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ABSTRACT. Certain classes of automorphisms of reduced amalgamated free products of C*—
algebras are shown to have Voiculescu—Brown topological entropy zero. Also, for automorphisms
of exact C*-algebras, the Connes—Narnhofer—Thirring entropy is shown to be bounded above by
the Voiculescu—Brown entropy. These facts are applied to generalize Stgrmer’s result about the
entropy of automorphisms of the I} —factor of a free group.

§1. INTRODUCTION.

Kolmogorov’s entropy invariant was extended by Connes and Sgrmer [5] to an invariant
hr(«) for an automorphism « of a von Neumann algebra with a given normal faithful tracial
state 7 which is preserved by the automorphism. One of the several results about the Connes—
Stgrmer entropy (see [11] for a survey) is Stermer’s result [10] that the free shift on L(F.)
has entropy zero. Here L([F,) is the Il —factor defined by the left regular representation of the
free group F., on countably infinitely many generators. More generally, Stgrmer’s theorem
states that the entropy of o, is zero whenever o, is the automorphism of L(F.,) induced by a
permutation o of the generators of F,, that has neither fixed points nor finite cycles; the free
shift is the automorphism o, where, when the generators of F, are indexed by the integers,
o corresponds to the shift n — n + 1.

The Connes—Stgrmer entropy was extended by Connes, Narnhofer and Thirring [4] to an
invariant, generally referred to as the CNT—entropy and denoted hy(e), for an automorphism
« of a unital C*-algebra A with respect to an a—invariant state ¢ of A. Theorem VII.2 of [4]
shows that given an automorphism « of a C*~algebra A preserving a state ¢, if M is the von
Neumann algebra generated by the image of A under the GNS representation of ¢, if @ and ¢
are the canonical extensions of a and ¢ to M, then h5(@) = hg(a). (Their theorem is stated

only for nuclear A and hyperfinite M, but their proof applies generally.)
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A noncommutative topological entropy was invented by Voiculescu [14] for automor-
phisms of nuclear C*-algebras; N. Brown [2] extended it to handle automorphisms of ex-
act C*-algebras. This Voiculescu-Brown entropy of an automorphism « is denoted ht(«).
Voiculescu proved that if « is an automorphism of a unital nuclear C*—algebra A and if ¢ is an
a—invariant state then hy (o) < ht(a). Here we show (Proposition 9) that the same inequality
holds when A is a unital exact C*—algebra.

In [7], we proved that every reduced amalgamated free product of exact C*-algebras
gives an exact C*—algebra. In this note, we build upon that proof to show that certain classes
of automorphisms of C*-algebras arising as reduced amalgamated free products have zero
topological entropy.

The following section is the main part of the paper and contains the results and their
proofs. At the end of it are two questions.

I would like to thank the members of the Institute of Mathematics in Luminy, France and
of the Erwin Schrodinger Insitute in Vienna, where much of this research was done, for their
hospitality. Moreover, the financial support of the CNRS of France and of the Schrédinger
Institute is gratefully acknowledged.

§2. ENTROPY OF AUTOMORPHISMS.

Theorem 1. Let B be a finite dimensional C*—algebra, let I be a set and for every ¢ € I let
A, be a finite dimensional C*-algebra containing B as a unital C*—subalgebra and having a

conditional expectation ¢, : A, = B whose GNS representation is faithful. Let

be the reduced amalgamated free product of C*—algebras and denote the embeddings arising from
the free product construction by A\, : A, — A. Let o be a permutation of I such that for every
v € I there is a x—isomorphism a, : A, — Ag(,) such that o, (B) = B and ¢,y oo, = o, 0 ¢,.
Assume further that the automorphism «,lp of B is independent of v € I, and call this
automorphism (3. There is a unique automorphism o of A such that ao A, = A,y o, for all
vel.

Then ht(a) = 0.

Proof. In Voiculescu’s construction [13] of the reduced amalgamated free product C*-algebra
A, one takes the Hilbert B-module E, = L*(A,, #,) on which A, acts via the GNS repre-

sentation, one lets £, = 1/,; € F,, where A, 5 a — a € F, is the defining map, one lets
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E° = F, 5 &,B, one constructs the free product of Hilbert B-modules (F,§) = X (E., &),
given by
E=¢Ba® ) E) ©p B}, ©p @B E},,
s el
t1F 2 b2 F L tn—1F by

and one defines A acting on E; (see [7, §1] for Voiculescu’s construction in the notation used
here). The x-isomorphism «a, : A, — A, gives rise to an invertible and isometric linear
map U, : B, = E,(, given by U,a = m, (but note that U, need not be B-linear). Taking
A,, respectively A,(,), acting via its GNS representation on F,, respectively F,(,, we have
for a € A, that U,aU ! = «,(a). Having assumed that o,z = 3 is independent of ¢, we see
that the collection of isometries (U,),cs gives rise to an isometric and invertible linear map
U:FE — E given by Usb = £p(b) forbe Band U((1 @ -+ @) = (U,,G) @ -+ @ (U, ¢)
for ¢; € E?] with ¢1,... ¢, € T'and ¢3 # t9,... ,ty—1 # t,. The automorphism « of A is then
defined by a(z) = UzU™'.

Let 7 denote the inclusion, arising from the free product construction, of A in L(F). We
will show that ht(w,a) = 0, and in order to do so we must show that ht(w,a,w,d) = 0 for
every finite subset w of A and every § > 0. But for this it will suffice to let w be a finite
subset of any given set whose linear span is a dense subset of A. The set W of reduced words
in (A,),er has dense linear span in A, and we will take w C W, where a reduced word is (an
element of A given by) an expression of the form ayay---a,, where n > 1, a; € A, Nker ¢,
and ¢y # 1o, tyuoq1 F Ly we call n the length of the reduced word and we call the set
{t1,...,tn} C I the alphabet for the word; we consider elements of B to be reduced words of
length 0 and with alphabet equal to the empty set. If w C W we define the alphabet for w to
be the union of the alphabets of the elements of w.

Let J be a subset of I and let (A)), ¢l/)) = &, (A, ¢,) be the reduced amalgamated free
product of the subfamily. Then A(Y) acts canonically on the Hilbert B-module E(Y) where
(EW) &) = " (E,,&). We will presently show in detail that A(/) is naturally embedded
into A and that there is a conditional expectation from A onto A/). Note that E(/) is a

complemented submodule of E; let ©Y) : L(E) — L(E)) be given by compression. Consider
the Hilbert B-module

E(J)=nB& P &P B @p B, @p - 0p B,
n>1
014562 oo by €T
L1F 2,02 F 3 sl —1F Lp
L1¢J
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where 1B is simply a copy of B considered as a Hilbert B—module with 5 denoting the identity
element of B. There is then a unitary Vy : £ — E) @5 FE(J) given by erasing parenthesis
and absorbing 7, analogous to the unitary £ — E,®@p E(¢) in Voiculescu’s construction of the
reduced amalgamated free product; this unitary provides an embedding i(/) : L(F())) — L(E)
given by i) (z) = V(2 ® 1)V, which then satisfies that ©(7) 0i(/) is the identity on L(F(/)).
Moreover, note that i(Y) takes a reduced word considered as an element of A(Y) to the same

J)

reduced word considered as an element of A. Hence A(Y) is embedded into A via /), and

O provides a conditional expectation from A onto the embedded copy of A(/),

Let w C W be a finite set of reduced words and let § > 0; we will find an upper bound
for rep(m,w, d). Let ¢ be the maximum of the lengths of the words belonging to w and let .J
be the alphabet for w, which is thus a finite set. Given k& € N, consider the complemented
submodule of E(/),

J
E’), =¢B® D E° ®p E° @p -+ @p E°,
1<n<k
Ll,LQ_...,_Ln EJ
L1 F L2 2F 03 e sl —1F Lp

and let @gﬂj) : L(EV)) — L(E((i)k)) be given by compression. In [7, 3.1], unital completely
positive maps \IIECJ) : L(E((i)k)) — L(EY) were constructed so that for every a € A,

limg oo ||@ — \IIECJ) o @gﬂj) (a)|| = 0. Furthermore, from the proof of [7, 3.1] we see that for every
€ > 0 and every ¢ € N there is ko(¢,¢) € N such that for every reduced word a € AW of
length no greater than ¢, if k& > ko(e, ¢) then ||a — \IIECJ) o @gﬂj) (a)]| < €||a||; moreover, ko (e, q)

is universal, in the sense that it is the same for all J and all families ((A“ ¢L>)LEJ' Hence,
under the same conditions, ||la — i) o \II(J) ( o0l (a)|| < e|la|. Let us write 52‘]) for
the composition @gﬂj) o0 : L(F) = L(F ((_Bk)) and \Ilgg ) for the composition i(”) o \IIECJ) :

L(E((i)k)) — L(F). Let ¢ = 6/ max{|ja]| | « € w}, let ¢ be the maximum of the lengths of

the words belonging to w and let k = ko(€,¢). Since J is a finite set and since each I, is

finite dimensional, the Hilbert B module E((J) k) is finite dimensional; hence the C*-algebra

L(E((i)k)) is finite dimensional. Taking the unital completely positive maps & ( ) and \Il( )
see that rep(m,w,d) < rank(L(E((i)k))). We now perform a crude (but sufficient) estimate of

this rank. Let d(J) be the maximum over ¢ € J of the dimension of I, as a Banach space;

then we can estimate

dim (E{”),)) < dim(B —|—Z|J| d(J)" < dim(B) + k|J|*d(J)".
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Let p be a faithful representation of B on a finite dimensional Hilbert space V. Then the

Cr-algebra L (E((i)k)

dimension < dim(E((i)k)) dim (V). Thus we have

is faithfully represented on the Hilbert space g ®, V, which has
(—k) <P

rep(m,w,8) < (dim(B) + k|J|*d(J)") dim (V).
Now we are in a position to show that
ht(m, o, w,8) = 0. (1)

Given the nature of our automorphism «, for every n € N the maximum length and the

maximum norm of words belonging to
wUaW)U---Ua"Hw) (2)

are the same as for w, and we may choose k = ko(q, €) as for w above. However, the alphabet .J,,
of the set of words (2) is equal to JUc (J)U- - -Uo™ 1 (J), and thus |.J,,| < n|J|. But the existence
of the isomorphisms «, preserving conditional expectations implies that dim(F,(,)) = dim(E,),

and hence d(J,) = d(J). Hence we have the estimate
rep(rywUa(w)U---Ua™ N w),8) < (dim(B) + kn*|J|"d(J)") dim(V).

As the upper bound grows subexponentially in n, the estimate implies (1).

g

We now list as corollaries some particular sorts of automorphisms to which the above
theorem applies. First we have free products of automorphisms, which correspond to when

the permutation ¢ in Theorem 1 is the identity.

Corollary 2. Let
(A, 0) = x (A, ¢.)

1
be the reduced amalgamated free product of finite dimensional C*—algebras as in the statement
of Theorem 1. For every v € I let o, € Aut(A,) be such that a,(B) = B, ¢, oa, = a, 0 ¢,;
suppose that the automorphism o, of B is the same for all v € I. Let o = b€ Aut(A);
by this we mean that « is the automorphism of A that when restricted to the naturally embedded
copy of A, in A is «,.
Then ht(a) = 0.

Next we have the free shifts and their analogues for general permutations.
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Definition 3. If (A, ¢) = X (A, ¢,) is a reduced amalgamated free product of C*-algebras,
where each (A,,¢,) is a copy of a fixed pair (D,®) of a unital exact C*-algebra D and
a conditional expectation ¥ from D onto a unital C*-subalgebra B having faithful GNS
representation, and if ¢ is a permutation of the index set I, then what we call the corresponding
[free permutation is the automorphism o, of A sending the embedded copy of A, in A identically
to the embedded copy of A,(, in A, for every ¢ € I.

We say that the pair (D, ) has the ZEFP property (with respect to ht) if ht(o.) = 0

whenever o, is a free permutation of a free product of some copies of (D, ).
The acronym ZEFP is for “zero entropy free permutation.”

Corollary 4. Let B and D be finite dimensional C*-algebras with B contained as a unital
C*—subalgebra of D; let ¢ : D — B be a conditional expectation whose GNS representation is
faithful. Then (D,1) has the ZEFP property.

Corollary 5. Let J be a set, let B be a finite dimensional C*—algebra and for every ¢+ € J
let D, be a finite dimensional C*—algebra and +p, : D, — B is a conditional expectation having

faithful GNS representation. Let (D) = " (D,,v,). Then (D,) has the ZEFP property

Proof. 1f I is a set and if ¢ is a permutation of I, let o, be the corresponding free permutation
of the free product of || copies of (D,). Then o, is in the obvious way equal to a free
permutation of a reduced free product of finite dimensional C*~algebras, corresponding to the

permutation o x idy of I x J. Thus ht(o.) = 0 by Theorem 1.

Definition and Proposition 6. Let (D, ) and (B, QE) be pairs of a unital exact C*—algebras
D and D with conditional expectations 1 from D onto a unital C*-subalgebra B C D and 1)
Sfrom D onto a unital C* —subalgebra B C 15, whose GNS representations are faithful. We say
(D, %) is included in (15, 1;), and write (D, ) C (5, 1;), if D is a C*—subalgebra ofﬁ in such
a way that B C B and Ul p = 1b. We call the inclusion (D) C (5, QL) unital if D is a unital
C*—subalgebra of D.

If (D) C (5, QL) and if (5, QL) has the ZEFP property then (D) has the ZEFP prop-
erty.

Proof. First suppose that the inclusion is unital. By the main result of [1], the free product of
|I| copies of (D, 1) embeds in the free product of |I] copies of (5, QE) Let ¢ be a permutation
of I, let o, be corresponding free permutation of the free product of |I| copies of (D, ) and
let o, be the free permutation of the free product of |I| copies of (5,1&) Then o, is the
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restriction of o.. As the Voiculescu—Brown topological entropy is monotone [2, 2.1], we have
ht(o.) = 0; hence (D, ) has the ZEFP property.

If the inclusion (D, ) C (5, QE) is nonunital, let p € D denote the identity element of D
and let 1 denote the identity element of 15; then 1 —p € B.Let D'=D + C(l-p) C D and
let B' = B+ C(1 —p) C B; then for d € D and A € C, ¢¥(d+ A(1 — p)) = 1(d) + A(1 — p);
let ¢ = QE[D, : D' — B'. Then by the unital case just proved, (D' ') has the ZEFP
property. Let I be a set and let (A', ¢') = * (A}, ¢,) where each (A], ¢) is a copy of (D', ¢');
let (A,¢) = * (A, ¢.) where each (A,,¢,) is a copy of (D,¢). Then p € B" € A’ and
A is canonically isomorphic to pA'p; if o, is a free permutation on A corresponding to a
permutation o of I, then o, is the restriction of the corresponding free permutation o/ of A’
to pA'p. Again by monotonicity, we see that ht(o,.) = 0 and (D, ) has the ZEFP property.

[l

Application of Corollary 5 and Proposition 6 leads to many examples, a few of which are

below.

Examples 7. The following pairs have the ZEFP property.

(i) (T, ¢1) where T is the Toeplitz algebra, which is generated by a nonunitary isometry v,
and where ¢y is the state on T satisfying ¢ (vv*) = 0;
(ii) (Owo, @) where O, is the Cuntz algebra [6], which is generated by isometries sy, Sz, . ..
having orthogonal ranges, and where ¢ is the state on O, such that ¢(s;s7) = 0 for
all j;
(iii) (On,¢n), withn € N, n > 2, where O, is the Cuntz algebra [6], which is generated by
isometries s1,...,S,, whose range projections sum to 1, and where, for any choice of

Yy .- sYn € [0,1] such that vi + -+ -y, = 1, ¢, is the state on O,, given by

T 7 T A N N A
=TT e T e

*
On(Sirsiz - 50y KNS 0 otherwise;
)

(iv) (O, Poo) where O is generated by isometries si,sa,... having orthogonal ranges
and where for any choice of y1,7a, ... € [0, 1] such that 3" v; < 1, ¢poo is the state on
O satisfying (3);

(v) (C(T), 1) where T is the circle and where the state T is given by Lebesgue measure on

T.

Proof. For (i), let D1 = C @ C with minimal projection p € Dy and let ¢; be the state on Dy
such that ¢ (p) = 1/2; let Dy = M, (C) with a system of matrix units (e;;)1<q,j<2 in Dy and
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let 1y be the state on Dy so that 12(e11) = 1. Let (D, ) = (D1, 1) * (D2, 12). Considering
the unitary u = 1—2p € Dy, we see that L?(Dy, ;) has orthonormal basis {1/,;, @}; moreover,

L*(D3, 19) has orthonormal basis {T,S, é91}. Therefore, L2(57 QE) has orthonormal basis

{u{t, 1 @éy, 4@eéy QU U@ gy DUD €9y, ...} U

U {é21, €21 @ U, €21 @UR €21, €21 RUD é21 D Uy ...},

where £ = 1/5; moreover, 15 is the vector state associated to . Let v = egquess + e ues; € D.

Then v is an isometry satisfying

U:fHﬁ@égl
GR( ) Qe @a® ()

e () e QUDEn @ ().

Thus the C*—subalgebra of D generated by v is isomorphic to T and, as £ is orthogonal to the
range space of v, the restriction of ¥ to the copy of T is the state ¢; described in (i). Now
Corollary 5 and Proposition 6 imply that (T, ¢1) has the ZEFP property.

Note that (ii) is a special case of (iv). However, for future reference we would like to point
out how (ii) follows from (i). From [13, §2] (or see [15, 1.5.10]), (O, ¢) is the free product of
countably infinitely many copies of (T, ¢1). Hence by Corollary 5 and Proposition 6, (Ox,, @)
has the ZEFP property.

For (iii), let B = C & C with minimal projection p; let Dy = M;(C) with a system
of matrix units (e;;)o<i j<1, With B unitally embedded by identifying p and ey1, and with

conditional expectation ¥y : D1 — B given by

1

¢1(Z Cijei]’) = c11p + coo(1 — p);
4,j=0
let Dy = M,,41(C) with a system of matrix units (fi;)o<i j<n, With B unitally embedded by
identifying 1 — p and fpo and with conditional expectation 1 : Dy — B given by

n

Vo (Y eiifis) = O vicis)p+ coo(l = p).

i,j=0 J=1

Let

(57¢)::(Lh7¢1)*([b7¢2»
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For every k € {1,...,n}, let sp = fro€o1 € D. Then stsy = p and sgsy = frr. In pDp,
S1,...,S, are isometries with range projections summing to p, so they generate a copy of O,
in D with identity element p and to which the conditional expectation ¢ restricts to a state,
¢, (when Cp is identified with C). Tt is clear that ¢,(s;s7) = 7;; in order to see that (3)
holds, one can argue by induction on k and use freeness. Now Corollary 5 and Proposition 6
imply that (O, ¢,) has the ZEFP property.

The proof of (iv) is similar to the that of (iii), but taking D to be the unitization of the
Cr—algebra, K, of compact operators on separable infinite dimensional Hilbert space. Letting
(fij)i,j>0 be a system of matrix units for K, embed Bin D, by identifying 1 — p and fy, and
let 1y : Dy — B be the conditional expectation given by

Pa(l) =1 Ya(fi)) =vip (G >1) ¥a(foo) =1 —p.

*

Then letting s; = fjoeo1, (j > 1) we have s

s; =pand s;s7 = f;;; hence {s,s2...} generates
a copy of Oy in pﬁp7 to which the restriction of 4 is seen to be ¢o, as described in (iv) above.

For (v), it is only required to apply Corollary 5 and Proposition 6 after noting that the
choice of an infinite order element in the group Zs * Z,, (the free product of the two-element
group with itself), gives rise to an canonical trace preserving embedding of the reduced group

C*-algebra C*(Z) = C'(T) in the reduced group C*-algebra C}(Zy * Z3), which in turn arises

as the reduced free product
(C7(Zy % Zy), Tzz,) = (C7(Z2), 72,) % (CF(Z2), 72,)

of finite dimensional C*-algebras.

g

Example 7(i), can be used to give another proof of Brown’s and Choda’s result that the

free shift on the Cuntz algebra O, has topological entropy zero.

Proposition 8. ([3]) Let {...,s_1,50,51,...} be a family of isometries having orthogonal
ranges generating the Cuntz algebra O, and let o be the automorphism of Oy given by

a(sy) = sgy1. Then ht(a) =0.

Proof. As mentioned in the proof of 7(ii) above, O, is the free product of countably infinitely
many copies of (7, ¢1) as in 7(i), indexed by Z. The free shift on O, namely «, is the free
permutation corresponding to translation of the index set Z. We get ht(a) = 0 because (T, ¢1)
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has the ZEFP property.
O

We will use Example 7(v) to generalize, to the case of arbitrary permutations, Stgrmer’s
result [10] about free shifts on L(F. ). For this, we need to extend Voiculescu’s inequality
he(a) < ht(a) to the case of automorphisms of unital exact C*—algebras. The proof below is

inspired by Voiculescu’s [14, 4.6]; we refer to [4] and [2] for relevant concepts and definitions.

Proposition 9. Let A be a unital exact C*—algebra, let o € Aut(A) and let o be a state on
A satisfying c oo = . Then h, (o) < hi(a).

Proof. Let v : My(C) — A be a unital completely positive map. Let w be a finite subset of A
such that v(My(C)) C spanw and

Y({e € Mp(©) [ lall < 13) € {3 A@)e | M) € €, 3 A@)] < 1}

rTEW rEw

for future reference, assume that also the identity element of A belongs tow. Let 7 : A — L(H)
be a faithful representation of A on a Hilbert space H. Let § > 0 and n € N and suppose
that D is a finite dimensional C*-algebra and that ¢ : A — D and ¢ : D — L(J) are unital
completely positive maps such that Va € w U a(w) U ---Ua" Hw), ||¢ o ¢(a) — m(a)|| < 4.
Then for all # € M (C) with ||z]| < 1 and for all j € {0,1,...,n— 1},

[¥odoal oy(z)—roaloy(z)] <0

Let C' be the C*-algebra generated by 7 (A) U (D). Consider an abelian model, call it &, for
(A, o, (oejo'y)?:_ol) consisting of an abelian finite dimensional C*—algebra B, a unital completely
positive map P : A — B, a state pt on B such that gpo P = ¢ and x—subalgebras By,..., B, of
B. There is a unital completely positive map P’ : C'— B such that P'or = P. If E; : B — B;

are the canonical conditional expectations with respect to p, then letting

pj:EjoPooajo'y:A—>Bj

pi=E;joP opodpoaloy:A— B,

we have [[p;—p'|| < é forall j. Then by [4, IV.2], [s,(p;) —s,.(p})| < nwhere n = 35466 log(1+
k?671). Let 0’ = po P’ and let A’ be the abelian model for (C, o”, (¢o¢oo¢jo'y)?:_01) consisting
of (B,p, By, ..., B,) and the completely positive map P’ : C'— B. Then from equation (I11.3)
of [4], the entropy of the abelian model 2 differs from that of 2’ by no more than ny. Moreover,
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the entropy of the abelian model %' is bounded above by H,. ((¢o¢oo¢jo'y)?:_01); this is by [4,
111.6(a,c)] bounded above by H,: (1), which is < logrank(D). We may choose (D, ¢,1) so
that rank(D) < rep(w,w,4d); indeed, had we not required ¢ and % to be unital, we could
have chosen (D, ¢, ) so that rank(D) = rep(r,wUa(w)U---Ua" 1 (w),d), but as 1 € w, any

nonunital ¢ and 1 can be rescaled to give unital ones. Hence we find
Hy(y,07,--+,a" toy) <logrep(m,wU---Ua™ " (w),48) + ni;

therefore h, o(v) < ht(m,,w,6)+n. If 6 — 0 then n — 0 and we find h, o (y) < ht(a); hence
he (o) < ht(a).
g

Corollary 10. Let 0. be the automorphism of the 1, —factor L(F4) induced by an arbitrary
permutation o of the generators of the group F.,. Then the Connes—Stgrmer entropy of o, is

ZETO.

Proof. Let 7 be the tracial state on L(F). Combining Example 7(v) with Proposition 9, we
find that the CNT—entropy h; (0, .) is zero, where o, , is the automorphism of C¥(F,) arising
from the permutation o of the generators of F., and where 7 is the unique tracial state on
Cr(Fe). But h.(0,.) is equal to the CNT—entropy (hence, to the Connes-Stgrmer entropy)
of the corresponding automorphism o, of L(F.,).

O
The following question is quite natural.

Question 11. Does every pair (D, ), where D is a unital exact C*-algebra and where 1 is

a conditional expectation from D onto a unital C*—subalgebra, have the ZEFP property?

This seems like an appropriate place to point out that by recent work of Kirchberg [8],
[9], with (D,%) as in Question 11, one can always realize D C Oy; if one could realize
(D) C (Og,¢2), with (Oz,¢2) as in Example 7(iii), then by Proposition 6 (D, ) would
have the ZEFP property.

Support for a positive answer to Question 11 is provided by Stgrmer’s result [12] that if
D is any unital C*-algebra and v is any state on D (with faithful GNS representation), then
letting (A, ¢) be the free product of infinitely many copies of (D, 1) indexed by a set I, letting
o be a permutation of I without cycles and letting . be the corresponding free permutation

of A, the CNT—entropy he(0.) of o, with respect to the free product state ¢ is zero.
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Question 12. Given a reduced free product of C*-algebras (A4, ¢) = (A1, ¢1) * (Az, ¢2), with
dim(Ay) > 2 and dim(Az) > 3 and where ¢; and ¢, faithful states, is there an automorphism
a € Aut(A), such that 0 < ht(a) < o0 ?

It may be especially interesting to restrict the above question to the case when the states
¢1 and ¢y are traces. A first example to consider might be (A, 7) = (C7(Zsy), 72,) * (C(X), 7x),
where X is the compact Hausdorff space obtained as the product of infinitely many two—
element spaces and where 7x is the state given by the product of uniform measures. Now take
o € Aut(A) to be & =idcx(z,) * 3 where 3 is the Bernoulli shift. Then ht(a) > ht(3) = log 2.
Is ht(or) finite?

Note, however, that it is easy to find a reduced amalgamated free product of C*—algebras
(A, ¢) = (A1, ¢1) * (Az, ¢2) with A non-—nuclear and o € Aut(A4) with 0 < ht(a) < co. Indeed
consider abelian C*-algebras A; = C'(T) @ C'(X), for some compact Hausdorff space X; let
B=1®C(X)C A; and let ¢; : A; — B be the slice map obtained from Haar measure on T;
then A = Cx(F;) @ C(X). Let a = idg=(p,) ® 8 € Aut(A), where 3 is an automorphism on
C'(X) having strictly positive and finite topological entropy. By properties of the Voiculescu—
Brown topological entropy [2], we have ht(3) < ht(a) < ht(ides () + ht(3) = ht(3).



=W =

10.

11.

12.

13.

14.

15.

13

REFERENCES

. E. Blanchard, K.J. Dykema, Embeddings of reduced amalgamated free product C*—algebras, in preparation.

N. Brown, Topological entropy in exact C*—algebras, preprint (1998).

N. Brown, M. Choda, private communication (1999).

A. Connes, H. Narnhofer, W. Thirring, Dynamical approzimation entropies of C*—algebras and von Neu-
mann algebras, Commun. Math. Phys. 112 (1987), 691-719.

. A. Connes, E. Stgrmer, Entropy for automorphisms of II; von Neumann algebras, Acta Math. 134 (1975),

289-306.

. J. Cuntz, Simple C*—algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173-185.
. K.J. Dykema, Fzactness of reduced amalgamated free products of C*—algebras, preprint (1999).
. E. Kirchberg, Ezact C*—-algebras, tensor peoructs and the classification of purely infinite algebras, Proceed-

ings of the International Congress of Mathematicians (Ziirich, 1994), Birkhduser Verlag, 1995, pp. 943-954.

. E. Kirchberg, N.C. Phillips, Embeddings of exact C*—algebras and continuous fields in the Cuntz algebra

O3, preprint (1997).

E. Stgrmer, Entropy of some automorphisms of the I —factor of the free group in infinite number of
generators, Invent. Math. 110 (1992), 63-73.

, Entropy in operator algebras, Recent Advances in Operator Algebras, Orléans 1992, Astérisque,
vol. 232, Soc. Math. France, 1995, pp. 211-230.

, States and shifts on infinite free products of C*—algebras, Fields Inst. Commun. 12 (1997), 281-

291.

D. Voiculescu, Symmetries of some reduced free product C*-algebras, Operator Algebras and Their Con-
nections with Topology and Ergodic Theory, Lecture Notes in Mathematics, vol. 1132, Springer—Verlag,
1985, pp. 556-588.

, Dynamical approzimation and topological entropies in operator algebras, Commun. Math. Phys.
170 (1995), 249-281.

D. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monograph Series vol. 1, American
Mathematical Society, 1992.

DEepPT. OF MATHEMATICS AND COMPUTER SCIENCE, ODENSE UNIVERSITY, DK-5230 ODENSE M, DEN-

MARK

E-mail address: dykema@imada.ou.dk, Internet URL: http://www.imada.ou.dk/~ dykema/



