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REDUCTION OF SASAKIAN MANIFOLDSGUEO GRANTCHAROV AND LIVIU ORNEAAbstract. We show that the contact reduction can be special-ized to Sasakian manifolds. We link this Sasakian reduction toK�ahler reduction by considering the K�ahler cone over a Sasakianmanifold. We present examples of Sasakian manifolds obtained byS1 reduction of standard Sasakian spheres.1. IntroductionReduction technique was naturally extended from symplectic to con-tact structures by H. Geiges in [7]. Even earlier, Ch. Boyer, K. Galickiand B. Mann de�ned in [3] a moment map for 3-Sasakian manifolds,thus extending the reduction procedure for nested metric contact struc-tures. Quite surprisingly, a reduction scheme for Sasakian manifolds(contact manifolds endowed with a compatible Riemannian metric sat-isfying a curvature condition), was still missing.In this note we �ll the gap by de�ning a Sasakian moment map andconstructing the associated reduced space. We then relate Sasakianreduction to K�ahler reduction via the K�ahler cone over a Sasakianmanifold.Acknowledgements This research was initiated during the authorsvisit at the Abdus Salam International Centre for Theoretical Physics,Trieste, during summer 1999. The authors thank the Institute for sup-port and excellent environment. The second author also aknowledges�nancial and technical support from the Erwin Schr�odinger Institute,Vienna, in September 1999. Both authors are grateful to Kris Galickiand Henrik Pedersen for many illuminating conversations on Sasakiangeometry and related themes.Date: September 21, 1999.1991 Mathematics Subject Classi�cation. 53C15, 53C25, 53C55.Key words and phrases. Sasakian manifolds, K�ahler manifold, moment map,contact reduction, K�ahler reduction, Riemannian submersion.1



2 GUEO GRANTCHAROV AND LIVIU ORNEA2. Sasakian manifoldsLet us briey recall the notion of a Sasakian manifold. The de�nitionwe give is not the standard one but is suited for our purpose. For moredetails, we refer to [2] and [4] .De�nition 2.1. A Sasakian manifold is a (2n + 1)-dimensional Rie-mannian manifold (N; g) endowed with a unitary Killing vector �eld �such that the curvature tensor of g satis�es the equation:R(X; �)Y = �(Y )X � g(X;Y )�(2.1)where � is the metric dual 1-form of �: �(X) = g(�;X).Let ' = r�, whwre r is the Levi-Civita connection of g. Thefollowing formulae are then easily deduced:'� = 0; g('Y;'Z) = g(Y;Z)� �(Y )�(Z):(2.2)It can be seen that � is a contact form on N , whose Reeb �eld is � (itis also called the characteristic vector �eld). Moreover, the restrictionof ' to the contact distribution � = 0 is a complex structure.The simplest example is the standard sphere S2n+1 � C n+1 , withthe metric induced by the at one of C n+1. The characteristic Killingvector �eld is �p = �i�!p , i being the imaginary unit. Other Sasakianstructures on the sphere can be obtained by D-homothetic transfor-mations (cf. [9]). Also, the unit sphere bundle of any space form isSasakian.More generally, the quantization bundle of a compact K�ahler man-ifold naturally carries a Sasakian structure. The converse construc-tion, possible when the characteristic �eld is regular, is known as theBoothby-Wang �bration. Precisely, the following result (the metricpart is due to Morimoto and Hatakeyama) is available (cf. [11] or [4]):Theorem 2.1. Let (P; h) be a Hodge manifold. There exists a prin-cipal circle bundle � : N ! P and a connection form � in it, withcurvature form the pull-back of the K�ahler form of P , which is a con-tact form on S. Let � be the vector �eld dual to � with respect to themetric g = ��h+ � 
 �. Then (N; g; �) is Sasakian.The following equivalent de�nition puts Sasakian geometry in theframework of holonomy groups. Let C(N) = N � R+ be the coneover (N; g). Endow it with the warped-product cone metric C(g) =r2g + dr2. Let R0 = r@r and de�ne on C(N) the complex structureJ acting like this (with obvious identi�cations): JY = 'Y � �(Y )R0,JR0 = �. We have:



SASAKIAN REDUCTION 3Theorem 2.2. [4] (N; g; �) is Sasakian if and only if the cone over N(C(N); C(g); J) is K�ahlerian.3. Main resultsTheorem 3.1. Let (N; g; �) be a compact 2n + 1 dimensional Sasaki-an manifold and G a compact d-dimensional Lie group acting on N bycontact isometries. Suppose 0 2 g� is a regular value of the associatedmoment map �. Then the reduced space M = N==G := ��1(0)=G is aSasakian manifold of dimension 2(n � d) + 1.Proof. By [7], the contact moment map � : N ! g� is de�ned by< �(x);X >= �(X)for any X 2 g and X the corresponding �eld on N . We know that thereduced space is a contact manifold, loc. cit. Hence we only need tocheck that (1) the Riemannian metric is projected on M and (2) the�eld � projects to a unitary Killing �eld on M such that the curvaturetensor of the projected metric satis�es formula (2.1).To this end, we �rst describe the metric geometry of the Riemanniansubmanifold ��1(0).Let fX1; :::;Xdg be a basis of g and let fX1; :::;Xdg be the corre-sponding vector �elds on N . Since 0 is a regular value of �, fXixg is alinearly independent system in each Tx��1(0). From the very de�nitionof the moment map we have �p(Xi) = �(p)(Xi) = 0 hence Xi ? �. AsG acts by contact isometries, we haveLXig = 0; LXi� = 0 i = 1; :::; d:(3.1)Note that these also imply [Xi; �] = LXi� = 0.Observe that ��1(0) is an isometrically immersed submanifold of N(we denote the induced metric also with g) whose tangent space ineach point is described by: Y 2 Tx��1(0) if and only if d�x(Y ) = 0.Hence, by the de�nition of the moment map, the vector �elds � andXi are tangent to ��1(0). Moreover, for any Y tangent to ��1(0), onehas g('Xi; Y ) = d�(Y;Xi) = d�(Y ) = 0, hence the vector �elds fXigproduce a local basis (not necessarily orthogonal) of the normal bundleof ��1(0). The shape operators Ai := A'Xi of this submanifold in Nare computed as follows (we let r, rN be the Levi Civita covariant



4 GUEO GRANTCHAROV AND LIVIU ORNEAderivatives of ��1(0), resp. N):g(AiY;Z) = �g(rNY (kXik�1'Xi); Z) == �g(Y (kXik�1)'Xi; Z)� g(kXik�1rNY ('Xi); Z) == �kXik�1g(rNY ('Xi); Z) == �kXik�1g(rNY (')Xi + 'rNY Xi; Z) == �kXik�1g(�(Xi)Y � g(Xi; Y )� + 'rNY Xi; Z) == kXik�1fg(Xi; Y )�(Z)� g('rNY Xi; Zg:(3.2)
In particular, for the corresponding quadratic second funadamentalforms we get: hi(Y; �) = kXik�1g(Xi; Y ); hi(�; �) = 0:(3.3)Consequently, one easily obtains: the restriction of the vector �eld � isKilling on ��1(0) too.Using the Gauss equation of a submanifoldRN (X;Y;Z;W ) = R��1(0)(X;Y;Z;W )+ g(h(X;Z); h(Y;W ))� g(h(X;W ); h(Y;Z))and the formula (3.2) we now compute the needed part of the curvaturetensor of ��1(0) at a �xed point p 2 ��1(0). We takeX;Y;Z orthogonalto �p and obtain:g(R��1(0)(X; �)Y;Z) � g(RN (X; �)Y;Z) == � dXi=1 kXik�2 fhi(X;Y )hi(�; Z) � hi(X;Z)hi(�; Y )g= � dXi=1 kXik�2 �g(Xi; Z)g(rNXXi; 'Y )� g(Xi; Y )g(rNXXi; 'Z)	(3.4)
(Note that �i = kXik�1'Xip are chosen to be orthonormal in p; this isalways possible pointwise by appropriate choice of the initial X i).Let now � : ��1(0) ! M and endow M with the projection gMof the metric g such that � becomes a Riemannian submersion. Thisis possible because G acts by isometries. In this setting, the vector�elds Xi span the vertical distribution of the submersion, whilst � ishorizontal and projectable (because LXi� = 0). Denote with � itsprojection on M . � is obviously unitary. To prove that � is Killing onM , we just observe that L�g(Y;Z) = L�g(Y h; Zh), where Y h denotes



SASAKIAN REDUCTION 5the horizontal lift of of Y . Finally, to compute the values RM (X; �)Yof the curvature tensor of gM , we use O'Neill formula (cf. [1], (9.28f))gM(RM (X; �)Y;Z) = g(R��1(0)(Xh; �)Y h; Zh) + g(A(Xh; �); A(Y h; Zh))� g(A(�; Y h); A(Xh; Zh)) + g(A(Xh; Zh); A(�; Zh))whereX;Y;Z are unitary, normal to � and the O'Neill (1; 2) tensor A isde�ned as: A(Zh;Xh) = vertical part of rZhXh. Using Gauss formulaand (3.3), we obtaing(rZh�;Xi) = g('Zh;Xi) = �g(Zh; 'Xi) = 0hence rZh� has no vertical part and A(Zh; �) = 0. ThusRM (X; �)Y = R��1(0)(Xh; �)Y h = RN (Xh; �)Y hbecause of (3.4) and the fact that Xh; Y h are normal to all Xi. HenceRM (X; �)Y = g(�; Y h)Xh � g(Xh; yh)� = gM (�; Y )X � gM (X;Y )�which proves that (M;gM ; �) is a Sasakian manifold.In the following we relate Sasakian reduction to K�ahler reduction byusing the cone construction. Roughly speaking, we prove that reduc-tion and taking the cone are commuting operations.Let ! = dr2 ^ � + r2d� be the K�ahler form of the cone C(N) over aSasakian manifold (N; g; �). If �t are the translations acting on C(N)by (x; r) 7! (x; tr), then the vector �eld R0 = r@r is the one generatedby f�tg. Moreover, the following two relations are useful:LR0! = !; ��t! = t!:(3.5)Suppose a compact Lie group G acts on C(N) by holomorphic isome-tries, commuting with �t. This ensures a corresponding action of G onN . In fact, we can consider G �= G�fIdg acting as (g; (x; r))� (gx; r).Suppose that a moment map � : C(N)! g exists.As above, let fX1; :::;Xdg be a basis of g and let fX1; :::;Xdg be thecorresponding vector �elds on C(N). We see that Xi are independenton r, hence can be considered as vector �elds on N . Furthermore, thecommutation of G with �t implies�(�t(p)) = t�(p):(3.6)Now imbed N in the cone as N � f1g and let � := �jN�f1g. Thisis the moment map of the action of G on N . To see this, recall thede�nition of the symplectic moment map � = (�1; :::;�d): �i is givenup to constant by d�i(Y ) = !(Xi; Y ). Here we uniquely determine �iby imposing the condition �(Xi) = �jN�f1g. This immediately implies



6 GUEO GRANTCHAROV AND LIVIU ORNEAthat the Reeb �eld of N is orthogonal to the vector �elds Xi sinceg(�;Xi) = �(Xi) = 0. As G acts by isometries on C(N), we mayproject the cone metric to a metric on N 0==G � R+ which we denoteby g0. Then g0(Y;Z) = C(g)(Y h; Zh), where Y h, Zh are the uniquevector �elds on ��1(0) orthogonal to all of Xi which project on Y , Z(we call them horizontal).Let P = ��1(0)=G be the reduced K�ahler manifold. The key remarkis that because of (3.6), ��1(0) is the cone N 0 � R+ over N 0 = fx 2N ; (x; 1) 2 ��1(0)g. Moreover, since the actions of G and �t commute,one has an induced action of G on N 0. Then��1(0)=G �= (N 0 �R+)=G �= N 0=G �R+The manifold N 0==G�R+ is K�ahler, as reduction of a K�ahler manifold,but we still have to check that this K�ahler structure is a cone one. Forthe more general, symplectic case, this was done in [5]. Let g0 be thereduced K�ahler metric and g0 be the Sasakian reduced metric on N 0==G.It is easily seen that the lift of g0 to ��1(0) coincides with the lift ofthe cone metric r2g0 + dr2 on horizontal �elds. This implies that thecone metric coincides with g0.Summing up we have proved:Theorem 3.2. Let (N; g; �) be a Sasakian manifold and let (C(N);C(g), J) be the K�ahler cone over it. Let a compact Lie group G actby holomorphic isometries on C(N) and commuting with the action ofthe 1-parameter group generated by the �eld R0. If a moment map withregular value 0 exists for this action, then a moment map with regularvalue 0 exists also for the induced action of G on N . Moreover, thereduced space C(N)==G is the K�ahler cone over the reduced Sasakianmanifold N==G.The advantage of de�ning the Sasakian reduction via K�ahler reduc-tion, as done in [3] for 3-Sasakian manifolds, is the avoiding of curvaturecomputations.4. Examples: S1 actions on Sasakian spheresExample 4.1. Start with S7 � C 4 with its standard Sasakian structure.Let the complex coordinates of C 4 be (z0; :::; z3), with zj = xj + iyj.The contact form on S7 can then be written� = 3Xj=0 (xjdyj � yjdxj)



SASAKIAN REDUCTION 7and its Reeb �eld is � = 3Xj=0 (xj@yj � yj@xj):Let S1 act on S7 by eit 7! (e�itz0; e�itz1; eitz2; eitz3). The associated�eld of this action is (in real coordinates)X0 = �(x0@y0 � y0@x0)� (x1@y1 � y1@x1) ++ (x2@y2 � y2@x2) + (x3@y3 � y3@x3):The moment map � : S7 ! R reads:�(z) = �z(X0) = �jz0j2 � jz1j2 + jz2j2 + jz3j2with zero level setfz 2 S7 ; jz0j2 + jz1j2 = jz2j2 + jz3j2g = S3( 1p2)� S3( 1p2):Clearly � is nondegenerate on ��1(0).The reduced space can be identi�ed with S3�S3=S1 which, by [10],is di�eomorphic with S2 � S3. (In this case, one can also avoid thetopological arguments in [10] and identify the reduced space by ob-serving that the following di�eomorphism of S3 � S3: (z0; z1; z2; z3) 7!(z1z4 + z2z3; z1z3 � z2z4; z3; z4) is equivariant with respect to the pre-vious S1 action which restricted to the second factor of the product isthe usual action inducing the Hopf �bration; mille grazie to Rosa Giniand Maurizio Parton for letting us know it, [6]).The reduced Sasakian structure obtained in this way on S2 � S3 iseasily checked to be Einstein and to project on the K�ahler Einstein met-ric of CP 1 � CP 1 making the �bre map be a Riemannian submersion.As by [10] such an Einstein metric is unique, our reduced Sasakianstructure coincides with the Sasakian structure found in [8] viewingS2�S3 as minimal submanifold of S7, total space of the pull-back overCP 1�CP 1 of the Hopf bundle S7 ! CP 3 . The same Einstein-Sasakianmetric on S2 � S3 also appears in [9], constructed by a di�erent ap-proach.Example 4.2. Consider again S7 as starting Sasakian manifold, butlet S1 act by: eit 7! (e�kitz0; eitz1; eitz2; eitz3), k 2 Z+. Now ��1(0) �=S1(q kk+1 )�S5(q 1k+1 ). In order to identify the reduced space, considerthe k : 1 mappingS1 � S5 3 (z0; z1; z2; z3) 7! ((z0)�k; z1; z2; z3) 2 S1 � S5:



8 GUEO GRANTCHAROV AND LIVIU ORNEAIt induces a k : 1 map fromM = S1�S5=S1, where S1 acts diagonally,to the reduced space ��1(0)=S1 with the action given above. As in [6],the map (z0; :::; z3) 7! (z0; z0z1; z0z2; z0z3)is an equivariant di�eomorphism of S1�S5, equivariant with respect tothe diagonal action of S1 and the action of s1 on the �rst factor. HenceM is di�eomorphic to S5 and the reduced Sasakian space is S5=Zk.Example 4.3. In general, consider the weighted action of S1 on S2n�1 �C n by: (eit; (z0; :::; zn�1)) 7! (e�0itz0; :::; e�nitzn�1)where (�0; :::; �n�1) 2Zn. The associated moment map�(z) = �0jz0j2 + :::+ �njzn�1j2is regular on ��1(0) for any (�0; :::; �n�1) such that �0:::�n�1 6= 0,(�0; :::; �n�1) = 1 and at least two �'s have di�erent signs (comparewith the 3-Sasakian case where the weights obey to more restrictions,cf. [3]).Now take �0 = ::: = �k = a and �k+1 = ::: = �n�1 = �b, a; b 2 Z+relatively prime. Then ��1(0) �= S2k+1(p aa+b )�S2(n�k)�1(q ba+b). Notethat the induced metric on ��1(0) coincides with the product metric ofthe standard metrics of the two factors. We then see that the reducedspace is di�eomorphic with an S1 factor of the above product of spheresgiven by the following action:(eit; (x; y)) 7! (eiatx; e�ibty):One can now adapt the arguments of [10], Cor. 2.2 and prove that thereduced spaces are S1 bundles over CP k � CP n�k�1 and, for 1 � k,4 < n, they are not homeomorphic to each other in general.However, for k = 1, n = 4, the reduced space is always di�eomor-phic with S2 � S3. Hence, one obtains an in�nite family of Sasakianstructures on S2 � S3.Note also that if n is even, choosing like in the �rst example, the�rst half of the �'s to be �1, the rest of them 1, the reduced Sasakianmetric is Einstein, again acoording to [10].References[1] A. Besse, Einstein manifolds, Springer Verlag (1987).[2] D. E. Blair, Contact manifolds in Riemannian geometry, LNM 509, SpringerVerlag (1971).[3] Ch. P. Boyer, K. Galicki, B. Mann, The geometry and topology of 3-Sasakianmanifolds, J. Reine Angew. Math., 455 (1994), 183-220.
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