B N - AR AR FE AR st e AR R ARV RS AR e A
EJ b J. Institute for Mathematical Physics A-1090 Wien, Austria

Extremal Properties of Central Half-Spaces
for Product Measures

F. Barthe

Vienna, Preprint ESI 826 (2000) January 26, 2000

Supported by Federal Ministry of Science and Transport, Austria
Available via http://www.esi.ac.at



Extremal properties of central half-spaces
for product measures

I*. Barthe*

Abstract

We deal with the isoperimetric and the shift problem for subsets
of measure one half in product probability spaces. We prove that the
canonical central half-spaces are extremal in particular cases: products
of log-concave measures on the real line satisfying precise conditions
and products of uniform measures on spheres, or balls. As a corollary,
we improve the known log-Sobolev constants for Euclidean balls. We
also give some new results about the related question of estimating the
volume of sections of unit balls of £,-sums of Minkowski spaces.

1 Introduction

Among subsets of measure 1/2 in the unit cube [0, 1]?, the half cube [0, 1/2]x
[0,1]"~! has minimal boundary measure [18]. A new proof of this fact ap-
pears in [7]. It is based on the comparison of the isoperimetric function of
the set [0, 1] with the one of the Gaussian space. Our aim here is to extend
this method to other settings: products of uniform measures on spheres,
on balls, products of log-concave measures on the real line. We will also
develop a similar approach to get sharp solutions to shift problems; we will
put emphasis on the formal similarities between the two questions.

Our results give a new look to the following result of Meyer and Pajor
[25] about the volume of hyperplane sections of the unit balls of 7. For
pe[Loc), and @ = ()L, € R, let [lz]l, = (Shy 2if") /7 and fall.. =
sup{|z;[; ¢ = 1,...,n}. Let B} = {zx € R" ||z]|, < 1}. If h € R" is a unit
vector, and e; = (1,0,...,0), then

W™ A B luct > Jep N B Lo, for 2 < p < oo,

A~ N By < ey N BEaoy, for 1<p<2,
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In these formulas | .|,y is the Lebesgue measure in the corresponding hy-
perplane. Their proof uses the probability measures on R":

dut () = exp(—llayo]2) da.
They prove that

/ e=llowally gn=1y > 1 :/ e~llaallf gn=1,,
hJ_ 1

€1

for p > 2 and the reverse inequality when p € [1,2]. This means that among
the sets (h7)4 = {; (x,h) > 0} (which have measure 1/2), the set (e] )+
has minimal p3-boundary measure. Our results will imply that (e] )y has
minimal boundary among all Borel subsets A such that 7 (A) = 1/2.

We will generalize the reverse inequality for p € [1,2] in the following
way: if A C R™is a smooth domain with finite boundary measure and such
that 7 (A) = 1/2, then denoting by n4(x) the outer normal of A at , the

Euclidean norm
/ na(a)e= Nl
JA

is always less than for A = (e7);. Notice that when A = (A~ )4, the normal
vector is constant: n4(xz) = —h for all # in the boundary. Thus the quantity
| Jouna(x) exp(—ay||z][p)] is equal to the p7-measure of the boundary of A.

This work is divided into two technically independent parts. However,
both of them contain statements of extremality of canonical half-spaces for
product measures, proved by comparison with the Gaussian case. In the
first part, we compare isoperimetric and shift functionals; the tensorization
devices, which allow to go to product measures, are Bobkov-type functional
forms of the geometric inequalities. In the second part, we get more from
a method of Vaaler [29]. This time, one compares the values of measures
on symmetric convex sets and the tensorizing device is a result of Kanter
[19] about the peaked order on unimodal measures. These tools were also
the basis in [25]. We will complete this second part by an extension of their
theorem to £,-sums of arbitrary finite dimensional normed spaces.

As the reader will see, the two methods give quite similar results. Never-
theless, they are efficient in very different settings. The first one is convenient
for the general isoperimetric problem on manifolds. For example we solve it
for sets of measure 1/2 in a product of k-dimensional spheres. The second
method requires a linear setting but it can be applied to non log-concave
measures, where the first method would fail.

2 Comparing isoperimetric and shift functions

Let us introduce some notation. We start with the isoperimetric problem.
It consists in finding subsets of prescribed measure, whose measure increases



the less under enlargement. Let (M, p) be a Riemannian manifold, let d be
the geodesic distance and p be a probability measure on M. For a Borel set
A C M and for e > 0, the e-enlargement of Ais A. = {z € M; d(z, A) < ¢e}.
The boundary measure of A is

A)

pt(A) = lim inf p(Ae) = p(A)
e—0+ £

The isoperimetric function of (M, i) is defined for a € [0, 1] by

I(a) = inf{u™ (A); u(A) = a}.

It vanishes at 0 and 1.

For convenience, we will use some rescallings to ensure that 1,(1/2) =
1. When g is a measure on R”, one defines puy for A > 0, by ux(A4) =
p#(AA). One easily checks that [,, = Al,. In the case of the Euclidean n-
dimensional sphere of radius r, rS™ C R"*!, we consider the Riemannian
struture induced by R™*!. Then, if 0,5~ is the uniform probability on rS™,
one has rl; o, = Isn.

We turn now to the shift problem. Its aim is to find the sets of given mea-
sure whose measure varies the most under translations. For references, one
can see [10]. The natural setting will be the Euclidean space (R"™, (-,-),|-1),
with a probability measure u, with density p, with respect to the Lebesgue

measure. The shift function of p can be defined for a € [0, 1] as

S(a) = sup { sup lim sup [1(A +eh) — p(A)]

|hl=1 e—0t €

;H(A):“}‘

When o has a smooth density p, and A C R”,

é(,u(A-F%?h) _ u(A)) = /A Pu(y+5};) — Pu(y) dy

tends to [, (Vpu(y), h) dy. Thus the shift function is

su(a)=sup{| [ Vo1 de]s nta) =}

This makes sense in the more general case when the distributional gradient
of p, is a signed measure with density with respect to p ([10]). Notice
that when p, is smooth, Green’s formula yields fA Vouly) dy = faA PulA,
where ny4 is the outer normal af A and the integral is with respect to the
Lebesgue measure on the boundary of A. The latter quantity exists in the
more general setting of embedded manifolds. So when p is a probability
with smooth density p, on an embedded manifold M C R*, we can define
the shift function S, (a), for a € [0, 1], by

S,(a) :sup{‘/ PulA
0A

3
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where the supremum is over the open sets with smooth boundary for which
the integral is absolutely convergent.

The Gaussian measure will be of particular importance in the following.
Notice that we do not choose the usual convention. Let v be the probability
measure on R with density p,(t) = exp(—=t?) dt. For a measure v on R we
denote by R, the distribution function R,(t) = v(] — oo,t]). The isoperi-
metric problem for the measures v was solved in [14] and in [28]. The
solution to the shift problem for these measures is in [20]. Half-spaces are
always extremal. This remarkable property of the Gaussian measure can be
stated as: Lgn = I, = S en =5, = pyo0 R;l, where R;l is the reciprocal
of the distribution function of ~.

When studying the isoperimetric or shift function of a product measure
", it will be useful to compare I, or S, with I, = S,. It turns out
that such comparisons are equivalent to Bobkov or reverse Bobkov-type
inequalities (see [9], [6]):

Theorem 1 ([7]) Let M be a Riemannian manifold and p a density prob-
ability on M. Let ¢ > 0. Then the following assertions are equivalent:

i) I, >cl,

it ) For all locally Lipschitz functions f: M — [0, 1],

I (/fdu) < /\/I$<f>+ LIV dp

Now, we extend to manifolds a result of [6]:

Theorem 2 Let p a density probability measure on an embedded manifold
M C R*. Let ¢ > 0. Then the following assertions are equivalent:

i) S,<cl,

it ) For all smooth and compactly supported functions f: M — [0, 1],

L raw) 2 \/(/Mf) du)2+cl—2 [ vran

Proof: We show first that 7¢) implies ¢). Notice that i) can be extended
to continuous piecewise C'! functions with compact support. Let A be a
smooth compact domain in M. For e > 0, let f. : M — [0, 1] be defined by

ﬁ@ﬂ:(l—éﬂLAO

2

_I_
where d is the geodesic distance. Applying i) to f., one gets

] wnad<or (/)
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Notice that Vd has norm one. Close to the boundary of A, it becomes
orthogonal to it. Thus, letting ¢ to zero, we get | [, nap,| < cL,(u(A)).

Next, we assume 7) and show 7). Let f be smooth and compactly
supported. Let v be the distribution of f under p. We may assume that v
is absolutely continuous with respect to the Lebesgue measure on [0, 1] and
has positive density on its support. By the co-area formula

/Vfdu:/ol/%%dgtdt,

where Ay = {z; f(2) >t} and oy is the measure on dA; of density p,. Since
V f/IV f| is a unit inner normal of A, we get by ¢)

1
‘/Vfdu‘ﬁ/ s
0 A+

Let N(t) = p({f < t}) = v([0,t]). Define k = N~!'o R,, and apply the
reverse Bobkov inequality of [1] to k and the measure vy:

12 (/de%) > /Rk’d712—|—(/RIW(k)d71)2.

By the change of variable t = k(z),

dt < C/O1 L (p(Ay)) dt.

[#wine = [ oot wa= [ Lo a

Since the law of k under 7y is equal to the one of f with respect to p, we
get

(/5w dt)2 = ([t <oy dt)2 <2 ([ra)-( [ du)2

where we have used I(p) = I(1 — p). Thus we get ¢¢) and the proof is
complete. a

As stated in [12], [7] and [6] the functional inequalities in the latter two
theorems have the tensorisation property: if they are true for u, then they
hold for p®® for all n > 1. This remark yields the following result, which is
the basis of our comparison method.

Corollary 3 Let i be a probability measure on M and let u®" be the product
measure on M™.
i) If 1, > c I, then for n > 1 one has I,on > c,.

Assume M embedded.
i) If S, < d L, then forn > 1, S,on < dL,.



Let us emphasize that we consider on M™ the canonical Riemannian product
structure. For the shift problem, if M is embedded in R¥, we consider the
canonical product embedding of M™ in R™. Let us give a few comments:

1) It is clear that I, > I, > > I g ... and S < S e2 < S g2 .... More-
over, if ¢t is on R and has finite variance, classical cantral limit arguments
about the sets {z € R™ Y, < ty/n} show that inf, I ,en < C'I, and
sup, S,on < C' I, for some constant C' depending on the variance. Thus, in
terms of behaviour close to zero, I, is maximal for ¢) and minimal for 7).

2) Similar results were established earlier. Let J(¢) = min(¢,1 — ¢),
Bobkov and Houdré [12] showed that I, > ¢J implies I,on > ¢/(2V/6) J for
all n > 1. In [10], Bobkov shows, for H (t) = tlog(1/t)+(1—t)log(1/(1—-1t)),
that S, < cH implies S,en < 24c H for n > 1.

3) The remarkable fact about I, is that there is no loss on the constant
c when going to product measures. We shall show that I, is almost the only
one with this property. Let K : (0,1) — (0,00) be a positive, concave func-
tion such that for all ¢, K(1 —¢) = K (t). Assume that for every probability
measure ¢ on R, [, > K implies I,55, > K. By [8], there exists an even
log-concave probability v on R such that I, = p, o R;! = K. But K < I,
implies K < I,02 which is clearly less than I,. So I, = I,e: = p, o R;!,
which means that half-spaces of the form {z; < a} are solution to the
isoperimetric problem. By [11], this implies that v is either a Gaussian (and
I, = ML) or a Dirac mass at a point, which is excluded.

The situation is the same for the shift problem. Let K is concave positive
and symmetric as before and such that S;, < K implies S92 < K. Consider
again the log-concave probability » on R such that K = p, o R;1. We
show in the next section S, = K. Again we can deduce from this that
S,e2 = p, 0 R;1, which means that half-spaces {#; < a} are solution to the
shift problem. One can check that all the steps of the proof in [11] can be
carried out in this new situation. This is due to the fact that their argument
only uses half-spaces for which boundary measure and norm of the integral
of the outer normal coincide. The result is again that K is a multiple of Z,.

Next, we take advantage of the previous property of I, to get exact
solutions of isoperimetric problems. The shift case is similar. Assume that p
is such that 1, > ¢/, and that there exists @ € (0, 1) such that [,(a) = cl(a)
(i.e. ¢is maximal so that I, > ¢l,). By the previous results and remarks,
we have

1(a) = el (a) < Lyon(a) < 1, (a).

Thus I,en(a) = I,(a). Let A be a solution of measure a of the isoperimetric
problem for p, u(A) = a, pt(A) = I,(a). Then A x M"~! C M" satisfies
O (A x M"Yy = p(A) = a and

() (A x M) = it (A) = L(a) = Len (a).



So, for all n, A x M" ! is a solution of the isoperimetric problem of measure
a.

In the next sections we give applications of this methods in concrete
cases. Each time, we try to have exact comparisons with the Gaussian case.

2.1 Products of log-concave measures on the real line

The isoperimetric problem for log-concave measures on the real line was
solved by Bobkov [8]. In particular, he proves:

Proposition 4 Let u be a log-concave measure on the real line. Then, u is
symmetric around its median if and only if for all 0 < p < 1 and all h > 0,
the infimum of p(A+[—h, h]) over the sets A such that u(A) = p is achieved
for an interval of the form (—oo, al.

For convenience, we will always assume that 0 is a median of our mea-
sures. The previous result has the following infinitesimal corollary. Recall
that p, is the density of u and R, is its distribution function.

Proposition 5 Let u be a log-concave even probability measure on R, then
its isoperimetric function is given by 1,,(0) = 1,(1) =0 and for t €]0, 1],

Lu(t) = pu(R, (1))

We will need a similar statement for the shift problem. The results have
the same form.

Lemma 6 Let v be a log-concave measure on the real line, with positive
density p, = e™N. Let0<p<1andh>0, then

sup{v(A + h); v(A) = p}
is achieved for intervals of the form (—oo,al.

Proof: One can see from the formula

V(A4 h) = /Ae—(N(x-I—h)—N(x)) dv(z)

that, given p and h, the supremum is achieved for Ag = {z; N(z + h) —

N(z) < a} where « is chosen so that v(Ag) = p. Since N is convex,
the function 2 — N(z + h) — N(z) is non-decreasing. Thus one can take
Ao = (=00, R (p)]. N

Notice that inf{v(A + h); v(A) = p} is achieved on sets of the form
[b,400). And one has reversed results when h is negative. Letting h to zero,
one easily gets



Proposition 7 Let v be a log-concave even probability measure on R with
positive density, then its shift function is given by S,(0) = S,(1) = 0 and
for 0 <t <1,

We have computed isoperimetric and shift functions. The next statement
is usefull in comparing them.

Lemma 8 Let pp and v be even log-concave probability measures on R, with
densities p,, and p,. Let m,n € [0,00] be the supremums of the supports of
w and v. Assume that p, is decreasing on RT, that p,(0) = p,(0) = 0 and
lim,, 1 p, > lim, 1 p,.

If p;t o py is conver, then for 0 <t <1, p,o R (t) > p, o R;(t).

Proof: Notice that p; ! op, is well defined. By symmetry of the measures,
we can restrict to ¢t € [1/2,1). The announced inequality is equivalent to
t > R,op,;top,o R;l(t)7 for t € [0,m). Setting ¢ := R, (y), we have to
show that for y € [0, m),

f(y) == Ru(y) — Ru((p, 0 pu) ()

is non-negative. Obviously,
7o) =paw) (1= (07" 00 )),

where ’ stands for right-derivative. By hypothesis (p, 'op,)’ is non-decreasing,.
Thus, f’ can either be of constant sign on [0,m) or be non-negative on
some [0,a) and then non-positive on (a,m). Since f is continuous and
f(0) =lim,,. f =0, we are in the second case and f is non-negative. O

Combining this lemma with Theorem 3 and the preceding computations
of isoperimetric and shift functions, we get

Theorem 9 Let it be an even absolutely continuous log-concave probability
measure on R. We write du = e™™ | where M : R — [0,00] is convex.
Assume that M(0) = 0.

i) If VM is convex, then for every integer n, one has Lon > I,. In
particular, among sets of measure 1/2 for u®", the half-space Ry x R™™! is
solution to the isoperimetric problem.

i) If VM is concave, then for n integer, Syen < Sy, In particular,
among sets of measure 1/2 for u®™, the half-space Ry x R"! is solution to
the shift problem.

Notice that the hypothesis “M convex and v M concave” implies that the

M s positive and decreasing on Rt. This theorem can be

density p, = e~
applied to the probability measures dyu, = e~lovtl” They are in the case i)

when p > 2 and in the case i7) when 1 <p < 2.



Remark: If v is the push forward of a measure p by a Lipschitz map

f, it is well-known that || f||lLip £, > .. In particular, if p is a probability
on R”,

inf 2> sup (1) 13 = 1}

(0,1) I
When n = 1, the latter is a equality [22]. The optimal map is then given by
the canonical monotone transportation defined by R, = R, o f. Notice that
[ is a contraction if and only if 1 > |f'| = p,/(puo f) = py/(puo Ry o R,),
and we recover the condition p, o R;l < pyo R;l. When this holds, the
map fn(z1,...,2,) = (f(21),..., f(x,)) is a contraction of v®" onto u®",
thus I,en > L,on. These classical arguments provide a slightly simpler proof
of the statement 7) in the previous theorem. However, they do not work for
the shift problem. In larger dimensions, building transportations is more
difficult and, a priori, does not give the optimal constants in comparisons of
isoperimetric functions.

2.2 Products of spherical measures

For n € N, let S™ C R™*! be the Euclidean unit sphere and let s,, denote its
n-dimensional Lebesgue measure, by convention sg = 2. Let r, = s,_1/$,.
We consider r, 5™ C R**! with the Riemannian structure induced by R™+1.
Let o, be the uniform probability on this special sphere.

The measure of a spherical cap Cy = {2 € r,9"; (x,e1) < t} is, for
] <

nl2

= (=) e

whereas the boundary measure of C% is

ndll
1 t\2 2
1= ()
©n(t) ( . )
Since spherical caps are solution to the isoperimetric problem [24], [27], the
isoperimetric function of o, is

Li,sn(t) = a (2,7 (1), t€[0,1].

It is obviouly symmetric with respect to 1/2 and decreasing on [1/2;1].
Next, we compute the total normal fact ne, for these caps. By rota-
tionnal invariance, it is parallel to e;. At any boundary point, one has

(nc,,e1) = —/1 = (t/rm)2. Thus
Lo = =G o= (-G))

Our next result asserts that caps are also solution to the shift problem.

n (t) =




Theorem 10 The shift function of the sphere is
Sy gn = 1h, 0B,
Forn>2,85, s = (Irnsn)%.

Proof: Let a € [0,1]. We consider only smooth functions f :r,S™ — [0, 1].
By rotationnal invariance (of the norm and of the sphere),

= Ssup /<Vf7—61> dgn-
[ f=a

By Green’s formula
(/wﬁ—qm%:n/jmwfﬂém%@y

Under the condition [ f = a, the latter integral is maximal when f is the
characteristic function of the cap C@J_l(a). This implies that for smooth f,

‘/Vfdan < S, (/fdan).

Applying this to approximations of characteristic functions of sets, as in sec-
tion 2, we get the result for sets: when o, (A4) = 0,,(C}), one has | [, , n4| <

| fact n0t|' a

Proposition 11 Let n > 1, then fort € [0, 1]
Srpsn(t) <8, sntr (1) <L) < g (8) < psn(2),
with equality only at t =0,1/2 and 1.

When n = 2, we recover the inequalities 24/t(1 —¢) > I, > 4¢(1 — t) which
were noticed respectively in [21] and [6].

Proof: We show first the right hand side inequality. By symmetry, it is
enough to prove it on [1/2, 1]. Notice that, by construction, there is equality
at the end points of this interval. We want to show that for z € [1/2, 1],

() <o)

Since ®,,44 is increasing, this is equivalent to

9 ndll %
o1 "
q)n—l—l T'n+1 1- (1 - (M) ) S Ty
'n

10



for € [1/2,1]. Setting 2 = ®,(r,y),y € [0, 1], we have to check that for
y € [0, 1], the following function is non-negative:

F(y) = @n(rny) — ®pqy (rn-l-l [1 - (1 - yQ)HTM] %)

For y € (0,1), its derivative is

nl2 nJ_l2 8 nil %
) = - - R L ()

[N

ndll

nl2 n—1 _ 1 nll\™
= 1= [ - (- -

|

So f'(y) > 0 is equivalent to:

(ot ((n— 1>rn+l)2 »

Y N nry

Since t — t1/" is concave, the left quantity is decreasing on (0,1). Thus,
there exits a such that f increases on (0,a) and decreases on (a, 1). Since
f(0) = f(1) =0, f is non-negative.

The inequality I, < I, s» can be proved with the same method. It can
be understood by the Poincaré limit argument: the sequence (IrnS")nZI is
non-increasing, and /I, is its limit. Indeed, for a fixed z € R, when n tends
to infinity,

- 92 2 _nJ_2l,2
an(x):exp(nQ In (1—%)) ~ € 2r3, N€_7Tl’27

s

and in the same way ®,(z) — R,(z). The inequalities involving the shift
functions have a similar proof. a

By the previous comparisons and by the results of Section 2, we have

Theorem 12 Let f: (r,S™)* — [0,1] be smooth, then

L[ rae) < [ B+ IRIR a0
(o) (e o]

In particular I, oy > LIy 2 5, gnyk.

and

The latter inequality appeared for k = 1, in a slightly different form, in [6].

Corollary 13 Let ST = {(z;)/F] € S™; 21 > 0}. Among subsels of measure
1/2 in a product of k spheres of dzmenszon n, the set ST x (S™M)F=1 is solution
to the isoperimetric and to the shift problem.

11



2.3 Products of uniform measures on Euclidean balls

The isoperimetric problem for the uniform distribution on the Euclidean ball
was solved by Burago and Zalgaller [16]. The case of dimension 1 is simple.
From now on we work in dimension n > 2. Solution sets are intersections
with orthogonal balls or their complements. Let v, be the volume of the
Euclidean unit ball B}. Set R, = v,_1/v,. We will consider the uniform
probability A, on R,B%. Now we give a description for the solutions of
measure larger than 1/2. Let m > R, and p € [m — R,,m]. The ball
mey + pBY crosses B} . The intersection lies in the hyperplane {z; = a}
where a > 0 satisfies RZ — a? = p? — (m — a)?. The boundaries of the two
balls intersect orthogonaly if m? = R2 + p?. In that case, By \ (me; + pBjy)
is a solution to the isoperimetric problem, with measure larger than 1/2,
and all solutions for measure > 1/2 are isometric to such a set. The solution
for volume 1/2 is the half-ball; this corresponds to m and p infinite, when
the other ball becomes a half-space.

These sets can be viewed as a one-parameter family indexed by «a :=
a/R, € [0,1]. One easily checks that it is an increasing function of «, in
the sense of the inclusion order. For a given «, we express A,-measure and
boundary measure. First the volume

¢ n dt p . d

—Ry, Un Rg m—a Un Rg

@ nll vV — 2 " 1 nll
/ (1 —7'2)2L dr — (&) / (1_ 0'2)2L do‘] ,
1 o Jiza?

where we have used the relations m = R2/a, p = R,\/R2 —a2?/a, the
definition of R, and the change of variables ¢ = R,7 and s = po. In the
same way the boundary measure is

- R,

P nl3 dS
Sl = /m_a sn2(p” = ) ;SpvnRﬁ
n—1
Ji—a? 1 .
= (n—1) (&) / (1- 02" do.
a Jima?

Clearly, the right parameter is 6 € (0, 7/2) such that a = cos(§). Then

™ /2
/ sin” u du — tan” 0/ cos” udu
4 4

/2
s5(0) == S(cos 0) = (n — 1) tan"~! 0/ cos" ™% u du.
4

v(f) :=V(cos 0) = R,

These functions can be extended by continuity: s(0) = 0,s(7/2) = 1, and
v(0) = 1,v(r/2) = 1/2. The isoperimetric function of A, is Ir,pp = S o
V=l = sov™l. We have the following comparison with the Gaussian case

12



Theorem 14 Let n > 1, then fort € [0,1]
Ir,Bp(l) 2 I(1),
with equality only at t =0,1/2 and 1.

Proof: We start with some preliminary calculations. Notice that

son—1 /2
(@) = -nR M/ cos" udu
4

T
cosntl g

n—2

/2
s(0) = (n—1) [(n — 1)/ cos" % udu — cos" "' 0 sin 4] .
4

cos™ f

Writing [ cos™ udu = [ cos™ 2 u du+ J —sin wcos™ 2y x sin wdu and inte-
grating by parts in the latter integral shows that

/2 /2
n/ cos" udu= (n—1) / cos" % udu — cos" ' 6§ sin 6,
4 4

s'(0)  n—1 cosb
V(@) R, sin6
remains less than 1. By symmetry, it is enough to show that p, o R;l <
sov™!on (1/2,1). This is equivalent to the non-negativity on (0,7 /2) of
the function

thus

- In particular s is increasing in 6, and thus

T

£(6) = v(6) — R, ( Ly 5(9)) .

Here we have used s € [0, 1]. Since f = 0 at the end points of this interval,
we are done if we can prove that f’ is first positive and then negative. After
simplification one gets

Thus f'(#) > 0 is equivalent to

g(0) :=4rln s(6) + (i/’EZ;) > 0.

Here one had to be careful about signs, which depend on the choice of
parameters. When 6 tends to 7/2, s(6) goes to 1 and cos 6 to 0, thus
lim /91 g = 0. When y goes to zero,

cos 6

sin 6

1 /2
~3 and s(0) ~ (n — 1)0n_1/ cos" ™% u du.
0

13



So limg+ g = +00. It would be enough to show that ¢ is first negative and
then positive. Clearly

'(8) n—1\? cos 6
0 =420 5 :
g9) 7Ts R, sin® @

This quantity has the same sign as

n—1

orsin® 0 & () — ( )QCOS 0 5(6)

n

/2
[(n - 1) / cos" % udu — cos" "' 4 sin 0]
4

sin®t1 g

cos™ 6

n—1\2 /2
— ( I ) (cos 6) (n — 1) tan™* 0/ cos" " u du
n 4

B o ( 1)sin”"'1 0 n—1\%sin""14 /”/2 =2, g
N T cos” 0 R, cos" 26 0 cos o nan

: n-|—20
]m_l).

= 2mx(n—1)

27
cos 6

Multiplying by cos™8/((n — 1) sin”~! 8), we get that ¢’ has the same sign as

/2 n—1\2
h,(0) = /e cos"?udu | | 2n(n —1)sin? 6 — ( = ) cos® §

—97sin’ @ cos” 1 4.

Let o, = 27(n — 1), B, = ((n — 1)/R,)* and 6, = arctan(\/3,/c,). If
6 € 10,0,] then h,(6) < 0. On (8,,7/2], h,(0) has the sign of

27 sin® @ cos” 1 6

oy, sin? @ — B, cos? §

/2
Jn(8) = / cos" % udu —
4

Notice that lim g4 j, = —oo and j,(7/2) = 0. We are done if we can prove

n

that on (6,,7/2), j, is first negative and then positive. A straightforward
computation yields

n—2 0
i) = P, (sin? ),

(ovnsin?8 — B, cos20)2 "

where P, is a polynomial of degree 3, with leading term (o, +5,).(ap+27) >
0. Moreover, P, satisfies

Bn _
P, (Oén+ﬁn) >0 and P,(1)=0.

14



To study the variations of j,, we just need to study P, on [z,, 1], where we
have set z, = (,/(cv, + B,). Because of its degree, P, can decrease only
on a bounded interval. Since P,(x,) > P,(1), this interval has to intersect
the interval we are working on. If we can prove that P! (1) is positive, then
clearly P, is positive on (z,,71,), and negative on (1, 1) for some 7,, between
2, and 1. In this case, h,, is first negative and then positive and the theorem
is proved. One easily checks that

P(1) = o2 4+ 2, — A% B, — a,fy,

2 -1

71-(27721)(271'7113721 —n?4+1).
Recall thet R,, = v,_1 /v, with v, = T%/F(l—l—%). So P! (1) > 0is equivalent
to

2
ri+2
14+ 2n Lﬁ? > n?.
[ (1425

But this follows from the next lemma. O

Lemma 15 For all > 1/2, one has

F(ac—l—%) 1
@) 3

Proof: It is classical that when z tends to infinity,

F(ac—l—%) 1
Tt YTV

This implies that

PRI R

tends to zero when  — oo. The lemma will be proved if we show that f is
decreasing. Using the formula

(log T (z) = —% —c—i (ﬁ _ %) .

we get




Next, by convexity of y — y~2,

1 1 </l’+k+%dy
< —
(@+k)@+i+k)  (@+k)? 7 Joppor y?

Eventually we get that f is decreasing

a

ijFrom Theorems 1 and 14, we derive Bobkov’s inequality with optimal
constant on R,BY. Let f: R,B} — [0, 1] be smooth, then

2 2
L, (/RntfdAn) < /Rnt 2(f) + [V fI2 dA,. (1)

As explained before this yields an exact solution to the isoperimetric prob-
lem in (BZ)* for sets containing half of the whole volume. Let By, =
{(z1,...,2,) € By; 21 > 0}, and p,, be the uniform probability on BY.
Among sets of probability 1/2 in (B5)*, the set By . x (B5)*~! has minimal
boundary measure.

For a probability g on R™ and f: R™ — [0,400), denote

Ent, (/) = [ flog f dy - (/fdu) log (/fdu)-

By [1] or by Beckner’s limit argument (see [23]), inequality (1) implies a
log-Sobolev inequality for R, B%. Let us state it for the unit ball BY. Easy
scaling arguments give that for every smooth f: B} — [0, +00),

F(%) /B

2
it () < Vi < 2 [ VP
2

n
2

Here, we improve a result of Bobkov and Ledoux [13]: using a rotation-
symmetric transportation of the Gaussian measure onto u,, they got the
constant I'(1 + 71/2)_”/2 ~n—oo 2€/n. Our constant is asymptotically sharp
when n goes to infinity (notice that the previous log-Sobolev inequality
implies the Gaussian sharp log-Sobolev inequality).

3 Unimodality and sections of product measures

In [29], Vaaler proved that the volume of the sections of the cube [—1/2,1/2]"
by k-dimensional subspaces through the origin is always bigger than 1.

16



Peaked order and unimodal measures [19] were the main ingredients of his
proof. His method was pushed forward by several authors: Meyer and Pajor
[25] proved that for any k-dimensional subspace K C R", the function

KBy
| B}

SK (P) =

is non-decreasing for p > 1. They actually derived a more general statement
for ¢, sums of Euclidean spaces. Next Caetano [17] established sk (p) <
sk (1) for p € (0,1). In [3], we showed that sk is non-decreasing on (0, +oc].
Our aim here is to extend these results to f,-sums of arbitrary finite di-
mensional spaces and to apply the peaked order method to the study of
the isoperimetric and the shift problem in the case of half-spaces. This
partial approach nevertheless enables to deal with non log-concave product
measures.

3.1 Some preliminaries

Our definitions slightly differ from [19]. They lead to less technical proofs;
for details we refer to [3].

Let C,, be the set of all bounded origin-symmetric convex Borell subsets
of R”. A function f on R" is said to be unimodal if it is the increasing limit
of a sequence of functions of the form:

J

Zajlc]

J=1

where J € N, a; > 0 and C; € C,. One easily checks that even non-
negative quasi-concave functions, and a fortiori even log-concave functions
are unimodal. On the real line, a function is unimodal if and only if it is
even and non-increasing on R.

One says that a Radon measure on R™ is unimodal if it is absolutely
continuous with respect to Lebesgue’s measure and admits some unimodal
density. When p and v are unimodal measures, so is the product measure
1 @ v; this is due to the fact that when C' € C, and D € C,,, one has
CxDeCypy and 1¢(2)1p(y) = 1oxp(z,y).

Let p,v be Radon measures on R™. One says that p is more peaked
than v and writes g > v when p(C) > v(C) holds for every C' € C,. It
is remarkable that the inequalities for > can be tensorised as soon as they
involve unimodal measures:

Theorem 16 (Kanter) For 1 < i<k, let u; and v; be unimodal measures
on R™ such that p; > v;. Then, the following inequality between measures
on R+ holds: 1 @ Qup > v1 @+ Q .

17



3.2 Sections of product measures and of unit balls

Lemma 17 Let ¢1, ¢o, f be continuous functions from RT to RT. Assume
that f vanishes at most at zero and that ¢y /¢ is non-decreasing. If

/Ooofe—¢1 z/ooofe—@,
/Oafe—¢1 z/oafe—@.

This is obvious by differentiation. Notice that the statement can be extended
to the case when ¢ and ¢y have values in [0, co].

then for alla > 0

Proposition 18 Let ¢ : Ry — [0,00], be non-decreasing. Assume that
©(0) =0 and [ exp[—¢(|t|)]dt = 1. Let E C R™ be a k-dimensional subspace.
i) If p(t)/t* is non-increasing, then

ezl gk (o </ ezl gk (o
/ Il W< [ 11 (x)

i) If p(t)/t* is non-decreasing, then

/H—ap|x, dk /ﬁeaph’, dk
=1

Proof: Assume the hypothesis of ¢). Lemma 17 implies that
dv(t) == exp[—p(|t])]dt < exp[—mt?]dt.

By Theorem 16, the inequality holds for the nt" powers of these unimodal
measures. Let (ug41,...,u,) be an orthonormal basis of F~. For ¢ > 0, let

E() ={z e R" [{z,u)| <e/2,i=k+1,...,n}.

Then v2"(E(g)) < v8*(E(g)) = v9"(R*F x [—¢/2,/2]"7F), where we have
used the definition of the peaked order for the sets () N rBY,r — oo and
the rotationnal invariance of Gaussian measures. The conclusion follows
from a standard limit argument. The proof of ¢7) is similar. O

Let C' C R™ be a symmetric convex body and let || - ||¢ be the corre-
sponding norm on R”. For p > 0, we set

ayc = [|0|-r(1+ﬁ)]" .
p

Notice that n only depends on C'. When C' = [—1,1] C R, we simply write
ap. We are ready to state our extension of the results of Meyer-Pajor and
Caetano.

18



Theorem 19 Let N, m, (n;)7, be positive integers such thaty .-, n; = N.
For i < m, let C; be a symmetric convex body in R™. Identifying RN with
R™ x --- x R"™, we write every € RN as z = (z1,...,2,,).

For 0 < p < oo, let us consider the sets

B, = { e R D gyl < 1} and D, = { eRM: D Jlaillg, < 1}-
Let E be a k-dimensional subspace of RN. Then the quantity
P+ k/p)|EN By
is @ non-decreasing function of p € (0,400]. Under the additionnal condition
1
EADNF
& . |Bp | "
| B |

is a non-decreasing function of p € (0, +0oc].

Ny =+ "= Ny =N,

An application of this result appears in [26]. See also [25] for applications to
Siegel-type lemmas. We start with some preliminary statements. Following
Meyer and Pajor, we define the measure y, ¢ on R" by

dpip.o () = exp (= lap.calf,) d".

It is a probability measure. Since the level sets of its density are convex and
symmetric, it is unimodal.

Proposition 20 Let C' be a symmetric convex body in R™. Ifp > ¢ > 0
then pp,c > pg,c-

Proof: If n = 1, the statement follows from Lemma 17 applied to f =
1,91(t) = tP,4p(t) = t?. Assume now n > 2. It is enough to consider sets
C with C* norm on R”™\ {0}. In this case the boundary 9C of C is a
submanifold. For w € 9C, let n(w) be the outer normal of C' at w and let
do be the surface measure on dC. We will use the diffeomorphism © from
R x dC onto R"™\ {0} which maps (r,w) to the vector rw.

Since we work with absolutely continuous measures, it is enough to com-
pare their values on symmetric convex bodies. Let K C R™ be such a set.

One has
oK)= / Lyecye e 2le da
R» -

N // Lrufzay € 1one M6 (0, n(w)) =t dr do(w)
R7 x3C =

= [ e (//H" dr) do(w).
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Taking K = R"” in this formula shows that

P
— P —
/ eozprrnllr
0
1

does not depend on p. For each w, we apply Lemma 17 with f(r) = r"7",
¢1(r) = rP and ¢2(r) = r?; the hypothesis p > ¢ ensures that ¢1/¢; is non-
decreasing. Since (w, n(w)) is always non-negative, one gets p, (K) > p,(K).
O

Lemma 21 Given F a subspace of R™ of dimension k and (ugy1,...u,) an
orthonormal basis of E~, we consider

E() ={z e R" [{z,u)| <e/2,i=k+1,...,n}.

Let N : R"™ — R be a continuous homogeneous fonction, vanishing only at
the origin. Then the set B = {z; N(x) < 1} is a symmetric star-shaped
body and for p > 0, one has

r (1+ E) |E'N Bl :/ e N@ gk y = lim gk—n/ e NW" gry,
p K s=0%F E(e)

The first equality is obvious by level-sets integration. The second one follows
from dominated convergence (notice that there exists d > 0 such that d|z| <

N(z) < |z|/d for all z € R™.)

Proof of Theorem 19: Let p > ¢ > 0. By Lemma 21 and with the same
notation, the following relation holds for r > 0:

P4 k/r) - [ENB] = Tim 0N poy @ - @ e, (B ()
The previous proposition and Theorem 16 yield

Hp,Cy @+ @ fip O 7 Hg,Cy @+ D flg,Cry-
Since E/(7n) is convex and symmetric, the latter relation implies that

D(L+k/p)- |ENB,| > T(1+k/q) - |[ENB,|.

P

gl}
Cy
P

gl}-
Cy

VVhGIlTLl:---:nm:n7

B, = {xERN;zm:
=1

1
p
1

ny » = 1
= T 1—|-—) xERN; chﬁwz
(3) " {rex B
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The linear mapping 7 defined on RY by T'(z) = (|Cl|%x1, e |Cm|%wm)

is bijective. Thus
1
B,NE=T (1+ ﬁ) YD, NTE)
P

Notice that 7" multiplies volumes by | det(7")| and that T'E can be an arbi-
trary k-subspace. Hence for any F of dimension &

. F<1+7’“/P>k|pm D,
I'(1+n/p)»

is non-decreasing on (0, 4oc]. O

3.3 Remarks on the Brascamp-Lieb inequalities

We are going to expose an alternative proof of the first statement in Propo-
sition 18. It uses an inequality due to Brascamp and Lieb [15] (see also [2],
[5]). Let E be a k-dimensional subspaces of R™ and let P be the orthog-
onal projection onto E. Then > , Pe; @ Pe; = P is the identity when
restricted to E. Set ¢; = |Pe;|* and u; = Pe;/|Pe;|. As linear mappings of
E, 3" ciu; @ u; = Idg. The Brascamp-Lieb inequality yields

/ﬁe—w .6 d$ _ /H Vel ug )/Cz) dx < ﬁ (/ d}(\/at)/cldt) c;
B =1 i=1

Assume that 1 is even and t(t)/t? is non-increasing on Ry. Since ¢; €
(0,1], one has 1(y/cit)/c; > (t) for all t. Hence the previous integral is

smaller than
_¢(t ) =1 “ / w l’z
€
(f it

where we have used > ¢; = k. Thus among k-dimensional subspaces, the
canonical subspaces are extremal.

If one takes ¥(t) = |a,t|P, one can use homogeneity to improve on the
latter argument and extend one of Ball’s volume estimates on sections of
the unit cube [2]:

n N ¢ n 1/p—1/2
/ e_ag||$||gd$ S H (/ _|a S / /pt|pdt) — (H Clcz) .
E . .
=1

=1

Since ¢; € (0,1] and >°°, ¢; = k, one has (k/n)* <[ < 1. 1f p < 2, the
integral is bounded by one as before. If p > 2, Lemma 21 and the previous
estimate give

|Bg DE| (n)k(l/?—l/p)
1Byl \k '
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One can check that this is optimal when & divides n. In this case, let d = n/k
and for j = 1,..., k, let vj = €y 4;(g—1)+ - -+ejqg. Thenspan{vi,..., v }NBy
is isometric to (n/k)l/z_l/pB;f.

The second statement in Proposition 18 is a reverse form of the first
statement. One can wonder whether it is provable via the reverse form of
the Brascamp-Lieb inequality ([4], [5]). The answer seems to be negative:
the duality between the Brascamp-Lieb inequality and its converse corre-
sponds to duality of convex sets. It turns sections into projections. Since
projections are larger than sections, this provides weaker results. Let us
give an example with ¥(t) = exp(—|a,t|?): By Lemma 21, and the reverse
Brascamp-Lieb inequality, one can estimate from below the volume of the
orthogonal projection of Bj onto a k-dimensional subspace £. With the
previous notation

|Pr(By)]

2 / p—obinf (I N 2=P(SI, M)} gy
|Bp| I

e
/2101 /pp\ G
= / sup H (6_|a1’€’ci |p) dx
>

i=1 CiliNi=T =)

_|c1/2J.1/Papt|pd ) ' _ i
e t t = C: .
() 1

v

If p > 2, this is bigger than 1. This result was implied by the one on sections,
because N By C Pg(B)). If 0 < p <2, we get

P-(B" k(1/p-1/2)

| E( p)| S E ‘
1Byl ~ \n

By duality, this is optimal when k divides n and p > 1. The equality is

achieved for the same subspace as for sections.
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