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A SPECIAL CASE OF DE BRANGES’ THEOREM ON
MONODROMY MATRIX: ASSOCIATED RIEMANN SURFACE IS
OF WIDOM TYPE WITH DIRECT CAUCHY THEOREM

PETER YUDITSKII

Let Ho(t), Hi(t) be real 2 x 2 matrix—functions with entries from L'(0,1),
Hi(t) = Hi(t), Ho(t) > 0. We associate with these data the solution of the
Cauchy problem for the differential system

dA(t, z)
dt

= A(t, ) {Ho(t) + Hi ()1, A0, 2) = 1o,

0 1
J= {_1 0} .
The matrix—function A(z) = A(1, z) is called the monodromy matrix of the corre-

sponding system [5]. More generally, let 3(¢) be a continuous nondecreasing real
2 X 2 matrix-function of t € [0, 1],

where

sp{Zo(1) — Zo(0)} < o0,

and X1 (t) be a real symmetric 2 x 2 matrix—functions, whose entries are absolutely
continuous functions with respect to the measure sp{do(¢)}. In this case A(¢, z)
is defined as the solution of the matrix integral equation

A(t,z) =15+ /Ot A(s, 2){z d3o(s) + dX1(s)}, (0.1)

and as before A(z) = A(1, 2).

How to restore the system on the monodromy matrix? When it could be done?
Do we have a uniqueness theorem?

These problems were solved in the whole generality by L. de Branges [2]. His
theorem states, that if A(z) is an entire 2 x 2 matrix—function, which satisfies the
following properties:

AT = A-) (0.2.1)
det A(z) =1
T ARJAG) (0.2.3)
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then A(z) is the monodromy matrix of a system (0.1). Normalization ¥4 (¢) = 0
defines ¥o(¢) in unique way up to a continuous monotonic change of variable t,
[0,1] — [0, 1].

The main problem here is to prove that 13 and A(z) could be included in a
monotonic continuous chain of entire matrix-functions A(7, z):

J < A(r,2)JA(T, 2)* < A(z)JA(z)*

z—Zz z—z - z—Zz

and that this chain is complete i.e.: under some normalization any divisor A4;(z) of

Alz),

Y

J < Ay (2) T AL (2)* < A(z)JA(z)*
z2—zZ z2—z z2—z
is present there ( 3m @ Ay(z) = A(m1,2)).
Set

R =A{(z,\): det[A(z) — A\] = 0}.
Except some very special cases, when A(z) is a linear polynomial, or it is the mon-
odromy matrix of a system with constant coefficients, R is two—sheeted Riemann
surface (see section 1) and we define

Ry ={(z,N) : det]A(z) = A\] =0, [N < 1}.

According to the definition A is an inner function on Ry. If A(z) is a transcendental
matrix function, A remind the exponent: it is an inner function with only one or
two singular points on the boundary. Our goal is to prove that any divisor of
A(z) corresponds to inner devisor of A on Ri. It is really so, if the character—
automorphic counterpart of the Beurling—Helson theorem on invariant subspaces
of the Hardy space holds on R4. Such surfaces are called of Widom type with
Direct Cauchy Theorem (for exact definition, see section 2). As a result, in this
framework, we prove the following theorem.

Theorem. Let A(z) be an entire transcendental matriz function satisfying (0.2).
Assume that the surface

Ry =A{(z,\): det[A(z) =\ =0, |\ <1}

15 of Widom type with Direct Cauchy Theorem. Accept the following normalization
condition: (0, ) € R4, and moreover

A=) =10, 1/ X + ... ’

Then for any T € [Ao, 1] there is unique entire matriz—function A(t,z) such that
1) A(r,2) = A(7,2)
2) det A(7,z) =1

J A(r,2)JA(T, 2)*

Ao > 0.

3)

Z—z Z—z Z—z

with normalization

)= T+... (I)r=7)z+...
|0+ I/r+...

T—A(r,2) JA(r,2)*

Z—z

A(r, =

18 @ monotonic

A(r,z) is a continuous matriz—function and
matriz—function of T.
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Corollary. Under assertions of the previous theorem any divisor

ay (%) a“)(z)]

() ()
Qg (Z) Qg9 (Z)

Aﬂ@:[

of A(z) s of the form

Am@:Aﬁg)Fy 2}%@%

where

1 -7 = a3y (0)(a}y))'(0) = (a1} (0)agy(0) < 1 A3,

Note, that we use an internal point of R4 as a point of normalization (see section
3). In these terms de Branges’ normalization corresponds to the case when we fix
A(z) and its divisors in a boundary point, 0 € OR 4.

A proof of the theorem is given in section 4.

Acknowledgment. The author thanks the International Erwin Schrodinger Insti-
tute for Mathematical Physics, where the paper is completed, for hospitality and
personally Prof. James B. Cooper and Prof. Paul Miller for the kind invitation.

1. THE RIEMANN SURFACE ASSOCIATED WITH THE MONODROMY MATRIX

First, we prove the following simple lemma.

Lemma 1. Let A(z) possess properties (0.2). Assume that the J—form of the
matriz A(z) us strictly positive in the upper half-plane,

J—A(z)JA(z)*

z—z

> 0.

Then the equation det[A(z) — A] = 0 has two different roots with respect to \ there,
the module of one of them is strictly less then 1 (respectively, the module of the
other one is strictly greater then 1).

Proof. Let A\ be the eigenvalue of A(z1), Im z; > 0, and f; be a corresponding
eigenvector, f1A(z1) = A1 f1. Then

fid ff

zZ1 — Z1

(1 —|\]?) > 0.

Therefore, 1 — |A\]* # 0. But detA(z1) = 1, and hence A\;A\s = 1. So, if [\{| < 1,

then |[A\y| > 1, and vice versa.
Now we prove, that except some very special cases J—form is strictly positive.
Lemma 2. Let j be 2 x 2 matriz, such that j° = 15, j* = j, j # 1o. Let A(z) be

a holomorphic in the upper half-plane 2 X 2 matriz—function, such that

B(z) = j— A(2)jA(z)* 20, Tm z>0. (1.1)
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If the matriz—function ®(z) is degenerated at least at one point zo (Ifo € C* :
fo®(z0) =0, fo #0), then, up to constant j—unitary matrices, A(z) has one of the

following three forms:

Az = |2 0]
Alz) = -(1) p(lz)-
=[5 ¢

1) <o, j:[

;. p(z)+p(2) <0,

- ls()P >0, j:[

|

_01 ﬂ; (1.2.1)
; (1)} (1.2.2)
. _01} (1.2.3)

Proof. We use the following essential property of j—contractive matrix—functions:
inequality (1.1) implies positivity of the kernel [3]

(I)(Zl,ZQ) =

I = Alz)j A=)

Z1 — 2

In particular,

S AC0)iAGD) A =A(0)
AT A AG) | 20

, Imz >0, Im 2z > 0.

(1.3)

Let fo # 0 be a vector, such that fo®(z9) = 0. Then, as it follows from (1.3),

0

;

Z—Z0

A(2)" = A(z0)" 2

fo A(Z)—A(ZO)JC*

Z—Z

[0

for any f € C2. It implies, fowf* =0, VfecC? Vz, Im z > 0. Hence,

foA(Z) = foA(Zo)7

We consider three cases:

In the first case, it is convenient

Z—Z0

Im 2 > 0.

to take j in the form:

[

-1
0

0
1

3)fosfs <0.

Since fojfy = foA(z0)jA(20)* f§ > 0, one can find j—unitary matrices U; and U,

in such a way, that

foUr = [0

1],  foA(z0)Uz = [0

So, up to substitution U; " A(2)Uy — A(2), we have

1].

(1.4)
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or Az) = [GHO(Z) a121(2)} ' (1.5)

And now, we write explicitly the condition j — A(z)jA(z)* >

s =[ o )= [ ][
_ {—1 + |G11_(Z)1|22(Z—) |ar2(2)]? —al()Z(Z)} > 0.

It implies, |a12(2)] = 0 and 1 — a1 (2)|? < 0. Putting s(2) = a11(2), we get (1.2.1).
In the second case we take j in the form

- Jo 1
7= ol
Then we find matrices Uy and Uz, such that (1.4) holds. After substitution U] A VUs —>I

A(z), we have A(z) in the form (1.5), but positivity condition in this case means:

e T o A e | =

_ {—an z allz(_)al—l(al)z( Z)arr(z) 1— CE)H(Z)}

Therefore, a;; = 1, and a12(z) + a12( ) < 0. Putting p(z) = a12(z), we get (1.2.2).
In the third case we take j in the form:

j:[(l) _01].

The next steps are completely the same, so we omit the proof.

Proposition 1. Let A(z) be an entire 2x2 matriz—function, A(z) = A(z), det A(z) =
1, and such that
J—A(z)JA(z)*

z—z

> 0.

If A(z) is not a linear polynomaal, then in the upper half plane A(z) has two different
ergenvalues, module of one of them is strictly less then 1 (respectively, module of
another one is strictly grater then 1 ).

Proof. Assume, that J—form is degenerated in some point zg, Im z5 > 0. According
to lemma 2, up to constant J—unitary factors, A(z) has one of the present there

forms. But detA(z) = 1, so, if A(z) # const, then A(z) should be of the form

A=y "] e+ <o

where p(z) is an entire function. This means, that p(z) is a linear polynomial.
Otherwise, J—form is not degenerated, and according to lemma 1, A(z) has two
different eigenvalues.
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In what follows we use the following notation. We denote by A(z) the eigenvalue

of A(z) for which |A(2)| < 1, Im z # 0. We put

E={zeR: |ANz+1i0)|=1}.

Up to trivial case A = ¢**T° E #£ R and we accept the normalization condition

0 € C\ E. The set E is bounded if and only if A(z) is a polynomial. We will
consider only the case when A(z) is a transcendental matrix—function. Note, that
Az) #0, z€ C\ E in this case.

Therefore, one can consider R as two—sheeted Riemann surface, which consists
of two copies of the domain C \ E glued along the system of intervals E, and on
the upper sheet

Ry ={(z,A): det[A(z) = A] =0, [N\ <1} ={(5,A(2)): z€ C\ E}.

2. HARDY SPACES ON R4, FUCHSIAN GROUPS OF
WIDOM TYPE AND DIRECT CAUCHY THEOREM

Let D denote the unit disk and T denote the unit circle

D=A{C: |[cf<1}, T=A{C: [([=1}

We use a standard terminology and notations of the theory of functions of bounded

characteristic in D [4]. In particular, H? denotes the standard Hardy space. We

remind that an analytic in D function is said to be of Smirnov class if it can be

presented in the form f = fi/fs, where fi, fo € H*™ and f5 is an outer function.
Let 7 be a discrete subgroup of SU(1,1) consisting of elements of the form

y = {’711 Y12

. Y11 = Tz, Y12 = Fa1, dety = 1.
Va1 722} Y11 Y22, V12 Y21 8

For v € 7, put v(¢) = (711¢ + 712) /(721 + v22); as it well known, v maps D and T
onto themselves.
A character of 7 is a complex—valued function o : ? — T, satisfying

a(y1y2) = a(y)aly) (.72 €7).

The characters form Abelian compact group, we denote it by 7 *.

By the uniformization theorem, the domain C\ E is conformal equivalent the
quotient of the unit disk D by the action of a group 7 = ?(E). In other words,
there exist an analytic function z : D — C\ E and a discrete group ? with the
following properties:

z is automorphic with respect to 7, z(~(()) = 2(¢), Vv € ?;

z maps D onto the domain C\ E,

\V/Z()E(C\E HCOEDl Z(CO):C07

in such a way that any two preimages of zy are ? —equivalent

2(G1) =2(C) = FIve?: G =75(C)



A SPECIAL CASE OF DE BRANGES’ THEOREM 7
In this case, two classes of functions are equivalent:

{meromorphic functions f(¢) in D such that f(y(¢)) = f(¢), Vv € ?}
= {meromorphic functions F(z) in C\ E}J]

This equivalence yields by the identity F(z(¢)) = f({).
By the definition,

H*(?) = {f € H®: foy=f Vye?).
Let us note that if the space H*(?) is not trivial,
Af € H=(?): f(C) # f(Co),

then the trajectory {v((o)}er satisfies the Blaschke condition. The Blaschke prod-

uct
b(C, o) = B(C, oy Y(Co) — ¢ [v(Co)]
(C:Go) =BG, Gos ? g )

is called the Green function of 7 with respect to (p. It is a character—automorphic
function, that is there exists p¢, € 7* such that b(v(C), o) = e, (7)0(¢, Co). To
simplify notation we put b(¢) = b((,0) and pu = po.

We will consider also spaces of character-automorphic functions: for o € 7 *

H>*(?,0)={f € H*: foy=a(y)f, Vye?}.

The group 7 is said to be of Widom type if for any o € 7* the space H>®(?,«a)
is not trivial, i.e. H®(?,a) # {const} [12, 11]. ? is of Widom type if and only
if the derivative b'(() is of bounded characteristic. In this case, 7 acts dissipa-
tive on T with respect to Lebesgue measure dm, that is there exists a measurable
(fundamental) set E C T, such that

1)Eﬂ v(E) =0, for all v # 1,
2)m(|J +(E) = m(T).

~el

For an analytic function in D, v € 7 and k& € N we write

()

b = Gy

Then it easily verified that

Fllvvale = (Fllvale) vk

Notice that f|[y]z = f, Vv € ? means that the form f({)d( is invariant with respect
to substitutions { — ~v(¢) (f(¢)d( is an Abelian integral on D/7).
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Definition. Let ? be a group of Widom type and E C T be its fundamental set.
For k=1,2 and a € 7* the space Ai/k(?,oz) 18 formed by the analytic functions f
on D that satisfy the following three conditions

1)f is of Smirnov class

2)fl[V]k = a(v)f ¥y €7
3)/E|f|2/’“ dm < 0.

A%(?. ) is a Hilbert space with the reproducing kernel k%((, (o) (the point eval-
uation functional is bounded):

<f(C)7ka(C7CO)> = f(CO)? CO € D7 f S A%(?,Oz)
Put k%(¢) = k%(C,0).

For a group of Widom type the following conditions are equivalent [7]:
o Direct Cauchy Theorem holds:

/E%(O % = %(0), Ve AN(7, ). (DCT)

o Let L?

dm|E be the space of square—integrable functions on E with respect to dm.
Then

Lzmm = (A?(?, ") @ A}(?,a) Vae€?*,
where T, a71) = {g(C) = TFC) £ € A2(2,a")).
e Every invariant subspace M C A¥(?,a) (fM C M Vf € H>®(?)) is of the form

M = sA3(?,07ta)

for some character—automorphic inner function s € H> (o).
e The function £%(0) is continuous on 7 *.
e Foralla e 7*

—1

HORTD) = Cramm ¥ (0, e, (2.
In particular (2.1) implies
E(0)k"T(0) = {'(0)} (2.2)

Here, we just compere norm of the vectors in the right—-hand and the left—hand
sides.

We note that the origin is not a special point here, and

/ Q) d¢ f(Co)

_— 1
b(¢,Go) 2mi (o, o) Ve A7 ne)s
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holds for all ( € D as well as

- Jetcoo™
TG = Gt

bl(COvCO)v C S T? (23)

and

k*(Co, Co)k™0 ™ (o, o) = {b'(Cos o)} (2.4)

Following Carleson, Jones and Marshall [6] considered the corona problem for
the surface C\ E = D/?, where E is a homogeneous set. Recall that a set E is
homogeneous if there is > 0 such that

(x —p,x+p)NE|>np foral p>0 andall x € E.

They showed that it would be enough to solve the corona problem in critical points
of Green’s function, i.e. {(: b'(¢) = 0}, and then showed that for a homogeneous
set critical points do form an interpolating sequence for H*°. From the last property
it follows immediately that if E is a homogeneous set, then 7 s of Widom type and
the Direct Cauchy Theorem holds [10].

3. REPRODUCING KERNELS AND WEYL FUNCTIONS

For D/? = C\ E we have a special representation for the kernel £%((, (o).

Lemma 3. Let 7 be a group of Widom type, such that
z: D/?T =C\E,

with normalization z(0) =0, (z/()(0) < 0. Then

bY (1 K (o) seermntoy — et (<)
b6 = = (1) 0 OO 05g) e

Proof. Consider the function b(¢)(1/2(¢) — 1/2(¢0))k*((, (o). Since b(¢)(1/2(¢) —

1/2(Co)) € H>(?, 1), it belongs to A3(?7,apu). Besides this,

(O(C)(1/2(¢) = 1/2(C0))E(¢. C0), b7 F) =(R¥(C. Co), (O)(1/2(C) = 1/2(Co)) )
=b(Co)(1/2(Co) = 1/2(0)) f(Co) = 0,

for all f € A}(?,apu™'). Tt is easy to see that orthogonal compliment
Af(?,ap) OV AT, ap™)

is spanned by two functions k“#(() and b(¢)k(¢). Therefore,

b(C)(1/2(¢) = 1/2(C0))E*(C, Co) = C1Co)k™ () + C2(Co)b(C)E (C).
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To find C1((p), we use identity

(9) O (Go) = ((C)(1/2(C) — 172Nk (C, o) ) = Ci1 (Go )k (0).

z

Hence,

(1340 = UGN 60) = () OF Gl b + Cal ()

(Q)kr(0)
And since the right-hand side is antisymmetric we get (3.1).

Define a meromorphic in C\ E function ry(z, «) by the relation

B b 1 ko"(¢) k“(0)
4 (:610) == (2) O ey gy 52

Lemma 3 implies that
T_|_(Z, a) — T_|_(Z, Oé)
z2—z

> 0.

Now we show that r4(z, ) has generalized analytic continuation across the set

E.
Lemma 4. Let C\ E be a domain of Widom type with (DCT). Then

ry(z,a) =r_(z,a), z€E,
where r_(z,a) is a meromorphic in C\ E function, such that

r_(z,a) —r_(z,a)

<0. (3.3)

z—z

Proof. According to (2.1)

or

e b 1 ke kT )
r2(2(0)a) = Pla) {— (2) 01 o) o }

—1

where P(a) = (%)2 (0) kk;a_l((oo)). Since P(a) is positive the meromorphic function

r_(z,a) = P(oz)r_i__l(z,oz_l)
satisfies (3.3).

The following lemma collects the properties of the pair of functions ri(z,«a)
which, in fact, characterize functions of the form (3.2).
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Lemma 5. Let C\ E be a domain of Widom type with (DCT). Then the pair of

meromorphic in C\ E functions r4(z,a) possesses the following properties
Dry(z,a) =r_(z,a), z € E,
2):|: ri(z,a)—fi(z,a) >0
3) both functions {r_ijfl (z,00) — rEt (z,a)}~1 are holomorphic in C\ E,
4)r_(z,a) has zero and r4(z,«) has pole in the origin, moreover

(zr4(z,0a))2=0 = —1.

Proof. We have to prove the third property, since all other already have been
proved. Note, that due to identity (2.2), the function P(«) is symmetric,
1

Pa1= (1) O (V) 0O <P

Therefore, r4(z,a) = P(a™ )rZ' (z,a7) = P(a)rZ' (z,a7!), and

So, we will check only that [r4(z,a) —r_(z,a)]”! is holomorphic.
We start with the following nice identity:

(o (58) 6) o i s - (i) wna) -1

(3.4)
To prove (3.4) we substitute (3.1) in (2.3)
kucoa_l(CaCO) / _b(aco)ai
B (o) T e
(DY g ME) B MO S~ st "
B (Z) (0) ¢ 2(¢) — 2(¢o) (€)z(Co)-
Using (2.1) we get
kﬂ(oa_l(c7<=0) b/
= (Cos Co)
kHeo®™ (Co, (o)
b Gk (O(0) — gD K
--(3) e T Gy

Putting ¢ = (y, we get

L (é) (O)ka(C)ka

S, b (0) k() kTG
(O (0) = 72067 T2 (0 k2~T1(0) o
A

2'(¢)

(€)-

z
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So, (3.4) is proved, and, now, we transform the difference

1

- =~ (B AL 10 )

(0 ) i
_b(c)ka(f)k“a_l(C){kau(o)k (0)R#(C) = bR (Ok <<>}.I

1

Since k*(0)k** (0) = b'(0)?, we have
r(2(¢),a) —r—(2(¢),a) =

- <g> (0) sz B () ka_l“(C) 12 a™t a
b(c)ka(c)kua—l(c) {b (0) ka“(()) ka_lu(()) b (C)k (C)k (C)} .

Using (3.4), we get

The inverse statement was proved in [10].

Theorem. Let C\ E be a domain of Widom type with (DCT). Let a pair of mero-
morphic in C\ E functions r4(z) possesses the following properties

ry(z) =r_(z), z € E,

Q)iw >0

3) both functions {r_ijfl (z) — i ()}~ are holomorphic in C\ E,
4)r_(z) has zero and r4(z) has pole in the origin, moreover

(274 (2))sm0 = —1.

Then there exists and unique o € 7* such that r4(z) =ri(z,a).

Let
A(z) = [an(z) Clm(z)}

azl(Z) CLQQ(Z)

be an entire transcendental matrix—function, which satisfies (0.2). The associated
Weyl functions is defined by the relations

[re(2) 1]A(Z):/\i1(2)[ri(2) 1], z€C\E.

Since

we have
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Since A(z) = 1/A\(2), when z € E, we have

And since

we have

Z/\()

ra(z) = r_ ()] = ;
)
-

z

z

Glz(
A(
Pt (z) —rZl(2)] 7 = a21((2 Az )

These functions are clearly holomorphic in C\ E, since |[A(z)| < 1 here.
To use previous theorem we have to add normalization condition 4). We note,
that a substitution

A(z) = UA() U™, U € SLy(R) (3.5)

(U is real, detU = 1) does not change the associated Riemann surface. Since
0 € C\ E, we may assume that A(0) is diagonal, moreover

. Ao 0 2
A(O)_{O 1/%}, Ag < 1.

In this case r4(z) has pole in the origin and r_(z) has zero. And then, with the
help of substitution

c

CRAREI

we normalize r4 (z) by the condition

(zre(2)):=0 = —1,

what is equivalent to a{,(0) = 1/ Ao — Ao.
So, in fact, using substitution (3.5), we fixed the main terms of the decomposition
A(z) in the origin in the form

A(Z)_{OJF... 1/do+ .. ]

If it need we can also change A(z) — —A(z) and A(z) = —A(z). So without lost of
generality we can add condition Ag > 0.
It would be useful to note, that the normalization is multiplicative, i.e.:

AL (1//\1—/\1)z—|—...] [A2+... (1//\2—/\2)z—|—...]

0+... /A +... 0+... 1/ h+ ...
:{(A1A2)+... {1/(/\1/\2)—(/\1A2)}z—|—...}
0+... L/(AMA2) + ... :

We summarize result of this section as follows.
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Proposition 2. Let A(z) be an entire transcendental 2 x 2 matriz—function, which
satisfies (0.2) and the normalization condition

A(Z)_{O—I—... 1o+ ... , 0< Ao <1, (3.6)
Assume that the associated Riemann surface
Ry ={(z,N): det[A(z) = A =0, |\ <1}=D/? (3.7)

is of Widom type with (DCT). Then there is unique o € 7%, such that the vector—
function

/D kO k% (¢)
7 { « /Ko (0) « /k>(0)

is an eigenvector of the matmwffunctwn A(z(C)) with the eigenvalue N(z(()),

FHOAR(Q) = A=) () (3.8)
In addition the reproducing kernel of A3(?,a) is of the form
a FH) T (o)
E*((, Co) = — 3.9
TS e .

4. PROOF OF THE MAIN THEOREM

We brake the proof into uniqueness and existence parts.
We need two lemmas concerning the reproducing kernels. As well as for lemma
5 proofs are based on (3.4).

Lemma 6. Let C\ E be a domain of Widom type with (DCT), and z : D/? = C\ E.
Then for almost every ¢ € T there exists the limat

tim[=(pC) — 2Ok (pC. C) = ~C/(0). (4.1)

We note that the limit does not depend on «.
Proof. By (3.1) we have

lig ()T 6,6 = - () 0 {wc)b(f;;ifgo) - bé;;iffo)k%} z?<<>-|

But on the boundary

kG

bk (C) = Cm

(0).
So,

__ (P VL (5 B (S I SR AP
— = () 0 W0 s — e (O <<>} (©

o (P F MO RO O g | 22O
—-ao(2)o { o ) — oAk Ok <<>} -
(4.1)

Using (3.4) we get

lim[z(pC) — 2(pC)Ik"(pC, pC)
b
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Lemma 7. Under the assertions of the previous lemma the vectors f*(() and

o) = Cfa( ) (C € T) are linearly independent, moreover,
det F2(¢) = —#'(C), (42)

where

(4.3)

Bla)Lr0 o)A
w/kw(o 1_/1ka(o)
Platb(() £ T |
MO e=e Voo

T =g [VPEmo s )= o gm0

And then, due to (3.4), we get (4.2).

Proof of the uniqueness theorem. Let A(z) be an entire transcendental 2 x 2 matrix—
function, which satisfies (0.2), (3.6), and assume that the Riemann surface (3.7) is
of Widom type with (DCT). Let A;(z) be an entire 2 x 2 matrix—function, which
satisfies conditions

det A;1(z) =1 (4.4.2)
- / —> “41(22‘]_“42(2)* > A(ZZ‘]_“LSZ)* (4.4.3)

and the normalization

T+... (I/r=7)z+...

<7<l
0+... 17+ ... » AosTsl

./41(2) =

Define ./Zl(z) = AII(Z)A(Z)Al (z). Then ./Zl(z) is an entire transcendental 2 x 2
matrix—function, which satisfies (0.2), (3.6), and has the same associated Riemann
surface as A(z). According to proposition 2 there exists 3 € 7* such that

FHOAEQ) = FAOAT () A(O)AL=(C) = MOV (),
FAOAT (A=) = MOV F(OAT (=)
But, A(2(()) has the eigenvector (3.8) with the same eigenvalue. So,
FUOA=(C) = M(OF(C).

We are going to prove that A;(() is an inner divisor of A(z(()).
According to inequalities (4.4.3) and identity (3.9),

EY(CC) = MOMOE(C, ) = M=(O))M=(0)k*(¢, ¢), (4.5)
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and the same inequalities are fulfilled in the sense of the positive definite kernels.
Hence, due to well known properties of positive definite kernels, for any (g € D the

function \; (C)\;(Co)k?(¢, Co) belongs to A%(?,a) and moreover

MO (C0)E (¢, )Pz o) < 1A1(C) PR (Co, o).
1)
Now we pass to the limit in the inequalities

k°(pC, p¢)
1> |/\1(PC)|2W > A=z(pQ))*, p—1, CeT.

Lemma 6 implies that boundary value of A\;({) are unimodular a.e. on T. Therefore,
in fact,

M ORMIRPC )Py = 11 (C0) PR (Cos o).

Since A (O)A1(Co)kP(C, Co) € M A2(?,3) and form a complete set in this space, we
have A1 A3(?7,3) C A3(7,a). According to a character—automorphic counterpart of
the Beurling—Helson Theorem A;(() is an inner character—automorphic function.
In the same way we can prove that )‘)\—‘TA%(? ,a) C A%(?,3). Therefore, \; is an
inner character—automorphic divisor of A o z.
Note one more essential property of Ai(¢): Ai(¢) = A1 (¢). Due to result of [1]
(see, also, [8, Theorem 3.2]) any divisor of A o z with such a property is of the form

MO = A=), 0<t<L
Denote by §; the character of (A o z)*. Then we have 8 = ad; ', and

GO FT () = FOA=(C)). (4.6)

Put here ¢ =0,

Aé{ ked ' (0) o}:[ ke (0) 0][6 194.

e R0
T = OB (4.7)

We note, that k*(() — (/\(Z(C))t/\éka5t_l(C) # 0 (as an element of A%(?7,a),
Yo € 7*), and hence

So,

1E(C) = MO AR (O iz ) = F(0) = AR (0) > 0,

—1
kaét (0)

It means that A} 7570)

is strictly monotonic and is changed from 1 to Ag then

t runs over [0, 1].
Therefore, for a fixed T € [Ao, 1] there is unique ¢, such that (4.7) holds.
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For a fixed ¢ relation (4.6) defines A;(2(¢)) uniquely. Really, taking conjugation
in (4.6) and using (4.4.1), we get

(O 2% () = £ AL ()

Together with (4.6) it means

And since F*(() is invertible we have

Ay (2(Q)) = F(Q) T AYOF (), (4.8)

where

Note that to prove existence part of the main theorem we only have to show that
the right-hand side in (4.8) is an entire matrix—function which satisfies (4.4.3).
For an inner function s € H>(?,0) and a € 7* set

Ky(a) = A7(7,a) © sA43(?, 0 a).
If s = 8182, where s1, 85 are inner functions, s; € H>*(?,07), then
Ks(a) = K, (a) & 311&’32(01_10z).
For w € H>(?,0), define T,(Ks(a)) : Ks(a) = Ks(af) as

Tw(K(a))g = Pk, (ag)(wyg),

where Pg (o) is orthogonal projection onto the space K (a3). In this case the
conjugate operator is of the form

T, (Ks(a))g = Pr(a)(wg), g€ Ks(ap),

where Py (o) is the orthogonal projection from Lzmm onto A%#(7,a).

Note that if there exist functions hy € H>®(?,571) and hy € H>®(?,07!) such
that
wh1 + Shz = ]_,

then T, (Ks(«)) is invertible for any a € 7*.
When the space of the form Is(«) is fixed we will write T, instead of T, (K s(a)).

We denote by €®((, (o) the reproducing kernel of K («). Evidently,

€% (¢, Go) = k(¢ Co) — s(O)s(C)k (¢, o)
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Let f € Ky(a), then 5f—A%(?, 07 a) and, therefore, it is of the form (f., where
fo € A2(?,0a71). In fact, fr € Ks(oca™!). For (o € D, s(¢o) #0, f — J;*((éo)) is the
antilinear functional on K,(«a). We define €2((, (o) € Ks(a) by

f*(CO)
5(Co)

(e5(C,Co), 1)) = fe Ky a).

For more detailed presentation of operator theory in such spaces, see [9].

Proof of the existence theorem. First we show that for 2o € C and g; € Ky2(aud; ")
there exists unique g3 € Kyp2(op) such that

b
(Aoz)'gr = (b— = )9+ 2 (4.9)

where g € Kozt ().
Multiplying (4.9) by 6% and taking the projection Py (apu™!), we get

g = T(*b_goz;)g.

- - b
Pi(ap™" )b (Ao 2)'gr = Py(ap™) [b — %0 (‘)
z
Note that Pi(ap™)b* (Ao 2)'g1 € K(xosy(ap™).
For zo € C\ E, put

_ AG(Q)/Alz0)
(Aoz)"¢)

Z oy (1= AE(O)/A(z0 +10))(1 = A(=(C))/Alz0 — i0))

h(C) =7(¢) 0 :
ha(C) 1 (1= M)Az +i0)(1 = A(=(€)/AM=z0 — 10))
’ (o 2)(C) :

Evidently, hy € H*(?, ™), hoy € H®(?,8; ) and
(b — gob/Z))hl + (/\ 0 Z)thz =1.

Therefore Tiy_z4/2)) = Ty — 20T}y is invertible.
Consider the vector

(Mo 2)'gr = [b— z0b/2][Ty — 20Tyy.] " Py(ap™)b* (Ao 2)'gs.

;From one hand it belongs to Ky2(xoz)(ap), from the other hand it is orthogonal
t0 b2 K (rozyt (i 1), Hence, it belongs to Kyz2(au). So,

92(C) = (A02)"(€)g1(C) = [b(C) —20(b/2) (O[T} — 20Ty ] Py (™ )b* (Aoz) g1 }(C).
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Let us fix the bases in Kj2(ap) and Ky2(apd™?), then

= (A 02)"()g1(¢) = [b(¢) — #0(b/2)(C )]{[Tb —20Ty.] 7 Plap™ " )b* (Ao 2)' g1 }(C),
(4.10)

{ Plas A0 pey A } {cl].

\/ kK5 (0) \/ K% (0)

So, B(zp) is an entire matrix function of zo. But if we put { = (o (2({o) = 20) in
(4.10), we get

ka“(CO k% (o) C1
VPO W) | Bl H

apé_l a6_1
=(Aoz)! Plasy )L Lol () A (o) ] [cl].
(o (@) | /Pl S o) S [

Therefore, (see (4.3) and (4.8))

B(z0) = F*(Co) ™ A (Go) F% " (Go)-

Now we prove the inequality

FUOIFNO" oy F (QTE ()"

Af * ‘
2(¢) = 2(0) (0) = 2(0) () >0, (4.11)

() =

what is equivalent to
J —B(z)JB*(z)

z—z

> 0.

Note that to prove
B(z)JB*(z) — A(z)JA*(z) _-

— Z Y
Z—Z

we only have to use (4.11) with ¢ := 1 — ¢ and (then) a := ad; .
The vector

€(C, o) =k7(¢,Go) = (Ao 2) ()N 0 ) ()R (¢, Go)
a a * aéfl aéfl *

A
—2(0) — 2(Co) 2(¢) = =(Co)

is the reproducing kernel of K(xo.):(a). According to the definition

<€f(57§0) (¢, G)) =

{4, G) — (Mo 2) (N0 2)H(CR (C,¢1)}e
(No2)(C) e
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Since
(G [ 28]
Cka(C7C1) = *2 )
2(C1) = 2(¢)

and f5(Co) = f3(Co), I = 1,2 we get

(€2(¢,60),e*(¢, Q1)) = _

Therefore,

_ |
(I)(CO) - <€a(
The theorem is proved.
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