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Extremal properties of central half-spacesfor product measuresF. Barthe�AbstractWe deal with the isoperimetric and the shift problem for subsetsof measure one half in product probability spaces. We prove that thecanonical central half-spaces are extremal in particular cases: productsof log-concave measures on the real line satisfying precise conditionsand products of uniform measures on spheres, or balls. As a corollary,we improve the known log-Sobolev constants for Euclidean balls. Wealso give some new results about the related question of estimating thevolume of sections of unit balls of `p-sums of Minkowski spaces.1 IntroductionAmong subsets of measure 1=2 in the unit cube [0; 1]n, the half cube [0; 1=2]�[0; 1]n�1 has minimal boundary measure [18]. A new proof of this fact ap-pears in [7]. It is based on the comparison of the isoperimetric function ofthe set [0; 1] with the one of the Gaussian space. Our aim here is to extendthis method to other settings: products of uniform measures on spheres,on balls, products of log-concave measures on the real line. We will alsodevelop a similar approach to get sharp solutions to shift problems; we willput emphasis on the formal similarities between the two questions.Our results give a new look to the following result of Meyer and Pajor[25] about the volume of hyperplane sections of the unit balls of `np . Forp 2 [1;1), and x = (xi)ni=1 2 Rn, let kxkp = (Pni=1 jxijp)1=p and kxk1 =supfjxij; i = 1; : : : ; ng. Let Bnp = fx 2 Rn; kxkp � 1g. If h 2 Rn is a unitvector, and e1 = (1; 0; : : : ; 0), thenjh? \Bnp jn�1 � je?1 \ Bnp jn�1; for 2 � p � 1;jh? \Bnp jn�1 � je?1 \Bnp jn�1; for 1 � p � 2:�Partially supported by a grant of the Ostrowski foundation.1



In these formulas j : jn�1 is the Lebesgue measure in the corresponding hy-perplane. Their proof uses the probability measures on Rn:d�np(x) = exp(�k�pxkpp) dx:They prove thatZh? e�k�pxkpp dn�1x � 1 = Ze?1 e�k�pxkpp dn�1x;for p � 2 and the reverse inequality when p 2 [1; 2]. This means that amongthe sets (h?)+ = fx; hx; hi � 0g (which have measure 1=2), the set (e?1 )+has minimal �np -boundary measure. Our results will imply that (e?1 )+ hasminimal boundary among all Borel subsets A such that �np (A) = 1=2.We will generalize the reverse inequality for p 2 [1; 2] in the followingway: if A � Rn is a smooth domain with �nite boundary measure and suchthat �np (A) = 1=2, then denoting by nA(x) the outer normal of A at x, theEuclidean norm ����Z@A nA(x)e�k�pxkpp����is always less than for A = (e?1 )+. Notice that when A = (h?)+, the normalvector is constant: nA(x) = �h for all x in the boundary. Thus the quantityj R@A nA(x) exp(��pkxkpp)j is equal to the �np -measure of the boundary of A.This work is divided into two technically independent parts. However,both of them contain statements of extremality of canonical half-spaces forproduct measures, proved by comparison with the Gaussian case. In the�rst part, we compare isoperimetric and shift functionals; the tensorizationdevices, which allow to go to product measures, are Bobkov-type functionalforms of the geometric inequalities. In the second part, we get more froma method of Vaaler [29]. This time, one compares the values of measureson symmetric convex sets and the tensorizing device is a result of Kanter[19] about the peaked order on unimodal measures. These tools were alsothe basis in [25]. We will complete this second part by an extension of theirtheorem to `p-sums of arbitrary �nite dimensional normed spaces.As the reader will see, the two methods give quite similar results. Never-theless, they are e�cient in very di�erent settings. The �rst one is convenientfor the general isoperimetric problem on manifolds. For example we solve itfor sets of measure 1=2 in a product of k-dimensional spheres. The secondmethod requires a linear setting but it can be applied to non log-concavemeasures, where the �rst method would fail.2 Comparing isoperimetric and shift functionsLet us introduce some notation. We start with the isoperimetric problem.It consists in �nding subsets of prescribed measure, whose measure increases2



the less under enlargement. Let (M; �) be a Riemannian manifold, let d bethe geodesic distance and � be a probability measure on M . For a Borel setA �M and for " > 0, the "-enlargement of A is A" = fx 2M ; d(x;A) � "g.The boundary measure of A is�+(A) = lim inf"!0+ �(A")� �(A)" �The isoperimetric function of (M;�) is de�ned for a 2 [0; 1] byI�(a) = inff�+(A); �(A) = ag:It vanishes at 0 and 1.For convenience, we will use some rescallings to ensure that I�(1=2) =1. When � is a measure on Rn, one de�nes �� for � > 0, by ��(A) =�(�A): One easily checks that I�� = �I�. In the case of the Euclidean n-dimensional sphere of radius r, rSn � Rn+1, we consider the Riemannianstruture induced by Rn+1. Then, if �rSn is the uniform probability on rSn,one has rI�rSn = I�Sn .We turn now to the shift problem. Its aim is to �nd the sets of given mea-sure whose measure varies the most under translations. For references, onecan see [10]. The natural setting will be the Euclidean space (Rn; h�; �i; j � j),with a probability measure �, with density �� with respect to the Lebesguemeasure. The shift function of � can be de�ned for a 2 [0; 1] asS(a) = sup( supjhj=1 lim sup"!0+ j�(A+ "h) � �(A)j" ; �(A) = a) �When � has a smooth density �� and A � Rn,1" (�(A+ "h)� �(A)) = ZA ��(y + "h)� ��(y)" dytends to RAhr��(y); hi dy. Thus the shift function isS�(a) = sup�����ZAr��(x) dx���� ; �(A) = a� :This makes sense in the more general case when the distributional gradientof �� is a signed measure with density with respect to � ([10]). Noticethat when �� is smooth, Green's formula yields RAr��(y) dy = R@A ��nA,where nA is the outer normal af A and the integral is with respect to theLebesgue measure on the boundary of A. The latter quantity exists in themore general setting of embedded manifolds. So when � is a probabilitywith smooth density �� on an embedded manifold M � Rk, we can de�nethe shift function S�(a), for a 2 [0; 1], byS�(a) = sup�����Z@A ��nA���� ; A �M; �(A) = a� ;3



where the supremum is over the open sets with smooth boundary for whichthe integral is absolutely convergent.The Gaussian measure will be of particular importance in the following.Notice that we do not choose the usual convention. Let  be the probabilitymeasure on R with density �(t) = exp(��t2) dt. For a measure � on R wedenote by R� the distribution function R�(t) = �(] � 1; t]). The isoperi-metric problem for the measures 
n was solved in [14] and in [28]. Thesolution to the shift problem for these measures is in [20]. Half-spaces arealways extremal. This remarkable property of the Gaussian measure can bestated as: I
n = I = S
n = S = � �R�1 , where R�1 is the reciprocalof the distribution function of .When studying the isoperimetric or shift function of a product measure�
n, it will be useful to compare I� or S� with I = S . It turns outthat such comparisons are equivalent to Bobkov or reverse Bobkov-typeinequalities (see [9], [6]):Theorem 1 ([7]) Let M be a Riemannian manifold and � a density prob-ability on M . Let c > 0. Then the following assertions are equivalent:i ) I� � c Iii ) For all locally Lipschitz functions f :M ! [0; 1],I �Z f d�� � Z rI2(f) + 1c2 jrf j2 d�Now, we extend to manifolds a result of [6]:Theorem 2 Let � a density probability measure on an embedded manifoldM � Rk. Let c > 0. Then the following assertions are equivalent:i ) S� � c Iii ) For all smooth and compactly supported functions f :M ! [0; 1],I �Z f d�� �s�Z I(f) d��2 + 1c2 ����Z rf d�����2:Proof: We show �rst that ii) implies i). Notice that ii) can be extendedto continuous piecewise C1 functions with compact support. Let A be asmooth compact domain in M . For " > 0, let f" :M ! [0; 1] be de�ned byf"(x) = �1� 1"d(x;A)�+where d is the geodesic distance. Applying ii) to f", one gets����1" ZA"�Ard(�; A) d������ c I �Z f"� :4



Notice that rd has norm one. Close to the boundary of A, it becomesorthogonal to it. Thus, letting " to zero, we get j R@A nA��j � c I(�(A)):Next, we assume i) and show ii). Let f be smooth and compactlysupported. Let � be the distribution of f under �. We may assume that �is absolutely continuous with respect to the Lebesgue measure on [0; 1] andhas positive density on its support. By the co-area formulaZ rf d� = Z 10 Z@At rfjrf j d�t dt;where At = fx; f(x) � tg and �t is the measure on @At of density ��. Sincerf=jrf j is a unit inner normal of At, we get by i)����Z rf d����� � Z 10 ����Z@At nAt������ dt � c Z 10 I(�(At)) dt:Let N(t) = �(ff � tg) = �([0; t]). De�ne k = N�1 � R, and apply thereverse Bobkov inequality of [1] to k and the measure 1:I2 �ZRk d1� � ����ZRk0 d1����2 + �ZRI(k) d1�2 :By the change of variable t = k(x),ZRk0(x) d1(x) = Z 10 �(k�1(t)) dt = Z 10 I(N(t)) dt:Since the law of k under 1 is equal to the one of f with respect to �, weget�Z I(�(At)) dt�2 = �Z I(�(ff � tg) dt�2 � I2 �Z f d����Z I(f) d��2where we have used I(p) = I(1 � p). Thus we get ii) and the proof iscomplete. 2As stated in [12], [7] and [6] the functional inequalities in the latter twotheorems have the tensorisation property: if they are true for �, then theyhold for �
n for all n � 1. This remark yields the following result, which isthe basis of our comparison method.Corollary 3 Let � be a probability measure onM and let �
n be the productmeasure on Mn.i) If I� � c I, then for n � 1 one has I�
n � c I.Assume M embedded.ii) If S� � d I, then for n � 1, S�
n � d I:5



Let us emphasize that we consider onMn the canonical Riemannian productstructure. For the shift problem, if M is embedded in Rk, we consider thecanonical product embedding of Mn in Rnk. Let us give a few comments:1) It is clear that I� � I�
2 � I�
3 : : : and S� � S�
2 � S�
3 : : :. More-over, if � is on R and has �nite variance, classical cantral limit argumentsabout the sets fx 2 Rn; Pni=1 � tpng show that infn I�
n � C I andsupn S�
n � C I for some constant C depending on the variance. Thus, interms of behaviour close to zero, I is maximal for i) and minimal for ii).2) Similar results were established earlier. Let J(t) = min(t; 1 � t),Bobkov and Houdr�e [12] showed that I� � cJ implies I�
n � c=(2p6)J forall n � 1. In [10], Bobkov shows, for H(t) = t log(1=t)+(1�t) log(1=(1�t)),that S� � cH implies S�
n � 24cH for n � 1.3) The remarkable fact about I is that there is no loss on the constantc when going to product measures. We shall show that I is almost the onlyone with this property. Let K : (0; 1)! (0;1) be a positive, concave func-tion such that for all t, K(1� t) = K(t). Assume that for every probabilitymeasure � on R, I� � K implies I�
2 � K. By [8], there exists an evenlog-concave probability � on R such that I� = �� �R�1� = K. But K � I�implies K � I�
2 which is clearly less than I� . So I� = I�
2 = �� � R�1� ,which means that half-spaces of the form fx1 � �g are solution to theisoperimetric problem. By [11], this implies that � is either a Gaussian (andI� = �I) or a Dirac mass at a point, which is excluded.The situation is the same for the shift problem. LetK is concave positiveand symmetric as before and such that S� � K implies S�
2 � K. Consideragain the log-concave probability � on R such that K = �� � R�1� . Weshow in the next section S� = K. Again we can deduce from this thatS�
2 = �� �R�1� , which means that half-spaces fx1 � �g are solution to theshift problem. One can check that all the steps of the proof in [11] can becarried out in this new situation. This is due to the fact that their argumentonly uses half-spaces for which boundary measure and norm of the integralof the outer normal coincide. The result is again that K is a multiple of I .Next, we take advantage of the previous property of I to get exactsolutions of isoperimetric problems. The shift case is similar. Assume that �is such that I� � cI and that there exists a 2 (0; 1) such that I�(a) = cI(a)(i.e. c is maximal so that I� � cI). By the previous results and remarks,we have I�(a) = cI(a) � I�
n(a) � I�(a):Thus I�
n(a) = I�(a). Let A be a solution of measure a of the isoperimetricproblem for �, �(A) = a, �+(A) = I�(a). Then A �Mn�1 � Mn satis�es�
n(A�Mn�1) = �(A) = a and(�
n)+(A�Mn�1) = �+(A) = I�(a) = I�
n(a):6



So, for all n, A�Mn�1 is a solution of the isoperimetric problem of measurea. In the next sections we give applications of this methods in concretecases. Each time, we try to have exact comparisons with the Gaussian case.2.1 Products of log-concave measures on the real lineThe isoperimetric problem for log-concave measures on the real line wassolved by Bobkov [8]. In particular, he proves:Proposition 4 Let � be a log-concave measure on the real line. Then, � issymmetric around its median if and only if for all 0 < p < 1 and all h > 0,the in�mum of �(A+[�h; h]) over the sets A such that �(A) = p is achievedfor an interval of the form (�1; a].For convenience, we will always assume that 0 is a median of our mea-sures. The previous result has the following in�nitesimal corollary. Recallthat �� is the density of � and R� is its distribution function.Proposition 5 Let � be a log-concave even probability measure on R, thenits isoperimetric function is given by I�(0) = I�(1) = 0 and for t 2]0; 1[,I�(t) = ��(R�1� (t)):We will need a similar statement for the shift problem. The results havethe same form.Lemma 6 Let � be a log-concave measure on the real line, with positivedensity �� = e�N . Let 0 < p < 1 and h > 0, thensupf�(A+ h); �(A) = pgis achieved for intervals of the form (�1; a].Proof: One can see from the formula�(A + h) = ZA e�(N(x+h)�N(x)) d�(x)that, given p and h, the supremum is achieved for A0 = fx; N(x + h) �N(x) � �g where � is chosen so that �(A0) = p. Since N is convex,the function x ! N(x + h) � N(x) is non-decreasing. Thus one can takeA0 = (�1; R�1� (p)]. 2Notice that inff�(A + h); �(A) = pg is achieved on sets of the form[b;+1). And one has reversed results when h is negative. Letting h to zero,one easily gets 7



Proposition 7 Let � be a log-concave even probability measure on R withpositive density, then its shift function is given by S�(0) = S�(1) = 0 andfor 0 < t < 1, S�(t) = ��(R�1� (t)):We have computed isoperimetric and shift functions. The next statementis usefull in comparing them.Lemma 8 Let � and � be even log-concave probability measures on R, withdensities �� and ��. Let m;n 2 [0;1] be the supremums of the supports of� and �. Assume that �� is decreasing on R+, that ��(0) = ��(0) = 0 andlimm� �� � limn� ��.If ��1� � �� is convex, then for 0 < t < 1, �� �R�1� (t) � �� �R�1� (t):Proof: Notice that ��1� � �� is well de�ned. By symmetry of the measures,we can restrict to t 2 [1=2; 1): The announced inequality is equivalent tot � R� � ��1� � �� � R�1� (t), for t 2 [0; m). Setting t := R�(y), we have toshow that for y 2 [0; m),f(y) := R�(y)�R�((��1� � ��)(y))is non-negative. Obviously,f 0(y) = ��(y)�1� (��1� � ��)0(y)�;where 0 stands for right-derivative. By hypothesis (��1� ���)0 is non-decreasing.Thus, f 0 can either be of constant sign on [0; m) or be non-negative onsome [0; a) and then non-positive on (a;m). Since f is continuous andf(0) = limm� f = 0, we are in the second case and f is non-negative. 2Combining this lemma with Theorem 3 and the preceding computationsof isoperimetric and shift functions, we getTheorem 9 Let � be an even absolutely continuous log-concave probabilitymeasure on R. We write d� = e�M , where M : R ! [0;1] is convex.Assume that M(0) = 0.i) If pM is convex, then for every integer n, one has I�
n � I. Inparticular, among sets of measure 1=2 for �
n, the half-space R+�Rn�1 issolution to the isoperimetric problem.ii) If pM is concave, then for n integer, S�
n � S. In particular,among sets of measure 1=2 for �
n, the half-space R+�Rn�1 is solution tothe shift problem.Notice that the hypothesis \M convex and pM concave" implies that thedensity �� = e�M is positive and decreasing on R+. This theorem can beapplied to the probability measures d�p = e�j�ptjp . They are in the case i)when p � 2 and in the case ii) when 1 � p � 2.8



Remark: If � is the push forward of a measure � by a Lipschitz mapf , it is well-known that kfkLip I� � I�. In particular, if � is a probabilityon Rn, inf(0;1) I�I � sup�1=kfkLip; f(
n) = �	 :When n = 1, the latter is a equality [22]. The optimal map is then given bythe canonical monotone transportation de�ned by R = R� � f . Notice thatf is a contraction if and only if 1 � jf 0j = �=(�� � f) = �=(�� �R�1� �R);and we recover the condition � � R�1 � �� � R�1� . When this holds, themap fn(x1; : : : ; xn) = (f(x1); : : : ; f(xn)) is a contraction of 
n onto �
n ,thus I�
n � I
n : These classical arguments provide a slightly simpler proofof the statement i) in the previous theorem. However, they do not work forthe shift problem. In larger dimensions, building transportations is moredi�cult and, a priori, does not give the optimal constants in comparisons ofisoperimetric functions.2.2 Products of spherical measuresFor n 2 N, let Sn � Rn+1 be the Euclidean unit sphere and let sn denote itsn-dimensional Lebesgue measure, by convention s0 = 2. Let rn = sn�1=sn.We consider rnSn � Rn+1 with the Riemannian structure induced by Rn+1.Let �n be the uniform probability on this special sphere.The measure of a spherical cap Ct = fx 2 rnSn; hx; e1i � tg is, forjtj � rn �n(t) = Z t�rn �1� � urn�2� n�22 du;whereas the boundary measure of Ct is'n(t) = �1� � trn�2�n�12 :Since spherical caps are solution to the isoperimetric problem [24], [27], theisoperimetric function of �n isIrnSn(t) = 'n(��1n (t)); t 2 [0; 1]:It is obviouly symmetric with respect to 1=2 and decreasing on [1=2; 1].Next, we compute the total normal R@Ct nCt for these caps. By rota-tionnal invariance, it is parallel to e1. At any boundary point, one hashnCt ; e1i = �p1� (t=rn)2. Thus n(t) := ����Z@Ct nCt ���� =r1� � trn�2 'n(t) = �1� � trn�2�n2 :Our next result asserts that caps are also solution to the shift problem.9



Theorem 10 The shift function of the sphere isSrnSn =  n � ��1n :For n � 2, SrnSn = (IrnSn) nn�1 .Proof: Let a 2 [0; 1]. We consider only smooth functions f : rnSn ! [0; 1].By rotationnal invariance (of the norm and of the sphere),supR f=a ����Z rf d�n���� = supR f=aZ hrf;�e1i d�n:By Green's formulaZ hrf;�e1i d�n = n Z f(x)h�e1; xrn i d�n(x):Under the condition R f = a, the latter integral is maximal when f is thecharacteristic function of the cap C��1n (a). This implies that for smooth f ,����Z rf d�n���� � Sn�Z f d�n� :Applying this to approximations of characteristic functions of sets, as in sec-tion 2, we get the result for sets: when �n(A) = �n(Ct), one has j R@A nAj �j R@Ct nCt j. 2Proposition 11 Let n � 1, then for t 2 [0; 1]SrnSn(t) � Srn+1Sn+1(t) � I(t) � Irn+1Sn+1(t) � IrnSn(t);with equality only at t = 0; 1=2 and 1.When n = 2, we recover the inequalities 2pt(1� t) � I � 4t(1� t) whichwere noticed respectively in [21] and [6].Proof: We show �rst the right hand side inequality. By symmetry, it isenough to prove it on [1=2; 1]. Notice that, by construction, there is equalityat the end points of this interval. We want to show that for x 2 [1=2; 1],0@1�  ��1n+1(x)rn+1 !21An2 �  1� ���1n (x)rn �2!n�12 :Since �n+1 is increasing, this is equivalent to�n+10B@rn+1 241�  1� ���1n (x)rn �2!n�1n 35 121CA � x;10



for x 2 [1=2; 1]. Setting x = �n(rny); y 2 [0; 1], we have to check that fory 2 [0; 1], the following function is non-negative:f(y) = �n(rny)� �n+1 �rn+1 h1� (1� y2)n�1n i 12�For y 2 (0; 1), its derivative isf 0(y) = rn(1� y2)n�22 � rn+1(1� y2) (n�1)22n @@y �1� (1� y2)n�1n � 12= (1� y2)n�22 �rn � n � 1n rn+1y(1� y2)� 12n�1� (1� y2)n�1n �� 12� :So f 0(y) � 0 is equivalent to:(1� y2) 1n � 1y2 � � (n� 1)rn+1nrn �2 � 1Since t ! t1=n is concave, the left quantity is decreasing on (0; 1). Thus,there exits a such that f increases on (0; a) and decreases on (a; 1). Sincef(0) = f(1) = 0, f is non-negative.The inequality I � IrnSn can be proved with the same method. It canbe understood by the Poincar�e limit argument: the sequence (IrnSn)n�1 isnon-increasing, and I is its limit. Indeed, for a �xed x 2 R, when n tendsto in�nity, n(x) = exp�n� 22 ln�1� x2r2n�� � e�n�22r2n x2 � e��x2 ;and in the same way �n(x) ! R(x). The inequalities involving the shiftfunctions have a similar proof. 2By the previous comparisons and by the results of Section 2, we haveTheorem 12 Let f : (rnSn)k ! [0; 1] be smooth, thenI �Z f d�
kn � � Z qI2(f) + jrf j2 d�
kn ;and I �Z f d�
kn � �s�Z I(f) d�
kn �2 + ����Z rf d�
kn ����2:In particular I(rnSn)k � I � S(rnSn)k .The latter inequality appeared for k = 1, in a slightly di�erent form, in [6].Corollary 13 Let Sn+ = f(xi)n+1i=1 2 Sn; x1 � 0g: Among subsets of measure1=2 in a product of k spheres of dimension n, the set Sn+�(Sn)k�1 is solutionto the isoperimetric and to the shift problem.11



2.3 Products of uniform measures on Euclidean ballsThe isoperimetric problem for the uniform distribution on the Euclidean ballwas solved by Burago and Zalgaller [16]. The case of dimension 1 is simple.From now on we work in dimension n � 2. Solution sets are intersectionswith orthogonal balls or their complements. Let vn be the volume of theEuclidean unit ball Bn2 . Set Rn = vn�1=vn. We will consider the uniformprobability �n on RnBn2 . Now we give a description for the solutions ofmeasure larger than 1=2. Let m � Rn and � 2 [m � Rn; m]. The ballme1 + �Bn2 crosses Bn2 . The intersection lies in the hyperplane fx1 = agwhere a � 0 satis�es R2n � a2 = �2 � (m� a)2. The boundaries of the twoballs intersect orthogonaly if m2 = R2n+ �2. In that case, Bn2 n (me1+ �Bn2 )is a solution to the isoperimetric problem, with measure larger than 1=2,and all solutions for measure � 1=2 are isometric to such a set. The solutionfor volume 1=2 is the half-ball; this corresponds to m and � in�nite, whenthe other ball becomes a half-space.These sets can be viewed as a one-parameter family indexed by � :=a=Rn 2 [0; 1]. One easily checks that it is an increasing function of �, inthe sense of the inclusion order. For a given �, we express �n-measure andboundary measure. First the volumeV (�) = Z a�Rn vn�1(R2n � t2)n�12 dtvnRnn � Z �m�a vn�1(�2 � s2)n�12 dsvnRnn= Rn "Z ��1(1� �2)n�12 d� � p1� �2� !n Z 1p1��2(1� �2)n�12 d�# ;where we have used the relations m = R2n=a, � = RnpR2n � a2=a, thede�nition of Rn and the change of variables t = Rn� and s = ��. In thesame way the boundary measure isS(�) = Z �m�a sn�2(�2 � s2)n�32 � dsvnRnn= (n� 1) p1� �2� !n�1 Z 1p1��2(1� �2)n�32 d�:Clearly, the right parameter is � 2 (0; �=2) such that � = cos(�): Thenv(�) := V (cos �) = Rn "Z �� sinn u du� tann � Z �=2� cosn u du#s(�) := S(cos �) = (n� 1) tann�1 � Z �=2� cosn�2 u du:These functions can be extended by continuity: s(0) = 0; s(�=2) = 1, andv(0) = 1; v(�=2) = 1=2. The isoperimetric function of �n is IRnBn2 = S �V �1 = s � v�1. We have the following comparison with the Gaussian case12



Theorem 14 Let n � 1, then for t 2 [0; 1]IRnBn2 (t) � I(t);with equality only at t = 0; 1=2 and 1.Proof: We start with some preliminary calculations. Notice thatv0(�) = �nRn sinn�1 �cosn+1 � Z �=2� cosn u dus0(�) = (n� 1)sinn�2 �cosn � "(n� 1) Z �=2� cosn�2 u du� cosn�1 � sin �# :Writing R cosn u du = R cosn�2 u du+ R � sin u cosn�2 u� sin u du and inte-grating by parts in the latter integral shows thatn Z �=2� cosn u du = (n� 1) Z �=2� cosn�2 u du� cosn�1 � sin �;thus s0(�)v0(�) = �n � 1Rn � cos �sin � � In particular s is increasing in �, and thusremains less than 1. By symmetry, it is enough to show that � � R�1 �s � v�1 on (1=2; 1). This is equivalent to the non-negativity on (0; �=2) ofthe function f(�) = v(�)�R  r� 1� ln s(�)! :Here we have used s 2 [0; 1]. Since f = 0 at the end points of this interval,we are done if we can prove that f 0 is �rst positive and then negative. Aftersimpli�cation one getsf 0(�) = v0(�) + s0(�)2p�� ln s(�) :Thus f 0(�) � 0 is equivalent tog(�) := 4� ln s(�) + � s0(�)v0(�)�2 � 0:Here one had to be careful about signs, which depend on the choice ofparameters. When � tends to �=2, s(�) goes to 1 and cos � to 0, thuslim(�=2)� g = 0. When y goes to zero,cos �sin � � 1� and s(�) � (n� 1)�n�1 Z �=20 cosn�2 u du:13



So lim0+ g = +1. It would be enough to show that g0 is �rst negative andthen positive. Clearlyg0(�) = 4�s0(�)s(�) � 2�n� 1Rn �2 cos �sin3 � �This quantity has the same sign as2� sin3 � s0(�)� �n� 1Rn �2 cos � s(�)= 2�(n� 1)sinn+1 �cosn � "(n � 1) Z �=2� cosn�2 u du� cosn�1 � sin �#��n� 1Rn �2 (cos �) (n� 1) tann�1 � Z �=2� cosn�2 u du= " 2�(n� 1)sinn+1 �cosn � � �n� 1Rn �2 sinn�1 �cosn�2 �! Z �=2� cosn�2 u du!�2� sinn+2 �cos � �� (n� 1):Multiplying by cosn �=((n� 1) sinn�1 �), we get that g0 has the same sign ashn(�) :=  Z �=2� cosn�2 u du! 2�(n� 1) sin2 � � �n� 1Rn �2 cos2 �!�2� sin3 � cosn�1 �:Let �n = 2�(n � 1), �n = ((n � 1)=Rn)2 and �n = arctan(p�n=�n). If� 2 [0; �n] then hn(�) < 0. On (�n; �=2], hn(�) has the sign ofjn(�) = Z �=2� cosn�2 u du� 2� sin3 � cosn�1 ��n sin2 � � �n cos2 � �Notice that lim�+n jn = �1 and jn(�=2) = 0. We are done if we can provethat on (�n; �=2), jn is �rst negative and then positive. A straightforwardcomputation yieldsj0n(�) = cosn�2 �(�n sin2 � � �n cos2 �)2Pn(sin2 �);where Pn is a polynomial of degree 3, with leading term (�n+�n):(�n+2�) >0. Moreover, Pn satis�esPn � �n�n + �n� > 0 and Pn(1) = 0:14



To study the variations of jn, we just need to study Pn on [xn; 1], where wehave set xn = �n=(�n + �n). Because of its degree, Pn can decrease onlyon a bounded interval. Since Pn(xn) > Pn(1), this interval has to intersectthe interval we are working on. If we can prove that P 0n(1) is positive, thenclearly Pn is positive on (xn; �n), and negative on (�n; 1) for some �n betweenxn and 1. In this case, hn is �rst negative and then positive and the theoremis proved. One easily checks thatP 0n(1) = �2n + 2��n � 4��n � �n�n= 2�(n� 1)R2n (2�nR2n � n2 + 1):Recall thet Rn = vn�1=vn with vn = � n2 =�(1+ n2 ). So P 0n(1) > 0 is equivalentto 1 + 2n � �1 + n2�� �1 + n�12 �!2 > n2:But this follows from the next lemma. 2Lemma 15 For all x > 1=2, one has� �x+ 12��(x) >rx� 12 �Proof: It is classical that when x tends to in�nity,� �x+ 12��(x) � px �rx� 12 �This implies thatf(x) = log ��x+ 12�� log �(x)� 12 log�x� 12�tends to zero when x!1. The lemma will be proved if we show that f isdecreasing. Using the formula(log �)0(x) = � 1x � C � 1Xk=1� 1x+ k � 1k� :we get f 0(x) = 1Xk=0 1x+ k � 1x+ 12 + k!� 12 � 1x� 12= 12  1Xk=0 1(x+ k)(x+ 12 + k)!� 1x� 12!15



Next, by convexity of y 7! y�2,1(x+ k)(x+ 12 + k) < 1(x+ k)2 � Z x+k+ 12x+k� 12 dyy2Eventually we get that f is decreasingf 0(x) < 12  Z 1x� 12 dyy2 � 1x� 12! = 0: 2>From Theorems 1 and 14, we derive Bobkov's inequality with optimalconstant on RnBn2 . Let f : RnBn2 ! [0; 1] be smooth, thenI  ZRnBn2 f d�n! � ZRnBn2 qI2(f) + jrf j2 d�n: (1)As explained before this yields an exact solution to the isoperimetric prob-lem in (Bn2 )k for sets containing half of the whole volume. Let Bn2;+ =f(x1; : : : ; xn) 2 Bn2 ; x1 � 0g, and �n be the uniform probability on Bn2 .Among sets of probability 1=2 in (Bn2 )k, the set Bn2;+� (Bn2 )k�1 has minimalboundary measure.For a probability � on Rn and f : Rn! [0;+1), denoteEnt�(f) = Z f log f d�� �Z f d�� log�Z f d�� :By [1] or by Beckner's limit argument (see [23]), inequality (1) implies alog-Sobolev inequality for RnBn2 . Let us state it for the unit ball Bn2 . Easyscaling arguments give that for every smooth f : Bn2 ! [0;+1),Ent�n(f2) � 0@��n+12 ���n+22 �1A2 ZBn2 jrf j2d�n � 2n ZBn2 jrf j2d�n:Here, we improve a result of Bobkov and Ledoux [13]: using a rotation-symmetric transportation of the Gaussian measure onto �n, they got theconstant �(1 + n=2)�n=2 �n!1 2e=n: Our constant is asymptotically sharpwhen n goes to in�nity (notice that the previous log-Sobolev inequalityimplies the Gaussian sharp log-Sobolev inequality).3 Unimodality and sections of product measuresIn [29], Vaaler proved that the volume of the sections of the cube [�1=2; 1=2]nby k-dimensional subspaces through the origin is always bigger than 1.16



Peaked order and unimodal measures [19] were the main ingredients of hisproof. His method was pushed forward by several authors: Meyer and Pajor[25] proved that for any k-dimensional subspace K � Rn, the functionsK(p) := jK \ Bnp jjBkp jis non-decreasing for p � 1. They actually derived a more general statementfor `p sums of Euclidean spaces. Next Caetano [17] established sK(p) �sK(1) for p 2 (0; 1). In [3], we showed that sK is non-decreasing on (0;+1].Our aim here is to extend these results to `p-sums of arbitrary �nite di-mensional spaces and to apply the peaked order method to the study ofthe isoperimetric and the shift problem in the case of half-spaces. Thispartial approach nevertheless enables to deal with non log-concave productmeasures.3.1 Some preliminariesOur de�nitions slightly di�er from [19]. They lead to less technical proofs;for details we refer to [3].Let Cn be the set of all bounded origin-symmetric convex Borell subsetsof Rn. A function f on Rn is said to be unimodal if it is the increasing limitof a sequence of functions of the form:JXj=1 aj1Cjwhere J 2 N, aj � 0 and Cj 2 Cn. One easily checks that even non-negative quasi-concave functions, and a fortiori even log-concave functionsare unimodal. On the real line, a function is unimodal if and only if it iseven and non-increasing on R+.One says that a Radon measure on Rn is unimodal if it is absolutelycontinuous with respect to Lebesgue's measure and admits some unimodaldensity. When � and � are unimodal measures, so is the product measure� 
 �; this is due to the fact that when C 2 Cn and D 2 Cm, one hasC �D 2 Cn+m and 1C(x)1D(y) = 1C�D(x; y):Let �; � be Radon measures on Rn. One says that � is more peakedthan � and writes � � � when �(C) � �(C) holds for every C 2 Cn. Itis remarkable that the inequalities for � can be tensorised as soon as theyinvolve unimodal measures:Theorem 16 (Kanter) For 1 � i � k, let �i and �i be unimodal measureson Rni such that �i � �i. Then, the following inequality between measureson Rn1+���+nk holds: �1 
 � � � 
 �k � �1 
 � � � 
 �k :17



3.2 Sections of product measures and of unit ballsLemma 17 Let �1; �2; f be continuous functions from R+ to R+. Assumethat f vanishes at most at zero and that �1=�2 is non-decreasing. IfZ 10 f e��1 � Z 10 f e��2 ;then for all a � 0 Z a0 f e��1 � Z a0 f e��2 :This is obvious by di�erentiation. Notice that the statement can be extendedto the case when �1 and �2 have values in [0;1].Proposition 18 Let ' : R+ ! [0;1], be non-decreasing. Assume that'(0) = 0 and R exp[�'(jtj)]dt = 1. Let E � Rn be a k-dimensional subspace.i) If '(t)=t2 is non-increasing, thenZE nYi=1 e�'(jxij)dk(x) � ZRk nYi=1 e�'(jxij)dk(x) = 1:ii) If '(t)=t2 is non-decreasing, thenZE nYi=1 e�'(jxij)dk(x) � ZRk nYi=1 e�'(jxij)dk(x) = 1:Proof: Assume the hypothesis of i). Lemma 17 implies thatd�(t) := exp[�'(jtj)]dt � exp[��t2]dt:By Theorem 16, the inequality holds for the nth powers of these unimodalmeasures. Let (uk+1; : : : ; un) be an orthonormal basis of E?. For " > 0, letE(") = fx 2 Rn; jhx; uiij � "=2; i = k + 1; : : : ; ng:Then �
n(E(")) � 
n(E(")) = 
n(Rk � [�"=2; "=2]n�k), where we haveused the de�nition of the peaked order for the sets E(")\ rBn2 ; r! 1 andthe rotationnal invariance of Gaussian measures. The conclusion followsfrom a standard limit argument. The proof of ii) is similar. 2Let C � Rn be a symmetric convex body and let k � kC be the corre-sponding norm on Rn. For p > 0, we set�p;C = �jCj � ��1 + np�� 1n :Notice that n only depends on C. When C = [�1; 1] � R, we simply write�p. We are ready to state our extension of the results of Meyer-Pajor andCaetano. 18



Theorem 19 Let N;m; (ni)mi=1 be positive integers such that Pmi=1 ni = N .For i � m, let Ci be a symmetric convex body in Rni. Identifying RN withRn1 � � � � �Rnm, we write every x 2 RN as x = (x1; : : : ; xm).For 0 < p � 1, let us consider the setsBp = (x 2 RN ; mXi=1 k�i;pxikpCi � 1) and Dp = (x 2 RN ; mXi=1 kxikpCi � 1) �Let E be a k-dimensional subspace of RN. Then the quantity�(1 + k=p)jE \ Bpjis a non-decreasing function of p 2 (0;+1]. Under the additionnal conditionn1 = � � �= nm = n, � jE \DpjjBkp j � 1k jBnp j 1nis a non-decreasing function of p 2 (0;+1].An application of this result appears in [26]. See also [25] for applications toSiegel-type lemmas. We start with some preliminary statements. FollowingMeyer and Pajor, we de�ne the measure �p;C on Rn byd�p;C(x) = exp�� k�p;C xkpC� dnx:It is a probability measure. Since the level sets of its density are convex andsymmetric, it is unimodal.Proposition 20 Let C be a symmetric convex body in Rn. If p > q > 0then �p;C � �q;C .Proof: If n = 1, the statement follows from Lemma 17 applied to f =1;  1(t) = tp;  2(t) = tq. Assume now n � 2. It is enough to consider setsC with C1 norm on Rn n f0g. In this case the boundary @C of C is asubmanifold. For ! 2 @C, let n(!) be the outer normal of C at ! and letd� be the surface measure on @C. We will use the di�eomorphism � fromR�+� @C onto Rn n f0g which maps (r; !) to the vector r!.Since we work with absolutely continuous measures, it is enough to com-pare their values on symmetric convex bodies. Let K � Rn be such a set.One has�p(K) = ZRn 1fkxkK�1ge�k�p;C xkpC dx= Z ZRn+�@C 1fkr!kK�1g e�k�p;C r!kpC h!; n(!)i rn�1dr d�(!)= Z@Ch!; n(!)i Z 1=k!kKr=0 e��pp;C rprn�1 dr! d�(!) :19



Taking K = Rn in this formula shows thatZ 10 e��pprprn�1 drdoes not depend on p. For each !, we apply Lemma 17 with f(r) = rn�1,�1(r) = rp and �2(r) = rq; the hypothesis p > q ensures that �1=�2 is non-decreasing. Since h!; n(!)i is always non-negative, one gets �p(K) � �q(K).2Lemma 21 Given E a subspace of Rn of dimension k and (uk+1; : : :un) anorthonormal basis of E?, we considerE(") = fx 2 Rn; jhx; uiij � "=2; i = k + 1; : : : ; ng:Let N : Rn! R+ be a continuous homogeneous fonction, vanishing only atthe origin. Then the set B = fx; N(x) � 1g is a symmetric star-shapedbody and for p > 0, one has��1 + kp� jE \Bjk = ZK e�N(x)pdkx = lim"!0+ "k�n ZE(") e�N(y)pdny:The �rst equality is obvious by level-sets integration. The second one followsfrom dominated convergence (notice that there exists d > 0 such that djxj �N(x) � jxj=d for all x 2 Rn.)Proof of Theorem 19: Let p > q > 0. By Lemma 21 and with the samenotation, the following relation holds for r > 0:�(1 + k=r) � jE \ Brj = lim�!0 �k�N�r;C1 
 � � � 
 �r;Cm(E(�)):The previous proposition and Theorem 16 yield�p;C1 
 � � � 
 �p;Cm � �q;C1 
 � � � 
 �q;Cm :Since E(�) is convex and symmetric, the latter relation implies that�(1 + k=p) � jE \ Bpj � �(1 + k=q) � jE \ Bqj:When n1 = � � �= nm = n,Bp = (x 2 RN ; mXi=1 ��1 + np� 1n jCij 1nxipCi � 1)= ��1 + np�� 1n (x 2 RN ; mXi=1 jCij 1nxipCi � 1) �20



The linear mapping T de�ned on RN by T (x) = �jC1j 1nx1; : : : ; jCmj 1nxm�is bijective. Thus Bp \E = ��1 + np�� 1n T�1(Dp \ TE)Notice that T multiplies volumes by j det(T )j and that TE can be an arbi-trary k-subspace. Hence for any F of dimension kp! �(1 + k=p)�(1 + n=p) kn jF \Dpjis non-decreasing on (0;+1]. 23.3 Remarks on the Brascamp-Lieb inequalitiesWe are going to expose an alternative proof of the �rst statement in Propo-sition 18. It uses an inequality due to Brascamp and Lieb [15] (see also [2],[5]). Let E be a k-dimensional subspaces of Rn and let P be the orthog-onal projection onto E. Then Pni=1 Pei 
 Pei = P is the identity whenrestricted to E. Set ci = jPeij2 and ui = Pei=jPeij. As linear mappings ofE,Pni=1 ciui 
 ui = IdE. The Brascamp-Lieb inequality yieldsZE nYi=1 e� (hx;eii)dx = ZE nYi=1 �e� (pcihx;uii)=ci�ci dx � nYi=1�ZRe� (pci t)=cidt�ci :Assume that  is even and  (t)=t2 is non-increasing on R+. Since ci 2(0; 1], one has  (pci t)=ci �  (t) for all t. Hence the previous integral issmaller than �ZRe� (t)dt�Pni=1 ci = ZRk kYi=1 e� (xi)dx;where we have used P ci = k. Thus among k-dimensional subspaces, thecanonical subspaces are extremal.If one takes  (t) = j�ptjp, one can use homogeneity to improve on thelatter argument and extend one of Ball's volume estimates on sections ofthe unit cube [2]:ZE e��ppkxkppdx � nYi=1�ZRe�j�pc1=2�1=pi tjpdt�ci =  nYi=1 ccii !1=p�1=2 :Since ci 2 (0; 1] and Pni=1 ci = k, one has (k=n)k � Q ccii � 1. If p � 2, theintegral is bounded by one as before. If p � 2, Lemma 21 and the previousestimate give jBnp \EjjBkp j � �nk�k(1=2�1=p) :21



One can check that this is optimal when k divides n. In this case, let d = n=kand for j = 1; : : : ; k, let vj = e1+j(d�1)+� � �+ejd. Then spanfv1; : : : ; vkg\Bnpis isometric to (n=k)1=2�1=pBkp .The second statement in Proposition 18 is a reverse form of the �rststatement. One can wonder whether it is provable via the reverse form ofthe Brascamp-Lieb inequality ([4], [5]). The answer seems to be negative:the duality between the Brascamp-Lieb inequality and its converse corre-sponds to duality of convex sets. It turns sections into projections. Sinceprojections are larger than sections, this provides weaker results. Let usgive an example with  (t) = exp(�j�ptjp): By Lemma 21, and the reverseBrascamp-Lieb inequality, one can estimate from below the volume of theorthogonal projection of Bnp onto a k-dimensional subspace E. With theprevious notationjPE(Bnp )jjBkp j = ZE e��pp inffPni=1 j�ijp ; x=P (Pni=1 �iei)gdx= ZE supPni=1 ci�iui=x nYi=1�e�j�p�ic1=2�1=pi jp�ci dx� nYi=1�ZRe�jc1=2�1=pi �ptjpdt�ci =  nYi=1 ccii !1=p�1=2 :If p � 2, this is bigger than 1. This result was implied by the one on sections,because E \ Bnp � PE(Bnp ). If 0 < p � 2, we getjPE(Bnp )jjBkp j � �kn�k(1=p�1=2) :By duality, this is optimal when k divides n and p � 1. The equality isachieved for the same subspace as for sections.Acknowledgements: We would like to thank S. Bobkov, M. Ledoux, M. Meyerand A. Pajor for usefull comments, and we gratefully acknowledge the hospitality ofthe Erwin Schr�odinger International Institute for Mathematical Physics, in Vienna,and the department of physics of Princeton University, where part of this researchwas carried out.References[1] D. Bakry and M. Ledoux. L�evy-Gromov isoperimetric inequality for an in�nitedimensional di�usion generator. Invent. Math., 123:259{281, 1996.[2] K. M. Ball. Volumes of sections of cubes and related problems. In J. Lin-denstrauss and V. D. Milman, editors, Israel seminar on Geometric Aspects ofFunctional Analysis, number 1376 in Lectures Notes in Mathematics. Springer-Verlag, 1989. 22
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