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Abstract

A twistor construction of the hierarchy associated with the hyper-Kahler equations on a metric (the
anti-self-dual Einstein vacuum equations, ASDVE, in four dimensions) is given. The recursion operator
R is constructed and used to build an infinite-dimensional symmetry algebra and in particular higher
flows for the hyper-Kahler equations. It is shown that R acts on the twistor data by multiplication with
a rational function. The structures are illustrated by the example of the Sparling-Tod (Eguchi-Hansen)
solution.

An extended space-time N is constructed whose extra dimensions correspond to higher flows of the
hierarchy. It is shown that A is a moduli space of rational curves with normal bundle O(n) & O(n) in
twistor space and is canonically equipped with a Lax distribution for ASDVE hierarchies. The space A/
1s shown to be foliated by four dimensional hyper-Kahler slices.

The Lagrangian, Hamiltonian and bi-Hamiltonian formulations of the ASDVE in the form of the
heavenly equations are given. The symplectic form on the moduli space of solutions to heavenly equations
is derived, and is shown to be compatible with the recursion operator.

1 Introduction

Roger Penrose’s twistor theory gives rise to correspondences between solutions to differential equations on
the one hand and unconstrained holomorphic geometry on the other. The two most prominent systems of
nonlinear equations which admit such correspondences are the anti-self-dual vacuum Einstein equations
(ASDVE) [23] which in Euclidean signature determine hyper-Kahler metrics, and the anti-self-dual Yang—
Mills equations (ASDYM) [31]. Richard Ward [32] observed that many lower-dimensional integrable
systems are symmetry reductions of ASDYM. This has led to an overview of the theory of integrable
systems [20], which provides a classification of those lower-dimensional integrable systems that arise as
reductions of the ASDYM equations and a unification of the theory of such integrable equations as
symmetry reduced versions of the corresponding theory of the ASDYM equations. In [20], Lagrangian
and Hamiltonian frameworks for ASDYM were described together with a recursion operator. This leads
to the corresponding structures for symmetry reductions of the ASDYM equations.

In this paper we investigate these structures for the second important system of equations—the ASDVE
or hyper-Kahler equation (this system also admits known integrable systems as symmetry reductions [11]).
We shall give a twistor-geometric construction of the hierarchies associated to the ASDVE in the ‘heavenly’
forms due to Plebaiiski [25]. In this context it is more natural to work with complex (holomorphic) metrics
on complexified space-times and so we use the term ASDVE equations rather than hyper-Kahler equations.
Our considerations will generally be local in space-time which will be understood to be a region in C*.

In Section 2 we summarise the twistor correspondences for flat and curved spaces. We establish a
spinor notation (which will not be essential for the subsequent sections) and recall basic facts about the
ASD conformal condition and the geometry of the spin bundle. In Section 3 the recursion operator R
for the ASDVE is constructed as an integro- differential operator mapping solutions to the linearised
heavenly equations to other solutions. We then use this to give an alternate development of the twistor
correspondence by using R to build a family of foliations by twistor surfaces. We show that R corresponds
to multiplication of the twistor data by a given twistor function. We then analyse the hidden symmetry
algebra of the ASDVE, and use the recursion operator to construct Killing spinors. We illustrate the
ideas using the example of the Sparling—Tod solution and show how R can be used to construct rational
curves with normal bundle O(1) & O(1) in the associated twistor space.

In Section 4 we give the twistor construction for the ASDVE hierarchies. The higher commuting flows
can be thought of as coordinates on an extended space-time. This extended space-time has a twistor
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correspondence: it is the moduli space of rational curves with normal bundle O(n) & O(n) in a twistor
space. This moduli space is canonically equipped with the Lax distribution for ASDVE hierarchies; and
conversely that truncated hierarchies admit a Lax distribution that gives rise to such a twistor space. The
Lax distribution can be interpreted as a connecting map in a long exact sequence of sheaves. In Section 5
we investigate the Lagrangian and Hamiltonian formulations of heavenly equations. The symplectic form
on the moduli space of solutions to heavenly equations will be derived, and is shown to be compatible
with the recursion operator.

We end this introduction with some bibliographical remarks. Significant progress towards understand-
ing the symmetry structure of the heavenly equations was achieved by Boyer and Plebanski [3, 4] who
obtained an infinite number of conservation laws for the ASDVE equations and established some connec-
tions with the nonlinear graviton construction. Their results were later extended in papers of Strachan
[26] and Takasaki [28, 29]. The present work is an extended version of [8, 9, 10].

2 Preliminaries

2.1 Spinor notation

We work in the holomorphic category with complexified space-times: thus space-time M is a complex
four-manifold equipped with a holomorphic metric ¢ and compatible volume form v.

In four complex dimensions orthogonal transformations decompose into products of ASD and SD
rotations

SO(4,C) = (SL(2,C) x SL(2,0))/Zy. (2.1)

The spinor calculus in four dimensions i1s based on this isomorphism. We use the conventions of Penrose
and Rindler [24]. Indices will generally be assumed to be concrete unless stated otherwise: a,b, ...
a = 0,1...3 are four-dimensional space-time indices and A, B,..., A" B’,..., A = 0,1 etc. are two-
dimensional spinor indices. The tangent space at each point of M is isomorphic to a tensor product of
the two spin spaces

TM =54 s (2.2)

The complex Lorentz transformation V¢ — A% V? A%A°i¢ac = goa, is equivalent to the composition
of the SD and the ASD rotation ) o
VAL S MpV P

where A5 and M’ g/ are elements of SL(2,C) and ﬁg?, 0).

Spin dyads (0?,:4) and (OAI,LAI) span S4 and S respectively. The spin spaces 54 and S4° are
equipped with symplectic forms e, and ¢4 such that gy = ¢¢/1+ = 1. These anti-symmetric objects
are used to raise and lower the spinor indices. We shall use normalised spin frames so that

1 1 1 1 1 1
o8B0 _ BoC = BC B¢ _ B¢ _ BC

Let e44” be a null tetrad of 1-forms on M and let V a4 be the frame of dual vector fields. The orientation
is given by fixing the volume form

7 7 7 7
=" Al Al At

Apart from orientability, M must satisfy some other topological restrictions for the global spinor fields
to exist. We shall not take them into account as we work locally in M.
The local basis ¥4 and ©4' 8 of spaces of ASD and SD two-forms are defined by

(AA p (BB _ _AByA'B' | A'B'\AB (2.3)

The first Cartan structure equations are
ded4d = BAT NTA L 4 A8 A FAIB/,

where T'4p and T' 4/ are the SL(2,C) and §E(2, C) spin connection one-forms. They are symmetric in
their indices, and

i

7
Tap =Tcciape®, Tap =Tcciap e, Tecap =oaNceip —iaNVecop:.
The curvature of the spin connection

RAB = dFAB —I—FAC /\FCB



decomposes as L
RAp = C4pcpuCP + (1/12)RE4 5 + 04 peip 207

and similarly for RAIB/. Here R 1s the Ricci scalar, ® 4p 475 18 the trace-free part of the Ricci tensor Rgp,
and C'4gep 1s the ASD part of the Weyl tensor

Cabed = carpec'p'Capep +€apecpCapicip:.

2.2 The flat twistor correspondence

The flat twistor correspondence is a correspondence between points in complexified Minkowski space, C*
(or its conformal compactification) and holomorphic lines in CPp2.

The flat twistor correspondence has an invariant formulation in terms of spinors. A point in C* has
position vector with coordinates (w, z, #,y). The isomorphism (2.2) is realised by

1 w 1 1
A4 ::( yx p ), so that g:EABEA/B/dl‘AA dzB8".

A two-plane in C* is null if (X, Y) = 0 for every pair (X,Y) of vectors tangent to it. The null planes can
be self-dual (SD) or anti self-dual (ASD), depending on whether the tangent bi-vector X AY is SD or ASD.
The SD null planes are called a-planes. The a-planes passing through a point in C* are parametrised by
A=y /7 € Cp*. Tangents to a-planes are spanned by two vectors

w0

LA = 8$AAI

(2.4)
which form the kernel of w47 S4B The set of all a-planes 1s called a projective twistor space and
denoted PT. For C* it is a three-dimensional complex manifold bi-holomorphic to CP? — CP!.

The five complex dimensional correspondence space F := C* x CP! fibres over C* by (J:AAI, A) =
and over PT with fibres spanned by L4. Twistor functions (functions on P7) pull back to functions on
F which are constant on a-planes, or equivalently satisfy L, f = 0.

Twistor space can be covered by two coordinate patches U and U where U is a complement of A = oo
and U is a compliment of A = 0. If (p°, ut, X) are coordinates on U and (7%, fi', X) are coordinates on U
then on the overlap

AA'

C= WA B =gt A= 1
The local coordinates (p®, ut, A) on PT pulled back to F are

P =w4 Xy, pt=z-Xe, X\ (2.5)
We can introduce homogeneous coordinates on the twistor space
(wA, mar) = (W W mor, ) = (plmys, pltmy, A, w).
The point 2AA" € 4 lies on the a-plane corresponding to the twistor (w?, 74:) € PT iff
wt = a:AAIﬂ'A/. (2.6)

For mas 7E 0 and ( 7TA/) fixed, The solution to (2.6) is a complex two plane with tangent vectors of the
form 74 v4 for all v, Alternatively, if we fix J:AAI, then (2.6) defines a rational curve, CP!, in PT with
normal bundle @(1) & O(1).! Kodaira theory guarantees that the family of such rational curves in P7 is
four complex dimensional. There is a canonical (quadratic) conformal structure ds? on C*: the points p
and ¢ are null separated with respect to ds® in C* iff the corresponding rational curves [, and [, intersect
in P77 at one point.

2.3 Curved twistor spaces and the geometry of the primed spin bundle.

Given a complex four-dimensional manifold M with curved metric g, a twistor in M is an a-surface,
i.e. a null two-dimensional surface whose tangent space at each point is an « plane. There are Frobenius
integrability conditions for the existence of such a-surfaces through each a-plane element at each point and
these are equivalent, after some calculation, to the vanishing of the self-dual part of the Weyl curvature,
Capicipr. Thus, given Cyaigrcipr = 0, we can define a twistor space PT to be the three complex
dimensional manifold of a-surfaces in M. If g is also Ricci flat then P77 has further structures which are
listed in the Nonlinear Graviton Theorem:

"Here O(n) denotes the line bundle over CP' with transition functions A™" from the set A # co to A # 0 (i.e. Chern class n).



Theorem 2.1 (Penrose [23]) There is a I-1 correspondence between compler ASD vacuum metrics on
complex four-manifolds and three dimensional complexr manifolds PT such that

o There exists a holomorphic projection p : PT — CP!

o PT s equipped with a four complex parameter family of sections of p each with a normal bundle
O(1) ® O(1), (this will follow from the existence of one such curve by Kodaira theory),

e FEach fibre of it has a symplectic structure ©y € T(A%(u=' () ® O(2)), where X\ € CP*.

To obtain real metrics on a real 4-manifold, we can require further that the twistor space admit an
anti-holomorphic involution.

The correspondence space F = M x CP! is coordinatized by (z,A), where # denotes the coordinates
on M and X is the coordinate on CP' that parametrises the a-surfaces through # in M. We represent
F as the quotient of the primed-spin bundle 5S4 with fibre coordinates 4 by the Euler vector field
T = 7TAI/87TAI. We relate the fibre coordinates to A by A = mg/ /7. A form with values in the line bundle
O(n) on F can be represented by a homogeneous form « on the non-projective spin bundle satisfying

Tla=0, Lya = na.

The space F possesses a natural two dimensional distribution called the twistor distribution, or Lax
pair, to emphasise the analogy with integrable systems. The Lax pair on F arises as the image under the
projection 7'S4 — T'F of the distribution spanned by
w0

7 7
™ 0an + Tanpontn
871’0/

on T'SA" where the Oaar are a null tetrad for the metric on M, and I' 4 4/ g/ are the components of the

spin connection in the associated spin frame (Gaa/ + Taapgen? af—, 1s the horizontal distribution on
C

Sar). We can also represent the Lax pair on the projective spin bundle by 2
LA = (71'1_,1)(71'1418,4,4/ + fA@)\), where fA = (F;,Z)FAA/B/C/TFAITFBITFCI. (28)

The integrability of the twistor distribution is equivalent to C'4/grcipr = 0, the vanishing of the self-dual
Weyl spinor. When the Ricci tensor vanishes also, a covariant constant primed spin frame can be found
so that 'y 4/g/¢cr = 0. We assume this from now on.

The projective twistor space P77 arises as a quotient of F by the twistor distribution. With the Ricci
flat condition, the coordinate A descends to twistor space and w4/ descends to the non-projective twistor
space. It can be covered by two sets, U = {|A] < 1+ ¢} and U = {|]A| > 1 — ¢}. On the non-projective
space we can introduce extra coordinates w# of homogeneity degree one so that (w?,7as), mas # 14s are
homogeneous coordinates on U and similarly (&4, 74/), mar # 04’) on U. The twistor space P7T is then

determined by the transition function & = &P (w4 74) on UNU.
The correspondence space has the alternate definition

F=PT x Mlze, = M x CP*

where [, i1s the line in P7 that corresponds to x € M and Z € PT lies on [,. This leads to a double
fibration

MEF LopT. (2.9)

The existence of L4 can also be deduced directly from the correspondence. From [23], points in M

correspond to rational curves in P77 with normal bundle @4 (1) := O(1) & O(1). The normal bundle to I,

consists of vectors tangent to # (horizontally lifted to T(x)\)}") modulo the twistor distribution. Therefore

we have a sequence of sheaves over CP!
0— D —C"— 04(1) — 0.

The map C* — O4(1) is given by vAA Y AA L Tts kernel consists of vectors of the form 74’ A4
with A varying. The twistor distribution is therefore D = O(—1) ® S# and so there is a canonical
LaeT(D®O(1)® S4), as given in (2.8).

*Various powers of 7y; in formulae like (2.8) guarantee the correct homogeneity. We usually shall omit them when working
1
on the projective spin bundle. In a projection S* —s F we shall use the replacement formula

™Al
aﬂ'Al 71'1/2

EN (2.7)

This is because (on functions of A)

1 1 1
o <ﬂ'0/> 7r1/oA _ﬂ'olLA ﬂ'A

87rA/ sy 71'1/2 sy



2.4 Some formulations of the ASD vacuum condition

The ASD vacuum conditions Cy/grcipr = 0, Paparpr = 0 = R imply the existence of a normalised,
covariantly constant frame (04, :4') of S4 | so that T 44/p/c: = 0. One can further choose an unprimed
spin frame so that the Lax pair (2.8) consists of volume-preserving vector fields on M:

Proposition 2.2 (Mason & Newman [18].) Let %AA/ = (%00/,%0116101611/) be four independent
holomorphic vector fields on a four-dimensional compler manifold M and let v be a nonzero holomorphic
four-form. Put R R R R

Lo =Vgo — /\Vm/, Ly =V — /\VH/. (210)

Suppose that for every A € CP*
[Lo, L1] =0, Lp,v=0. (2.11)

Here Ly denotes the Lie derivative. Then
Oanr = f 'V aur, where A =v(Voo, Vor'Vie Vi),
1s a null-tetrad for an ASD vacuum metric. Every such metric locally arises in this way.

In [7] the last proposition is generalised to the hyper-Hermitian case. A choice of unprimed spin frame
with f2 = 1 is always possible and we shall assume this here-on so that V44 = V 44:. For easy reference
we rewrite the field equations (2.11) in full

[Vao, Vo] =0, (2.12)
[Vaor, Ve + [Var, Vaor] =0, (2.13)
[Vav, V] = 0. (2.14)

Let 48" be the usual basis of SD two-forms. On the correspondence space, define

S(\) =S4 1w (2.15)
The formulation of the ASDVE condition dual to (2.11) is:
Proposition 2.3 (Plebanski [25], Gindikin [12]) If a two-form of the form

E(A) = SA'B 1 g
on the correspondence space satisfies

dpX(A) =0, (A AXA) =0 (2.16)

where dp 1s the exterior deriwative holding w4 constant, then there exist one-forms eA4" related to ©A'B

by equation (2.3) which give an ASD vacuum tetrad.

Note that the simplicity condition in (2.16) arises from the condition that Y4B comes from a tetrad.
To construct Gindikin’s two-form starting from the twistor space, one can pull back the fibrewise
complex symplectic structure on P7T — CP! to the projective spin bundle and fix the ambiguity by
requiring that it annihilates vectors tangent to the fibres. The resulting two-form is O(2) valued. (To
obtain Gindikin’s two-form one should divide it by a constant section of 0(2).)
Put 0% = —a, ¥9V" = &, 'Y = o . The second equation in (2.16) becomes

wAw=2aNANa:=-2v, aAhw=aAw=aAa=aAa=0.
Equations (2.16) can be seen to arise from (2.11) by observing that () can be defined by
EABE(/\) = I/(LA, LB, ceey )

Note also that L4 spans a two-dimensional distribution annihilating 3(A).
The two one-forms e? := 74,44 by definition annihilate the twistor distribution. Define (1, 1) tensors
08, == eAB © Va4 so that

e4 Q@ Lag= 7TB/7TA18§/I =0y + /\(8 — 5) — /\282

where (38:, 3(1),1, 33:, 3%:) = (8,080, 82,0). If the field equations are satisfied then the Euclidean slice of
M is equipped with three integrable complex structures given by J; := {i(82 — o), (8 — 0), (82 + )}
and three symplectic structures w; = {(i(a — &), iw, (o + &)} compatible with the J;. Tt is therefore a
hyper-Kahler manifold.



2.5 The ASD condition and heavenly equations
Part of the residual gauge freedom in (2.11) is fixed by selecting one of Plebanski’s null coordinate
systems.
1. Equations (2.13) and (2.14) imply the existence of a coordinate system
(w, 2,1, 2) =: (w?, ©4)
and a complex-valued function Q such that

Qui0s — Quwz0p  Ouw B 820 9 P
6AAI a ( szai - inaw ag ) o (810‘4871}3 8@3 810‘4) (217)

Equation (2.12) yields the first heavenly equation

1 9%Q 8%Q
QwZsz - Qwu?QzZ =1 o = — = 1. 2.1
°r g dw 4 0Wp OwAdwP (2.18)

The dual tetrad is
Al _ dw? A0" _ 7829 dwp (2 19)
3w,48u~;3 '

with the flat solution Q@ = w?@,. The only nontrivial part of $AB" is 0 = 99 so that Q is a
Kahler scalar. The Lax pair for the first heavenly equation is
Lo: = Quuds — Quz0s — AOw,
L1 . = sz6§ — ng&j, — /\32 (220)
Equations Lo¥ = L;¥ = 0 have solutions provided that € satisfies the first heavenly equation
(2.18). Here ¥ is a function on F.
2. Alternatively equations (2.12) and (2.13) imply the existence of a complex-valued function © and
coordinate system (w, z,z,y) =: (w?,z4), w? as above, such that
Oanr = Oy 0w+ Oyyls = Oy 0y = 0 0 + 0°0 0 .
_81' az - exyﬁx + exxﬁy 61"4 810’4 61‘A6$B 6$B

As a consequence of (2.14) O satisfies second heavenly equation

920 1 9%0 9?0
0. 40,0, — 0.2 = 1 = 0. 2.22
Ovw + Oz + 00Oy = Oy =0 v e S 52502 Grpirs (222)

(2.21)

The dual frame is given by

A% = da? + 327®de Al = duA (2.23)
81‘Bﬁl‘A ’ '
with © = 0 defining the flat metric. The Lax pair corresponding to (2.22) is
Ly = 0y — A(Ow — OpyOy + Oyy0s),
Li = 04 X0: 4 Ope0y — Opy0s). (2.24)

Both heavenly equations were originally derived by Plebanski [25] from the formulation (2.16). The
closure condition is used, via Darboux’s theorem, to introduce w®, canonical coordinates on the spin
bundle, holomorphic around A = 0 such that the two-form (2.15) is £(\) = dpw? A dpwa. The various
forms of the heavenly equations can be obtained by adapting different coordinates and gauges to these
forms.

3 The recursion operator

In §§3.1 the recursion operator R for the anti-self-dual Einstein vacuum equations is constructed. In
§63.2 then show that the generating function for R'¢ is automatically a twistor function, and is in fact
a Cech representative for ¢. It is shown that R acts on such a twistor function by multiplication. A
similar application to the coordinates used in the heavenly equations yields the coordinate description of
the twistor space starting. In §§3.3 we show how that the action of the recursion operator on space-time
corresponds to multiplication of the corresponding twistor functions by A. In §§3.4 the algebra of hidden
symmetries of the second heavenly equation is constructed by applying the recursion operator to the
explicit symmetries. In §§3.5, R is used to build a higher valence Killing spinors corresponding to hidden
symmetries. In the last subsections examples of the use of the recursion operator are given.



3.1 The recursion relations

The recursion operator R is a map from the space of linearised perturbations of the ASDVE equations to
itself. This can be used to construct the ASDVE hierarchy whose higher flows are generated by acting on
one of the coordinate flows with the recursion operator R.

We will identify the space of linearised perturbations to the ASDVE equations with solutions to the
background coupled wave equations in two ways as follows.

Lemma 3.1 Let Og and Qg denote wave operators on the ASD background determined by Q2 and ©
respectively. Linearised solutions to (2.18) and (2.22) satisfy

Oad2 =0, Hed® = 0. (3.25)
Proof. In both cases O, = Va1 VA since

1
Dg = ﬁﬁa(gab\/gﬁb) = gabﬁaﬁb + (8agab)8b

but 9,9%° = 0 for both heavenly coordinate systems. For the first equation (35(9 +89Q))? = v implies
0= (30 A 99)6Q = d(IQ A (0 — 0)dQ) = d * ddQ.
Here * is the Hodge star operator corresponding to ¢g. For the second equation we make use of the tetrad

(2.21) and perform coordinate calculations.

O

From now on we identify tangent spaces to the spaces of solutions to (2.18) and (2.22) with the space
of solutions to the curved background wave equation, WW,. We will define the recursion operator on the
space W,.

The above lemma shows that we can consider a linearised perturbation as an element of Wy in two
ways. These two will be related by the square of the recursion operator. The linearised vacuum metrics
corresponding to 62 and §© are

W aaBp = 14083V (a1 V0 6Q,  h' qapp = 0408V 40V podO.

where o4’ = (1,0) and A= (0,1) are the constant spin frame associated to the null tetrads given above.
Given ¢ € W, we use the first of these equations to find hl. If we put the perturbation obtained in
this way on the LHS of the second equation and add an appropriate gauge term we obtain ¢’ - the new
element of W, that provides the §© which gives rise to

hil =Rl + V.V, (3.26)

To extract the recursion relations we must find V such that A’ 4 4'pp — Vi(aa'VBp'y = 0ar0p' XaB- Take
Vep' = 0og/V p1:6€2, which gives

V(AA'VBB') = _L(AIOBI)V(AOIVB)1169 + 04:08'V 41:V g1:6£2.

This reduces (3.26) to
VarVpi¢ =VayVpod' (3.27)

Definition 3.2 Define the recursion operator R : W, — Wy by
LAIVAA/(Z> = OAIVAA/Rq/), (3.28)
so formally R = (V 40/)~% 0 Va1 (no summation over the index A).

Remarks:
e From (3.28) and from (2.11) it follows that if ¢ belongs to W, then so does R¢.
o If R23Q) = §O then 6Q and 6O correspond to the same variation in the metric up to gauge.

e The operator ¢ — V 40:¢ is over-determined, and its consistency follows from the wave equation on
@.

e This definition 1s formal in that in order to invert the operator ¢ — Vap:¢p we need to specify
boundary conditions.



To summarize:

Proposition 3.3 Let W, be the space of solutions of the wave equation on the curved ASD background
given by g¢.

(i) Elements of W, can be identified with linearised perturbations of the heavenly equations.
(ii) There exists a (formal) map R: W, — W, given by (3.28).

The recursion operator can be generalised to act on solutions to the higher helicity Zero Rest-Mass
equations on the ASD vacuum backgrounds [10] by using Herz potentials. We restrict ourselves to the
gauge invariant case of left-handed neutrino field ¥4 on a heavenly background. First note that any
solution of

VAAI’l/)A =0

must be of the form V 40/¢ where ¢ € W,. Define the recursion relations
Rl/)A = VAO/R¢ . (3.29)

It is easy to see that R maps solutions into solutions, although again the definition is formal in that
boundary conditions are required to eliminate the ambiguities. A conjugate recursion operator R will
play a role in the Hamiltonian formulation in Section 5.

3.2 The recursion operator and twistor functions

A twistor function f can be pulled back to the correspondence space F'. A function f on F descends to
twistor space iff Ly f = 0.

Given ¢ € W,, define, for ¢ € 7, a hierarchy of linear fields, ¢; = Ri¢y. Put ¥ = Ziooo ;A" and
observe that the recursion equations are equivalent to L4 ¥ = 0. Thus ¥ is a function on the twistor
space PT . Conversely every solution of L, ¥ = 0 defined on a neighbourhood of |A] = 1 can be expanded
in a Laurent series in A with the coefficients forming a series of elements of W, related by the recursion
operator. The function ¥, when multiplied by 1/(mgmy/), is a Cech representative of the element of
HY(PT,0(-2)) that corresponds to the solution of the wave equation ¢ under the Penrose transform
(i.e. by integration around |A| = 1). The ambiguity in the inversion of V 4o- means that there are many
such functions ¥ that can be obtained from a given ¢. However, they are all equivalent as cohomology
classes.

It is clear that a series corresponding to R¢ is the function A='W. As noted before, R is not completely
well defined when acting on W, because of the ambiguity in the inversion of V 4. However, the definition
RU = ¥/X is well defined as a twistor function on P7T, but the problem resurfaces when one attempts to
treat W(A) as a representative of a cohomology class since pure gauge elements of the first sheaf cohomology
group H(PT,0(—2)) are mapped to functions defining a non-trivial element of the cohomology. Note,
however, that with the definition R¥ = ¥/A, the action of R is well defined on twistor functions and can
be iterated without ambiguity.

We can in this way build coordinate charts on twistor space from those on space-time arising from
the choices in the Plebanski reductions. Put wf = w# = (w, z); the surfaces of constant w' are twistor
surfaces. We have that VAoszB = 0 so that in particular VAyVAo/wOB = 0 and if we define wZA = Ri(.u()4
then we can choose wi* = 0 for negative i. We define

wh = Wi (3.30)
=0

We can similarly define &4 by &g' = @4 and choose @#* = 0 for i > 0. Note that w? and &# are solutions
of L 4 holomorphic around A = 0 and A = oo respectively and they can be chosen so that they extend to a
neighbourhood of the unit disc and a neighbourhood of the complement of the unit disc and can therefore
be used to provide a patching description of the twistor space.

3.3 The Penrose transform of linearised deformations and the recursion op-
erator

The recursion operator acts on linearised perturbations of the ASDVE equations. Under the twistor
correspondence, these correspond to linearised holomorphic deformations of (part of) P7T.

Cover PT by two sets, U and U with |\ < 14+ ¢ on U and |A| > 1 — ¢ on U with (w?,\) coordinates
on U and (&4,A71) on U. The twistor space PT is then determined by the transition function &f =

OB (wA ma)on UN U which preserves the fibrewise 2-form, dw? A dwa|r=const. = A& A d@a | r=const. -



Infinitesimal deformations are given by elements of H1(P7T,®), where ® denotes a sheaf of germs of
holomorphic vector fields. Let

0
Y = fA(WB,FB')&O—A

defined on the overlap U N UV and define a class in H(PT,®) that preserves the fibration PT CPp?.
The corresponding infinitesimal deformation is given by

MWt mant) = (1+ 1Y) (@) + O(t?). (3.31)

From the globality of ¥()) = dw® Adw it follows that Y is a Hamiltonian vector field with a Hamiltonian
J € HY(PT,O(2)) with respect to the symplectic structure . A finite deformation is given by integrating

do¥ _ pa 0F
dt daA”
from ¢ = 0 to 1. Infinitesimally we can put
99
soht = % (3.32)

If the ASD metric is determined by © and then ¢2484 f/0w? | (or more simply 4 f) is a linearised defor-
mation corresponding to O € W,.
The recursion operator acts on linearised deformations as follows

Proposition 3.4 Let R be the recursion operator defined by (3.28). Its twistor counterpart is the multi-

plication operator
Ty

Réf="Y5f =217 (3.33)

™o

[Note that R acts on 6 f without ambiguity; the ambiguity in boundary condition for the definition of R
on space-time is absorbed into the choice of explicit representative for the cohomology class determined

by df.]
Proof. Pull back §f to the primed spin bundle on which it is a coboundary so that

Sf(mar, &%) = h(mar, &%) — h(mar, &%) (3.34)

where h and h are holomorphic on U and U respectively (here we abuse notation and denote by U and
U the open sets on the spin bundle that are the preimage of U and U on twistor space). A choice for the
splitting (3.34) is given by

h ! (+* oa)? 5f(pe)pprdp”’ (3.35)
= i - (pCITrCI)(pBIOBI)B pPE!)ppDIAp .

> 1 7TAIO ! 3 !

h = (" ox') 50/ (pr)ppidp” .

2mi Jr (pwen) (PP o)

Here p4s are homogeneous coordinates of CP! pulled back to the spin bundle. The contours ' and T are
homologous to the equator of CP* in U N U and are such that I' — T' surrounds the point PAI = T4l
The functions k and h are homogeneous of degree 1 in w4/ and do not descend to P7T, whereas their
difference does so that ~
FAIVAA/h:TrAIVAA/h:Tr Iﬂ' IFCIEAA/B/C/ (336)

where the first equality shows that the LHS is global with homogeneity degree 2 and implies the second
equality for some X 4 4:g/¢+ which will be the third potential for a linearised ASD Weyl spinor. X4 4:p5:/¢1
is in general defined modulo terms of the form V 4(4:vp/c/) but this gauge freedom is partially fixed by
choosing the integral representation above; h vanishes to third order at w4 = 04/ and direct differentiation,
using VAA/(Sf = pA’(SfA for some (SfA, gives EAA’B’C’ = OA/OB/OCIVAQI(SG) where

1 of :
5@:—%7”@1? 3.37

27.” T (pBIOBI)4p P ( )
This is consistent with the Plebanski gauge choices (there is also a gauge freedom in §O arising from coho-
mology freedom in § f which we shall describe in the next subsection.) The condition VA(D/EAA,B,C,) =0
follows from equation (3.36) which, with the Plebariski gauge choice, implies @& € W,. Thus we obtain

a twistor integral formula for the linearisation of the second heavenly equation.



Now recall formula (3.28) defining R. Let Rd f be the twistor function corresponding to R§© by (3.37).
The recursion relations yield

Rofa D’ 0fa D’
74 A ppdp? = 74 , , d
r ( B B 3pD p T (pB OB’)Z(pB LBI)pD p

so R6f = A"14f.

Let 0 be the linearisation of the first heavenly potential. From R?§Q = 60 it follows that

1 of
69 = 5 7 7
2mi Jr (parot')*(ppi™’)

sperdp”.

3.4 Hidden symmetry algebra

The ASDVE equations in the Plebanski forms have a residual coordinate symmetry. This consists of
area preserving diffeomorphisms in the w? coordinates together with some extra transformations that
depend on whether one is reducing to the first or second form. By regarding the infinitesimal forms of
these transformations as linearised perturbations and acting on them using the recursion operator, the
coordinate (passive) symmetries can be extended to give ‘hidden’ (active) symmetries of the heavenly
equations. Formulae (3.37) and (3.33) can be used to recover the known relations (see for example [28])
of the hidden symmetry algebra of the heavenly equations. We deal with the second equation as the case
of the first equation was investigated by other methods [21].

Let M be a volume preserving vector field on M. Define 51?4VAA/ := [M,V aas]. This is a pure
gauge transformation corresponding to addition of L3rg to the space-time metric and preserves the field
equations. Note that

[(5%4,(510\7]VAAI = 6[0M,N]VAA"
Once a Plebanski coordinate system and reduced equations have been obtained, the reduced equation will
not be invariant under all the SDiff(M) transformations. The second form will be preserved if we restrict
ourselves to transformations which preserve the SD two-forms yi = dws Adw? and »o't' — daz 4 Adw?.
The conditions £y X% = £ 20 =0 imply that M is given by

_Oh 0 (39_963 62/1)6
T Hwa OwA Owa Ow 4 0wB /) dzA

where h = h(w?) and g = g(w?). The space-time is now viewed as a cotangent bundle M = T*N'? with
w# being coordinates on a two-dimensional complex manifold A2, The full SDiff(M) symmetry breaks
down to the semi-direct product of SDiff(N?), which acts on M by a Lie lift, with T'(A?, Q) which acts on
M by translations of the zero section by the exterior derivatives of functions on N'2. Let d37® correspond
to (524 VAA’ by

0?6y©® 0
80 Vay = —o—m—.
MY AL dxA0xB Ozxp
The ‘pure gauge’ elements are
9%y 93h
63 = F A -
Me +$AG T raATB 3w,43w3 +$A$Bxc@w143w38wc

dg 00 dh 00 LB 8%h 00
Owy Ot Owy OwA Ow 4 0wPB dzA

where F, G4, ¢, h are functions of w? only.

The above symmetries can be seen to arise from symmetries on twistor space as follows. Since we
have the symplectic form ¥ = dw? A dw, on the fibres of i : PT — CP!, a symmetry is a holomorphic
diffeomorphism of the set U that restricts to a canonical transformation on each fibre. Let H = H (2%, ) =
>eo hiX' be the Hamiltonian for an infinitesimal such transformation pulled back to the projective
spin bundle. The functions h; depend on space time coordinates only. In particular hy and h; give
h and g from the previous construction (3.38). This can be seen by calculating how © transforms if
wh = wh + Azt + X200/0x4 + ... — . Now O is treated as an object on the first jet bundle of a
fixed fibre of P77 and it determines the structure of the second jet.

These symmetries take a solution to an equivalent solution. The recursion operator can be used to
define an algebra of ‘hidden symmetries’ that take one solution to a different one as follows.

Let 39,0 be an expression of the form (3.38) which also satisfies Dgé&G) = 0. We set

5’0 = R0 € W,.

(3.38)
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Proposition 3.5 Generators of the hidden symmetry algebra of the second heavenly equation satisfy the
relation

(00", 0n7] = Spar,n' . (3.39)

Proof. This can be proved directly by showing that the ambiguities in R can be chosen so that Rody =
dar o R. It is perhaps more informative to prove it by its action on twistor functions.
Let &%, f be the twistor function corresponding to 63,0 (by (3.37)) treated as an element of T'(U N

U,O(2)) rather than H*(PT,O(2)). Define [§},, (5‘7N] by

[55\4,5%]9 = 1 M

AI
= omi (ro)t 4T

where the Poisson bracket is calculated with respect to a canonical Poisson structure on P7. From
Proposition (3.33) it follows that

. . 1 Y ) / L
[0h, 9310 = —.j{A‘H L] 0]} J‘f:;,)ff} mardr® = R o 3O

2m

as required.

3.5 Recursion procedure for Killing spinors
Let (M, g) be an ASD vacuum space. We say that L4s 4 is a Killing spinor of type (0, n) if
V4 Lp pry=0. (3.40)
Killing spinors of type (0, n) give rise to Killing spinors of type (1,n — 1) by
VA Lp . =cans Kp, 1y,

BB....B!

In an ASD vacuum, K » is also a Killing spinor

V(A(A’[(B)B;...B;L) =0.
Put (for i =0,...,n)
L; = LBII...LBZOBZH...oB:LLlemB, ,
and contract (3.40) with (B BioBin oButi to obtain
Va1 Li_q :—(n—i—i—l)VAo/Li, 1=0,...,n—1.
We make use of the recursion relations (3.28):
= R(Li_1) = L;
T

This leads to a general formula for Killing spinors (with V40 Lg = 0)

n

-1
) RZ(LO), LBiBlsz;z :ZO(Bll...OBiLBi_H...LBiL)LZ' (341)

2 N
1=0

Li = (—1)2'(
and equation (3.40) is then satisfied iff R='Lg = RL, = 0.

3.6 Example 1

Let us demonstrate how to use the recursion procedure to find metrics with hidden symmetries. Let
0, Q := ¢, be a linearisation of the first heavenly equation. We have R : z — Q,, = 0;,2. Look
for solutions to (2.18) with an additional constraint 9;,€2 = 0. The recursion relations (3.28) imply
Qu. = Quw = 0, therefore

Qw, z,w, 2) = we(w, 2) + Pz, 0, 7).

The heavenly equation yields dg AdP Adz = dZ Adw Adz. With the definition 0, P = p the metric is
ds? = 2dwdq 4 2dzdp + fdz?,

where f = —2P,,. We adopt (w,z,¢,p) as a new coordinate system. Heavenly equations imply that
f = f(g,2) is an arbitrary function of two variables. These are the null ASD plane wave solutions.

11



3.7 Example 2

Now we shall illustrate the Propositions 3.3 and 3.4 with the example of the Sparling—Tod solution [27].
The coordinate formulae for the pull back of twistor functions are:

p = w4y — N0, + 20, + ...,
pto= 2=z =20, - X0, + ... (3.42)
Consider -
0=—— (3.43)
wr + zy

where o = const. It satisfies both the linear and the nonlinear part of (2.22).
The flat case: First we shall treat (3.43), with o = 1, as a solution ¢ to the wave equation on the flat
background. The recursion relations are

—

— y -
(R¢0)x - (R¢0)y - (wx 4 zy)z'

(wz + zy)?’

They have a solution ¢1 := Rég = (—y/w)¢o. More generally we find that

n yy*_ 1
o = R = (—w) o (3.44)
The last formula can be also found using twistor methods. The twistor function corresponding to ¢ is
1/(uPut), where o = w+ Ay and p; = 2 — Az. By Proposition 3.33 the twistor function corresponding
to ¢, is A" /(u°pt). This can be seen by applying the formula (3.37) and computing the residue at the
pole A = —w/y. Tt is interesting to ask whether any ¢, (apart from ¢g) is a solution to the heavenly
equation. Inserting © = ¢, to (2.22) yields n = 0 or n = 2. We parenthetically mention that ¢ yields
(by formula (2.23)) a metric of type D which is conformal to the Eguchi-Hanson solution.

The curved case. Now let © given by (3.43) determine the curved metric

ds? = 2dwdz + 2dzdy + 4o (we + 2y) > (wdz — zdw)?. (3.45)
The recursion relations

6y(R¢) = (6w - exyay + nyﬁx)fb, _3x(R¢) = (az + exxay - exyﬁx)qj’

are
—0:(RY) = (0, 4 20w(wz + 2y) "2 (wdy — 20,))1,
Oy(RY) = (9 + 20z2(wx + 2y) "2 (wdy — 20,))1,
where 1 satisfies
Oet = 2(0:0u + 9,0, 4 20 (wz + 2y) 7> (220,7 + w?8,* — 2w20,0,)) = 0. (3.46)

One solution to the last equation is ¥ = (wx + zy)~!. We apply the recursion relations to find the
sequence of linearised solutions

v: = (—%)m’ ¢3:‘§m+(—2)2#

n y & .
b = S Aln(- ) et
k=0
To find Aﬁn) note that the recursion relations imply

R ((— %)k(wx—l—zy)j) =

This yields a recursive formula

k+1
Alpyry = At = 20— (s

0 _ 1 _ -1 _ —
) m 20— gAY Al =1 AL =0, AL =0, k=00n, (3.47)
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which determines the algebraic (as opposed to the differential) recursion relations between ¢, and t,41.
It can be checked that functions ¢, indeed satisfy (3.46). Notice that if ¢ = 0 (flat background) then we
recover (3.44). We can also find the inhomogeneous twistor coordinates pulled back to F

(o] n k

p’ = w—i—/\y—i—ZU/\""'zZBfn)w(—g) (wx + zy)*" 7L,
n=0 k=0 v
(o] n k

Lo Ly \n+2 Bk (f) k=n-1

it z J:—i—nz_:oa I;J m*\5 (wx + zy)

where

k k—1 k+1 0 1 -1

The polynomials u# solve L (u?) = 0, where now

Lo = =0y —2Xo2*(wz + 2y) 20, + (1 + 2howz(wz + 2y) ™)y,
Ly = A0;+ (1 =2 cwz(wz + zy)_?’)@x + 2/\0'w2(wz + zy)_?’)@y.

4 Hierarchies for the ASD vacuum equations

The hidden symmetries corresponding to higher flows associated to translations along the coordinate
vector fields give ‘higher flows’ of a hierarchy. This yields a hierarchy of flows of the anti-self-dual Einstein
vacuum equations. We first give this for the equations in their second heavenly form but then give the
equations in the form of consistency conditions for a Lax system of vector fields generalizing equations
2.11. The nonlinear graviton construction generalizes to give a construction for the corresponding system
of equations and is presented in §§4.2. In §8§4.3 the geometric structure of solutions to the truncated
hierarchy are explored in further detail. Finally in §§4.4 infinitesimal deformations are studied.

4.1 Hierarchies for the heavenly equations

The generators of higher flows are first obtained by applying powers of the recursion operator to the
linearised perturbations corresponding to the evolution along coordinate vector fields. This embeds the
second heavenly equation into an infinite system of over-determined, but consistent, PDEs (which we will
truncate at some arbitrary but finite level). These equations in turn can be naturally embedded into
a system of equations that are the consistency conditions for an associated linear system that extends
(2.11). We shall discuss here the hierarchy for the second Plebaniski form; that for the first arises from a
different coordinate and gauge choice.

Introduce the coordinates z4?, where for i = 0,1, 24" = « are the original coordinates on M, and
for 1 < i < n,z4% are the parameters for the new flows (with 2n — 2 dimensional parameter space X).
The propagation of © along these parameters is determined by the recursion relations

AA’

8y(83i+1 @) = (aw - exyﬁy + eyyﬁx)aBze ’
_8x(83i+1®) = (3,2 + exxﬁy - exyﬁx)ﬁBze )
or 8A0(8Bi+1 @) = (&41 + 3003,40@300)332'@ . (4.48)

However, we will take the hierarchy to be the system (containing the above when j = 1)
04i0B;j—1© — 0B;04i—10 + {04i-10,08;_10}yo =0, i, j=1..n. (4.49)
Here {...,...}y¢ is the Poisson bracket with respect to the Poisson structure 8/0z4 A 9/0xa = 20, A D,,.
Lemma 4.1 The linear system for equations (4.49) is
Lais = (=ADaip1 +0ai)s =0,  i=0,..,n—1, (4.50)

where
1. s :=s(z4" \) is a function on a spin bundle (a @Pl-bundle) over N = M x X,
2. Dajy1 = Oaiy1 + [0ai, V], (V = e2B04000p0) and §4; := da; are 4n vector fields on N.
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Proof. This follows by direct calculation. The compatibility conditions for (4.50) are:

[Dait1, DBj+1] =0, (4.51)
[Dait1,085] — [Drj+1,94:] = 0. (4.53)

It is straightforward to see that equations (4.52) and (4.53) hold identically with the above definitions
and (4.51) is equivalent to (4.49).

O

As a converse to this lemma, we will see in §§4.2 using the twistor correspondence, that given the Lax
system above, in which the vector fields D4; and 645 are volume preserving vector fields, then coordinate
and gauge choices can be made so that the Lax system takes on the above form.

4.1.1 Spinor notation

The above can also be represented in a spinorial formulation that will be useful later. We introduce the

. . . ! ' 7 i . .
spinor indexed coordinates zA414n = zA(AL-A40) on A which correspond to the z47 by

Ai _ (T AaAlAl Al n—i
x _<Z)x 142 OA'l"'OA',LA',Jrl"'LA%(_l) )

The vector fields D411 and d4; are then represented by the 4n vector fields on A, Daaiay. ary where

AL AL A

A/
Daaryi =172 0% 0% 0% Daaray ary, Davi = Dait1, Daoi =0dai

and Laay ary=m IIDAAII(AIQWA;), Ly = 7TA11DAA/1i. In the adopted gauge
Daoray. ar, = 0a0ray. ar, Davay ar, =0avay ar +[Oaoay. ar, V]
In what follows we will often be interested in Vaaiay. .ay, the symmetric part of Daata;. .

7 7 7 7
vAi = DA(AIIA;HAITL)LAl...LA’OA"H...OA" (454)

1,. . 1
= g(ZDAl’i—l =+ (TL — Z)DAO’Z') — 6Ai + 5[6142’—1’ V] (455)
Put Dyg g = da. The 2n + 2 vector fields

Vaay a, =104, Vaoay ar_,Dan}t

_1’

span T*N.

4.2 The twistor space for the hierarchy

The twistor space P7T for a solution to the hierarchy associated to the Lax system on N as above is
obtained by factoring the spin bundle A" x CP! by the twistor distribution (Lax system) L 4;. This clearly
has a projection ¢ : N x CP' — P7T and we have a double fibration

N x Cp?

pv N\ g
N PT

Since the twistor distribution is tangent to the fibres of N’ x CP! — CP!, twistor space inherits the
projection y : PT +— CP. The twistor space for the hierarchy is three-dimensional as for the ordinary
hyper-Kahler equations, but has a different topology. We have

Lemma 4.2 The holomorphic curves q(@Pl) where @Pi = plz, 2 € N, have normal bundle N =

O(n) & O(n). ’
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Proof. To see this, note that N can be identified with the quotient p*(TyN)/{spanla;}, i = 1,...,n.
In their homogeneous form the operators L4; have weight 1, so the distribution spanned by them is
isomorphic to the bundle C** @ @(—1). The definition of the normal bundle as a quotient gives

0= C" @O(=1) = C"*? 5 N =0

and we see, by taking determinants that the image is O(n 4+ a) & O(n — a) for some a. We see that a =0
as the last map, in the spinor notation introduced at the end of the last section, is given explicitly by
YAl Ay VAAl“'Anﬂ'A/l ...m4 clearly projecting onto O(n) © O(n).

O

A final structure that P7 possesses is a skew form X taking values in O(2n) on the fibres of the
projection . This arises from the fact that the vector fields of the distribution preserve the coordinate
volume form v on A in the given coordinates system. Furthermore, the Lax system commutes exactly
[La], LB]'] = 0 so that

Y= I/(', °y LOl; ceey Lon, Llla ceey Lln)

descends to the fibres of PT — CP! and clearly has weight 2n as each of the L 4; has weight one.

Thus we see that, given a solution to the hyperkahler hierarchy in the form of a commuting Lax
system, we can produce a twistor space with the above structures. Now we shall prove the main result
of this section and demonstrate that, given P7, with the above structures, we can construct A" (as the
moduli space of rational curves in P7) which is naturally equipped with a function © satisfying (4.49)
and with the Lax distribution (4.50).

Proposition 4.3 Let PT be a 8 dimensional compler manifold with the following structures
1) a projection p : PT — CP?,
2) a section s : CP' — PT of p with normal bundle O(n) ® O(n),
3) a non-degenerate 2-form ¥ on the fibres of p, with values in the pullback from CP! of O(2n).

Let N be the moduli space of sections that are deformations of the section s given in (2). Then N is
2n + 2 dimensional and

a) There exists coordinates, x4, A = 0,1, and i = 0,...,n and a function © : N' — C on N such
that equation (4.49) is satisfied.

b} The moduli space N of sections is equipped with

— a factorisation of the tangent bundle TN = S4 @ @”SAI,

— a 2n-dimensional distribution on the ‘spin bundle’ D C T(N x @Pl) that s tangent to the fibres
of r over Cp! and, as a bundle on N x CP' has an identification with O(—1) ® Saar..al_, S0
that the linear system can be written as in equation (4.50).

This correspondence is stable under small perturbations of the complex structure on PT preserving (1)

and (3).

Proof: The first claim, that A" has dimension 2n + 2 follows from Kodaira theory as dim HO(@Pl, N)=
2n + 2 and dim H*(CP', N) = dim H'(CP', EndN) = 0.

Proof of (a): we first start by defining homogeneous coordinates on P7 . These are coordinates on 7|
the total space of the pullback from CP! of the tautological line bundle O(—1). Let w4/ be homogeneous
coordinates on CP* pulled back to 7 and let w? be local coordinates on 7 chosen on a neighbourhood of
pu~me = 0} that are homogeneous of degree n and canonical so that ¥ = ¢4gdw? A dw?. We also use
A = mp/ /71 as an affine coordinate on CP'. Let L, be the line in PT that corresponds to p € N and let
Z € PT lie on L,. We denote by F the correspondence space PT x N|zer, = N x CP. (See figure 1
for the double fibration picture.)

Pull back the twistor coordinates to F and define 2(n + 1) coordinates on AN by

n, A
A(ALALLAL) 9w
67TA’167TA’2~~~67TA’TL

X

bl
T Al =04t

where the derivative is along the fibres of F over A'. This can alternatively be expressed in affine
coordinates on CP! by expanding the coordinates w? pulled back to F in powers of A = o /Ty

w = (m)" (Z O Y s;“x') , (4.56)
=0 i=0
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Figure 1: Double fibration.

v T dmPT-=3

dim N = 2n+2 CP'

where the s# are functions of 2A41-A% and will be useful later.
The symplectic 2-form X on the fibres of u, when pulled back to the spin bundle, has expansion in

powers of A that truncates at order 2n + 1 by globality and homogeneity, so that
Y =dpwa A dth = 7TA/1...7TA/n7TB/1...FB;LEAS"'AI"BQ'”B;‘

for some symmetric spinor indexed 2-form AL 4LB1B,  We have
SAAZA) =0, dpXE(A) =0. (4.57)

where in the exterior derivative dj, A 1s understood to be held constant.

If we express the forms in terms of the 4% and the s, the closure condition is satisfied identically,
whereas the truncation condition will give rise to equations on the s allowing one to express them in
terms of a function @(xAAI“'AIn) and to field equations on © as follows.

To deduce the existence of @(J:AAIl'“AIn) observe that the vanishing of the coefficient of A2"*! in
dw? Adwy gives
00

n n
stAi/\dl‘AlzdzsAidl‘Alzo — SAZ':W.
1=0 =0

The equations of the hierarchy arise from the vanishing of the coefficient of \?7+?2
n
Z dz?t A dsi{"l +dstO A dsb, = 0.
=0

This leads to the equations (4.49) on © for ¢,j <n—1,

8%0 8%0 cp 0O o’e
OrAi+19eBi  JpAidgBi+l ¢ HxCO9zAT 9ePOOeBI

and further equations that determine s47+1.

Proof of b). The isomorphism TN = S$4 ® @ SA" follows simply from the structure of the normal
bundle. From Kodaira theory, since the appropriate obstruction groups vanish, we have

T,N = T(CPL, N,) = §2 @ 0" 54 (4.58)

where N, is the normal bundle to the rational curve @Pi in P7T corresponding to the point x € N'. The
bundle S4 on space-time is the Ward transform of @(—n) ® Ty PT where the subscript V denotes the
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sub-bundle of the tangent bundle consisting of vectors up the fibres of p, the projection to CP*, so that
SA =T(CPL,O(-=n) @ Ty PT). The bundle S4° = T(CP', O(1)) is canonically trivial.

Let Vaar..ar = Vagar.an) be the indexed vector field that establishes the isomorphism (4.58) and
let eA41 AL — ¢A(A14L) € Ol @ §4 © ©" 54" be the dual (inverse) map.

We now wish to derive the form of the linear system, equations (4.50). For each fixed 74 = (A, 1) €
CP' we have a copy of a space-time Ny. The horizontal (i.e. holding A constant) subspace of T(x)\)(./\/ X

@Pl) is spanned by V 44/ 4:). An element of the normal bundle to the corresponding line @Pi consists
of a a horizontal tangent vector at (#, A) modulo the twistor distribution. Therefore we have the sequence
of sheaves over CIP'!

0 — Dy — TN 5 54 0(n) — 0,

where D, is the twistor distribution at z and the map T,N — S4 @ O(n) is given by the contraction
of elements of T, N with e4 := eAAl'“Anﬂ'A/l...ﬂA/n since e annihilates all Lp;s in D. Consider the dual
sequence tensored with O(—1) to obtain

0— Oa(-n—-1) — Ty N(-1) — D;(-1) — 0. (4.59)
From here we would like to extract the Lax distribution
Laay. .ar = 7TA11DAA’1A’2...A’n € Saay..ar @0(1)@D.

This can be achieved by globalising (4.59) in 74" The corresponding long exact sequence of cohomology
groups yields

0 — I (Oa(-n—-1)) > T(T"N(-1)) — (D" (-1)) N HY(O4(=n - 1))

— HYT*N(=1)) — ...
which (because T*A is a trivial bundle so that @(—1) @ T*N has no sections or cohomology) reduces to

0 — I(D*(=1)) = HY(O4(—n — 1)) — 0.

From Serre duality we conclude, since D has rank 2n, that the connecting map ¢ is an isomorphism
6 D(D*(=1)) — Saa,..a: . Therefore

§e(D@O(1) @ Saay..ar) (4.60)

is a canonically defined object annihilating w# given by (4.56).
In index notation we can put
§=Laay..a, =7 Daaras. ar,

where Laay, ar = Lacay, ar)y, the second identity follows from the globality of Laay ar and the
Daasay. ar are vector fields on N lifted to N x CP? using the product structure.

It follows from LAA’2...A’nWB = 0 that if 74" = 04’ then DAOIA;HA/nl‘Bn =0 so

D _ 4BBL..B, 0
A0'AL.AL — AOTAL.AL 8$BOIBI2“'BLL’
. +BB,..B . . . . . . . N
for some matrix A%, "%, . This matrix must be invertible by dimension counting. By multiplying
LA

Laay.. ar by the inverse of this matrix, we find we can put

BB,..B,, _ B_B, _B,
Apoiay ay = EAE T EAT

Therefore we can take Laas a1 = daorar ar —ADa1vas ar . Equating the (n—144 1)th and (n 4+ 1)th
powers of A in L 4;w? = 0 to zero yields

Darray. ar, = O0avay. ar, + 04004y 4, V]

where V = ¢4500/02400/0xg0. So finally Laay. ar is of the form L4, = Jai — AM(Oaiv1 + [0ai, V]).
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4.3 Geometric structures

If one considers N’ = M x X as being foliated by four dimensional slices t4? = const then structures
(1)=(3) on PT can be used to define anti-self-dual vacuum metrics on the leaves of the foliation. Consider
O(zA4 t) where t = {t41i = 2..n}. For each fixed t the function © satisfies the second heavenly

equation. The ASD metric on a corresponding four-dimensional slice Ny—¢, is given by

9?0

Al' 5 B1'
31‘A0'3x30'dx da®" .

ds? = 26AdeAlldeol + 2
This metric can be determined from the structure of the O(n) @ O(n) twistor space as follows.

Fix the first 2n — 2 parameters in the expansion (4.56) so the normal vector W = W439/dw? is given
by

, ) ]
WA = g = A=t Al s e 200 ?, + ...
0z
where 60 = WA4 90 /044", The metric is
g(U, W) = eapearp U WHH (4.61)

where c4/p5/ 1s a fixed element of A2S4" and cap € A?S? is determined by X; recall that Sﬁ =
[(Ly, O(=\) @ TvPT). Thus if u,v* € S then define e4pu?v? = S(u,v) where u,v are the corre-
sponding weighted vertical vector fields on P7T .

For n odd TN is equipped with a metric with holonomy SL(2,C). For n even, TA is endowed with
a skew form. They are both given by

G(U, W) = EABEAllBll...EA/nB;LUAAIl"'AI"WBBll"'B;‘. (4.62)

These are special examples of the paraconformal structures considered by Bailey and Eastwood [2].

4.4 Holomorphic deformations and O(2n) twistor functions

We wish to consider holomorphic deformations of P7 that preserve conditions (1 — 3) of Proposition 4.3
which will therefore correspond to perturbations of the hierarchy.
Let &4 = G4(w?, ma/,t) be the standard patching relation for P77 and let f4 € S4 @ HY(PT,0O(n))
give the infinitesimal deformation
ot =Gt o).
The globality of the symplectic structure dag A do? = dwy A dw? implies f4 = ¢4B9f/0w? where
J € HY(PT,O(2n)).

Example: if we deform from the flat model using f = (mo:)*" /w w?!, then the deformation equations

(71_0)471

&O:wo—l—tw—l—O(tz), Gt=wl -t —
(WO)Zwl

O(t?).
WO (wl)? +0(t%)
imply that Q@ = ww! = &' is a global twistor function (up to O(¢?)) which persists to all orders
as eB9Q/0wrdf/0wP = 0. The corresponding deformed paraconformal structure admits a symmetry
corresponding to the global vector field eé420Q/0wAd/dw? on PT.

To see how such ‘Hamiltonians’ f correspond to variations in the paraconformal structure (or more
simply ©), we form an indexed element of H'(PT,O(—1)), and pull it back to A x CP' where it can be
split uniquely:

83 2n
/ f F F
TAL.TA 5 = fapca.. .o =Fapcar..a —Fapcar. ar.
2 "6WA8(.036WC 2 n 2 n 2 n
where
1 faBcay. ar,
Fapca, a, =59 ———p dp.

27 T pA 7TAI
This gives rise to a global field that is symmetric over its indices:
Capcpay..apy. .p.=Lpp, p Fapcay,. an
which is given also directly by the integral

1 84f2n
C 1 ] I ;= = 1. 1 1. 1 . d .
ABCDAL...A!,D}...D!, 9 ) PAL---PALPDL---PDI, DA 0w B 0wC duD p-ap
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To see how this corresponds to a variation of ©, we introduce a chain of potentials. Use the non-unique
splitting f2" = F?" — F?" and define a global object of degree 2n 4 1 by

7 7 7 7
Laay. ar F7" = EAA’Q...A’TLB’I...B;LC{...C;LD’I7TB RULT S ST

It is easy to see that o
VAP Sy B e crpt =0,
and X441 .ar Bt B ol o p; 1s a potential potentials, related to the field by

D! ' B\ B
Capcpay. a0, =Vpp p Ve Vg " "Yaa, A Bl B C| . CD-

The chain of potentials 1s

dOai B! B Cl.c1D! = O0AL0B!...0B 0C!...0c10p! 0O
YAy, arpl Bl ciDl = 0pl..0B0c...0c; 0DV agral 10O
Hapay..avB!. . B.D,, = ©0B!---08.0p'VBorVaoa,. a 00
Lagcay..arpt = op:VeoVeoVaoay. a0
CaBcpay.avp,..pr = VeoVeoVaoas. i Vpop,. . po0©.

This can be compared with the corresponding chain for n =1 [14].

5 Hamiltonian and Lagrangian formalisms

In this Section we shall investigate the Lagrangian and Hamiltonian formulations of the hyper-Kahler
equations in their ‘heavenly’ forms. The symplectic form on the space of solutions to heavenly equations
will be derived, and proven to be compatible with a recursion operator.

Both the first and second heavenly equations admit Lagrangian formulations, and these can be used
to derive symplectic structures on the solution spaces, which we denote by §. Here, rather than consider
the equations as a real system of elliptic or ultra-hyperbolic equations, we complexify and consider the
equations locally as evolving initial data from a 3-dimensional hyper-surface and it is this space of initial
data that leads to local solutions on a neighbourhood of such a hyper-surface that is denoted by & and is
endowed with a (conserved) symplectic form.

For the first equation we have the Lagrangian density

Lo = Q(y - %(359)2) - (Q - %Q{Qg, Qw}wz)y (5.63)

and for the second equation

Lo (s ))/\eAO Al

(G000 - 500

(50102 01y -

©) A
1

5(0.0, +0,0. )) (5.64)
Note that e49" A 6?4/ can be replaced by de A dy in the second Lagrangian as it is multiplied by dw A dz.

If the field equations are assumed, the variation of these Lagrangians will yield only a boundary term.
Starting with the first equation, this defines a potential one-form P on the solution space § and hence a
symplectic structure £ = dP on §. Starting with the second we find a symplectic structure with the same
expression on perturbations §© as we had for Q2. However, since their relation to perturbations of the
hyper-Kahler structure are different, they define different symplectic structures on &. These are related
by the recursion operator since we have R?6€ = §© from above. In order to see that these structures yield
the usual bi-Hamiltonian framework, we will need to show that these symplectic structures are compatible
with the recursion operator in the sense that Q(R¢, ¢') = Q(¢, Re').

We shall demonstrate this using the first heavenly formulation which is easier as one can use identities
from Kahler geometry. (The derivation of the symplectic structure from the second Lagrangian will be
done in coordinates, since the useful relation between the Hodge star and the Kahler structure is missing
in this case.)

Proposition 5.1 The symplectic form on the space of solutions S derived from the boundary term in the
variational principle for the first Lagrangian is

2
SM
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Proof. Varying (5.63) we obtain
5L =6Q(v — %(359)2) - %Q@é@ A DD = %aa”sz A (3Q9Q — QDD6RQ).
We use the identities d(9 — ) = 209, w A Jid = 9IQ A (3 — J) = *d and the field equation to obtain
L = _éaész A (3Qd(8 — )2 — Qd(9 — 9)éRQ)
_ %dA((SQ) - %359(— ¥ 090D — D)5 — F)Q + xAIQD — H)QD — 8)5Q)
- %dA((SQ) where A(3Q) = Q  ddQ — 6Q * dQ.

Define the one formon §

p= / A(5Q).
dM
The symplectic structure €2 is the (functional) exterior derivative of P
Q(519,029) = 51(P(029)) — 02(P(019)) — P([6:1€2,029)])
= g/ 619*d((529) —629*d((519) O
3 Jsm

Thus € coincides with the symplectic form on the solution space to the wave equation on the ASD
vacuum background.

The existence of the recursion operator allows the construction of an infinite sequence of symplectic
structures. The key property we need is the following

Proposition 5.2 Let ¢, ¢' € W, and let § be given by (5.65). Then
QRe, ¢') = (e, RY'). (5.66)

We first prove a technical lemma:

Lemma 5.3 The following identities hold

wAB$ = —aAORS, wAdsd=aA0dRe, (5.67)
wWwA&RG = —aAdhp, wAIRG=aAdp.

Proof. From the definitions of ¥4'B" and 35; it follows that
SAB A 9SG = nAE A 90 (5.68)
(recall that 9%, = AP’ © 94.4/) which yields
WAD=aAG, wAD=—aAd,

WAO=@GAD, WABr=—aANby, aNd=aAd=0.

Multiplying (3.28) by combinations of spin co-frame we get an equivalent definition of the recursion
operator

o8 ¢ = 04 Re (5.69)
which is equivalent to ¢ = Js R¢ or ¢ = 5Rq/> These formulae give the desired result.

Proof of Proposition 5.2. The proof uses a (formal) application of Stokes’ theorem:
206, 6) = [ oxdd - oxdo
dM
= [ wneod —ode - #9604 650) = [ wn(6ds' + o6~ 2000~ 20/00)
dM dM

2 [ wniedd 000 =2 [ wn(@do+ 004,
SM SM

20



From (5.70) and from (5.67) we have

Q(é, Ré') = —/Ww A (¢OR¢' + R$'8¢) = —/W A" Na + /W R$'OR¢ A

and analogously
(ro, )= [ doona- [ RodR na.
SM SM

Equality (5.66) is achieved by subtracting the integral of d(¢¢’) A & — d(R¢ R¢') A o and applying Stokes’
theorem.

O

This property guarantees that the bilinear forms
QF (g, ¢) = QRFe, ¢') (5.70)

are skew. Furthermore they are symplectic and lead to the bi-Hamiltonian formulation. In this context
formula (5.66) and the closure condition for 2% are an algebraic consequence of the fact that R comes
from two Poisson structures. Using the theory of bi-Hamiltonian systems one can now go on to prove
that the flows constructed by application of R to some standard flow commute.

To develop the bi-Hamiltonian theory, we would like to write the heavenly equations in Hamiltonian
form. However the Legendre transform becomes singular for the coordinate flows associated to the co-
ordinates we have chosen since they are, at least in the Minkowski space limit, null coordinates. One
possibility is to develop a Hamiltonian formalism based on such null hyper-surfaces. We shall adopt a
different approach and reformulate the second heavenly equation as a first order system.

Define ¢ := —0Q, and formally rewrite the second heavenly equation (2.22) as

Owd = R(0y9) where R = (0, + {0, ...}yz) 00: ' = Vi o Vig™h (5.71)

It is therefore a conjugated operator R (defined by (3.29)), acting on solutions to the zero-rest-mass
equations, and plays the role of the recursion operator. Flows of the sub-hierarchy [L1, Ly;] = 0 are

6t]‘¢ = R]6y¢

and the Hamiltonian for the first nontrivial flow is
¢2
H, :/de/\dy/\dz.

Higher Hamiltonians H, can in principle be constructed using the operator R. However, we have not
developed explicit formulae for these H,,.

5.1 A local bi-Hamiltonian form for the hierarchy

To end this section, we express the equations of the second heavenly hierarchy (4.49) in a compact
form, and then write it as a (formal) bi-Hamiltonian system on the spin bundle. This will be a rather
different framework from that given above in that the Hamiltonian structure will in effect be local to
the 249 plane as opposed to a field theoretic formulation—it is the gravitational analogue of that given
for the Bogomolny equations in [19] except that no symmetries are required here (in effect because ASD
gravity can be expressed as ASD Yang-Mills with two symmetries but with gauge group the group of area
preserving diffecomorphisms). This formulation is therefore presented merely as a curiousity.
Define the jth truncation of w? to be

J
(.JA — —l‘A0—|— Z Am@Am—le’
m=1

where 4% = e489/9xB%. (Note that this is truncated at both ends, although the truncation at the lower
end and multiplication by a power of A is inessential.)

Lemma 5.4 The truncated heavenly hierarchy is equivalent to

BT b)) = {w V), AW BT (M) Yy (5.72)
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Proof. First observe that one can sum the Lax system to obtain

j-1 j—1
=3 XNLai = Noaj+ Y ANTeP0c00ai®po — dao
=0 i=0

= Maj+{waj, }yr

where {f, }yz = e“PcofOpo.

Thus, since L 4;w? = 0, we have
A -jf,,B A
Opjw® = —A"Hwi’ ,w™}

which yields the desired answer.

O
For the remainder of this section, we shall fix the values of the spinor indices to be A =0 and B = 1. Set
9; =01, ¥:=w’ and ¢ == wy;.

Equation (5.72) takes the form '
GU(A) = {¥(N), A7 ¢ (M) }ye
which we rewrite as sh
o — plY

3]\I!_D(NJ. (5.73)
Here D := {¥(A),...}ye = D oo DA™ is A-dependent Poisson structure, Dy = 9, and Dy, = [D—1, V] =
Do — g, for m > 0.

The Hamiltonians are

hi(X) = X7 (A e ().

6 Outlook - examples with higher symmetries

This section motivates the study of solutions to heavenly equations which are invariant under some hidden
symmetries, e.g. along the higher flows. More generally, one can consider solutions to the hyper-Kahler
equations without symmetries, but whose hierarchies do admit symmetries.

In a subsequent paper we shall give a general construction of such metrics based on a generalisation of
[30]. We consider the case in which the twistor spaces have a globally defined twistor function homogeneous
of degree n+1. This implies that the metric admits a Killing spinor (some solutions with this property are
given by [7]). Global sections @ € H°(CP', @(n+ 1)) on non-deformed twistor space p : PT — CP! will
be classified and @Q-preserving deformations of the complex structure of a neighbourhood of an O(1)&O(1)
section of p will be studied. The cohomology classes determining the deformation will depend on the fibre
coordinates of p only via . The canonical forms of patching functions can be derived to give explicit
solutions to anti-self-dual ASD vacuum Einstein equation.

There are also further details of the bi-Hamiltonian structure that could usefully be clarified.
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