpsed by computing
the iteration Pn(i0)(t, x) in case of simple linear PDE, and then taking n → +∞:

Example 17. From the Picard-Lindelöf iterations, we can also obtain the following
formulas (where a ∈ R ̸=0; see Thm. 2 for an independent statement including all
the following particular cases), we have:
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(i) If ∂ty = a · ∂2
xy, then y(t, x) =

∑+∞
n=0

∂2n
x y00(x)

n! an+1 · (t− t0)
n;

(ii) If ∂2
t y = a·∂2

xy, then y(t, x) =
∑+∞

n=0
∂2n
x y00(x)
(2n)! an+1(t−t0)

2n+
∑+∞

n=0
∂2n
x y01(x)
(2n+1)! an+1(t−

t0)
2n+1;

(iii) If ∂ty = a · ∂xy, then y(t, x) =
∑+∞

n=0
∂n
x y00(x)

n! an+1 · (t− t0)
n;

(iv) If ∂2
t y = a · ∂t∂xy, then y(t, x) = y00(x) +

∑+∞
n=0

∂n
x y01(x)

n! an+1(t− t0)
n;

(v) If ∂2
t y = a·∂xy, then y(t, x) =

∑+∞
n=0

∂n
x y00(x)
(2n)! an+1(t−t0)

2n+
∑+∞

n=0
∂n
x y01(x)
(2n+1)! a

n+1(t−
t0)

2n+1.

The ideas of the proof of Thm. 14 are a simple generalization of the classical
proof for ODE, only adapted to contractions with LOD and a countable family of
norms. Indeed, for L = 0 and ∥ − ∥k = ∥ − ∥0 the proof reduces to the classical
proof for ODE and assumptions (iii), (iv), (ii) reduce to the usual ones for the PLT
for ODE with Weissinger condition, see e.g. [35]. On the other hand, the compact

set S ⋐ Rs (with S̊ dense in S) is completely arbitrary : we can hence say that our
deduction proves that, with respect to the PLT, PDE can be simply treated as ODE
depending on a parameter x ∈ S.

If the Lipschitz factors Λk ∈ R and the upper bounds Mk ∈ R are constant (the
proof of Thm. 13 and Cor. 15 show that this is not a loss of generality), then

M̄kj(t, x) = Mk
|t− t0|j

j!
,

Λj
kn(t, x) =

|t− t0|nd+j

(nd+ j)!

n−1∏
j=0

Λk+jL,

Λ̄kn =
max(a, b)nd

(nd)!

n−1∏
j=0

Λk+jL.

Thereby, Weissinger condition Thm. 14(ii) becomes

+∞∑
n=0

max(a, b)nd

(nd)!
∥P (i0)− i0∥k+nL

n−1∏
j=0

Λk+jL < +∞ ∀k ∈ N. (5.22)

For ODE, we have L = 0 and ∥ − ∥k = ∥ − ∥0, and (5.22) reduces to

∥P (i0)− i0∥0
+∞∑
n=0

Λn
0

max(a, b)nd

(nd)!
< +∞,

which always holds.

Remark 18.

(i) We believe it is worth mentioning that in a non-Archimedean setting such as
that of generalized smooth functions theory and Robinson-Colombeau ring
ρR̃, see e.g. [12, 13, 22, 14], we can repeat the proof of the PLT with exactly the

same formal steps (but with the ring ρR̃ instead of the field R). In addition, we
can take S = [−ι, ι]s ⊇ Rs, where ι is an infinite number (this kind of sets be-
have as compact sets for generalized smooth functions, see [11]). In this way,
we get a global solution in x ∈ S (but clearly, we need initial conditions on
S, or equivalently boundary conditions that hold for all x ∈ R). Moreover, in
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the setting of the non-Archimedean ring ρR̃, the generalized number (equiva-

lence class in the quotient ring ρR̃) dρ := [ρε] ∈ ρR̃ is an infinitesimal number
since ρε → 0+ as ε → 0+ (and hence dρ−Q =

[
ρ−Q
ε

]
is an infinite number for

all Q ∈ N>0). Since in every Cauchy complete non-Archimedean ring a series
converges if and only if the general term tends to zero (see e.g. [17]), condition

(5.22) is equivalent to limn→+∞
max(a,b)nd

(nd)! ∥P (i0)− i0∥k+nL

∏n−1
j=0 Λk+jL = 0.

Assuming that for some Q ∈ N≥0 and some q ∈ N>0, we have

∥P (i0)− i0∥k+nL

n−1∏
j=0

Λk+jL ≤ dρ−Q, (5.23)

max(a, b) ≤ dρq,

then max(a,b)nd

(nd)! ∥P (i0)−i0∥k+nL

∏n−1
j=0 Λk+jL ≤ dρ−Q · dρ

qnd

(nd)! → 0 as n → +∞.

Thereby, since for ordinary smooth functions the left hand side of (5.23)
is finite, we have that any ordinary smooth normal Cauchy problem (even
Lewy-Mizohata examples) always has a solution in an infinitesimal inter-
val (set rk = 1 in Cor. 15 and note that we can reformulate Cor. 15(i) as
max(a, b)Mk ≤ rk = 1 for all k ∈ N, which always holds if max(a, b) is
infinitesimal; see [14] for greater details).

(ii) Lewy-Mizohata examples imply that Weissinger condition in these cases does
not hold. Moreover, since the non-existence of a solution does not depend
on the initial condition i0, [21, 24], and taking a = −1, b = 1, we necessarily
must have

∃k ∈ N :

+∞∑
n=0

1

n!

n−1∏
j=0

Λk+j = +∞ (5.24)

for all Lipschitz factors (Λj)j∈N (that always exist because of Thm. 13) (note
that d = 1 = L, m = 2 for both counter-examples). Condition (5.24) strongly
recall the non-analytic nature of F in these cases.

6. Examples

The main aim of this section is to show at least one example of normal PDE
(1.1) where either the right hand side F or one of the initial conditions y0j are not
functions of Gevrey class.

The class of examples we are going to consider is

∂d
t y(t, x) = p(t) · ∂µ

x∂
γ
t y(t, x) + q(t, x), (6.1)

where y(t, x) ∈ Rm, µ ∈ Ns, |µ| = L > 0, 0 ≤ γ < d, p ∈ C∞(T,Rm×m) is
an arbitrary smooth function, and q is a smooth function with uniformly bounded
derivatives in x:

∃Q ∈ R>0 ∀ν ∈ Ns ∀(t, x) ∈ T × S : |∂ν
xq(t, x)| ≤ Q. (6.2)

Note that if p is not of Gevrey class, and ∂µ
x∂

γ
t y is not zero, then also y cannot

be of Gevrey class. Clearly, wave, heat and Laplace equations are particular cases
of (6.1). Explicitly note that also Mizohata’s counterexample [24] ∂ty

1 = t∂xy
2 +

q1(t, x), ∂ty
2 = −t∂xy

1 + q2(t, x) is exactly of the form (6.1), but q = (q1, q2) is
not analytic, so it does not satisfy condition (6.2). On the other hand, in Lewy’s
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counterexample the coefficient p = p(t, x1, x2) also depends on x and the term q is
again not analytic.

We want to directly apply the first part of the PL Thm. 14, i.e. to check properties
(i) and (ii). We start focusing on the latter, and arriving at estimates that are
independent from the radii rk.

Estimate of Lipschitz constants Λk. For arbitrary radii R = (rk)k∈N and all u,
v ∈ B̄R(i0) and all ν ∈ Ns, with |ν| ≤ k, we have:

|∂ν
xG(t, x, u)− ∂ν

xG(t, x, v)| ≤ ∥p∥0 · max
|α|≤k+L

|∂α
x u(t, x)− ∂α

x v(t, x)| .

We can hence consider Λk := ∥p∥0, so that setting T̄ := max(a, b), we get

Λ̄kn =
T̄nd

(nd)!

n−1∏
j=0

Λk+jL =
T̄nd

(nd)!
∥p∥n0 . (6.3)

Estimate of the terms ∥P (i0)− i0∥k+nL. We have

P (i0)(t, x)− i0(t, x) =

ˆ t

t0

dsd d. . .

ˆ s2

t0

[p(s1) · ∂µ
x∂

γ
t i0(s1, x) + q(s1, x)] ds1

∂µ
x∂

γ
t i0(s1, x) =

d−1∑
j=γ

∂µ
xy0j(x)

j!
j(j − 1) · . . . · (j − γ + 1) · (t− t0)

j−γ

=

d−1∑
j=γ

∂µ
xy0j(x)

(j − γ)!
(t− t0)

j−γ .

For β ∈ N1s, |β| ≤ k + nL, βx := (β2, . . . , βs), we thus have

∂β [P (i0)(t, x)− i0(t, x)] =

d−1∑
j=γ

∂µ+βx
x y0j(x)

(j − γ)!

ˆ t

t0

dsd
d−β1. . .

ˆ s2

t0

p(s1) · (s1 − t0)
j−γ ds1+

ˆ t

t0

dsd
d−β1. . .

ˆ s2

t0

∂βx
x q(s1, x) ds1.

Using assumption (6.2):

∣∣∂β [P (i0)(t, x)− i0(t, x)]
∣∣ ≤ ∥p∥0

d−1∑
j=γ

∣∣∂µ+βx
x y0j(x)

∣∣
(j − γ)!

T̄ j−γ+d−β1

(j − γ + d− β1)!
(j − γ)!+

+Q
T̄ d−β1

(d− β1)!
.

Therefore, taking for simplicity T̄ ≤ 1:

∥P (i0)− i0∥k+nL ≤ ∥p∥0
d−1∑
j=γ

∥y0j∥k+(n+1)L

(j − γ + d)!
+Q. (6.4)
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Weissinger condition. Based on (6.3) and (6.4), we can easily estimate Weissinger
condition as

+∞∑
n=0

Λ̄kn · ∥P (i0)− i0∥k+nL ≤

+∞∑
n=0

T̄nd

(nd)!
∥p∥n+1

0

d−1∑
j=γ

∥y0j∥k+(n+1)L

(j − γ + d)!
+

+∞∑
n=0

T̄nd

(nd)!
∥p∥n0Q

=: S1 + S2.

Since the latter series S2 is convergent, we focus on the first one:

S1 = ∥p∥0
+∞∑
n=0

(
T̄ d∥p∥0

)n d−1∑
j=γ

∥y0j∥k+(n+1)L

(nd)!
· 1

(j − γ + d)!
. (6.5)

In this series, the only potentially problematic terms are the fractions
∥y0j∥k+(n+1)L

(nd)!

as n → +∞ for j = γ, . . . , d − 1, because the remaining part surely yields a
convergent series for T̄ sufficiently small. This also yields that all the possible
initial conditions y0j for j = 0, . . . , γ − 1 can be freely chosen (see also Example
17(iv)).

Estimate of radii rk. As we highlighted several times above, a key problem in
using this type of results is the choice of the radii rk. If f = f(t) is a function of t,
for simplicity we first set

Id [f(t)] :=

ˆ t

t0

dsd d. . .

ˆ s2

t0

f(s1) ds1.

For j ≥ γ and h ∈ N, we set

µj−γ,0(t) := p(t) · (t− t0)
j−γ

µj−γ,h+1(t) := Id [p(t) · ∂γ
t µj−γ,h(t)]

η0(t, x) := q(t, x)

ηh+1(t, x) := Id [p(t) · ∂µ
x∂

γ
t ηh(t, x)] .

By induction on n ∈ N, we can then prove that

Pn(i0)(t, x) =

d−1∑
j=0

y0j(x)

j!
(t−t0)

j+

n∑
h=0

d−1∑
j=γ

∂hµ
x y0j(x)

(j − γ)!
µj−γ,h(t)+

n∑
h=0

ηh(t, x). (6.6)

Thereby, we get in this way a possible definition of the radii rk as

∥Pn(i0)− i0∥k ≤
+∞∑
h=0

d−1∑
j=γ

∥y0j∥k+hL

(j − γ)!
∥µj−γ,h∥k +

+∞∑
h=0

∥ηh∥k =: rk ∀k ∈ N. (6.7)

Using assumption (6.2), the latter series converges because

∥ηh∥k ≤ ∥p∥h0 ·Q · T̄ (h+1)(d−γ)

[(h+ 1)(d− γ)]!
.

In the former series, for h ≥ 1 we have instead

∥µj−γ,h∥k ≤ ∥p∥h0 · T̄
h(d−γ)+j

[(d− γ)!]
h
,
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so that
+∞∑
h=1

d−1∑
j=γ

∥y0j∥k+hL

(j − γ)!
∥µj−γ,h∥k ≤

+∞∑
h=0

(
∥p∥0T̄ d−γ

(d− γ)!

)h

·
d−1∑
j=γ

∥y0j∥k+hLT̄
j

(j − γ)!
.

If this series converges (and this mainly depends on the growing of ∥y0j∥k+hL), we
can hence have rk < +∞, otherwise we simply take rk = +∞. For a non trivial
term ∥y0j∥k+hL, (6.7) also shows that rk ̸→ 0+.

A case of exponentially growing initial conditions. If all the functions y0j , j =
γ, . . . , d− 1, satisfy for some some Cj ∈ R>0

∥y0j∥k+(n+1)L ≤ C
k+(n+1)L
j ∀j = γ, . . . , d− 1∀k ∈ N, (6.8)

then the series (6.5) converges and we have

Theorem 19. If the initial conditions y0j satisfy (6.8), whereas y0j for j =
0, . . . , γ − 1 are arbitrary smooth functions, then there exists a smooth solution
of (6.1) in B̄R(i0) for T̄ sufficiently small and all x ∈ S. In this case, we do not
have constraints on d, L.

The case of analytic initial conditions. If all the y0j , j = γ, . . . , d− 1, are analytic
functions, then for some Cj ∈ R>0, we have

∥y0j∥k+(n+1)L ≤ C
k+(n+1)L
j · (k + (n+ 1)L)! ∀j = γ, . . . , d− 1 ∀k ∈ N.

Using Stirling’s approximation, we have (k + (n+ 1)L)! ∼ (nL)k+L(nL)! and hence
the following

Theorem 20. If d ≥ L, then there exists a smooth solution of (6.1) in B̄R(i0)
with analytic initial conditions y0j if j = γ, . . . , d − 1 and arbitrary smooth y0j if
j = 0, . . . , γ − 1, for T̄ sufficiently small and all x ∈ S.

Note explicitly that already this theorem yields more general results with respect to
the classical Cauchy-Kowalewsky theorem because both the matrix coefficient p(t)
in (6.1) and the initial conditions y0j for j = 0, . . . , γ − 1 can be arbitrary smooth
functions.

A case of Gevrey initial conditions and non-Gevrey solution. Now, let us assume
that our initial conditions which are not analytic satisfy

∥y0j∥k+(n+1)L ∼ (nL)σjnL, σj > 0 ∀j = γ, . . . , d− 1 ∀k ∈ N. (6.9)

Note that each function y0j satisfying (6.9) cannot be an analytic function, but it
is Gevrey of class s > σj . We have

∥y0j∥k+(n+1)L

(nd)!
∼ end√

2πnd

(
L

d

)σjnL 1

(nd)n(d−σjL)
.

We therefore have the following

Theorem 21. If the initial conditions y0j, j = 0, . . . , γ − 1, are arbitrary smooth
functions, whereas y0j for j = γ, . . . , d− 1 are analytic or they satisfy (6.9), and if
in the latter case we have d > σjL, then there exists a smooth solution of (6.1) in
B̄R(i0) for T̄ sufficiently small and all x ∈ S. We recall that, if the function p is
non-Gevrey, then any solution such that ∂µ

x∂
γ
t y ̸= 0 cannot be of Gevrey class.
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Taking n → +∞ in (6.6), we also obtain the following generalization of Example
17:

Corollary 22. In the assumptions of each one of Thm. 19, 20, 21, the solution y
of Picard-Lindelöf iterations is given by the formula:

y(t, x) =

γ−1∑
j=0

y0j(x)

j!
(t− t0)

j +

+∞∑
h=0

d−1∑
j=γ

∂hµ
x y0j(x)

(j − γ)!
µj−γ,h(t) +

+∞∑
h=0

ηh(t, x). (6.10)

In particular, if the functions p and q are constant, then

y(t, x) =

γ−1∑
j=0

y0j(x)

j!
(t− t0)

j +

+∞∑
h=0

d−1∑
j=γ

∂hµ
x y0j(x)

(j − γ)!
ph+1 (t− t0)

h(d−γ)+j−γ

[h(d− γ) + j − γ]!
(j − γ)! + q.

Let y(t, x; ε) be the solution defined by (6.10) corresponding to initial conditions

y0j(x; ε), where ε ∈ (−1, 1). If we can exchange limε→0 and
∑+∞

h=0, e.g. if the

sequence of derivatives
(
∂hµ
x y0j(x; ε)

)
h∈N pointwise converges in a dominated way

as h → +∞, i.e. for all h ∈ N, x ∈ S, j = 0, . . . , d− 1, and ε ∈ (−1, 1) we have

∃ lim
ε→0

∂hµ
x y0j(x; ε) = ∂hµ

x y0j(x; 0)

|∂hµ
x y0j(x; ε)| ≤ gh(x; ε)

+∞∑
h=0

gh(x; ε) < +∞,

then limε→0 y(t, x; ε) = y(t, x; 0).

Note that our estimates above of the Weissinger condition and the radii rk, allow
us also to state that conditions (4.4) and (4.2) of Cor. 7 hold. Moreover, the proof
of PL Thm. 14 shows that also (4.3) holds. Therefore, to solve (6.1) in the space
X = B̄R(i0) we can also apply Cor. 7, as we stated above in Sec. 4.

We close this section by noting that for the PDE

∂d
t y(t, x) = y(t, x) · ∂µ

xy(t, x) (6.11)

with |µ| = L, we can use ideas similar to those of Thm. 13 to show that setting

C̄k+L :=
⋃

|α|≤k+L

∂α
x i0(T × S) ⋐ Rm

∥i0(T × S)∥k+L := d(C̄k+L, 0)

Λk := 2k (rk+L + ∥i0(T × S)∥k+L) ,

then (6.11) has (Λk)k∈N as Lipschitz constants with L loss of derivatives. Thereby,

Λ̄kn = Tnd

(nd)!2
n
∏n−1

j=0 (rk+jL + ∥i0(T × S)∥k+jL). However, in the case L = 1 and

y0j satisfying (6.9) with σj = 1, we get Λ̄kn = Tnd

(nd)!2
nH(n − 1), where H(n −

1) =
∏n−1

j=0 jj is the hyperfactorial function. Since H(n) = O(nn2/2), Weissinger
condition never holds. This clearly left open the possibility of better estimates of
different Lipschitz factors.
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7. Some remarks about the loss of derivatives condition

As we discussed in the previous sections, Def. 4 of contraction with LOD is at
the core of our version of the BFPT, i.e. Thm. 6. We start this section with a
discussion of this notion of contraction.

Definition 23. We call minimal loss for P from y0 the quantity

LP (y0) := min {L ∈ N | P ∈ C (X,L, y0)} .

Lemma 24. Let
(
F , (∥ − ∥k)k∈N

)
be a Fréchet space, X be a closed subset of F ,

y0 ∈ X and P : X −→ X be a continuous map. Assume that ∥−∥0 (hence, ∥−∥k
for every k ∈ N) is a norm. If there exists N ∈ N>0 such that PN (y0) is a fixed
point of P , then P ∈ C (X, 0, y0), i.e. P is a contraction with 0 loss of derivatives
starting from y0.

Proof. Let N be the smallest number such that PN (y0) is a fixed point of P .
If N = 1, P (y0) = y0 hence

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k
= 0 for every k, n ∈ N, so

our claim follows just by setting each αkn := 0.
If N > 1, ∥P (y0)− y0∥0 ̸= 0 since ∥−∥0 is a norm, therefore ∥P (y0)− y0∥k ̸= 0

for every k ∈ N, as the norms ∥−∥k are increasing. For every k, n ∈ N set

αkn :=


∥Pn+1(y0)−Pn(y0)∥

k

∥P (y0)−y0∥k+nL
, ifn < N ;

1
n2∥P (y0)−y0∥k+nL

, otherwise.
(7.1)

With this choice, Def. 4((iii)) and Def. 4((iv)) are easily verified because αkn∥P (y0)−
y0∥k+nL = 1

n2 ≥ ∥Pn+1(y0) − Pn(y0)∥k = ∥y0 − y0∥k if n ≥ N , hence P ∈
C (X, 0, y0). □

The following is a rather surprising fact that holds, e.g., in C0
t C∞

x (T × S,Rm).

Theorem 25. Let
(
F , (∥ − ∥k)k∈N

)
be a Fréchet space, let X be a closed subset of

F , let y0 ∈ X and let P : X −→ X. Assume that ∥−∥0 (hence, ∥−∥k for every
k ∈ N) is a norm. The following properties are equivalent:

(i) There exists L ∈ N such that P ∈ C (X,L, y0);
(ii) P is continuous and for all k ∈ N

∞∑
n=0

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k
< +∞; (W’)

(iii) P ∈ C (X, 0, y0).

Proof. (i)⇒(ii): If there exist k, N ∈ N such that
∥∥PN+1 (y0)− PN (y0)

∥∥
k
= 0,

then PN (y0) is a fixed point of P as ∥−∥k is a norm. But then, for every

m ≥ N and for every k ∈ N we have
∥∥Pm+1 (y0)− Pm (y0)

∥∥
k
= 0, and hence∑∞

n=0

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k

=
∑N−1

n=0

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k

< +∞. Other-

wise, ||P (y0) − y0||k+nL ̸= 0 for every k, N ∈ N, hence by Def. 4(iii) we get

that αkn ≥ ||Pn+1(y0)−Pn(y0)||k
||P (y0)−y0||k+nL

∈ R>0 which, substituted in Def. 4(iv), gives (W’).

(ii)⇒(iii): If there exist k, N ∈ N such that
∥∥PN+1 (y0)− PN (y0)

∥∥
k
= 0, then

PN (y0) is a fixed point of P as ∥−∥k is a norm, and we conclude by Lemma 24.
Otherwise, in particular ∥P (y0)− y0∥k ̸= 0 for every k ∈ N. For every k, N ∈ N,
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we set αkn :=
∥Pn+1(y0)−Pn(y0)∥

k

∥P (y0)−y0∥k+nL
. Then Def. 4(iii) holds trivially, and Def. 4(iv)

holds as, by construction

∞∑
n=0

αkn ∥P (y0)− y0∥k =

∞∑
n=0

∥∥Pn+1 (y0)− Pn (y0)
∥∥
k
< +∞

by assumption.
(iii)⇒(i): This is trivial. □

In particular, this result shows that, if ∥ − ∥k are norms, LP (y0) = 0 whenever
P ∈ C (X,L, y0) for some L. Note that, in general, this does not entail the unique-
ness of the fixed point of P , since such uniqueness would require a much stronger
condition on P than Def. 4(iii) or condition (W’), see e.g. Lem. 5.

We also note that condition (W’) implies that (Pn (y0))n∈N is a Cauchy sequence
as we did in (3.4), and this, together with the continuity of P , yields that y :=
limn−→+∞ Pn (y0) is a fixed point of P by Lem. 3.

On the other hand, the previous Thm. 25 does not imply that we can take L = 0
in the PLT Thm. 14, because the assumption that the right hand side G of the PDE
is Lipschitz on B̄R(y0) with loss of derivatives L = 0 in general is not satisfied. In
other words: The natural loss of derivatives L > 0 corresponds to the maximum
order of derivatives in x appearing in the PDE (1.1), and the natural Lipschitz
constants αkn are derived in the proof of Thm. 14, e.g. using the Lipschitz factors
(Λk)k∈N for the right hand side of the PDE derived from Thm. 13. Using these
natural constants, Weissinger condition (ii) is easier to estimate than condition
(W’) or the use of (7.1).

8. Conclusions

Starting from the classical Kowalewsky counter-example for the heat equation
or Hadamard’s results on the Cauchy problem for the Laplace equation, one can
think that a PDE links in a given relation ∂ty and ∂xy and hence it necessarily
forces the solution, in general, in a space of functions whose derivatives growth in
a restricted way, these constraints being related to the PDE itself. This implies
that the initial conditions cannot be freely chosen but must be taken into another
constrained space. We could say that we do not have to find a suitable space of
generalized solutions for our PDE, but conditions stating when it has a solution or
not; only at the philosophical level, this is similar to the point of view of nonlinear
differential Galois theory, see e.g. [23], or the formal theory of differential equations,
see e.g. [32].

The PLT we proved in this paper goes exactly in this direction, by showing that
the existence of a solution (by Picard-Lindelöf iterations) depends on the initial
conditions we start with: Def. 4 of contraction with loss of derivatives, the closure
with respect to iterations (ii), Weissinger condition (W), the definition of the radii
(6.6), all go in this direction. Examples considered in Sec. 6 show a first link
between the syntax of the PDE (in the term (nd)!) and the order of growth of the
derivatives of the initial conditions ∥y0j∥k+nL. On the other hand, exactly as up
to fourth order algebraic equations are solvable in radicals, if the order d = 1 the
method of characteristics allows one to solve a large class of PDE for any initial
condition.
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It is now natural to ask for a generalization to more singular normal (nonlinear)
PDE, e.g. where the right hand side F or some of the initial conditions y0j are some
kind of generalized functions. In order to get this generalization by following the
ideas of the present work, we would need a space of generalized functions which
is closed with respect to composition and with a complete topology generated by
norms; this space must clearly be non-trivial, e.g. containing all Sobolev-Schwartz
distributions. In our opinion, this target can be fully accomplished in a beautiful
and simple setting by considering the Grothendieck topos of non-Archimedean gen-
eralized smooth function, see e.g. [13, 22, 14]. We plan to realize this goal in future
works.
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(2011) 91–105. 1, 2, 8, 9
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