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TOPOLOGICAL ENTROPY OF SOME AUTOMORPHISMS OFREDUCED AMALGAMATED FREE PRODUCT C�{ALGEBRASKenneth J. Dykema3 May 1999Abstract. Certain classes of automorphisms of reduced amalgamated free products of C�{algebras are shown to have Voiculescu{Brown topological entropy zero. Also, for automorphismsof exact C�{algebras, the Connes{Narnhofer{Thirring entropy is shown to be bounded above bythe Voiculescu{Brown entropy. These facts are applied to generalize St�rmer's result about theentropy of automorphisms of the II1{factor of a free group.x1. Introduction.Kolmogorov's entropy invariant was extended by Connes and S�rmer [5] to an invarianth� (�) for an automorphism � of a von Neumann algebra with a given normal faithful tracialstate � which is preserved by the automorphism. One of the several results about the Connes{St�rmer entropy (see [11] for a survey) is St�rmer's result [10] that the free shift on L(F1)has entropy zero. Here L(F1) is the II1{factor de�ned by the left regular representation of thefree group F1 on countably in�nitely many generators. More generally, St�rmer's theoremstates that the entropy of �� is zero whenever �� is the automorphism of L(F1) induced by apermutation � of the generators of F1 that has neither �xed points nor �nite cycles; the freeshift is the automorphism �� where, when the generators of F1 are indexed by the integers,� corresponds to the shift n 7! n + 1.The Connes{St�rmer entropy was extended by Connes, Narnhofer and Thirring [4] to aninvariant, generally referred to as the CNT{entropy and denoted h�(�), for an automorphism� of a unital C�{algebra A with respect to an �{invariant state � of A. Theorem VII.2 of [4]shows that given an automorphism � of a C�{algebra A preserving a state �, if M is the vonNeumann algebra generated by the image of A under the GNS representation of �, if � and �are the canonical extensions of � and � to M, then h�(�) = h�(�). (Their theorem is statedonly for nuclear A and hyper�nite M, but their proof applies generally.)1991 Mathematics Subject Classi�cation. 46L55. Typeset by AMS-TEX1



2 A noncommutative topological entropy was invented by Voiculescu [14] for automor-phisms of nuclear C�{algebras; N. Brown [2] extended it to handle automorphisms of ex-act C�{algebras. This Voiculescu{Brown entropy of an automorphism � is denoted ht(�).Voiculescu proved that if � is an automorphism of a unital nuclear C�{algebra A and if � is an�{invariant state then h�(�) � ht(�). Here we show (Proposition 9) that the same inequalityholds when A is a unital exact C�{algebra.In [7], we proved that every reduced amalgamated free product of exact C�{algebrasgives an exact C�{algebra. In this note, we build upon that proof to show that certain classesof automorphisms of C�{algebras arising as reduced amalgamated free products have zerotopological entropy.The following section is the main part of the paper and contains the results and theirproofs. At the end of it are two questions.I would like to thank the members of the Institute of Mathematics in Luminy, France andof the Erwin Schr�odinger Insitute in Vienna, where much of this research was done, for theirhospitality. Moreover, the �nancial support of the CNRS of France and of the Schr�odingerInstitute is gratefully acknowledged.x2. Entropy of Automorphisms.Theorem 1. Let B be a �nite dimensional C�{algebra, let I be a set and for every � 2 I letA� be a �nite dimensional C�{algebra containing B as a unital C�{subalgebra and having aconditional expectation �� : A� ! B whose GNS representation is faithful. Let(A; �) = ��2I(A�; ��)be the reduced amalgamated free product of C�{algebras and denote the embeddings arising fromthe free product construction by �� : A� ,! A. Let � be a permutation of I such that for every� 2 I there is a �{isomorphism �� : A� ! A�(�) such that ��(B) = B and ��(�) � �� = �� � ��.Assume further that the automorphism ���B of B is independent of � 2 I, and call thisautomorphism �. There is a unique automorphism � of A such that � � �� = ��(�) � �� for all� 2 I.Then ht(�) = 0.Proof. In Voiculescu's construction [13] of the reduced amalgamated free product C�{algebraA, one takes the Hilbert B{module E� = L2(A�; ��) on which A� acts via the GNS repre-sentation, one lets �� = d1A� 2 E�, where A� 3 a 7! ba 2 E� is the de�ning map, one lets



3Eo� = E� 	 ��B, one constructs the free product of Hilbert B{modules (E; �) = ��2I (E�; ��),given by E = �B � Mn�1�1;�2 ::: ;�n2I�1 6=�2;�2 6=�3;::: ;�n�1 6=�nEo�1 
B Eo�2 
B � � � 
B Eo�n ;and one de�nes A acting on E; (see [7, x1] for Voiculescu's construction in the notation usedhere). The �{isomorphism �� : A� ! A�(�) gives rise to an invertible and isometric linearmap U� : E� ! E�(�) given by U�ba =[��(a), (but note that U� need not be B{linear). TakingA�, respectively A�(�) , acting via its GNS representation on E�, respectively E�(�) , we havefor a 2 A� that U�aU�1� = ��(a). Having assumed that ���B = � is independent of �, we seethat the collection of isometries (U�)�2I gives rise to an isometric and invertible linear mapU : E ! E given by U�b = ��(b) for b 2 B and U(�1 
 � � � 
 �n) = (U�1�1) 
 � � � 
 (U�n�n)for �j 2 Eo�j with �1; : : : ; �n 2 I and �1 6= �2; : : : ; �n�1 6= �n. The automorphism � of A is thende�ned by �(x) = UxU�1.Let � denote the inclusion, arising from the free product construction, of A in L(E). Wewill show that ht(�; �) = 0, and in order to do so we must show that ht(�; �; !; �) = 0 forevery �nite subset ! of A and every � > 0. But for this it will su�ce to let ! be a �nitesubset of any given set whose linear span is a dense subset of A. The set W of reduced wordsin (A�)�2I has dense linear span in A, and we will take ! � W , where a reduced word is (anelement of A given by) an expression of the form a1a2 � � �an, where n � 1, aj 2 A�j \ ker��jand �1 6= �2; : : : ; �n�1 6= �n; we call n the length of the reduced word and we call the setf�1; : : : ; �ng � I the alphabet for the word; we consider elements of B to be reduced words oflength 0 and with alphabet equal to the empty set. If ! � W we de�ne the alphabet for ! tobe the union of the alphabets of the elements of !.Let J be a subset of I and let (A(J); �(J)) = ��2J (A�; ��) be the reduced amalgamated freeproduct of the subfamily. Then A(J) acts canonically on the Hilbert B{module E(J), where(E(J); �) = ��2J (E�; ��). We will presently show in detail that A(J) is naturally embeddedinto A and that there is a conditional expectation from A onto A(J). Note that E(J) is acomplemented submodule of E; let �(J) : L(E)! L(E(J)) be given by compression. Considerthe Hilbert B{moduleE(J) = �B �M Mn�1�1;�2 ::: ;�n2I�1 6=�2;�2 6=�3;::: ;�n�1 6=�n�1 =2J Eo�1 
B Eo�2 
B � � � 
B Eo�n ;



4where �B is simply a copy of B considered as a Hilbert B{module with � denoting the identityelement of B. There is then a unitary VJ : E ! E(J) 
B E(J) given by erasing parenthesisand absorbing �, analogous to the unitary E ! E�
B E(�) in Voiculescu's construction of thereduced amalgamated free product; this unitary provides an embedding i(J) : L(E(J))! L(E)given by i(J)(x) = V �J (x
1)VJ , which then satis�es that �(J) � i(J) is the identity on L(E(J)).Moreover, note that i(J) takes a reduced word considered as an element of A(J) to the samereduced word considered as an element of A. Hence A(J) is embedded into A via i(J), and�(J) provides a conditional expectation from A onto the embedded copy of A(J) .Let ! � W be a �nite set of reduced words and let � > 0; we will �nd an upper boundfor rcp(�; !; �). Let q be the maximum of the lengths of the words belonging to ! and let Jbe the alphabet for !, which is thus a �nite set. Given k 2 N, consider the complementedsubmodule of E(J),E(J)(!k) = �B � M1�n�k�1 ;�2 ::: ;�n2J�1 6=�2;�2 6=�3 ;::: ;�n�1 6=�n Eo�1 
B Eo�2 
B � � � 
B Eo�nand let �(J)k : L(E(J)) ! L(E(J)(!k)) be given by compression. In [7, 3.1], unital completelypositive maps 	(J)k : L(E(J)(!k)) ! L(E(J)) were constructed so that for every a 2 A(J),limk!1 ka�	(J)k ��(J)k (a)k = 0. Furthermore, from the proof of [7, 3.1] we see that for every� > 0 and every q 2 N there is k0(�; q) 2 N such that for every reduced word a 2 A(J) oflength no greater than q, if k � k0(�; q) then ka � 	(J)k � �(J)k (a)k � �kak; moreover, k0(�; q)is universal, in the sense that it is the same for all J and all families �(A�; ��)��2J . Hence,under the same conditions, ka � i(J) � 	(J)k � �(J)k � �(J)(a)k � �kak. Let us write e�(J)k forthe composition �(J)k � �(J) : L(E) ! L(E(J)(!k)) and e	(J)k for the composition i(J) � 	(J)k :L(E(J)(!k)) ! L(E). Let � = �=maxfkak j a 2 !g, let q be the maximum of the lengths ofthe words belonging to ! and let k = k0(�; q). Since J is a �nite set and since each E� is�nite dimensional, the Hilbert B module E(J)(!k) is �nite dimensional; hence the C�{algebraL(E(J)(!k)) is �nite dimensional. Taking the unital completely positive maps e�(J)k and e	(J)k , wesee that rcp(�; !; �) � rank�L(E(J)(!k))�. We now perform a crude (but su�cient) estimate ofthis rank. Let d(J) be the maximum over � 2 J of the dimension of E� as a Banach space;then we can estimatedim(E(J)(!k)) � dim(B) + kXn=1 jJ jnd(J)n � dim(B) + kjJ jkd(J)k:



5Let � be a faithful representation of B on a �nite dimensional Hilbert space V. Then theC�{algebra L(E(J)(!k)) is faithfully represented on the Hilbert space E(J)(!k) 
� V, which hasdimension � dim(E(J)(!k)) dim(V). Thus we havercp(�; !; �)� �dim(B) + kjJ jkd(J)k�dim(V):Now we are in a position to show thatht(�; �; !; �) = 0: (1)Given the nature of our automorphism �, for every n 2 N the maximum length and themaximum norm of words belonging to! [ �(!) [ � � � [ �n�1(!) (2)are the same as for !, and we may choose k = k0(q; �) as for ! above. However, the alphabet Jnof the set of words (2) is equal to J[�(J)[� � �[�n�1(J), and thus jJnj � njJ j. But the existenceof the isomorphisms �� preserving conditional expectations implies that dim(E�(�)) = dim(E�),and hence d(Jn) = d(J). Hence we have the estimatercp(�; ! [ �(!) [ � � � [ �n�1(!); �) � �dim(B) + knk jJ jkd(J)k� dim(V):As the upper bound grows subexponentially in n, the estimate implies (1). �We now list as corollaries some particular sorts of automorphisms to which the abovetheorem applies. First we have free products of automorphisms, which correspond to whenthe permutation � in Theorem 1 is the identity.Corollary 2. Let (A; �) = ��2I(A�; ��)be the reduced amalgamated free product of �nite dimensional C�{algebras as in the statementof Theorem 1. For every � 2 I let �� 2 Aut(A�) be such that ��(B) = B, �� � �� = �� � ��;suppose that the automorphism ���B of B is the same for all � 2 I. Let � = ��2I �� 2 Aut(A);by this we mean that � is the automorphism of A that when restricted to the naturally embeddedcopy of A� in A is ��.Then ht(�) = 0.Next we have the free shifts and their analogues for general permutations.



6De�nition 3. If (A; �) = ��2I (A�; ��) is a reduced amalgamated free product of C�{algebras,where each (A�; ��) is a copy of a �xed pair (D; ) of a unital exact C�{algebra D anda conditional expectation  from D onto a unital C�{subalgebra B having faithful GNSrepresentation, and if � is a permutation of the index set I , then what we call the correspondingfree permutation is the automorphism �� of A sending the embedded copy of A� in A identicallyto the embedded copy of A�(�) in A, for every � 2 I .We say that the pair (D; ) has the ZEFP property (with respect to ht) if ht(��) = 0whenever �� is a free permutation of a free product of some copies of (D; ).The acronym ZEFP is for \zero entropy free permutation."Corollary 4. Let B and D be �nite dimensional C�{algebras with B contained as a unitalC�{subalgebra of D; let  : D ! B be a conditional expectation whose GNS representation isfaithful. Then (D; ) has the ZEFP property.Corollary 5. Let J be a set, let B be a �nite dimensional C�{algebra and for every � 2 Jlet D� be a �nite dimensional C�{algebra and  � : D� ! B is a conditional expectation havingfaithful GNS representation. Let (D; ) = ��2J (D�;  �). Then (D; ) has the ZEFP propertyProof. If I is a set and if � is a permutation of I , let �� be the corresponding free permutationof the free product of jI j copies of (D; ). Then �� is in the obvious way equal to a freepermutation of a reduced free product of �nite dimensional C�{algebras, corresponding to thepermutation � � idJ of I � J . Thus ht(��) = 0 by Theorem 1.De�nition and Proposition 6. Let (D; ) and ( eD; ~ ) be pairs of a unital exact C�{algebrasD and eD with conditional expectations  from D onto a unital C�{subalgebra B � D and ~ from eD onto a unital C�{subalgebra eB � eD, whose GNS representations are faithful. We say(D; ) is included in ( eD; ~ ), and write (D; ) � ( eD; ~ ), if D is a C�{subalgebra of eD in sucha way that B � eB and ~ �D =  . We call the inclusion (D; ) � ( eD; ~ ) unital if D is a unitalC�{subalgebra of eD.If (D; ) � ( eD; ~ ) and if ( eD; ~ ) has the ZEFP property then (D; ) has the ZEFP prop-erty.Proof. First suppose that the inclusion is unital. By the main result of [1], the free product ofjI j copies of (D; ) embeds in the free product of jI j copies of ( eD; ~ ). Let � be a permutationof I , let �� be corresponding free permutation of the free product of jI j copies of (D; ) andlet e�� be the free permutation of the free product of jI j copies of ( eD; ~ ). Then �� is the



7restriction of e��. As the Voiculescu{Brown topological entropy is monotone [2, 2.1], we haveht(��) = 0; hence (D; ) has the ZEFP property.If the inclusion (D; ) � ( eD; ~ ) is nonunital, let p 2 eD denote the identity element of Dand let 1 denote the identity element of eD; then 1� p 2 eB. Let D0 = D +C(1� p) � eD andlet B0 = B +C(1 � p) � eB; then for d 2 D and � 2 C, ~ (d+ �(1 � p)) =  (d) + �(1 � p);let  0 = ~ �D0 : D0 ! B0 . Then by the unital case just proved, (D0;  0) has the ZEFPproperty. Let I be a set and let (A0; �0) = ��2I (A0�; �0�) where each (A0�; �0�) is a copy of (D0;  0);let (A; �) = ��2I (A�; ��) where each (A�; ��) is a copy of (D; ). Then p 2 B0 2 A0 andA is canonically isomorphic to pA0p; if �� is a free permutation on A corresponding to apermutation � of I , then �� is the restriction of the corresponding free permutation �0� of A0to pA0p. Again by monotonicity, we see that ht(��) = 0 and (D; ) has the ZEFP property.�Application of Corollary 5 and Proposition 6 leads to many examples, a few of which arebelow.Examples 7. The following pairs have the ZEFP property.(i) (T; �1) where T is the Toeplitz algebra, which is generated by a nonunitary isometry v,and where �1 is the state on T satisfying �1(vv�) = 0;(ii) (O1; �) where O1 is the Cuntz algebra [6], which is generated by isometries s1; s2; : : :having orthogonal ranges, and where � is the state on O1 such that �(sjs�j ) = 0 forall j;(iii) (On; �n), with n 2 N, n � 2, where On is the Cuntz algebra [6], which is generated byisometries s1; : : : ; sn, whose range projections sum to 1, and where, for any choice of
1; : : : ; 
n 2 [0; 1] such that 
1 + � � �
n = 1, �n is the state on On given by�n(si1si2 � � �siks�j` � � �s�j2s�j1) = � 
i1
i2 � � �
ik if k = `; i1 = j1; : : : ; ik = jk0 otherwise; (3)(iv) (O1; �1) where O1 is generated by isometries s1; s2; : : : having orthogonal rangesand where for any choice of 
1; 
2; : : : 2 [0; 1] such that P11 
j � 1, �1 is the state onO1 satisfying (3);(v) (C(T); �) where T is the circle and where the state � is given by Lebesgue measure onT.Proof. For (i), let D1 = C�C with minimal projection p 2 D1 and let  1 be the state on D1such that  1(p) = 1=2; let D2 =M2(C) with a system of matrix units (eij)1�i;j�2 in D2 and



8let  2 be the state on D2 so that  2(e11) = 1. Let ( eD; ~ ) = (D1;  1) � (D2;  2). Consideringthe unitary u = 1�2p 2 D1, we see that L2(D1;  1) has orthonormal basis fd1D1 ; ûg; moreover,L2(D2;  2) has orthonormal basis fd1D2 ; ê21g. Therefore, L2( eD; ~ ) has orthonormal basisf�g [ fû; û 
 ê21; û
 ê21 
 û; û
 ê21 
 û
 ê21; : : :g [[ fê21; ê21 
 û; ê21 
 û 
 ê21; ê21 
 û
 ê21 
 û; : : :g;where � = c1 eD; moreover, ~ is the vector state associated to �. Let v = e21ue22+ e11ue21 2 eD.Then v is an isometry satisfyingv : � 7! û
 ê21û
 (� � � ) 7! û
 ê21 
 û
 (� � �)ê21 
 (� � � ) 7! ê21 
 û 
 ê21 
 (� � � ):Thus the C�{subalgebra of eD generated by v is isomorphic to T and, as � is orthogonal to therange space of v, the restriction of ~ to the copy of T is the state �1 described in (i). NowCorollary 5 and Proposition 6 imply that (T; �1) has the ZEFP property.Note that (ii) is a special case of (iv). However, for future reference we would like to pointout how (ii) follows from (i). From [13, x2] (or see [15, 1.5.10]), (O1; �) is the free product ofcountably in�nitely many copies of (T; �1). Hence by Corollary 5 and Proposition 6, (O1; �)has the ZEFP property.For (iii), let eB = C � C with minimal projection p; let D1 = M2(C) with a systemof matrix units (eij)0�i;j�1 , with eB unitally embedded by identifying p and e11, and withconditional expectation  1 : D1 ! eB given by 1� 1Xi;j=0 cijeij� = c11p+ c00(1� p);let D2 = Mn+1(C) with a system of matrix units (fij)0�i;j�n , with eB unitally embedded byidentifying 1� p and f00 and with conditional expectation  2 : D2 ! eB given by 2� nXi;j=0 cijfij� = � nXj=1 
jcjj�p+ c00(1� p):Let ( eD; ~ ) = (D1;  1) � (D2;  2):



9For every k 2 f1; : : : ; ng, let sk = fk0e01 2 eD. Then s�ksk = p and sks�k = fkk . In p eDp,s1; : : : ; sn are isometries with range projections summing to p, so they generate a copy of Onin eD with identity element p and to which the conditional expectation ~ restricts to a state,�n (when Cp is identi�ed with C). It is clear that �n(sjs�j ) = 
j ; in order to see that (3)holds, one can argue by induction on k and use freeness. Now Corollary 5 and Proposition 6imply that (On; �n) has the ZEFP property.The proof of (iv) is similar to the that of (iii), but taking D2 to be the unitization of theC�{algebra, K, of compact operators on separable in�nite dimensional Hilbert space. Letting(fij)i;j�0 be a system of matrix units for K, embed eB in D2 by identifying 1� p and f00, andlet  2 : D2 ! eB be the conditional expectation given by 2(1) = 1  2(fjj) = 
jp (j � 1)  2(f00) = 1� p:Then letting sj = fj0e01, (j � 1) we have s�jsj = p and sjs�j = fjj ; hence fs1; s2 : : :g generatesa copy of O1 in p eDp, to which the restriction of ~ is seen to be �1 as described in (iv) above.For (v), it is only required to apply Corollary 5 and Proposition 6 after noting that thechoice of an in�nite order element in the group Z2 � Z2, (the free product of the two{elementgroup with itself), gives rise to an canonical trace preserving embedding of the reduced groupC�{algebra C�r (Z) �= C(T) in the reduced group C�{algebra C�r (Z2 �Z2), which in turn arisesas the reduced free product(C�r (Z2 � Z2); �Z2�Z2) = (C�r (Z2); �Z2) � (C�r (Z2); �Z2)of �nite dimensional C�{algebras. �Example 7(i), can be used to give another proof of Brown's and Choda's result that thefree shift on the Cuntz algebra O1 has topological entropy zero.Proposition 8. ([3]) Let f: : : ; s�1; s0; s1; : : :g be a family of isometries having orthogonalranges generating the Cuntz algebra O1 and let � be the automorphism of O1 given by�(sk) = sk+1. Then ht(�) = 0.Proof. As mentioned in the proof of 7(ii) above, O1 is the free product of countably in�nitelymany copies of (T; �1) as in 7(i), indexed by Z. The free shift on O1, namely �, is the freepermutation corresponding to translation of the index set Z. We get ht(�) = 0 because (T; �1)



10has the ZEFP property. �We will use Example 7(v) to generalize, to the case of arbitrary permutations, St�rmer'sresult [10] about free shifts on L(F1). For this, we need to extend Voiculescu's inequalityh�(�) � ht(�) to the case of automorphisms of unital exact C�{algebras. The proof below isinspired by Voiculescu's [14, 4.6]; we refer to [4] and [2] for relevant concepts and de�nitions.Proposition 9. Let A be a unital exact C�{algebra, let � 2 Aut(A) and let � be a state onA satisfying � � � = �. Then h�(�) � ht(�).Proof. Let 
 :Mk(C)! A be a unital completely positive map. Let ! be a �nite subset of Asuch that 
(Mk(C)) � span! and
�fx 2Mk(C) j kxk � 1g� � nXx2!�(x)x ��� �(x) 2 C;Xx2! j�(x)j � 1o;for future reference, assume that also the identity element of A belongs to !. Let � : A! L(H)be a faithful representation of A on a Hilbert space H. Let � > 0 and n 2 N and supposethat D is a �nite dimensional C�{algebra and that � : A ! D and  : D ! L(H) are unitalcompletely positive maps such that 8a 2 ! [ �(!) [ � � � [ �n�1(!), k � �(a) � �(a)k < �.Then for all x 2Mk(C) with kxk � 1 and for all j 2 f0; 1; : : : ; n� 1g,k � � � �j � 
(x)� � � �j � 
(x)k < �:Let C be the C�{algebra generated by �(A)[ (D). Consider an abelian model, call it A, for�A; �; (�j�
)n�1j=0 � consisting of an abelian �nite dimensional C�{algebra B, a unital completelypositive map P : A! B, a state � on B such that � �P = � and �{subalgebras B1; : : : ; Bn ofB. There is a unital completely positive map P 0 : C ! B such that P 0 �� = P . If Ej : B ! Bjare the canonical conditional expectations with respect to �, then letting�j = Ej � P � �j � 
 : A! Bj�0j = Ej � P 0 �  � � � �j � 
 : A! Bj ;we have k�j��0jk � � for all j. Then by [4, IV.2], js�(�j)�s�(�0j)j < � where � = 3�+6� log(1+k2��1). Let �0 = ��P 0 and let A0 be the abelian model for �C; �0; ( ����j �
)n�1j=0 � consistingof (B; �; B1; : : : ; Bn) and the completely positive map P 0 : C ! B. Then from equation (III.3)of [4], the entropy of the abelian model A di�ers from that of A0 by no more than n�. Moreover,



11the entropy of the abelian model A0 is bounded above by H�0�( ����j �
)n�1j=0 �; this is by [4,III.6(a,c)] bounded above by H�0( ), which is � log rank(D). We may choose (D; �;  ) sothat rank(D) � rcp(�; !; 4�); indeed, had we not required � and  to be unital, we couldhave chosen (D; �;  ) so that rank(D) = rcp(�; ![ �(!)[ � � �[�n�1(!); �), but as 1 2 !, anynonunital � and  can be rescaled to give unital ones. Hence we �ndH�(
; � � 
; � � � ; �n�1 � 
) � log rcp(�; ! [ � � � [ �n�1(!); 4�) + n�;therefore h�;�(
) � ht(�; �; !; �)+ �. If � ! 0 then � ! 0 and we �nd h�;�(
) � ht(�); henceh�(�) � ht(�). �Corollary 10. Let �� be the automorphism of the II1{factor L(F1) induced by an arbitrarypermutation � of the generators of the group F1. Then the Connes{St�rmer entropy of �� iszero.Proof. Let � be the tracial state on L(F1). Combining Example 7(v) with Proposition 9, we�nd that the CNT{entropy h� (�r;�) is zero, where �r;� is the automorphism of C�r (F1) arisingfrom the permutation � of the generators of F1 and where � is the unique tracial state onC�r (F1). But h� (�r;�) is equal to the CNT{entropy (hence, to the Connes{St�rmer entropy)of the corresponding automorphism �� of L(F1). �The following question is quite natural.Question 11. Does every pair (D; ), where D is a unital exact C�{algebra and where  isa conditional expectation from D onto a unital C�{subalgebra, have the ZEFP property?This seems like an appropriate place to point out that by recent work of Kirchberg [8],[9], with (D; ) as in Question 11, one can always realize D � O2; if one could realize(D; ) � (O2; �2), with (O2; �2) as in Example 7(iii), then by Proposition 6 (D; ) wouldhave the ZEFP property.Support for a positive answer to Question 11 is provided by St�rmer's result [12] that ifD is any unital C�{algebra and  is any state on D (with faithful GNS representation), thenletting (A; �) be the free product of in�nitely many copies of (D; ) indexed by a set I , letting� be a permutation of I without cycles and letting �� be the corresponding free permutationof A, the CNT{entropy h�(��) of �� with respect to the free product state � is zero.



12Question 12. Given a reduced free product of C�{algebras (A; �) = (A1; �1) � (A2; �2), withdim(A1) � 2 and dim(A2) � 3 and where �1 and �2 faithful states, is there an automorphism� 2 Aut(A), such that 0 < ht(�) <1 ?It may be especially interesting to restrict the above question to the case when the states�1 and �2 are traces. A �rst example to consider might be (A; �) = (C�r (Z2); �Z2)�(C(X); �X),where X is the compact Hausdor� space obtained as the product of in�nitely many two{element spaces and where �X is the state given by the product of uniform measures. Now take� 2 Aut(A) to be � = idC�r (Z2) � � where � is the Bernoulli shift. Then ht(�) � ht(�) = log 2.Is ht(�) �nite?Note, however, that it is easy to �nd a reduced amalgamated free product of C�{algebras(A; �) = (A1; �1) � (A2; �2) with A non{nuclear and � 2 Aut(A) with 0 < ht(�) <1. Indeedconsider abelian C�{algebras Ai = C(T) 
 C(X), for some compact Hausdor� space X ; letB = 1
 C(X) � Ai and let �i : Ai ! B be the slice map obtained from Haar measure on T;then A = C�r (F2) 
 C(X). Let � = idC�(F2) 
 � 2 Aut(A), where � is an automorphism onC(X) having strictly positive and �nite topological entropy. By properties of the Voiculescu{Brown topological entropy [2], we have ht(�) � ht(�) � ht(idC�r (F2)) + ht(�) = ht(�).
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