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A SPECIAL CASE OF DE BRANGES' THEOREM ONMONODROMY MATRIX: ASSOCIATED RIEMANN SURFACE ISOF WIDOM TYPE WITH DIRECT CAUCHY THEOREMPeter YuditskiiLet H0(t); H1(t) be real 2 � 2 matrix{functions with entries from L1(0; 1),H�1(t) = H1(t); H0(t) � 0. We associate with these data the solution of theCauchy problem for the di�erential systemdA(t; z)dt = A(t; z)fzH0(t) +H1(t)gJ; A(0; z) = 12;where J = � 0 1�1 0 � :The matrix{function A(z) = A(1; z) is called the monodromy matrix of the corre-sponding system [5]. More generally, let �0(t) be a continuous nondecreasing real2� 2 matrix{function of t 2 [0; 1],spf�0(1) � �0(0)g <1;and �1(t) be a real symmetric 2� 2 matrix{functions, whose entries are absolutelycontinuous functions with respect to the measure spfd�0(t)g. In this case A(t; z)is de�ned as the solution of the matrix integral equationA(t; z) = 12 + Z t0 A(s; z)fz d�0(s) + d�1(s)gJ; (0.1)and as before A(z) = A(1; z).How to restore the system on the monodromy matrix? When it could be done?Do we have a uniqueness theorem?These problems were solved in the whole generality by L. de Branges [2]. Histheorem states, that if A(z) is an entire 2� 2 matrix{function, which satis�es thefollowing properties: A(�z) = A(z) (0.2.1)detA(z) = 1 (0.2.2)J �A(z)JA(z)�z � �z � 0; (0.2.3)This work was supported by the Austrian Founds zur F�orderung der wissenschaftlichenForschung,project{number P12985{TEC Typeset by AMS-TEX1



2 PETER YUDITSKIIthen A(z) is the monodromy matrix of a system (0.1). Normalization �1(t) = 0de�nes �0(t) in unique way up to a continuous monotonic change of variable t,[0; 1]! [0; 1].The main problem here is to prove that 12 and A(z) could be included in amonotonic continuous chain of entire matrix-functions A(�; z):Jz � �z � A(�; z)JA(�; z)�z � �z � A(z)JA(z)�z � �zand that this chain is complete i.e.: under some normalization any divisor A1(z) ofA(z), Jz � �z � A1(z)JA1(z)�z � �z � A(z)JA(z)�z � �z ;is present there ( 9�1 : A1(z) = A(�1; z)).Set R = f(z; �) : det[A(z) � �] = 0g:Except some very special cases, when A(z) is a linear polynomial, or it is the mon-odromy matrix of a system with constant coe�cients, R is two{sheeted Riemannsurface (see section 1) and we de�neR+ = f(z; �) : det[A(z) � �] = 0; j�j < 1g:According to the de�nition � is an inner function on R+. If A(z) is a transcendentalmatrix function, � remind the exponent: it is an inner function with only one ortwo singular points on the boundary. Our goal is to prove that any divisor ofA(z) corresponds to inner devisor of � on R+. It is really so, if the character{automorphic counterpart of the Beurling{Helson theorem on invariant subspacesof the Hardy space holds on R+. Such surfaces are called of Widom type withDirect Cauchy Theorem (for exact de�nition, see section 2). As a result, in thisframework, we prove the following theorem.Theorem. Let A(z) be an entire transcendental matrix function satisfying (0.2).Assume that the surfaceR+ = f(z; �) : det[A(z) � �] = 0; j�j < 1gis of Widom type with Direct Cauchy Theorem. Accept the following normalizationcondition: (0; �0) 2 R+, and moreoverA(z) = � �0 + : : : (1=�0 � �0)z + : : :0 + : : : 1=�0 + : : : � ; �0 > 0:Then for any � 2 [�0; 1] there is unique entire matrix{function A(�; z) such that1) A(�; �z) = A(�; z)2) detA(�; z) = 13) Jz � �z � A(�; z)JA(�; z)�z � �z � A(z)JA(z)�z � �z ;with normalization A(�; z) = � � + : : : (1=� � � )z + : : :0 + : : : 1=� + : : : � :A(�; z) is a continuous matrix{function and J�A(�;z)JA(�;z)�z��z is a monotonicmatrix{function of � .



A SPECIAL CASE OF DE BRANGES' THEOREM 3Corollary. Under assertions of the previous theorem any divisorA1(z) = � a(1)11 (z) a(1)12 (z)a(1)21 (z) a(1)22 (z) �of A(z) is of the form A1(z) = A(�; z) � 1=� 00 � �A1(0);where 1� � 2 = a(1)11 (0)(a(1)12 )0(0) � (a(1)11 )0(0)a(1)12 (0) � 1� �20:Note, that we use an internal point of R+ as a point of normalization (see section3). In these terms de Branges' normalization corresponds to the case when we �xA(z) and its divisors in a boundary point, 0 2 @R+.A proof of the theorem is given in section 4.Acknowledgment. The author thanks the International Erwin Schr�odinger Insti-tute for Mathematical Physics, where the paper is completed, for hospitality andpersonally Prof. James B. Cooper and Prof. Paul M�uller for the kind invitation.1. The Riemann surface associated with the monodromy matrixFirst, we prove the following simple lemma.Lemma 1. Let A(z) possess properties (0.2). Assume that the J{form of thematrix A(z) is strictly positive in the upper half{plane,J �A(z)JA(z)�z � �z > 0:Then the equation det[A(z)� �] = 0 has two di�erent roots with respect to � there,the module of one of them is strictly less then 1 (respectively, the module of theother one is strictly greater then 1).Proof. Let �1 be the eigenvalue of A(z1), Im z1 > 0, and f1 be a correspondingeigenvector, f1A(z1) = �1f1: Thenf1Jf�1z1 � �z1 (1� j�1j2) > 0:Therefore, 1 � j�1j2 6= 0. But detA(z1) = 1, and hence �1�2 = 1. So, if j�1j < 1,then j�2j > 1, and vice versa.Now we prove, that except some very special cases J{form is strictly positive.Lemma 2. Let j be 2� 2 matrix, such that j2 = 12, j� = j, j 6= 12. Let A(z) bea holomorphic in the upper half{plane 2� 2 matrix{function, such that�(z) = j �A(z)jA(z)� � 0; Im z > 0: (1.1)



4 PETER YUDITSKIIIf the matrix{function �(z) is degenerated at least at one point z0 (9f0 2 C 2 :f0�(z0) = 0; f0 6= 0), then, up to constant j{unitary matrices, A(z) has one of thefollowing three forms:A(z) = � s(z) 00 1 � ; 1� js(z)j2 � 0; j = ��1 00 1 � ; (1.2.1)A(z) = � 1 p(z)0 1 � ; p(z) + p(z) � 0; j = � 0 11 0 � ; (1.2.2)A(z) = � s(z) 00 1 � ; 1� js(z)j2 � 0; j = � 1 00 �1 � : (1.2.3)Proof. We use the following essential property of j{contractive matrix{functions:inequality (1.1) implies positivity of the kernel [3]�(z1; z2) = i j �A(z1)jA(z2)�z1 � �z2 ; Im z1 > 0; Im z2 > 0:In particular, " i j�A(z0)jA(z0)�z0��z0 A(z)�A(z0)z�z0A(z)��A(z0)��z��z0 i j�A(z)�jA(z)z��z # � 0: (1.3)Let f0 6= 0 be a vector, such that f0�(z0) = 0. Then, as it follows from (1.3)," 0 f0A(z)�A(z0)z�z0 f�f A(z)��A(z0)��z��z0 f�0 if j�A(z)�jA(z)z��z f� # � 0;for any f 2 C 2 . It implies, f0A(z)�A(z0)z�z0 f� = 0, 8f 2 C 2 ; 8z; Im z > 0. Hence,f0A(z) = f0A(z0); Im z > 0:We consider three cases:1)f0jf�0 > 0; 2)f0jf�0 = 0; 3)f0jf�0 < 0:In the �rst case, it is convenient to take j in the form:j = ��1 00 1 � :Since f0jf�0 = f0A(z0)jA(z0)�f�0 > 0, one can �nd j{unitary matrices U1 and U2,in such a way, that f0U1 = [ 0 1 ] ; f0A(z0)U2 = [ 0 1 ] : (1.4)So, up to substitution U�11 A(z)U2 ! A(z), we have[ 0 1 ]A(z) = [ 0 1 ] ;



A SPECIAL CASE OF DE BRANGES' THEOREM 5or A(z) = � a11(z) a12(z)0 1 � : (1.5)And now, we write explicitly the condition j �A(z)jA(z)� � 0:j �A(z)jA(z)� = ��1 00 1 �� � a11(z) a12(z)0 1 � ��1 00 1 � � a11(z) 0a12(z) 1 �= ��1 + ja11(z)j2 � ja12(z)j2 �a12(z)�a12(z) 0 � � 0:It implies, ja12(z)j = 0 and 1� ja11(z)j2 � 0. Putting s(z) = a11(z), we get (1.2.1).In the second case we take j in the formj = � 0 11 0 � :Then we �ndmatrices U1 andU2, such that (1.4) holds. After substitutionU�11 A(z)U2 !A(z), we have A(z) in the form (1.5), but positivity condition in this case means:j �A(z)jA(z)� = � 0 11 0 �� � a11(z) a12(z)0 1 � � 0 11 0 � � a11(z) 0a12(z) 1 �= ��a11(z)a12(z) � a12(z)a11(z) 1� a11(z)1� a11(z) 0 � � 0:Therefore, a11 = 1, and a12(z) + a12(z) � 0. Putting p(z) = a12(z), we get (1.2.2).In the third case we take j in the form:j = � 1 00 �1 � :The next steps are completely the same, so we omit the proof.Proposition 1. LetA(z) be an entire 2�2matrix{function, A(�z) = A(z), detA(z) =1, and such that J �A(z)JA(z)�z � �z � 0:If A(z) is not a linear polynomial, then in the upper half plane A(z) has two di�erenteigenvalues, module of one of them is strictly less then 1 (respectively, module ofanother one is strictly grater then 1 ).Proof. Assume, that J{form is degenerated in some point z0, Im z0 > 0. Accordingto lemma 2, up to constant J{unitary factors, A(z) has one of the present thereforms. But detA(z) = 1, so, if A(z) 6= const, then A(z) should be of the formA(z) = � 1 p(z)0 1 � ; p(z) + p(z) � 0;where p(z) is an entire function. This means, that p(z) is a linear polynomial.Otherwise, J{form is not degenerated, and according to lemma 1, A(z) has twodi�erent eigenvalues.



6 PETER YUDITSKIIIn what follows we use the following notation. We denote by �(z) the eigenvalueof A(z) for which j�(z)j < 1, Im z 6= 0. We putE = fx 2 R : j�(x + i0)j = 1g:Up to trivial case � = eaz+b, E 6= R and we accept the normalization condition0 2 C n E. The set E is bounded if and only if A(z) is a polynomial. We willconsider only the case when A(z) is a transcendental matrix{function. Note, that�(z) 6= 0, z 2 C nE in this case.Therefore, one can consider R as two{sheeted Riemann surface, which consistsof two copies of the domain C n E glued along the system of intervals E, and onthe upper sheetR+ = f(z; �) : det[A(z) � �] = 0; j�j < 1g = f(z; �(z)) : z 2 C nEg:2. Hardy spaces on R+, Fuchsian groups ofWidom type and Direct Cauchy TheoremLet D denote the unit disk and T denote the unit circleD = f� : j�j < 1g; T= f� : j�j = 1g:We use a standard terminology and notations of the theory of functions of boundedcharacteristic in D [4]. In particular, Hp denotes the standard Hardy space. Weremind that an analytic in D function is said to be of Smirnov class if it can bepresented in the form f = f1=f2, where f1; f2 2 H1 and f2 is an outer function.Let � be a discrete subgroup of SU(1; 1) consisting of elements of the form
 = � 
11 
12
21 
22 � ; 
11 = 
22; 
12 = 
21; det 
 = 1:For 
 2 �, put 
(�) = (
11� + 
12)=(
21� + 
22); as it well known, 
 maps D and Tonto themselves.A character of � is a complex{valued function � : �! T, satisfying�(
1
2) = �(
1)�(
2) (
1; 
2 2 �):The characters form Abelian compact group, we denote it by ��.By the uniformization theorem, the domain C n E is conformal equivalent thequotient of the unit disk D by the action of a group � = �(E). In other words,there exist an analytic function z : D ! C n E and a discrete group � with thefollowing properties:z is automorphic with respect to �, z(
(�)) = z(�); 8
 2 �;z maps D onto the domain C nE,8z0 2 C nE 9�0 2 D : z(�0) = �0;in such a way that any two preimages of z0 are �{equivalentz(�1) = z(�2) ) 9
 2 � : �1 = 
(�2):



A SPECIAL CASE OF DE BRANGES' THEOREM 7In this case, two classes of functions are equivalent:fmeromorphic functions f(�) in D such that f(
(�)) = f(�); 8
 2 �g� fmeromorphic functions F (z) in C nEg:This equivalence yields by the identity F (z(�)) = f(�).By the de�nition,H1(�) = ff 2 H1 : f � 
 = f; 8
 2 �g:Let us note that if the space H1(�) is not trivial,9f 2 H1(�) : f(�) 6� f(�0);then the trajectory f
(�0)g
2� satis�es the Blaschke condition. The Blaschke prod-uct b(�; �0) = b(�; �0; �) = Y
2� 
(�0)� �1� 
(�0)� j
(�0)j
(�0)is called the Green function of � with respect to �0. It is a character{automorphicfunction, that is there exists ��0 2 �� such that b(
(�); �0) = ��0(
)b(�; �0). Tosimplify notation we put b(�) = b(�; 0) and � = �0.We will consider also spaces of character{automorphic functions: for � 2 ��H1(�; �) = ff 2 H1 : f � 
 = �(
)f; 8
 2 �g:The group � is said to be of Widom type if for any � 2 �� the space H1(�; �)is not trivial, i.e. H1(�; �) 6= fconstg [12, 11]. � is of Widom type if and onlyif the derivative b0(�) is of bounded characteristic. In this case, � acts dissipa-tive on Twith respect to Lebesgue measure dm, that is there exists a measurable(fundamental) set E � T, such that1)E\ 
(E) = ;; for all 
 6= 12;2)m([
2� 
(E)) = m(T):For an analytic function in D , 
 2 � and k 2 N we writef j[
]k = f(
(�))(
21� + 
22)kThen it easily veri�ed that f j[
1
2]k = (f j[
1]k)j[
2]k:Notice that f j[
]2 = f; 8
 2 � means that the form f(�)d� is invariant with respectto substitutions � ! 
(�) (f(�)d� is an Abelian integral on D =�).



8 PETER YUDITSKIIDe�nition. Let � be a group of Widom type and E � T be its fundamental set.For k = 1; 2 and � 2 �� the space A2=kk (�; �) is formed by the analytic functions fon D that satisfy the following three conditions1)f is of Smirnov class2)f j[
]k = �(
)f 8
 2 �3)ZE jf j2=k dm <1:A21(�; �) is a Hilbert space with the reproducing kernel k�(�; �0) (the point eval-uation functional is bounded):hf(�); k�(�; �0)i = f(�0); �0 2 D ; f 2 A21(�; �):Put k�(�) = k�(�; 0).For a group of Widom type the following conditions are equivalent [7]:� Direct Cauchy Theorem holds:ZE fb (�) d�2�i = fb0 (0); 8f 2 A12(�; �): (DCT)� Let L2dmjE be the space of square{integrable functions on E with respect to dm.Then L2dmjE = �A21(�; ��1) �A21(�; �) 8� 2 ��;where �A21(�; ��1) = fg(�) = �f(�) : f 2 A21(�; ��1)g.� Every invariant subspace M � A21(�; �) (fM �M 8f 2 H1(�)) is of the formM = sA21(�; ��1�)for some character{automorphic inner function s 2 H1(�).� The function k�(0) is continuous on ��.� For all � 2 �� b(�)k�(�) = � k���1(�)k���1(0) b0(0); � 2 T: (2.1)In particular (2.1) implies k�(0)k���1(0) = fb0(0)g2 (2.2)Here, we just compere norm of the vectors in the right{hand and the left{handsides.We note that the origin is not a special point here, andZE f(�)b(�; �0) d�2�i = f(�0)b0(�0; �0) ; 8f 2 A12(�; ��0 );



A SPECIAL CASE OF DE BRANGES' THEOREM 9holds for all �0 2 D as well asb(�; �0)k�(�; �0) = � k��0��1(�; �0)k��0��1(�0; �0)b0(�0; �0); � 2 T; (2.3)and k�(�0; �0)k��0��1(�0; �0) = fb0(�0; �0)g2: (2.4)Following Carleson, Jones and Marshall [6] considered the corona problem forthe surface C n E � D =�, where E is a homogeneous set. Recall that a set E ishomogeneous if there is � > 0 such thatj(x � �; x + �) \Ej � �� for all � > 0 and all x 2 E:They showed that it would be enough to solve the corona problem in critical pointsof Green's function, i.e. f� : b0(�) = 0g, and then showed that for a homogeneousset critical points do form an interpolating sequence forH1. From the last propertyit follows immediately that if E is a homogeneous set, then � is of Widom type andthe Direct Cauchy Theorem holds [10].3. Reproducing kernels and Weyl functionsFor D =� = C nE we have a special representation for the kernel k�(�; �0).Lemma 3. Let � be a group of Widom type, such thatz : D=� � C nE;with normalization z(0) = 0, (z=�)(0) < 0. Thenk�(�; �0) = �� bz� (0)k�(�0) k��(�)b(�)k��(0) � k��(�0)b(�0)k��(0)k�(�)z(�) � z(�0) z(�)z(�0): (3.1)Proof. Consider the function b(�)(1=z(�) � 1=z(�0))k�(�; �0). Since b(�)(1=z(�) �1=z(�0)) 2 H1(�; �), it belongs to A21(�; ��). Besides this,hb(�)(1=z(�) � 1=z(�0))k�(�; �0); b2fi =hk�(�; �0); b(�)(1=z(�) � 1=z(�0))fi=b(�0)(1=z(�0) � 1=z(�0))f(�0) = 0;for all f 2 A21(�; ���1). It is easy to see that orthogonal complimentA21(�; ��) 	 b2A21(�; ���1)is spanned by two functions k��(�) and b(�)k�(�). Therefore,b(�)(1=z(�) � 1=z(�0))k�(�; �0) = C1(�0)k��(�) + C2(�0)b(�)k�(�):



10 PETER YUDITSKIITo �nd C1(�0), we use identity� bz� (0)k�(�0) = hb(�)(1=z(�) � 1=z(�0))k�(�; �0); k��i = C1(�0)k��(0):Hence,(1=z(�)� 1=z(�0))k�(�; �0) = � bz� (0)k�(�0) k��(�)b(�)k��(0) + C2(�0)k�(�):And since the right{hand side is antisymmetric we get (3.1).De�ne a meromorphic in C nE function r+(z; �) by the relationr+(z(�); �) = �� bz� (0) 1b(�) k��(�)k��(0) k�(0)k�(�) : (3.2)Lemma 3 implies that r+(z; �) � r+(z; �)z � �z � 0:Now we show that r+(z; �) has generalized analytic continuation across the setE.Lemma 4. Let C nE be a domain of Widom type with (DCT). Thenr+(z; �) = r�(z; �); z 2 E;where r�(z; �) is a meromorphic in C nE function, such thatr�(z; �) � r�(z; �)z � �z � 0: (3.3)Proof. According to (2.1)r+(z(�); �) =�� bz� (0)b(�) k��(�)k��(0) b(�)b(�) k�(0)k�(�)=�� bz� (0)b(�) k��1(�)k���1(�) ;orr+(z(�); �) = P(�)(�� bz� (0) 1b(�) k��1�(�)k��1�(0) k��1(0)k��1(�))�1 = P(�)r�1+ (z(�); ��1);where P(�) = � bz �2 (0) k��1 (0)k���1 (0) . Since P(�) is positive the meromorphic functionr�(z; �) = P(�)r�1+ (z; ��1)satis�es (3.3).The following lemma collects the properties of the pair of functions r�(z; �)which, in fact, characterize functions of the form (3.2).



A SPECIAL CASE OF DE BRANGES' THEOREM 11Lemma 5. Let C n E be a domain of Widom type with (DCT). Then the pair ofmeromorphic in C nE functions r�(z; �) possesses the following properties1)r+(z; �) = r�(z; �), z 2 E,2)� r�(z;�)�r�(z;�)z��z � 0,3) both functions fr�1+ (z; �) � r�1� (z; �)g�1 are holomorphic in C nE,4)r�(z; �) has zero and r+(z; �) has pole in the origin, moreover(zr+(z; �))z=0 = �1:Proof. We have to prove the third property, since all other already have beenproved. Note, that due to identity (2.2), the function P(�) is symmetric,P(��1) = � bz�2 (0) k�(0)k��(0) = � bz�2 (0) k��1(0)k���1(0) = P(�):Therefore, r+(z; �) = P(��1)r�1� (z; ��1) = P(�)r�1� (z; ��1), andr�1+ (z; �) � r�1� (z; �) = r�(z; ��1) � r+(z; ��1)P(�) :So, we will check only that [r+(z; �) � r�(z; �)]�1 is holomorphic.We start with the following nice identity:� bz� (0)� b0(0)z0(�)��zb�2 (�)(k��(�)k��(0) k��1�(�)k��1�(0) �� b(�)b0(0)�2 k��1(�)k�(�)) = 1:(3.4)To prove (3.4) we substitute (3.1) in (2.3)k��0��1(�; �0)k��0��1(�0; �0)b0(�0; �0) =b(�; �0)� k�(�; �0)= �� bz� (0)b(�; �0)� k�(�0)b(�)k��(�)k��(0) � k��(�0)b(�0)k��(0) b(�)k�(�)b(�)z(�) � z(�0) z(�)z(�0):Using (2.1) we getk��0��1(�; �0)k��0��1(�0; �0)b0(�0; �0)= �� bz� (0)b(�; �0)k�(�0)k��1(�)b0(0)� b0(0)b(�0)b(�) k��(�0)k��(0) k��1�(�)k��1�(0)z(�) � z(�0) z(�)z(�0):Putting � = �0, we get1 = �� bz� (0)k�(�)k��1(�)b0(0)� b0(0)b2(�) k��(�)k��(0) k��1�(�)k��1�(0)z0(�) z2(�):



12 PETER YUDITSKIISo, (3.4) is proved, and, now, we transform the di�erencer+(z(�); �) � r�(z(�); �) = �� bz� (0)( 1b(�) k��(�)k��(0) k�(0)k�(�) � b(�) k��1(�)k���1(�))= � � bz � (0)b(�)k�(�)k���1(�) �k��(�)k��(0)k�(0)k��1�(�)� b2(�)k��1(�)k�(�)� :Since k�(0)k���1(0) = b0(0)2, we haver+(z(�); �) � r�(z(�); �) =� � bz � (0)b(�)k�(�)k���1(�) (b0(0)2 k��(�)k��(0) k��1�(�)k��1�(0) � b2(�)k��1(�)k�(�)) :Using (3.4), we get[r+(z(�); �) � r�(z(�); �)]�1 = �k��1(�)k�(�)z2(�)b0(0)b(�)z0(�) :The inverse statement was proved in [10].Theorem. Let C nE be a domain of Widom type with (DCT). Let a pair of mero-morphic in C nE functions r�(z) possesses the following properties1)r+(z) = r�(z), z 2 E,2)� r�(z)�r�(z)z��z � 0,3) both functions fr�1+ (z) � r�1� (z)g�1 are holomorphic in C nE,4)r�(z) has zero and r+(z) has pole in the origin, moreover(zr+(z))z=0 = �1:Then there exists and unique � 2 �� such that r+(z) = r+(z; �).Let A(z) = � a11(z) a12(z)a21(z) a22(z) �be an entire transcendental matrix{function, which satis�es (0.2). The associatedWeyl functions is de�ned by the relations[ r�(z) 1 ]A(z) = ��1(z) [ r�(z) 1 ] ; z 2 C nE:Since r�(z) � r�(z)z � �z (1� j��1(z)j2) � 0;we have �r�(z) � r�(z)z � �z � 0:



A SPECIAL CASE OF DE BRANGES' THEOREM 13Since �(z) = 1=�(z), when z 2 E, we haver�(z) = r+(z); z 2 E:And since r�(z) = ��1(z) � a22(z)a12(z) = a21(z)��1(z) � a11(z) ;we have [r+(z) � r�(z)]�1 =a12(z)�(z)�2(z) � 1 ;[r�1+ (z) � r�1� (z)]�1 =a21(z)�(z)�2(z) � 1 :These functions are clearly holomorphic in C nE, since j�(z)j < 1 here.To use previous theorem we have to add normalization condition 4). We note,that a substitution A(z)! UA(z)U�1; U 2 SL2(R) (3.5)(U is real, detU = 1) does not change the associated Riemann surface. Since0 2 C nE, we may assume that A(0) is diagonal, moreoverA(0) = � �0 00 1=�0 � ; �20 < 1:In this case r+(z) has pole in the origin and r�(z) has zero. And then, with thehelp of substitution A(z)! � c 00 1=c �A(z) � c 00 1=c ��1 ;we normalize r+(z) by the condition(zr+(z))z=0 = �1;what is equivalent to a012(0) = 1=�0 � �0.So, in fact, using substitution (3.5), we �xed the main terms of the decompositionA(z) in the origin in the formA(z) = � �0 + : : : (1=�0 � �0)z + : : :0 + : : : 1=�0 + : : : � :If it need we can also change A(z)! �A(z) and �(z)! ��(z). So without lost ofgenerality we can add condition �0 > 0.It would be useful to note, that the normalization is multiplicative, i.e.:� �1 + : : : (1=�1 � �1)z + : : :0 + : : : 1=�1 + : : : � � �2 + : : : (1=�2 � �2)z + : : :0 + : : : 1=�2 + : : : �= � (�1�2) + : : : f1=(�1�2) � (�1�2)gz + : : :0 + : : : 1=(�1�2) + : : : � :We summarize result of this section as follows.



14 PETER YUDITSKIIProposition 2. Let A(z) be an entire transcendental 2�2 matrix{function, whichsatis�es (0.2) and the normalization conditionA(z) = � �0 + : : : (1=�0 � �0)z + : : :0 + : : : 1=�0 + : : : � ; 0 < �0 < 1: (3.6)Assume that the associated Riemann surfaceR+ = f(z; �) : det[A(z) � �] = 0; j�j < 1g � D =� (3.7)is of Widom type with (DCT). Then there is unique � 2 ��, such that the vector{function f�(�) = z(�)b(�) hpP(�) k��(�)pk��(0) b(�) k�(�)pk�(0) iis an eigenvector of the matrix{function A(z(�)) with the eigenvalue �(z(�)),f�(�)A(z(�)) = �(z(�))f�(�): (3.8)In addition the reproducing kernel of A21(�; �) is of the formk�(�; �0) = f�(�)Jf�(�0)�z(�)� z(�0) : (3.9)4. Proof of the main theoremWe brake the proof into uniqueness and existence parts.We need two lemmas concerning the reproducing kernels. As well as for lemma5 proofs are based on (3.4).Lemma 6. Let C nE be a domain of Widom type with (DCT), and z : D =� � C nE.Then for almost every � 2 T there exists the limitlim�!1[z(��)� z(��)]k�(��; ��) = ��z0(�): (4.1)We note that the limit does not depend on �.Proof. By (3.1) we havelim�!1[z(��)�z(��)]k�(��; ��) = �� bz� (0)(k�(�) k��(�)b(�)k��(0) � k��(�)b(�)k��(0)k�(�)) z2(�):But on the boundary b(�)k�(�) = � k��1�(�)k��1�(0) b0(0):So, lim�!1[z(��)� z(��)]k�(��; ��)=�� bz� (0)(b0(0)� k��1�(�)b(�)k��1�(0) k��(�)b(�)k��(0) � �b0(0)k��1(�)k�(�)) z2(�)=� �b0(0)� bz� (0)(k��1�(�)k��1�(0) k��(�)k��(0) � b2(�)b0(0)2 k��1(�)k�(�)) z2(�)b2(�) :Using (3.4) we get (4.1).



A SPECIAL CASE OF DE BRANGES' THEOREM 15Lemma 7. Under the assertions of the previous lemma the vectors f�(�) andf�� (�) = �f�(�) (� 2 T) are linearly independent, moreover,detF�(�) = �z0(�); (4.2)where F�(�) = � f�(�)f�� (�) � = z(�)b(�) 24 pP(�) k��(�)pk��(0) b(�) k�(�)pk�(0)pP(�)b(�) k��1 (�)pk��1 (0) k���1 (�)pk���1 (0) 35 : (4.3)Proof. Using (2.1), (2.2) we have�f�(�) = z(�)b(�) hpP(�)b(�) k��1 (�)pk��1 (0) k���1 (�)pk���1 (0) i = f��1 (�) � 0 1=pP(�)pP(�) 0 � :And then, due to (3.4), we get (4.2).Proof of the uniqueness theorem. Let A(z) be an entire transcendental 2�2 matrix{function, which satis�es (0.2), (3.6), and assume that the Riemann surface (3.7) isof Widom type with (DCT). Let A1(z) be an entire 2 � 2 matrix{function, whichsatis�es conditions A1(�z) = A1(z) (4.4.1)detA1(z) = 1 (4.4.2)Jz � �z � A1(z)JA1(z)�z � �z � A(z)JA(z)�z � �z (4.4.3)and the normalizationA1(z) = � � + : : : (1=� � � )z + : : :0 + : : : 1=� + : : : � ; �0 � � � 1:De�ne ~A(z) = A�11 (z)A(z)A1(z). Then ~A(z) is an entire transcendental 2 � 2matrix{function, which satis�es (0.2), (3.6), and has the same associated Riemannsurface as A(z). According to proposition 2 there exists � 2 �� such thatf�(�) ~A(z(�)) = f�(�)A�11 (z(�))A(z(�))A1(z(�)) = �(z(�))f� (�);or f�(�)A�11 (z(�))A(z(�)) = �(z(�))f� (�)A�11 (z(�)):But, A(z(�)) has the eigenvector (3.8) with the same eigenvalue. So,f�(�)A1(z(�)) = �1(�)f�(�):We are going to prove that �1(�) is an inner divisor of �(z(�)).According to inequalities (4.4.3) and identity (3.9),k�(�; �) � �1(�)�1(�)k�(�; �) � �(z(�))�(z(�))k�(�; �); (4.5)



16 PETER YUDITSKIIand the same inequalities are ful�lled in the sense of the positive de�nite kernels.Hence, due to well known properties of positive de�nite kernels, for any �0 2 D thefunction �1(�)�1(�0)k�(�; �0) belongs to A21(�; �) and moreoverk�1(�)�1(�0)k�(�; �0)k2A21(�;�) � j�1(�0)j2k�(�0; �0):Now we pass to the limit in the inequalities1 � j�1(��)j2 k�(��; ��)k�(��; ��) � j�(z(��))j2; �! 1; � 2 T:Lemma 6 implies that boundary value of �1(�) are unimodular a.e. onT. Therefore,in fact, k�1(�)�1(�0)k�(�; �0)k2A21(�;�) = j�1(�0)j2k�(�0; �0):Since �1(�)�1(�0)k�(�; �0) 2 �1A21(�; �) and form a complete set in this space, wehave �1A21(�; �) � A21(�; �). According to a character{automorphic counterpart ofthe Beurling{Helson Theorem �1(�) is an inner character{automorphic function.In the same way we can prove that ��z�1 A21(�; �) � A21(�; �). Therefore, �1 is aninner character{automorphic divisor of � � z.Note one more essential property of �1(�): �1(��) = �1(�). Due to result of [1](see, also, [8, Theorem 3.2]) any divisor of � � z with such a property is of the form�1(�) = (�(z(�))t ; 0 � t � 1:Denote by �t the character of (� � z)t. Then we have � = ���1t , and(�(z(�))tf���1t (�) = f�(�)A1(z(�)): (4.6)Put here � = 0, �t0 hqk���1t (0) 0 i = [pk�(0) 0 ] � � 00 1=� � :So, � = �t0sk���1t (0)k�(0) : (4.7)We note, that k�(�) � (�(z(�))t�t0k���1t (�) 6= 0 (as an element of A21(�; �),8� 2 ��), and hencekk�(�)� (�(z(�))t�t0k���1t (�)k2A21(�;�) = k�(0) � �2t0 k���1t (0) > 0:It means that �t0rk���1t (0)k�(0) is strictly monotonic and is changed from 1 to �0 thent runs over [0; 1].Therefore, for a �xed � 2 [�0; 1] there is unique t, such that (4.7) holds.



A SPECIAL CASE OF DE BRANGES' THEOREM 17For a �xed t relation (4.6) de�nes A1(z(�)) uniquely. Really, taking conjugationin (4.6) and using (4.4.1), we get(�(z(�))�tf���1t� (�) = f�� (�)A1(z(�)):Together with (4.6) it means� (�(z(�))t 00 (�(z(�))�t �F���1t (�) = F�(�)A1(z(�)):And since F�(�) is invertible we haveA1(z(�)) = F�(�)�1�t(�)F���1t (�); (4.8)where �t(�) = � (�(z(�))t 00 (�(z(�))�t � :Note that to prove existence part of the main theorem we only have to show thatthe right{hand side in (4.8) is an entire matrix{function which satis�es (4.4.3).For an inner function s 2 H1(�; �) and � 2 �� setKs(�) = A21(�; �) 	 sA21(�; ��1�):If s = s1s2, where s1; s2 are inner functions, sl 2 H1(�; �l), thenKs(�) = Ks1(�) � s1Ks2(��11 �):For w 2 H1(�; �), de�ne Tw(Ks(�)) : Ks(�)! Ks(��) asTw(Ks(�))g = PKs(��)(wg);where PKs(��) is orthogonal projection onto the space Ks(��). In this case theconjugate operator is of the formT �w(Ks(�))g = P+(�)(wg); g 2 Ks(��);where P+(�) is the orthogonal projection from L2dmjE onto A21(�; �).Note that if there exist functions h1 2 H1(�; ��1) and h2 2 H1(�; ��1) suchthat wh1 + sh2 = 1;then Tw(Ks(�)) is invertible for any � 2 ��.When the space of the formKs(�) is �xed we will write Tw instead of Tw(Ks(�)).We denote by e�(�; �0) the reproducing kernel of Ks(�). Evidently,e�(�; �0) = k�(�; �0)� s(�)s(�0)k���1(�; �0):



18 PETER YUDITSKIILet f 2 Ks(�), then �sf?A21(�; ��1�) and, therefore, it is of the form �f�, wheref� 2 A21(�; ���1). In fact, f� 2 Ks(���1). For �0 2 D ; s(�0) 6= 0, f ! f�(�0)s(�0) is theantilinear functional on Ks(�). We de�ne e�� (�; �0) 2 Ks(�) byhe�� (�; �0); f(�)i = f�(�0)s(�0) ; f 2 Ks(�):For more detailed presentation of operator theory in such spaces, see [9].Proof of the existence theorem. First we show that for z0 2 C and g1 2 Kb2(����1t )there exists unique g2 2 Kb2(��) such that(� � z)tg1 = (b� z0 bz )g + g2; (4.9)where g 2 K(��z)t(�).Multiplying (4.9) by �b2 and taking the projection P+(���1), we getP+(���1)�b2(� � z)tg1 = P+(���1)"�b � z0� bz�# g = T �(b��z0 bz )g:Note that P+(���1)�b2(� � z)tg1 2 K(��z)t(���1).For z0 2 C nE, puth1(�) = zb (�)1 � �(z(�))=�(z0)z(�) � z0 ; h2(�) = �(z(�))=�(z0)(� � z)t(�) :For z0 2 E, puth1(�) =zb (�) (1 � �(z(�))=�(z0 + i0))(1 � �(z(�))=�(z0 � i0))z(�) � z0 ;h2(�) =1� (1� �(z(�))=�(z0 + i0))(1 � �(z(�))=�(z0 � i0))(� � z)t(�) :Evidently, h1 2 H1(�; ��1), h2 2 H1(�; ��1t ) and(b � �z0b=z))h1 + (� � z)th2 = 1:Therefore T(b��z0b=z)) = Tb � �z0Tb=z is invertible.Consider the vector(� � z)tg1 � [b� z0b=z][T �b � z0T �b=z]�1P+(���1)�b2(� � z)tg1:>From one hand it belongs to Kb2(��z)t(��), from the other hand it is orthogonalto b2K(��z)t(���1). Hence, it belongs to Kb2(��). So,g2(�) = (��z)t(�)g1(�)�[b(�)�z0(b=z)(�)]f[T �b �z0T �b=z]�1P+(���1)�b2(��z)tg1g(�):



A SPECIAL CASE OF DE BRANGES' THEOREM 19Let us �x the bases in Kb2(��) and Kb2(����t), thenhpP(�) k��(�)pk��(0) b(�) k�(�)pk�(0) iB(z0) � c1c2 �= (� � z)t(�)g1(�)� [b(�)� z0(b=z)(�)]f[T �b � z0T �b=z]�1P+(���1)�b2(� � z)tg1g(�);(4.10)with g1(�) = �qP(���1t ) k����1t (�)qk����1t (0) b(�) k���1t (�)qk���1t (0) � � c1c2 � :So, B(z0) is an entire matrix function of z0. But if we put � = �0 (z(�0) = z0) in(4.10), we gethpP(�) k��(�0)pk��(0) b(�0) k�(�0)pk�(0) iB(z0) � c1c2 �= (� � z)t(�0) �qP(���1t ) k����1t (�0)qk����1t (0) b(�0) k���1t (�0)qk���1t (0) � � c1c2 � :Therefore, (see (4.3) and (4.8))B(z0) = F�(�0)�1�t(�0)F���1t (�0):Now we prove the inequality�(�) = F�(�)JF�(�)�z(�) � z(�) � �t(�)F���1t (�)JF���1t (�)�z(�) � z(�) �t(�)� � 0; (4.11)what is equivalent to J � B(z)JB�(z)z � �z � 0:Note that to prove B(z)JB�(z) �A(z)JA�(z)z � �z � 0;we only have to use (4.11) with t := 1� t and (then) � := ���1t .The vectore�(�; �0) =k�(�; �0)� (� � z)t(�)(� � z)t(�0)k���1t (�; �0)=f�(�)Jf�(�0)�z(�)� z(�0) � (� � z)t(�)(� � z)t(�0)f���1t (�)Jf���1t (�0)�z(�)� z(�0)is the reproducing kernel of K(��z)t(�). According to the de�nitionhe�� (�; ��0); e�(�; �1)i =  fk�(�; �1) � (� � z)t(�)(� � z)t(�1)k���1t (�; �1)g�(� � z)t(�) !�=��0 :
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