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Abstract. We define a mathematical notion of complex adaptive system by

following the original intuition of G.K. Zipf about the principle of least effort,
an intuitive idea which is nowadays informally widespread in complex systems

modeling: adaptation means minimizing suitable costs and, at the same time,

effectively distribute available resources. Generalizing Mandelbrot’s ideas, we
also understand when a large class of these systems satisfy a power law, and we

give details in case of evolving languages. We also illustrate this notion with

theorems describing Von Thünen-like models. These describe the appearance
of emergent patterns in a large class of complex systems, and we detail the

application in land use theory as well as in several other systems. We use

the language of interaction spaces theory so that, thanks to its universality,
this definition of complex adaptive system and emergent patter is formulated

in very general terms, with a precise mathematical language, coupled to a
clear intuitive description, but also exemplified using real-world systems like

in natural selection, urban growth, text mining, microeconomics, biology, etc.
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1. Introduction: Complex adaptive systems and emergent patterns
following Zipf’s idea

It is widely recognized that complex adaptive systems (CAS) are among the
most interesting types of complex systems (CS) (see, e.g., [28, 29]), and there are
several attempts to provide a precise definition of CAS, see e.g. [30, 4, 20, 44].

Due to its unifying properties, see [18], interaction spaces (IS) theory can provide
the appropriate context for a general mathematical definition of CAS, and the
understanding of general dynamical laws governing these systems. In the present
paper, we use all the notions of IS theory introduced in [18].

The main idea is to try a mathematical formalization of the original ideas ex-
pressed by G.K. Zipf in [45], because they seem intuitively clear, meaningful and
applicable to a large class of CAS, where some kind of optimization and, at the
same time, of information sharing between interacting entities in a CS is nowadays
informally frequently used, see e.g. [3, 12, 16, 20, 25, 28, 22, 30, 38] and references
therein.

In [45], the appearing of a power law is connected to what we think is an adapting
behavior of the system. Zipf’s principle of least effort intuitively explains this
adaptation as a result of two opposing processes: unification and diversification.
We will try to intuitively explain this principle through several examples listed
below. Clearly, both these terms in [45] are sufficiently imprecise and could hence
be misinterpreted. The mathematical formalization we present here also aims to
gain a more clear understanding of these processes.

In our insight, unification processes are related to interactions that try to de-
crease convenient costs (possibly meant in an abstract way: e.g. loss of profits,
loss of common goods, probability to get hungry, probability to loose reproductive
possibilities, hormones such as cortisol or dopamine, etc.), whereas diversification
processes are linked to long term changes of suitable interactions, i.e. to the increas-
ing of the causal information shared through the goods exchanged between agents
and patients of these interactions, see [18] for an explanation of these terms of IS
theory. It is the implementation of these interactions and the most diversified ex-
change of fluxes of goods that enable the adaptive population to be resilient and
keep a low value of costs.

To start a first understanding and a preliminary intuitive validation of the sub-
sequent mathematical definition, we can keep in mind the following examples:

1) In a natural language, unification processes drift to shorten most frequently
used words (or better: frequently used sounds, see [8]); diversification ones make
evolve the language towards longer and specialized words, [13, 45].

2) In cities and their markets development, unification tends to bring near people
so as to decrease suitable costs of living; diversification tends to use all the
possible living locations so as to approach the appropriate rent costs, [42, 16].

3) In natural selection, unification forces push giraffes to search for eatable trees
(see e.g. [9] and references therein); diversification can select all the best genetic
codes that allow for a longer neck, [14]. We recall that a costs decreasing process
(unification) can cause an evolution into different phenotypes (diversification),
see [21]. More generally, natural selection seems to result by the dynamics of two
processes: representation of biological information as chemical properties and
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control flow (diversification), and the energetic constraints limiting the mainte-
nance of that information (unification), [35, 36, 37]. See [34] for an alternative
evolutionary explanation of long neck in giraffes.

4) Determining the direction to navigate to a safe place, such as a home or nest,
is a fundamental behavior for all complex animals and a crucial first step in
navigation. We can say that unification mental processes evaluate costs related
to the achievement of these goals, whereas diversification ones are related to
judgments based on a previously learned or planned behavior, [10].

5) Companies with a longer life span are able not only to decrease costs and increase
profits (unification), but are also able to adapt to their complex environment
by implementing long-term robustness. The latter are often realized through
diversification processes such as: maintain heterogeneity of people, ideas, and
endeavors, and preserve redundancy among components, [33].

6) In autism (but also in schizophrenia), a necessary decreasing in high costs related
to social interactions (unification) is sometimes compensated by higher abilities
(diversification) in very specialized or creative activities, [31, 11].

7) The ability to manage costs related to large varieties of goods (unification) is
related to the ability to implement the same stable economic decisions (interac-
tions) applicable to different goods (diversification), [43].

8) Phyllotaxis, the regular arrangement of leaves or flowers around a plant stem, is
an example of developmental pattern formation. Phyllotaxis is characterized by
the divergence angles between the organs, the most common angle being 137.5°,
the golden angle. Different approaches and hypotheses has been used to model
this formation mechanism, see e.g. [23]. In this process, we can see unification
forces related to energy exploitation by each primordium, and diversification
forces that tend to uniformly distribute these energy sources between old and
new primordia.

9) An example of non-adaptive but still complex system is traders payments of
Wall Street employees. It is well known that this payment has a base salary
and a bonus, which is usually a percentage of trader’s profit. If traders lose,
they still get their base, and only if their loss is great enough, they are fired.
However, they never have to return the money lost by the company due to
their wrong trading. This is a clear financial incentive to be reckless because it
rewards short-term gains (costs which identify unification forces) without regard
to long-term consequences (diversification forces), [1].

10) The efficiency of a parliament (unification processes interpreted as decreasing
of suitable costs) can be improved by inserting randomly selected legislators
(increasing of diversification among legislators), see [32].

11) Whereas classical economic theories prescribe specialization of countries in-
dustrial production, inspection of the country databases of exported products
shows that this is not the case: successful countries are extremely diversified, in
analogy with biosystems evolving in a competitive dynamical environment. In
fact, together with classical and necessary costs reduction (unification), diversi-
fication represents the hidden potential for development and growth, [39].

12) The evolutionary emergence of an egalitarian attitude in a population can be
explained by using an evolutionary model of group-living individuals compet-
ing for resources and reproductive success (i.e. unification as costs to decrease),
see [17]. Although the differences in fighting abilities lead to the emergence of
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hierarchies where stronger individuals take away resources from weaker individ-
uals, the logic of within-group competition implies that each individual benefits
if the transfer of resources from a weaker group member to a stronger one is
prevented. This model shows that this effect can result in the evolution of a
particular behavior causing individuals to interfere in a bully–victim conflict on
the side of the victim. A necessary condition in this process is a high efficiency
of coalitions in conflicts against the bullies. The egalitarian drive leads to a
dramatic reduction in within-group inequality. Simultaneously, it creates the
conditions for the emergence of inequity aversion via the internalization of these
adapted behavioral rules. All these interactions are general because they can be
applied to different situations. They hence represent a long-term and diversified
improving of society.

13) The present network of financial exposures among institutions (e.g. banks, com-
panies) shows that this system is not well adapted. The centrality of certain
institutions does not allow the system to be resilient to financial fails of few
institutions, see [7]. As we will see later, this is the same mechanism showed by
monopolies and the corresponding lack of diversity in the system. We could say
that the system is flawed because it lacks in interactions that act when a node
of the financial network fail: a more diversified network would show a greater
resilience because of a lower centrality of these nodes. It is also clear that a
globally directed taxation system can prevent the formation of such a central-
ized nodes. Even if these global taxes do not allow a maximization of profits
(which could be clearly higher without this tax), they could be rightly justified
as a measure to prevent global irreparable problems to the entire system, and
hence to the institutions themselves. See also [41].

To underline that we are going to give our interpretation of Zipf’s principle of least
effort, we prefer to name our mathematical version generalized evolution principle
(GEP). This name has also the merit to link this adapting dynamics to evolutionary
theories that, in our opinion, are well inscribed into it.

Before starting an intuitive description of the GEP, we have first to specify what
is a global state of an IS.

2. Global states of an interaction space

There are five sources of (possible) randomness acting in an IS I. One of them
derives from the (possible) stochastic evolution equation, see [18, (EE)]. We recall
that this also includes the stochastic behaviour of activation state acpi (t) ∈ [0, 1]
and goods γi(t) ∈ Ri, see [18, Rem. 1 (e)]. We have this type of stochastic behavior
because we do not want to model some details of the evolution of the interaction i,
or because it is not possible at all: it can happens, e.g., that a pedestrian randomly
chooses between two exists which are equally located with respect to its present
position: a deterministic model could not be reasonable for a non-trivial large class
of pedestrians.

Three other sources of randomness are the occurrence times tsi(t), t
a
i (t) and toi (t),

see [18, Sec. 3.5.1].
The last source is due to neighborhoods Ni(t) ⊆ E of interactions i ∈ I, see [18,

(NE)].
Therefore, in principle, it is possible to define a new probability space that com-

bines all these (possible) random sources. Elementary events of this space are of
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Figure 2.1. An example of interactions in cause-effect cascade.

the form (ts, ta, to,N , ω), where (ts, ta, to) ∈ [tst, tend]
3 are e.g. distributed as ex-

plained in [18, Sec. 3.5.1], N ⊆ E are all possible neighbourhoods, probabilistically
distributed depending on modeling choices, and ω ∈ Ωp is distributed as Pp for all
patients p according to the evolution equation, see [18, (EE)].

The joint probability that we have to settle on this space of elementary events
is certainly not easy to set. On the one hand, the universal properties of IS allow
us to state that the aforementioned ones are all the possible sources of randomness
that we have to take into account in several type of models. On the other hand,
the causal graph defined by the activation function, [18, Sec. 2], can be of great
help in finding this probability: we can say that the interaction i is a cause of
the interaction j if along any possible solution of the IS the interaction i always
precedes j, and if i activates for j an agent of j (see e.g. Fig. 2.1).

If the resulting directed cause-effect graph is acyclic, we can interpret it as a
beliefs network and apply the methods of Bayesian networks to define the joint
probability, see e.g. [15].

A global state space M̄P,J,t of the population P ⊆ E and the interactions J ⊆ I
up to time t ∈ [tst, tend] is given by three components, each being a subset of all
the possible paths (states, times, neighbourhoods) of our IS (recall that Y X is the
set of all the functions f : X −→ Y and, to understand, that if the index set
J = {j1, . . . , jn} is finite, then the product of sets is

∏
j∈J Sj = Sj1 × . . .× Sjn):

M̄P,J,t := M̄ s
P,t ×M t

J,t ×Mn
J,t (2.1)

M̄ s
P,t ⊆

(∏
e∈P

S̄e

)[tst,t]

=: S̄
[tst,t]
P (2.2)

M t
J,t ⊆

(
[tst, tend]

3
)J×[tst,t]

Mn
J,t ⊆ {N | N ⊆ E}J×[tst,t]

M̄P,J :=
⋃

t∈[tst,tend]

M̄P,J,t. (2.3)

The space M̄P,J is called global state space of P and J .
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Recall that the state space S̄e also contains activation and states of goods,
whereas the proper state space Se is a subspace of S̄e that includes all the other
proper state values, see [18, (ST)]. The optimization performed by a CAS occurs
in the space M̄P,J,t and hence it also depends on the choice of such a global state
space, see also Sec. 5.1.

A conceptual explanation of supersets appearing in (2.2) is as follows: for each
interacting entity e ∈ P of the given population, in M̄ s

P,t we have all the state time

functions xe : [tst, t] −→ S̄e of our IS; in M t
J,t we can consider all the occurrence

times tsj(−), taj (−), toj (−) : [tst, t] −→ [tst, tend] of each interaction j ∈ J ; finally,
in Mn

J,t we have the neighbourhood Nj(−) : [tst, t] −→ {N | N ⊆ E} of j ∈ J as
function of time up to t.

Even if it is natural to consider in the global state space all the possible paths
of independent variables we can consider in our IS model, in the mathematical def-
inition of the GEP Def. 2 we will see why this is important to achieve a greater
generality and flexibility in defining from what the adaptation property must de-
pend on. The intuitive idea preliminary expressed in the global space M̄P,J,t is
that a population P can adapt by changing in time its proper state variables, or
its activations, exchanged goods (and hence its cause-effect relations), occurrence
times or even neighbourhoods where interactions j ∈ J take information they need
to run. We simply use the same symbols but omitting the subscripts P and J
(e.g. M̄t, S̄, M̄

s
t , etc.) if P = E and J = I.

The idea to consider only the time interval [tst, t] up to t, allows us to mathemat-
ically define that the system is better adapted at time t than at time s, and hence
to distinguish between an improving dynamic and an emergent pattern, which is a
best possible global state.

On the basis of what we said above, we can assume to have a probability space
(Ωg,Fg, P g) (the superscript “g” stands for global) and three random processes

X : Ωg × [tst, tend] −→ S̄

T : Ωg × I × [tst, tend] −→ [tst, tend]
3 (2.4)

N : Ωg × I × [tst, tend] −→ {N | N ⊆ E}

representing resp. the possible state maps of each interacting entity e ∈ E (includ-
ing activations, goods and proper state variables), the possible occurrence times,
and the neighbourhood of each interaction i ∈ I. In other words, for any fixed
elementary event w ∈ Ωg, if we replace everywhere the state map xe(t) ∈ S̄e, the
occurrence times tsi(t), t

a
i (t), t

o
i (t) ∈ [tst, tend], and the neighborhoods Ni(t) ⊆ E

resp. with the time functions X(w)(t)e := X(ω, t)e ∈ S̄e, T
s
i (ω)(t) := T (ω, i, t)1,

T a
i (ω)(t) := T (ω, i, t)2, T o

i (ω)(t) := T (ω, i, t)3, and N(ω, i, t) ⊆ E, then all the
conditions in the definition of IS are satisfied. For example, X(w)(t)e satisfies the
evolution equation whenever e is a patient fulfilling the assumptions of [18, (EE)].

The process X = X(ω, t)e is formally a function of three variables ω ∈ Ωg,
t ∈ [tst, tend] and e ∈ E, but we use flexible notations for the corresponding partial
functions when one or more of these variables are fixed. For example, Xe(t) : ω ∈
Ωg 7→ X(ω)(t)e ∈ S̄e is the random state variable of the entity e ∈ P at time
t ∈ [tst, tend]. Similar notations are also used for the processes T and N .

Choosing a space M̄ s
P,t which contains only constant state maps, we are equiv-

alently considering the adaptation as occurring in a subspace (e.g. a manifold) of
S̄P =

∏
e∈P S̄e; this is what we will examine both in Sec. 6 and in Sec. 7 below. On
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the contrary, an example of IS where the time state function X(ω)(−) ∈ M̄ s
P,tend

is more important than the value itself X(ω)(t)e ∈ S̄e is in the intelligent inter-
pretation of a given text, let us say a clinical note, where we want to count how
much frequently a given disease e is cited in the text: X(ω)(t1)e, . . . , X(ω)(tN )e.
In this example, the variable t represents the passing time while a given “user ω”
is reading the text. If we consider only t1, . . . , tN ≤ t, then X(ω)(−)e|[tst,t] can be
used to represent the amount of information the user ω is interpreting in the text
up to the reading time t.

In the following, we also always assume that the global state space M̄P,J,t is
chosen so that (

Xe(ω)|[tst,t]
)
e∈P ∈ M̄ s

P,t(
Ti(ω)|[tst,t]

)
i∈J

∈ M t
J,t ∀ω ∈ Ωg ∀t ∈ [tst, tend] (2.5)(

Ni(ω)|[tst,t]
)
i∈J

∈ Mn
J,t

for all populations P ⊆ E and all families of interactions J ⊆ I.
Finally, using X(ω)(t)e ∈ S̄e, we can also define the random processes of activa-

tion state and goods for each interaction i ∈ I:

ACe
i (ω)(t) := X(ω)(t)e,1,i

Γi(ω)(t) := X(ω)(t)pr(i),2,i,

so that ACe
i (t) : Ω

g −→ [0, 1] and Γi(t) : Ω
g −→ Ri.

3. Intuitive description of the generalized evolution principle

We start with an intuitive description of the GEP and with some thoughts to
understand what we have to define in a precise mathematical language.

In an IS, we can have several populations of interacting entities. Since only
some of these populations have to be described as adapting, we have to talk of the
adaptation of a given subset (=: population) of interacting entities. This yields to
a more general notion than simply talking of an entire “complex adaptive IS”.

Therefore, in an adaptation process, we need to identify an adapting population
P of interacting entities, P ⊆ E, and a family of interactions IP ⊆ I performed by
the population P and representing how P is going to decreases costs and stabilize
the adaptation process through a suitable diversification of its goods. Interactions
in IP are called adaptive interactions.
In the following definition, we specify what kind of interactions we have to consider:

Definition 1. Let P ⊆ E, we say that IP ⊆ I is a family of interactions of (the
population) P if at least one agent of each interaction i ∈ IP is a member of the
population P:

∀i ∈ IP ∃a ∈ ag(i) ∩ P.

We now continue the intuitive motivations and description of the GEP.
Note explicitly that not necessarily interactions of IP act on entities of the pop-

ulation P, i.e. not always pa(i) ∈ P if i ∈ IP . This opens the possibility that the
population adapts by acting on external entities and, only after a suitable chain of
cause-effect related interactions, this causes a change in the state of P.

As we will see more precisely below, the adaptation process changes functions
state XP :=

(
Xe|[tst,s]

)
e∈P of the population P, or occurrence times TP(s) :=
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Ti|[tst,s]

)
i∈IP

or neighborhoods NP(s) :=
(
Ni|[tst,s]

)
i∈IP

of its adaptive interac-

tions at time s to better values at time t, where unification and diversification are
improved, i.e. costs are lowered and goods are resiliently distributed. We therefore
precisely define when it happens that at time t the population P is better adapted
than at time s. A particular case will be when at time t the population is at one
of the best possible states, which usually corresponds to a steady or an equilibrium
state and hence to an emergent pattern, even if, in general, not necessarily an emer-
gent pattern can be really attained as actual state.
In the following, we use the notation for the global state

YP(ω)|[tst,t] :=
((

Xe(ω)|[tst,t]
)
e∈P ,

(
Ti(ω)|[tst,t]

)
i∈IP

,
(
Ni(ω)|[tst,t]

)
i∈IP

)
, (3.1)

for ω ∈ Ωg and t ∈ [tst, tend]. Note that YP(ω)|[tst,t] ∈ M̄P,IP ,t ⊆ M̄P,IP because of
(2.5).

Together with the family of interactions IP , for each global state y ∈ M̄P,IP , we
have to identify a function

Cy : P −→ Rk
≥0 ∀y ∈: M̄P,IP (3.2)

defined on the population P and called unification costs causing IP at the state y:
an adaptive population P reacts with the interactions IP to an increase in these
costs Cy = (C1

y , . . . , C
k
y ) ∈ Rk

≥0 by changing the global state y and trying to decrease

each cost Cj
y , j = 1, . . . , k. The interactions i ∈ IP that allow a decreasing of each

component of the cost function represent the unification processes. Therefore, we
are going to define when P is adaptive with respect to a given cost function C
and a family of interactions IP . Of course, a population P can be adaptive with
respect to several cost functions and families of interactions. Note that since the
cost function Cy depends on the global state space y ∈ M̄P,IP ,t (the union in (2.3)
is actually a disjoint one), we can also consider costs depending on the activations
or proper state variables of e ∈ P, or on goods, occurrence times or neighbourhoods
of interactions i ∈ IP , or even on time t.

In general, the adaptation of the population P does not occur by changing the
state of a single entity e ∈ P but of several of them. For this reason, in most cases
Cy is actually evaluated by averaging costs of the same type undergone by each
interacting entity. The probability we use to average these costs is defined on the
population P, so that we can talk of costs paid by the population P with respect
to this probability. In general, this probability also depends on the global state
y ∈ M̄P,IP : think e.g. at the following examples:

1) y = (y1, . . . , yn) ∈ Rn are the frequencies yk ∈ R of each of n words in an
evolving language. If the language is a CAS, these frequencies are distributed
following a power law, and the average values of the costs in using this language
depends on these frequencies, giving higher weights to more used words, see
Sec. 7.

2) y = (x, r) ∈ R2n × Rn
≥ are locations xj ∈ R2 and rents rj ∈ R≥0 of j = 1, . . . , n

companies producing suitable commodities, and the costs of these companies
are averaged depending on both locations and rents, e.g. giving higher weights
to more central and expansive locations, see Sec. 7.

3) y is the degree of attention (i.e. the activation in the language of IS) that each
lecturer ω is giving to each part of speech in a given clinical note during its
reading. The most adapted readings we are interested to are those where we
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have a probability which are proportional to the degree of attention given to
medical terms, and hence to a lower value of the related average costs.

Therefore, before talking of an adaptation process, for each global state y ∈ M̄P,IP

and for each cost Cj
y , we also need to identify a probability P j

y on P:

P j
y is a probability on P ∀y ∈ M̄P,IP ∀j = 1, . . . , k.

It is with respect to P j
y that we have to evaluate the expected value of the cost

function Cj
y , and it is this expected value, and not the single costs experienced by

each e ∈ P, that have to be decreased in unification interactions. The probability
P j
y is called probability to average the unification cost Cj

y .
We therefore define the unification “forces” at the state y by

U j
P(y) := −Ej

y

[
Cj

y

]
∀y ∈ M̄P,IP ∀j = 1, . . . , k, (3.3)

where the expected value Ej
y[−] is computed using P j

y . The minus sign in (3.3)
allows one to say that these forces are greater when the average costs are lower.
For example, if P = {e1, . . . , eN} is finite, then

U j
P(y) = −

∑
e∈P

P j
y (e) · Cj

y(e). (3.4)

Similarly, we can define the unification forces for the event ω ∈ Ωg at time t ∈
[tst, tend] by

U j
P(ω, t) := U j

P(YP(ω)|[tst,t]). (3.5)

Therefore, if the unification interactions allows the system to pass from the global
state YP(ω)|[tst,s] to the better state YP(ω)|[tst,t], this can be expressed with

U j
P(ω, t) ≥ U j

P(ω, s) ∀j = 1, . . . , k. (3.6)

In addition, the condition that ȳ ∈ M̄P,IP is the best global state from the point of
view of costs, can be expressed with

U j
P(ȳ) ≥ U j

P(ω, t) ∀ω ∈ Ωg ∀t ∈ [tst, tend]∀j = 1, . . . , k. (3.7)

The adaptive interactions i ∈ IP also realize the diversification to a decreasing
of Cy, and hence to stabilize this declining of costs. We measure the diversifica-
tion “forces” DIP (γ) with the information entropy of the fluxes of goods γi ∈ Ri

extracted by each population interaction i ∈ IP from its resource space Ri, and
exchanged from agents to patients through propagators, see [18] and [12, 6] for a
similar point of view. An intuitive way to motivate this idea is to say that the more
the population is sharing its goods/resources/information the more it is adapting.
See also Sec. 4 below for the relationships between GEP and different approaches
in measuring information flows.

From what space these goods γ = (γi)i∈IP are taken from? If x ∈ M̄ s
P,t is a state

map of our IS, then γx,i := x(−)pr(i),i,2 : [tst, t] −→ Ri are the corresponding goods
of i ∈ I as a function of time (up to t). It suffices to consider the family (γx,i)i∈IP

;

e.g. if IP = {i1, . . . , id} is finite, then (γx,i)i∈IP
= (γx,i1 , . . . , γx,id) considers all

the goods extracted by each interaction in the given order. The spaces we need to
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consider are therefore

RP,t :=
{
(γx,i)i∈IP

| x ∈ M̄ s
P,t

}
RP :=

⋃
t∈[tst,tend]

RP,t. (3.8)

We therefore need to finally identify a probability Qγ defined on IP to evaluate
the corresponding forces of diversification DIP (γ) and DIP (ω, t) as

Qγ is a probability on IP ∀γ ∈ RP (3.9)

DIP (γ) := Entropy (Qγ) (3.10)

DIP (ω, t) := DIP

((
Γi(ω)|[tst,t]

)
i∈IP

)
∀ω ∈ Ωg ∀t ∈ [tst, tend]. (3.11)

The probability Qγ is called diversification probability. For example, if IP =
{i1, . . . , id} is finite, then

DIP (γ) = −
∑
i∈IP

Qγ(i) · log2 Qγ(i). (3.12)

Note that, in general, the diversification forces depend on the whole history npr(i) xt

of the state of the neighborhood of the propagator of i ∈ IP , because, e.g. for the
case of DIP (ω, t), the state of goods Γi(t)(ω) satisfy the evolution equation [18,
(EE)], see also [18, Rem. 1.(e)]. Therefore, this neighborhood can include the
influence of entities which are external to P. Similarly, the propagator of i not
necessarily belongs to P, so that the diversification of resources can also involve
external entities.

The second important condition of the GEP states that in the sample ω ∈ Ωg

diversification forces are greater at time t than at time s if

DIP (ω, t) ≥ DIP (ω, s). (3.13)

As above, the condition that the global state of goods γ̄ ∈ RP is the best from the
point of view of diversification forces can be stated asking that

DIP (γ̄) ≥ DIP (ω, t) ∀ω ∈ Ωg ∀t ∈ [tst, tend]. (3.14)

For example, assume that we have two families of simultaneous independent in-
teractions JP , KP for the probability Q(γ) (e.g. because there is no cause-effect
relation between j ∈ JP and k ∈ KP). Then the diversifications DJP (ω, t) :=

DJP

((
Γi(ω)|[tst,t]

)
i∈JP

)
and DKP (ω, t) := DKP

((
Γi(ω)|[tst,t]

)
i∈KP

)
, thanks to

the logarithm in (3.9), will contribute additively DIP (ω, t) = DJP (ω, t)+DKP (ω, t)
at increasing the diversification of the population P.

In the GEP, we ask both (3.6) and (3.13) or both (3.7) and (3.14) (but where γ̄
are the goods already included in the global state ȳ), see below Def. 2.

Note that not necessarily the maximization (5.4) of diversification forcesDIP (γ) =
Entropy (Qγ) implies a uniform distribution for Qγ : indeed, this holds only if the
goods γ ∈ RP allow for all possible probabilities on IP (see also Thm. 3 below, and
its assumption (6.2)).

More generally, one may be interested in locally maximizing some functional
F (U1

P(x), . . . , U
k
P(x), DIP , t) only, instead of the strong condition to maximize in-

dependently all the adaptation forces U1
P(x), . . . , U

k
P(x), DIP . For example, this
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happens in Zipf-Mandelbrot law, where F (U,D) = U
D , see Thm. 3 below. In this

case, we say that the GEP is satisfied along the functional F .

4. Generalized evolution principle, Shannon entropy, out of
equilibrium systems and second law of thermodynamics

We recall that, in information theory, if two different messages are extracted from
the same probability distribution, then they are undistinguishable from the point of
view of information entropy. Actually, it is not correct to talk of Shannon entropy of
single messages, because this notion can be applied only to probability distributions
(and hence, e.g., to random variable). This is frequently summarized saying that
entropy does not depend on the meaning of messages but only on their probability
distribution. On the contrary, if we have two messages, and the former at time t (let
us say “to be or not to be”) exchanges greater fluxes of goods with the population
P than the latter (e.g. “nttb e obt ooo e r”) at time s, then inequality (3.13)
could be interpreted saying that the message exchanged at t is more meaningful
for P than the message exchanged at time s. Therefore, the GEP has a different
meaning than the simple Shannon entropy, exactly because it involves interactions
and their propagators, and hence the cause-effect structure of the considered IS.
This is ultimately due to the fact that we are not only talking of Shannon entropy
of arbitrary random variables or time series, but of goods exchanged from agents
to patients in a polyadic cause-effect relationships, see [18, Sec. 3.4.1]. In fact, in
every IS, the cause-effect link is expressed by activation and occurrence times, see
[18, (CE)] and [18, (SA)]. Moreover, propagators are themselves interacting entities,
and hence goods can represent fluxes of any form between agents and patients, see
the long list of examples in [18], examples in Sec. 1 above, and Sec. 6 below, where
goods are probabilities, or Sec. 7.3.2 where goods are exchanged commodities. In
other words, in order that the GEP holds in a validated IS we have to satisfy severe
constraints, because we have to respect the idea of fluxes of goods exchanged in a
polyadic relationships between agents and patients.

For example, the GEP can be used to distinguish the importance of different
messages/states (thought of as interacting entities, and not as random variables)
for a given population P. After all, the intuitive difference between a meaning-
ful/readable message and a completely random/unreadable one, is exactly that
the former is able to send us signals (propagators) that we are able to interpret
(goods), whereas random variables can be identified with their probability distri-
bution, which are more unintelligible for our brain.

In our opinion, this gives elements to solve the critiques expressed by [22] in
using transfer entropies in a mechanistic interpretation as information flow.

Similarly, it is also important to understand the differences between GEP and
the decreasing of entropy for out of equilibrium systems. Indeed, it is well-known,
see e.g. [30], that this type of systems constantly make efforts to expel waste having
a high level of entropy, and this allows them to keep a lower level of global entropy.
Therefore, this seems to contradict the GEP, where the diversification forces, re-
lated to the entropy of exchanged goods, have to be increased. However, these
wastes have a great level of entropy but, exactly because they are expelled, do not
have stable interactions relating their agents with patients remaining in the system.
This decreasing of entropy is therefore completely different from the increasing of



12 PAOLO GIORDANO

diversification: in the latter, the system adapts if it strives to keep these exchanged
goods and the information/diversification they represent.

Finally, the GEP is also very different from the second principle of thermody-
namics, because we are not considering the whole entropy of an isolated system
but, on the contrary, only those related to the exchanged goods of the interactions
i ∈ IP that aim at decreasing the average cost function C. This costs essentially
implies that the system is necessarily not isolated. Similar considerations, essen-
tially based on the remark that in the GEP we do not calculate the entropy of the
whole system, can be repeated for nonadditive entropic functionals, see e.g. [40]
and references therein.

All these differences are even more meaningful if the GEP is satisfied only along
some functional F .

5. Mathematical definition of the generalized evolution principle

The previous motivations justify the following

Definition 2 (Generalized evolution principle, CAS). Let I be an IS, s, t ∈
[tst, tend] and P ⊆ E. Then, we say that in the sample ω ∈ Ωg at time t the
population P is better adapted than at time s (with respect to IP ,

(
P j
y

)
j,y

,
(
Cj

y

)
j,y

,

(Qγ)γ , in the global space M̄P,IP ; briefly: P is a CAS or that P satisfies the GEP)

if

(i) IP is a family of interactions of P called adaptive interactions.
(ii) P j

y is a probability on the population P for each j = 1, . . . , k and each y ∈
M̄P,IP . The probability P j

y is called probability to average the j−th cost at
the state y.

(iii) Cj
y : P −→ R≥0 is a measurable function with respect to P j

y for each y ∈
M̄P,IP and j = 1, . . . , k. Cy = (C1

y , . . . , C
k
y ) is called unification cost function

at y.
(iv) Qγ is a probability on IP for each γ ∈ RP (see (3.8)) called diversification

probability.
(v) We have

U j
P(ω, t) ≥ U j

P(ω, s) ∀j = 1, . . . , k, (5.1)

DIP (ω, t) ≥ DIP (ω, s), (5.2)

where unification forces U j
P(ω, t) are defined by (3.5), and diversification

forces DIP are defined by (3.9).
(vi) If F : Rk+2 −→ R, we say that along the functional F , in the sample ω ∈ Ωg,

at time t the population P is better adapted than at time s if

F (U1
P(ω, t), . . . , U

k
P(ω, t), DIP (ω, t), t) ≥ F (U1

P(ω, s), . . . , U
k
P(ω, s), DIP (ω, s), s).

We also say that the state ȳ = (x, t̄, N) ∈ M̄P,IP (see (2.1)) is an emergent pattern
for P if

U j
P(ȳ) ≥ U j

P(ω, s) ∀j = 1, . . . , k, (5.3)

DIP

(
(γx,i)i∈IP

)
≥ DIP (ω, s) (5.4)
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for all ω ∈ Ωg and all times s ∈ [tst, tend]. We recall that x ∈ M̄ s
P,t and hence

(γx,i)i∈IP
are the goods included in the global state ȳ = (x, t̄, N) ∈ M̄P,IP . Simi-

larly to (vi), we can define that ȳ is an emergent pattern for P along a functional
F .

The latter conditions (5.3) and (5.4) can hold even if ȳ is a global state which
is not reached by the system, i.e. the equality ȳ = YP(ω̄)|[tst,t] never holds for
any ω̄ e any t. In fact, we may have a step from a state YP(ω)|[tst,s] to a better
state YP(ω)|[tst,t] even if there does not exist a best possible state, i.e. an emergent
pattern. An intuitive example that seems to satisfy this property may come from
Darwinian evolution. Think at giraffes and their elongation of neck: the cost are
related to the probability of finding leaves to eat; we have at least two interacting
entities: giraffes and trees, but only one is adapting with respect to the cost of
being hungry; the population interactions of the force of diversification allowed
some giraffes to have a genetic code that causes a longer neck. It seems that there
is not a maximum length of neck minimizing this cost, even if such a maximum is
reached due to the increasing of other costs.

It is clear that a very general case, even if conceptually it cannot exhaust all the
possibilities, is when the cost function C depends only on the state XP(t) and not
on (TP(t), NP(t)). This is an implicit assumption we will consider in the rest of the
paper.

If the cost function Cy ≡ Cy(e) does not depend on the entity e ∈ P nor on
the global state y, and ȳ is an emergent pattern, the GEP reduces to the classical
entropy maximization principle for the family of probabilities (Qy)y. On the other

hand, if we trivialize all the interactions i ∈ IP by choosing constant resources
(deterministic extraction of goods), then the population is adapting at an emergent
pattern ȳ if it minimizes the expected value of the cost function Cȳ. Therefore, the
GEP includes both the entropy maximization principle and classical minimization
problems of the cost function y ∈ M̄P,IP 7→ Cj

y if Cj
y is deterministic with respect

to the probability P j
y .

Because the expected costs Ej
y[C

j
y ], j = 1, . . . , k, in (3.3) are calculated with

a probability distribution over the population P, we can interpret the unification
forces U j

P(y) = −Ej
y(C

j
y), j = 1, . . . , k, as proportional to a quantification of suit-

able common goods for the population P. As a consequence of the maximization
properties of Shannon’s entropy, the diversification forcesDIP (γ) can be interpreted
as a gauge of long-term changes (with respect to the given cost function C).

Note that an emergent patter ȳ = (x, t̄, N) results into probabilities P j
ȳ on the

population P and Qγ̄ on adaptive interactions IP , where γ̄ = (γx,i)i∈IP
are the

goods included in the global state ȳ. Starting from these probability distributions,
and depending on the problem, we can then consider particular realizations e ∈ P
and i ∈ IP , like the mode (i.e. where the probabilities assume highest value) in
frequently used AI algorithms, see e.g. [5]; in this case, e represents the interacting

entity where the weight P j
ȳ (e) to evaluate the average unification cost Cj

ȳ is highest,
whereas i represent the adaptive interaction which contributes more to the diver-
sification DIP (γ̄). We can clearly have more that one of these e and i in case of
multimodal probabilities.

Is it a classical complicated system, such as a spring-driven clock, a CAS with
respect to Def. 2? We can think this clock as a continuous dynamical system (maybe
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with suitable generalized functions to represent the discrete ticking of the hands of
the clock), so that it is surely an IS, see [18, Sec. 4.1]. This IS can be considered
having simple cause-effect interactions starting from the spring and arriving at
clock’s hands. The natural cost function is hence the distance between the perfect
speed of each hand, e.g. 1 Hz, and its actual eventually lower speed. The natural
main resource is the potential energy stored in the spring. Therefore, the cost
are eventually increasing and the diversification forces always constant (in a model
with deterministic use of resources) or decreasing (stochastic use of resources with
a decreasing variance), and indeed also intuitively the system is not adapting. On
the other hand, note that the system given by the spring clock + a winding person
is a CAS.

Note that this mathematical formalization of the GEP has been possible only
thanks to the language we introduced for IS in [18]: interactions as cause-effect
relation between agents and patients and carried by propagators, state map and
state space, space of resources and goods; all these concepts are used in the previous
definition.

We close this section by summarizing the steps we need to realize in order to
model a CAS satisfying the GEP.

5.1. General steps to model a complex adaptive system. For the sake of
clarity, we list here the general procedure we have to follow in order to model a
system which obeys the GEP. The process presented here is clearly not linear and
presents several cause-effect polyadic feedback interactions, i.e. it can be thought
of as a kind of meta-IS.

1. We clearly have to start by defining an IS, or another type of model embedded
as an IS. Therefore, in general we need (see [18, Tables 1, 2, 3]): interacting
entities, interactions, activations, proper state, goods and resources, occurrence
times, neighbourhoods and transition functions, even if in several particular
models some of these notions are trivial.

2. Understand what are good global states M̄ s
P,t, M

t
J,t, M

n
J,t, see Sec. 6 and Sec. 7

for examples and the next point in this list.
3. We can try to define the global probability space Ωg as explained in Sec. 2 above.

However, an equivalent approach is to understand only the probability distribu-
tions of the processes X, T , N of (2.4) and set Ωg := M̄P,IP with probability
P g given by the joint probabilities of X, T , N . These processes X, T , N are
then represented by the projections of each M̄P,IP ,t resp. on M̄ s

P,t, M̄
t
IP ,t and

M̄n
IP ,t. Note that knowing the distributions of X, T , N means to mathematically

solves the considered IS, see [18, Sec. 2.8], by solving or simulating the evolution
equations and understanding (if needed) the dynamics of occurrence times and
neighbourhoods.

4. Understand what are the adaptive interactions IP , i.e. the interactions of the
system that dynamically improve the state of the system by following the GEP.

5. Understand what are the unification costs
(
Cj

y

)
j,y

causing unification forces.

These are what the system tries to avoid as far as possible using adapting inter-
actions IP .

6. Define probabilities on the population P to average unification costs
(
P j
y

)
j,y

,

e.g. giving a greater weight P j
y (e) at global states y and entities e ∈ P which are

intuitively paying greater costs.



A MATHEMATICAL DEFINITION OF COMPLEX ADAPTIVE SYSTEMS 15

7. Define diversification probabilities (Qγ)γ on the adaptive interactions IP ; these

are related to the goods exchanged during the dynamics in order to distribute
resources and decrease the expected value of costs. Therefore, Qγ(i) will be
higher for important adapting interactions i ∈ IP .

8. Assume to have an emergent pattern ȳ ∈ M̄P,IP , at least along a given func-
tional F , and derive necessary conditions, or consider simulations where unifi-
cation U j

P(ω, t) and diversification DIP (ω, t) increases, see Sec. 6 and Sec. 7 for
examples.

9. Validate the model by comparing, in the strongest possible way, emergent pat-
terns predicted from your model with configurations of systems that are clearly
independent from the model itself, e.g. real-world systems.

We now prove, in a more abstract setting and under mild conditions, that in every
CAS the diversification probabilities Qγ satisfy a power law when the population

is at an emergent pattern along the functional F (U,D) = U
D and if the partial

derivative ∂UP(x)/∂xk of the unification forces is of logarithmic type in k.

6. Power law distribution following Mandelbrot’s idea

It is well known that power law distributions are frequently associated to CAS,
and hence appear often both in nature and in social systems, see e.g. [38, 2, 16] and
references therein.

Using the language of IS theory, this section follows and generalizes the classical
ideas of B. Mandelbrot presented in [25, 26]; see also [27] and references therein for
a deep analysis of this kind of model in linguistics.

We imagine to have an IS and a population P whose state is described by vectors
x ∈ S̄P ⊆ Rd. The systems has to be thought of as a CAS that changes its state so
as to decrease a suitable cost function EP : S̄P −→ R>0 and, at the same time, to
increase a corresponding information entropy:

DIP (x) = −
d∑

k=1

xk · log2 xk > 0 ∀x ∈ S̄P . (6.1)

For example, similarly to [25, 26, 27], we can think at d classes of words of an
evolving language: each class k = 1, . . . , d (sometimes called rank) representing all
the words whose evolutionary state is described by comparable frequencies xk > 0 of

use,
∑d

k=1 xk = 1. Using the language of IS theory, we can think to have interacting

entities E = {1, . . . , d} = P and d interactions of the type ik : k
(x′

k,xk),evo−−−−−−−−−−→ k,
for each k ∈ E representing the evolution of the k-th interacting entities from
a previous state x′

k to the new one xk. For simplicity, we can directly say that
xk = γik(t) are the goods of ik, and all the other elements of the IS, e.g. occurrence
times and transition functions fk, are trivial. The adapting interactions are hence
IP = {i1, . . . , id}, and the diversification probabilities are Qx(ik) = xk for all
k = 1, . . . , d (compare (6.1) and (3.12)). We are only interested to the global state
space M̄P,IP = S̄P ⊆ Rd because all the other ones are trivial. In our opinion this
type of models are highly idealized, and e.g. this stress on evolving IS exclude cases
such as a given novel of a single author, or specialized subsets of a given language.

In general, i.e. not just thinking at the example of an evolving language, we
assume that the global state S̄P is given by all the possible probabilities x =
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(x1, . . . , xd):

S̄P =

{
x ∈ Rd

>0 |
d∑

k=1

xk = 1

}
. (6.2)

We consider several cases:

(i) The system adapts (e.g. it evolves) following the GEP with unification forces
UP(x) = −EP(x), diversification forcesDIP . The state y ∈ S̄P is an emergent
pattern (not necessarily reached by the real dynamics of the system).

(ii) The system follows the GEP only along the functional F (U,D) = U
D , with

UP(x) = −EP(x). In other words, it evolves so as to minimize the ratio EP
DIP

at the point y ∈ S̄P , at least locally around y:

∀x ∈ S̄P ∩Br(y) : 0 <
EP(y)

DIP (y)
≤ EP(x)

DIP (x)
,

where Br(y) = {x ∈ Rd | |x− y| < r} is the ball of radius r ∈ R>0.
(iii) In the previous case, we further assume that the partial derivative of the cost

satisfies
∂EP

∂xk
(y) = α(y) · log2(k + k0(y)) (6.3)

for some functions α, k0 : S̄P −→ R. This is the case considered in linguistic
by Mandelbrot, [25, 26]. We do not need to assume that lower rank corre-
sponds to higher frequency, i.e. qk(x) > qk+1(x), but we prove it. Moreover,
in this classical evolutionary interpretation, it is reasonable to assume that
k0 = k0(y) in (6.3) depends on the state y, so that the two parameters of

Zipf-Mandelbrot law k0(y) and −α(y)
DIP (y)

EP(y) are functionally related through

the adapted state y, as also confirmed by [27].

We have the following

Theorem 3. Let S̄P ⊆ Rd be the global state of an IS, and let y ∈ S̄P . Assume
that S̄P is given by (6.2). Consider the diversification force DIP given by (6.1).
Let UP = −EP ∈ C1(S̄P ,R>0) be the unification force. Then, we have

(i) If the system follows the GEP and y is an emergent pattern, then yk = 1
d is

always a uniform distribution.
(ii) If the system follows the GEP along the functional F (U,D) = U

D and y is an
emergent pattern, then

yk =
1

N(y)
2
−

DIP (y)

EP (y)
· ∂EP
∂xk

(y) ∀k = 1, . . . , d, (6.4)

where N(y) :=
∑d

j=1 2
−

DIP (y)

EP (y)
· ∂EP

∂xj
(y)

is the normalization factor. In partic-

ular, this applies if the system follows the GEP, i.e. the cost EP(y) attains
its minimum and the diversification DIP (y) its maximum.

(iii) If the system follows the GEP along the functional F (U,D) = U
D , and (6.3)

holds for some function k0 ∈ C1(S̄P ,R), then the Zipf-Mandelbrot law holds:

yk =
1

N(y)
· (k + k0(y))

−α(y)·
DIP (y)

EP (y) ∀k = 1, . . . , d,

and we have N(y) =
∑d

j=1 (j + k0(y))
−α(y)·

DIP (y)

EP (y) .
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Proof. We first note that the space S̄P is not an open set and hence, in each one
of the cases (i)-(iii), to compute the constrained minimum state y ∈ SP , we have
to use Lagrange multipliers. In case (i), the functions EP and DIP attain resp. a

minimum and a maximum at y, so that also the quotient EP(y)
DIP (y) is minimal. In all

the cases, we therefore get the existence of λ ∈ R such that for all k = 1, . . . , d

∂k

(
EP

DIP

)
(y) = λ∂k

 d∑
j=1

yj

 = λ, (6.5)

where ∂k := ∂
∂xk

. Recall that, by the method of Lagrange multipliers, λ does not
depend on k. For simplicity, all the functions that will appear in the following are
evaluated at the state y. From (6.5), we have

∂kEP ·DIP + EP ·
∑
j

(
∂kyj · log2 yj + yj

1

yj
log2 e · ∂kyj

)
= λD2

IP .

Thereby

DIP · ∂kEP + EP (log2 yk + log2 e) = λD2
IP ,

and hence

log2 yk = −DIP

EP
∂kEP − log2 e+ λ

D2
IP

EP
,

yk = 2
−

DIP
EP

∂kEP · 1
e
· 2λ

D2
IP

EP . (6.6)

We compute λ
D2

IP
EP

from (6.5):

λ
D2

IP

EP
= ∂k

(
EP

DIP

)
D2

IP

EP
=

DIP

EP
· ∂kEP + log2 yk + log2 e,

so that

e · 2−λ
D2

IP
EP yk = 2

−
DIP
EP

·∂kEP .

Taking the summation for k = 1, . . . , d (and considering that λ does not depend on
k), we obtain

e · 2−λ
D2

IP
EP =

d∑
k=1

2
−

DIP
EP

·∂kEP = N.

From this and (6.6) the claim (ii) follows.
In particular, if the system follows the GEP, then EP attains a constraint min-

imum at y ∈ S̄P . Once again using Lagrange multipliers, we get the existence of
µ ∈ R such that for all k = 1, . . . , d

∂kEP(y) = µ∂k

 d∑
j=1

yj

 = µ.

Therefore, the right hand side of yk in (6.4) does not depend on k and we hence
have a uniform distribution yk = 1

d .
Finally, substituting (6.3) in (6.4) we get the final claim (iii). □
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Examples of cost functions satisfying (6.3) are given by the average value EP(x) =∑d
k=1 ck(x) · pk(x), where (p1(x), . . . , pd(x)) is a probability, and pk(x) = xk.

In the notations of the GEP, we have UP(x) = −EP(x), the unification cost is
Cx(k) = ck(x), and the probabilities to average the cost are Px(k) = pk(x) for each
interacting entity k ∈ P = {1, . . . , d}, see (3.4).

The k-th component ck of the cost is a modeling choice and has to satisfy (6.3).
The classical example for languages is ck(x) = a · logb(k + k0), where a, j0 ∈ R>0.
Usually, b > 1 is the number of letters in an alphabet. Since ck(x) does not depend
on xk, we have ∂kEP(y) = ck(y) =

a
log2 b log2(k + k0), and hence it suffices to set

α := a
log2 b in order to apply (iii) of Thm. 3.

Note the importance of assuming that the function α(y) in (6.3) does not de-
pend on k: otherwise, it would suffice to set αk(x) := ∂kEP(x)/ log2(k + k0(x)) to
trivialize this hypothesis.

Finally note that having more constraints in the global state, e.g.

S̄P =

{
x ∈ Rd

>0 |
d∑

k=1

xk = 1, c(x) = C

}
instead of (6.2), where c(x) = c(x1, . . . , xd) = C ∈ Rn, does not allow to trivially
repeat the proof, and this open the possibility to have different distributions. For
example, in an intelligent interpretation of a clinical note, we can consider a reader
looking for information about cancer first diagnosis. This gives a constraint on the
words of the text, so that the reader would experience lower costs if the words is
related to the information she/he is looking for.

7. Generalizing Von Thünen’s model

Von Thünen’s model, see [42], tries to answer the basic questions of location and
land use theory: “where should a certain activity be located?” and “which activity
should be chosen at a certain location?”. Both questions address the principles
underlying the spatial layout of an economy. Several original assumptions of Von
Thünen’s model can be weakened and generalized by simply using an appropriate
mathematical notations and modeling; later, we will see them in details. Most
important for us is that, in this model, costs and forces of diversification have
simple properties that can be generalized to other CAS. This actually show another
feature of having a common mathematical language for CS: describing a particular
model with the language of IS theory, one can recognize that the obtained results
can be actually generalized and hence potentially applied to several other CS.

In the present section, we explicitly use units of measurement, because this
greatly helps the understanding of the different economic quantities that we are
going to introduce. We will use notations such as

[
¿

m2

]
to denote the 1-dimensional

(totally ordered real vector) space of quantities whose unit of measurement is ¿ per
square meter. Mathematically, it can be identified with the space of polynomials
in the unknowns ¿·m−2.

7.1. Von Thünen’s impedance zones. We need to introduce several quantities
and notations:

1. B ∈ N>0 the number of commodities produced by the considered economy. There
are no a priory assumptions on the type of commodities (e.g. not necessarily of
agricultural type).
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2. For all b = 1, . . . , B, a unit of measurement ub for the commodity b. For example
ub can be ton, or an integer number n ∈ N>0 so that [ub] = R (dimensionless),
or box, etc.

3. xm ∈ R2 is the location of the market m.
4. A ⊆ R2 all possible locations for the companies that produce some commodity

b = 1, . . . , B.
5. yb : A −→

[
ub

m2

]
>0

, yb(x) > 0 is the yield of the commodity b if the company is
located at x ∈ A. The model is not stochastic, so quantities like these can denote
average values. The use of a spatial unit of measurement like m2 is only useful
so as to not use too heavy notations. More appropriate units of production vb,
depending on the commodity b, could be introduced instead of m2 (e.g. it could
be vb = kwh, or vb =

hour
man ).

6. pb(xm) ∈
[
¿

ub

]
>0

price of the commodity b in the market xm per units of b.

7. cb : A −→
[
¿

ub

]
>0

, cb(x) > 0 is the production cost of b at the location x ∈ A

per units of b.
8. j(−, xm) : A −→ [i]≥0, j(x, xm) is the impedance between the location x ∈ A ⊆

R2 and the market xm ∈ R2 measuring the pure transportation costs to move
from x to xm (see also below); the impedance has unit of measurement i (e.g. i
can be i = km, i = hour, i = hour

man , i = ¿, etc.). We do not need any assumption
about existence or non existence of possible routes, neither on the nature of the
transportation, nor on the linearity of j with respect to the distance between
x and xm along the shortest route, not even if we are actually moving goods
from x to xm or vice versa (this is only a useful intuitive interpretation in case
of application in land use theory).

9. Fb : [i]≥0 −→
[
¿

ub

]
>0

, Fb(d) is the transportation cost of the commodity b per

units of b and for any pair of points, (x, xm) ∈ R2 having impedance d ∈ [i]>0.
For example, Fb(d) can be lower if we assume the possibility to use refrigerators
for the transportation of a dairy product b. This modeling assumption includes

the particular case where Fb(d) = F̄b ·d, where F̄b ∈
[
¿

ub·i

]
>0

, i.e. the case where

the transportation cost is proportional to the impedance d. Usually, one assumes
that the transportation cost is increasing with the impedance d:

∀d1, d2 ∈ [i]≥0 : d1 ≤ d2 ⇒ Fb(d1) ≤ Fb(d2). (7.1)

However, we will never use this assumption.
10. kb(−, xm) : A −→

[
¿

m2

]
>0

, kb(x, xm) is the average life cost (everything but

the rent of the company’s location), per m2, of the owner producing b at x and
selling b in the market xm.

We can now introduce the basic quantities of Von Thünen’s model, using both a
specific language of land use theory and a more general one:

Definition 4. The (land) value or locational rent at x ∈ A with respect to the
production of b = 1, . . . , B and the market xm is

Lb(x, xm) := yb(x) · [pb(xm)− cb(x)− Fb (j(x, xm))] ∈
[
¿

m2

]
. (7.2)
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The ideal value/rent for a company located at x with respect to the market located
at xm is

R(x, xm) := max
b=1,...,B

[Lb(x, xm)− kb(x, xm)] ∈
[
¿

m2

]
. (7.3)

From this, we deduce that the life cost must satisfy the constraint

kb(x, xm) < Lb(x, xm) ∀x ∈ A. (7.4)

Moreover, we say that x is a good (location) for (the production of) b if

R(x, xm) = Lb(x, xm)− kb(x, xm), (7.5)

i.e. if the ideal rent R equals the land value Lb minus the life cost kb. Finally, the
impedance boundaries around the sink/market xm are given by

rb(xm) : = inf {j(x, xm) | x ∈ A, x is good for b} ∈ [i]≥0 (7.6)

rb(xm) : = sup {j(x, xm) | x ∈ A, x is good for b} ∈ [i]≥0. (7.7)

Therefore, if a company is located at x, which is a good location for the production
of b, we trivially have that rb(xm) ≤ j(x, xm) ≤ rb(xm), that is the company is
located in the corresponding impedance zone bounded by rb(xm) ≤ rb(xm). Note
that if at least two locations are good for b and have different impedance, the zone
is non trivial, i.e. rb(xm) < rb(xm).

In this setting, only definition (7.2) is really specific of this model of land use.
For an arbitrary IS, we can assume to have a value function Lb : A×A −→ R, a cost
function kb : A × A −→ R satisfying (7.4) and an impedance function j(−, xm) :
A −→ [i]≥0. With these, we can define the quantities R(x, xm) as in (7.3) (the ideal
value for all the indexes b = 1, . . . , B), the property of being a good x for b, as in
(7.5) and the impedance boundaries as in (7.6) and (7.7).

7.2. Disjoint impedance zones. We now want to see under what assumptions
the impedance zones are disjoint, i.e. when rβ(xm) ≤ rβ(xm) ≤ rb(xm) ≤ rb(xm)
if b ̸= β are two different indexes/commodities. We need to hypothesize that the
cost of life kb does not depend on the location x. We will use e.g. the notation
kb ≡ kb(−) ∈

[
¿

m2

]
. In land use theory, this is clearly an assumption which holds

only if A ⊆ R2 is not too large; e.g. it surely does not hold for locations situated
in different countries, with different cost of labor, different climate conditions and
different life costs.

Let b, β = 1, . . . , B, b ̸= β, be two commodities. For simplicity, we omit the
dependence by the market’s location xm. By contradiction, assume that

rβ > rb (7.8)

Definition (7.7) yields the existence of a location x ∈ A which is good for β and
such that rb < j(x) ≤ rβ . Since x is good for β, we have

R(x) = Lβ(x)− kβ = max
b

[Lb(x)− kb] ≥ Lb(x)− kb. (7.9)

Analogously, from (7.6) and rb < j(x) we get the existence of y ∈ A which is good
for b and such that

rb ≤ j(y) < j(x) (7.10)

R(y) = Lb(y)− kb ≥ Lβ(y)− kβ . (7.11)
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How can it happen that x is a good location for β and y is not a good location for
it, even if j(y) < j(x)? To understand this point, we compare the gain (of net land
value) passing from x to y, for an arbitrary commodity β we have:

∆ηβ(x, y) := [Lβ(y)− kβ ]− [Lβ(x)− kβ ] = Lβ(y)− Lβ(x) (7.12)

If we assume ∆ηβ(x, y) ≥ ∆ηb(x, y) and consider (7.12), we get

Lβ(y)
(7.12)
= Lβ(x) + ∆ηβ(x, y) ≥ Lβ(x) + ∆ηb(x, y)

(7.12)
= Lβ(x) + Lb(y)− Lb(x)

≥ Lβ(x) + Lb(y)− Lb(x)− kβ + kβ

(7.9)

≥ Lb(x)− kb + Lb(y)− Lb(x) + kβ

= −kb + Lb(y) + kβ

and hence Lβ(y) − kβ ≥ Lb(y) − kb so that Lβ(y) − kβ = Lb(y) − kb by (7.11).
Therefore, y is a good location both for β and b. We therefore proved that if
∆ηβ(x, y) ≥ ∆ηb(x, y) and the impedance zones of b and β intersect, then Lβ(y)−
kβ = Lb(y)− kb.

We can summarize this arguments with the following

Theorem 5 (J.H. von Thünen). Let us assume that kb does not depend on the
location x ∈ A. Let b, β be two commodities such that for all x, y ∈ A

∆ηβ(x, y) ≥ ∆ηb(x, y) (7.13)

Lβ(y)− kβ ̸= Lb(y)− kb. (7.14)

Then impedance zones of b and β (around the market xm) are disjoint, i.e. rβ ≤
rβ ≤ rb ≤ rb. Therefore, if any pair of different commodities always have different
land values (7.14) and different variations of transportation costs (7.13) (for all x,
y ∈ A), then we can order the commodities so that

rb1 ≤ rb1 ≤ rb2 ≤ rb2 ≤ . . . ≤ rbB ≤ rbB .

The same result holds in any IS where we can define a value function Lb : A −→ R,
a cost kb ∈ R and an impedance function j : A −→ [i]≥0 for each interacting
entities b ∈ P in a finite population, and for the quantities as defined in Def. 4.
Note that the moving of commodities from x ∈ A to the market xm is only an
intuitive interpretation in land use theory, but in more general IS we can also have
the opposite movement.

All this serves to underscores that we can have disjoint impedance zones even if we
do not have an optimized economy, i.e. a complex adaptive economy. Therefore,
this is not a peculiarity of a CAS because we are not minimizing any cost nor
maximizing any diversification force. On the contrary, in the next section, we will
consider what happen when the subpopulation of companies producing the same
commodity adapts following the GEP, i.e. evolves decreasing natural costs in the
most diversified way.

7.3. Von Thünen’s model and the generalized evolution principle. In this
section, we assume that our IS satisfies the GEP, i.e. it is a CAS, and it evolved
into a stationary emergent pattern configuration, where natural costs are minimum
and diversification forces are maximum. For simplicity, we still continue to use a
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language of land use theory, for example assuming to have nb ∈ N>0 companies
producing the commodity b = 1, . . . , B. However, it is clear that exactly the same
deductions apply to any IS where the interacting entities are E = {(a, b) | b =
1, . . . , B, a = 1, . . . , nb} = P and we have a value function Lb : A −→ R and a
cost function kb : A −→ R for all b = 1, . . . , B. We do not actually even need an
impedance function j : A −→ [i]≥0 as above.

7.3.1. Cost minimization. In a non adapted economy, we do not necessarily have
that rents coincide with their ideal values (7.3), e.g. because of ignorance of some
agent with respect to the entire market configuration. For simplicity, in this section
we assume to consider only one market xm, so that all the prices, rents and values
always refer to xm and we will omit this variable. Then, the configuration space of
a generic economy located around the market xm is given by:

(i) A location xa
b ∈ A for each company a = 1, . . . , nb producing the commodity

b = 1, . . . , B. We assume that xa1

b ̸= xa2

b if a1 ̸= a2.

(ii) In each one of these locations, we have a rent rab ∈
[
¿

m2

]
really applied to the

company a producing b at xa
b .

Using these notations, we can model configurations representing a positive cost for
some agent acting as location renter or tenant owning a company. For example the
inequalities

rab < Lb(x
i
b)− kb(x

a
b ) < R(xa

b )

imply

(i) rab < Lb(x
a
b ) − kb(x

a
b ): the location xa

b is rented at a price rab which is less
than the land value (it could be rented at a higher price).

(ii) rab < R(xa
b ): the rent rab is less than the maximum rent that it would be

possible to ask in the location xa
b (at another company producing a different

commodity).

Considering <, = or >, all the possible inequalities are 33 = 27, but several of
them are mathematically impossible, repetitions, or impossible relations due to the
definition of R(x) (see (7.3)). Only the following possible inequalities remain:

Definition 6. The configuration space M = MP,IP of the economies centered
around the market xm is defined by

(x1
b , r

1
b , . . . , x

nb

b , rnb

b )b=1,...,B ∈ M

if and only if for all b = 1, . . . , B and all a = 1, . . . , nb, we have xa
b ∈ A, rab ∈

[
¿

m2

]
,

xa1

b ̸= xa2

b if a1 ̸= a2, and at least one of the following conditions is satisfied

rab = Lb(x
a
b )− kb(x

a
b ) = R(xa

b ) (7.15)

rab = Lb(x
a
b )− kb(x

a
b ) < R(xa

b )

rab < Lb(x
a
b )− kb(x

a
b ) = R(xa

b )

rab < Lb(x
a
b )− kb(x

a
b ) < R(xa

b )

rab > Lb(x
a
b )− kb(x

a
b ) = R(xa

b )

rab = R(xa
b ) > Lb(x

a
b )− kb(x

a
b ) (7.16)

rab > R(xa
b ) > Lb(x

a
b )− kb(x

a
b )

R(xa
b ) > rab > Lb(x

a
b )− kb(x

a
b ).
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We also use the simplified notation (x, r) = (x1
b , r

1
b , . . . , x

nb

b , rnb

b )b=1,...,B to denote a
configuration. We will think at (xa

b , r
a
b ) as two components of the proper state space

of the interacting entity (a, b) ∈ P, i.e. the company a = 1, . . . , nb that produces
the commodity b = 1, . . . , B.

The first one (7.15) of these conditions is called von Thünen configuration. Each
one of these, except the von Thünen one, corresponds to a possible configuration of
an economy where at least one of its agents is paying a cost or is loosing a profit:

Definition 7. Let b = 1, . . . , B, a = 1, . . . , nb and (x1
b , r

1
b , . . . , x

nb

b , rnb

b )b=1,...,B ∈
M , then

(i) The cost paid by the tenant/company a, which produces the commodity b,
is located in xa

b and pays the rent rab is

ct(x
a
b , r

a
b ) :=

{
rab − [Lb(x

a
b )− kb(x

a
b )] if rab > Lb(x

a
b )− kb(x

a
b )

c0t otherwise.

The quantity c0t ≥ 0 represents a minimum non avoidable cost related to the
rent of this location (e.g. administrative cost) and paid by the tenant. We
assume c0t sufficiently small, i.e. satisfying

rab > Lb(x
a
b )− kb(x

a
b ) ⇒ c0t < ct(x

a
b , r

a
b ) (7.17)

for all a, b (note that this implies c0t ≤ ct(x
a
b , r

a
b ), and if c0t = ct(x

a
b , r

a
b ),

then necessarily rab ≤ Lb(x
a
b )− kb(x

a
b )). Clearly, if r

a
b > Lb(x

a
b )− kb(x

a
b ), the

company a is paying a rent rab higher than the company’s gain Lb(x
a
b )−kb(x

a
b ),

and it is hence at a loss.
(ii) The loss of profit of the renter of the location xa

b at rent rab for the production
of the commodity b is

l1r (x
a
b , r

a
b ) :=

{
[Lb(x

a
b )− kb(x

a
b )]− rab if rab < Lb(x

a
b )− kb(x

a
b )

l1r otherwise.

The quantity l1r ≥ 0 represents a minimum non avoidable cost related to the
rent of this location (e.g. some tax or the cost to know the land value Lb(x

a
b )

and the cost of life kb(x
a
b )) and paid by the renter. We assume l1r sufficiently

small, i.e.

rab < Lb(x
a
b )− kb(x

a
b ) ⇒ l1r < l1r (x

a
b , r

a
b ) (7.18)

for all a, b (as above, this yields l1r ≤ l1r (x
a
b , r

a
b ), and if l1r = l1r (x

a
b , r

a
b ), then

rab ≥ Lb(x
a
b ) − kb(x

a
b )). If rab < Lb(x

a
b ) − kb(x

a
b ), the renter is asking a lower

rent rab with respect to the better value Lb(x
a
b )− kb(x

a
b ).

(iii) The loss of profit of the renter of the location xa
b at rent rab with respect to

all the possible commodities is

l2r (x
a
b , r

a
b ) :=

{
R(xa

b )− rab if rab < R(xa
b )

l2r otherwise

The quantity l2r ≥ 0 represents a minimum non avoidable cost related to the
rent of this location (e.g. some tax or the cost to know the ideal rent R(xb

b))
and paid by the renter. We assume l2r sufficiently small, i.e.

rab < R(xa
b ) ⇒ l2r < l2r (x

a
b , r

a
b ) (7.19)
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for all a, b. Again: l2r ≤ l2r (x
a
b , r

a
b ) and if l2r = l2r (x

a
b , r

a
b ), then rab ≥ R(xa

b ).
If rab < R(xa

b ), the renter is asking a rent rab lower that the best possible one
R(xa

b ).

To these costs and losses, we associate the following probabilities and hence ex-
pected costs and losses

Definition 8. Let (x, r) ∈ M , then

(i) The cost of the tenant Ct can be computed as

Ct(x, r) : =

B∑
b=1

nb∑
a=1

pt(x
a
b , r

a
b ) · ct(xa

b , r
a
b ), (7.20)

where (pt(x
a
b , r

a
b ))a,b is any fixed non-degenerate probability distribution,

i.e. pt(x
a
b , r

a
b ) > 0 for all a, b. Note that Ct(x, r) ≥ c0t because c0t ≤ ct(x

a
b , r

a
b )

for all a, b, and that the probability (pt(x
a
b , r

a
b ))a,b may depend on the cost

Ct. Moreover, because of (7.17) and the non-degenerateness condition, if
Ct(x, r) = c0t, then ct(x

a
b , r

a
b ) = c0t for all a, b.

(ii) Let j = 1, 2, the losses of profits of the renter can be computed as

Lj
r(x, r) : =

B∑
b=1

nb∑
a=1

pjr(x
a
b , r

a
b ) · ljr (xa

b , r
a
b ), (7.21)

where
(
pjr(x

a
b , r

a
b )
)
a,b

, for j = 1, 2, are any fixed non-degenerate probability

distribution, i.e. pjr(x
a
b , r

a
b ) > 0 for all a, b. As above Lj

r(x, r) ≥ ljr, and if
Lj
r(x, r) = ljr, then ljr (x

a
b , r

a
b ) = ljr for all a, b, because of (7.18) and (7.19)

and the non-degenerateness condition.

Compare (7.20), (7.21) with (3.4) to recognize that P t
(x,r)(a, b) := pt(x

a
b , r

a
b ) and

P j,r
(x,r)(a, b) := pjr(x

a
b , r

a
b ) are the probabilities to average the considered unification

costs.
These expected costs and losses are minimum at a von Thünen configuration: rab =
Lb(x

a
b ) − kb(x

a
b ) = R(xa

b ) for all a, b. Vice versa, when a given configuration
(x1

b , r
1
b , . . . , x

nb

b , rnb

b )b=1,...,B ∈ M minimize costs and losses, is it a von Thünen
configuration? In general this is false: let A = {y1, y2}, B = 2, with

L1(yj)− k1(yj) = 1
¿

m2

L2(yj)− k2(yj) = 2
¿

m2
.

That is the commodity b1 = 1 has a net land value equal to 1 ¿m2 in both locations
y1, y2, whereas the commodity b2 = 2 has a double net land value in both locations.
Assume, by contradiction, that (x1

1, r
1
1, x

2
2, r

2
2) ∈ M minimizes costs and losses. We

would have

ct(x
1
1, r

1
1) = c0t ⇐⇒ r11 ≤ L1(x

1
1)− k1(x

1
1) = 1

¿

m2

l1r(x
1
1, r

1
1) = l1r ⇐⇒ r11 ≥ L1(x

1
1)− k1(x

1
1) = 1

¿

m2

l2r(x
1
1, r

1
1) = l2r ⇐⇒ r11 ≥ R(x1

1) = 2
¿

m2
. (7.22)
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This contradiction proves that, in this system, no configuration minimizes costs
and losses to the minimum values c0t, l1r, l2r. In other words, this system does
not allow for a von Thünen configuration. The problem here is that the system is
lacking in possible configurations. This justifies the main assumption (7.23) of the
following

Theorem 9. If any company can be situated in a good location:

∀b = 1, . . . , B ∀a = 1, . . . , nb ∃y ∈ A : y is good for b, (7.23)

then a given configuration (x, r) ∈ M minimizes the average costs and losses

Ct(x, r) ≤ Ct(y, s)

L1
r(x, r) ≤ L1

r(y, s) ∀(y, s) ∈ M (7.24)

L2
r(x, r) ≤ L2

r(y, s)

if and only if (x, r) is a von Thünen configuration, i.e.

rab = Lb(x
a
b )− kb(x

a
b ) = R(xa

b ) ∀a, b.

The same result holds in any IS having a value function Lb : A −→ R and a cost
function kb : A −→ R for each interacting entities (a, b) ∈ P in a finite population,
and for the quantities as defined in Def. 8.

Proof. If (x, r) is a von Thünen configuration, then Ct(x, r) = c0t ≤ Ct(y, s),
L1
r (x, r) = l1r ≤ L1

r (y, s), L
2
r (x, r) = l2r ≤ L2

r (y, s) by Def. 7, so that (7.24) hold.
Vice versa, using assumption (7.23), we can construct a von Thünen configuration
(y, s) by choosing a good location for every commodity:

∀b, a∃yab ∈ A : R(yab ) = Lb(y
a
b )− kb(y

a
b ).

But (7.24) yields

c0t ≤ Ct(x, r) ≤ Ct(y, s) = c0t

l1r ≤ L1
r (x, r) ≤ L1

r (y, s) = l1r

l2r ≤ L2
r (x, r) ≤ L2

r (y, s) = l2r.

Therefore, rab = Lb(x
a
b )− kb(x

a
b ) ≥ R(xa

b ) because of Def. 7 and Def. 8. Therefore,
also (x, r) is necessarily a von Thünen configuration by (7.15). □

Clearly, assumption (7.23) is not completely realistic in real-world economies.
Once again, this underscores that what cost functions to consider in this kind of
economic models, is a modeling/philosophical/political choice. Depending on our
political choices, other types of costs can be considered, such as: environmental
costs, energy consumption, loss of profits, state’s costs due to loss of job places
because of transfer of branches, company’s stock price, etc. One can also argue that
also the maximization of profit is unrealistic because it implies the full knowledge
of the entire system and unrealistic tendencies, such as that of trying the renting
of centered locations to jewelries as soon as the demand of jewels increases.

In another political approach, we can denote by tax(xa
b ) the real estate tax that

must be paid by the owner (renter) of the real estate property located (and rented)
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at xa
b ; then, we can consider the previous cost of the tenant Ct and, instead of the

losses of profits Lj
r , and examine the cost

cr(x
a
b , r

a
b ) :=

{
tax(xa

b )− rab if rab < tax(xa
b )

0 otherwise,
(7.25)

and the corresponding average cost Cr. In this model, any configuration where
rab ≤ Lb(x

a
b ) − kb(x

a
b ) and rab ≥ tax(xa

b ) minimizes the costs Ct and Cr. We have
hence a more realistic model without any assumption of profits maximization or of
full information about the market.

7.3.2. Maximization of diversification forces. A very natural flux of goods is the
amount of commodity b = 1, . . . , B that each company a = 1, . . . , nb is selling to the
market xm. We therefore want to see what the maximization of the diversification
forces yields if we consider these interactions. We think at a generic IS where
interacting entities are E = {(a, b) | b = 1, . . . , B, a = 1, . . . , nb}∪{xm}, even if we
still keep a language of land use theory. The population we want to consider is hence
Pb = {(a, b) ∈ E | a = 1, . . . , nb} for each fixed b = 1, . . . , B, i.e. the collection of
the aforementioned companies, so that its cardinality is |Pb| = nb. We can therefore

think at “selling” interactions iab : (a, b)
rab ,s−−−−−→ xm having the company (a, b) as

agent and the market xm as patient, and hence we consider IPb
:= {iab | a =

1, . . . , nb}. The good of iab is a quantity φa
b ∈ (0, Qb] =: Riab

belonging to the space
of resources Riab

of the interaction iab . Using an example only to understand, in
a simpler deterministic model of constant production, if sab is the surface of the
company a used for the production of 1 year of b (more generally, the amount of
units of production vb used in 1 year, see definition 5. in Sec. 7.1), then we have

φa
b = yb(x

a
b ) · sab ∈

[
ub

year

]
∆b =

nb∑
a=1

φa
b .

We can thus think at ∆b as the amount of commodity b demanded by xm in 1 year.
In general, i.e. independently from this particular example of land use theory,

we consider a global state space M̄Pb,IPb
such that

RPb
=

{
(φ1

b , . . . , φ
nb

b ) ∈ (0,∆b]
nb |

nb∑
a=1

φa
b = ∆b

}
, (7.26)

and the diversification probability corresponding to a Bernoulli process

Qγ(i
a
b ) :=

γa

∆b
=

φa
b

∆b
=: qab ∀γ = (φ1

b , . . . , φ
nb

b ) ∈ RPb
. (7.27)

In other words, the probability to extract a unit of commodity b produced by the
company a, among all those flowing to the market xm in one year, equals the

fraction
φa

b

∆b
of goods φa

b produced by a over the demanded total ∆b.
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Assume now that the system is in an emergent pattern state γ = (φ1
b , . . . , φ

nb

b ).
We have that

DIPb
(γ) =: DIPb

(φ1
b , . . . , φ

nb

b ) = −
∑
i∈IPb

Qγ(i) · log2 Qγ(i) (7.28)

= −
nb∑
a=1

qab · log2 qab ≥ DIPb
(s) ∀s. (7.29)

As we already have seen in Thm. 3, a global space of resources such as (7.26) allows
the model to consider all the possible finite probabilities. As in Thm. 3, we can use
Lagrange’s multiplier to get

∃λ ∈ R :
∂DIPb

(γ1, . . . , γnb)

∂γa

∣∣∣∣∣
γ(−)=φ

(−)
b

=

=
∂

∂γa

(
−

nb∑
a=1

γa

∆b
· log2

γa

∆b

)∣∣∣∣∣
γ(−)=φ

(−)
b

=

= λ · ∂

∂γa

(
nb∑
a=1

γa

∆b

)∣∣∣∣∣
γ(−)=φ

(−)
b

.

This gives φa
b = 2−λ

e∆b
, so that ∆b =

∑nb

a=1 φ
a
b = nb · 2−λ

e∆b
and

φa
b =

∆b

nb
. (7.30)

We can state this result as a general

Theorem 10. Let I be an IS with interacting entities E = {(a, b) | b = 1, . . . , B, a =
1, . . . , nb} ∪ {xm}. Consider the population Pb = {(a, b) ∈ E | a = 1, . . . , nb} for
each fixed b = 1, . . . , B and with adapting interactions IPb

:= {iab | a = 1, . . . , nb},
where iab : (a, b)

rab ,s−−−−−→ xm, with global space of resources given by (7.26) and
diversification Bernoulli probabilities (7.27). Then γ = (φ1

b , . . . , φ
nb

b ) ∈ RPb
is a

pattern with maximum diversification DIPb
if and only if φa

b = ∆b

nb
holds for all

(a, b) ∈ E.

In land use theory, fluxes of commodities b are hence equally divided among all
companies. We can interpret this property as a resilience characteristic of the
adapted population Pb, due to the absence of monopolies, maximal distribution
of work, etc. We can hence say that in this case the GEP coincides with a well
studied property of stable economies. In other words, if the population Pb follows
the GEP, then the companies try to move in different configuration (x, r) ∈ M so
that to decrease the average costs of Def. 7 and, at the same time, thanks to some
forces not explicitly represented in the model (e.g. a suitable taxation system or a
clever use of resources or a population tendency to be resilient), they also evolve
so that to satisfy (7.30), i.e. the absence of monopolies and a maximal distribution
of work and resources. In case of a smaller space of resources RPb

(e.g. because
some company is constrained to produce less than the best value), we do not have
a uniform distribution.

Equation (7.30) can also be obtained from Thm. 3 and considering costs such as
those of Def. 7 or (7.25) (in general any cost function EP that does not depend on
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the probabilities, so that the corresponding derivative in (6.3) is zero). In Thm. 3,

we can set d = nb and xj =
φj

b

∆b
, noting therefore that the costs do not depend on

these probability but only on the configuration (x, r). Assuming (7.28) (or even only

that the ratio
EPb

DIPb

is minimum) and setting α = 0, we have
∑nb

k=1 k
−αk·

DIPb
EP = nb.

Therefore, if at least Thm. 3 yields qk(y) = pkb (y) = p1b(y) =
1
nb

=
φa

b

∆b
. This simple

example shows how the general Thm. 3 can be applied to completely different
settings.

It is clear that the result (7.30) does not correspond to a realistic behavior in
real-world economies: However, it gives elements to start thinking at the GEP as
a way to measure how far our economy is from a stable, adaptive, resilient system.

8. Conclusions and future developments

Even if it does not agree with a purely formalistic point of view in philosophy of
mathematics, a mathematical definition must be validated as well. This validation
ranges from useful and general theorems linked to this definition, to the inclusion
of several interesting examples, in our case examples of CAS. It is therefore a very
long process performed by the interested scientific community. On the one hand, we
followed the ideas of G.K. Zipf, [45], which are nowadays informally frequently used
in different modeling of CS, see e.g. [3, 12, 16, 20, 25, 28, 22, 30, 38] and references
therein. The GEP can be explained and used even only at an intuitive level and
the corresponding formalization is simple and corresponding to the intuition. This
is already a form of validation. On the other hand, the present paper is only the
first step in this validation process. For example, both the power law Thm. 3, or
Thm. 9 and the results of Sec. 7.3.2 about von Thünen-like models of CS, viewed
as sufficiently general mathematical results applicable to large classes of CS, move
in this direction. Clearly, a better von Thünen’s model (e.g. dynamical, stochastic
also in the movement to different configurations (x, r), with explicit modeling of
forces that allow the population to approach the ideal relation (7.30), with more
than one markets, where the strong assumption (7.23) does not hold, etc.), or the
applications of the related theorems to different CAS (e.g. phyllotaxis?) are only
some of possible improvements.

As far as we know, the GEP is the first mathematical definition of CAS with a
proved universal applicability supported by the mathematical embeddings of [18].
Having a clear mathematical notion could be of great advantage for the under-
standing and future development of the notion of CAS. For example, already the
intuitive discussion to arrive at the GEP we had in Sec. 3, allowed us to recognize
that the notion of CAS has to depend on validated costs, suitable probabilities to
average these costs and measure the diversification forces, to identify a set of adap-
tive interactions, etc. Even the notion of emergent pattern can be mathematically
defined, but can be reasonably considered less important than the general notion
of GEP, where real-world CAS may only adapt evolving from a given state towards
a better one.

The next important step in the theory of interaction spaces will be the definition
of functors F preserving cause-effect relations between two interaction spaces I1
and I2, i.e. satisfying

a1, . . . , am
α, r−−−−−→ p in I1 ⇒ F (a1) , . . . , F (am)

F (α), F (r)
−−−−−−−−−−−→ F (p) in I2
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In fact, this would allow us both to meaningfully define hierarchies of CS (each level
of this hierarchy is related to another one by one of these cause-effect preserving
functors). This notion includes a possible meaningful concept of abstraction if F
is a forgetful functor, i.e. if it forgets some of the information in the states of
the involved interacting entities. In this way, we also have a connection with the
mathematical theory of multicategories, see [24]. Finally, if F is a forgetful functor,
then a right adjoint functor R : I2 −→ I1 (in the opposite direction) formalizes the
idea of exploration of I1 from I2; a left adjoint L : I2 −→ I1 formalizes the idea of
cause-effect simulation in I1 from I2, see [19] for a first presentation of these ideas.
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