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JOHN'S THEOREM FOR AN ARBITRARY PAIROF CONVEX BODIESA. Giannopoulos, I. Perissinaki and A. TsolomitisAbstractWe provide a generalization of John's representation of the identity forthe maximal volume position of L inside K, where K and L are arbitrarysmooth convex bodies in Rn. >From this representation we obtain Banach-Mazur distance and volume ratio estimates.1. Introduction.The de�nition of the Banach-Mazur distance between symmetric convex bodiescan be extended to the non-symmetric case as follows [Gr]: Let K and L be twoconvex bodies in Rn. Their geometric distance is de�ned by(1) ~d(K;L) = inffab : (1=b)L � K � aLg:If z1; z2 2 Rn, we consider the translates K � z1 and L� z2 of K and L, and theirdistance with respect to z1; z2,(2) dz1;z2(K;L) = inff ~d(T (K � z1); L� z2)g;where the inf is taken over all invertible linear transformations T of Rn. Finally,we let z1; z2 vary and de�ne(3) d(K;L) = inffdz1;z2(K;L) : z1; z2 2 Rng:John's theorem [J] provides a �rst estimate for d(K;L). IfK is any convex bodyinRn and E is its maximal or minimal volume ellipsoid, then dz;z(K;E) � n, wherez is the center of E. Actually, the distance between the simplex and the ball is equalto n, and the simplex is the only body with this property [P]. It follows that thedistance between any two convex bodies is at most n2. Rudelson [R] has recentlyproved that d(K;L) � cn4=3 log� n for some absolute constants c; � > 0 (see alsorecent work of Litvak and Tomczak-Jaegermann [LTJ]). A well-known theorem ofGluskin [Gl] shows that d(K;L) can be of the order of n even for symmetric bodiesK and L.In this paper we study the maximal volume position of a body L inside K: wesay that L is of maximal volume in K if L � K and, for every w 2 Rn and everyvolume preserving linear transformation T of Rn, the a�ne image w + T (L) of L1



is not contained in the interior of K. A simple compactness argument shows thatfor every pair of convex bodies K and L there exists an a�ne image ~L of L whichis of maximal volume in K.Our main result is the following:Theorem. Let L be of maximal volume in K. If z 2 int(L), we can �nd contactpoints v1; : : : ; vm of K � z and L � z, contact points u1; : : : ; um of (K � z)� and(L � z)�, and positive reals �1; : : : ; �m, such that: P�juj = o, huj; vji = 1, and(4) Id = mXj=1 �juj 
 vj :We shall prove the above fact under the assumption that both K and L aresmooth enough. The theorem may be viewed as a generalization of John's rep-resentation of the identity even in the case where L is the Euclidean unit ball.This generalization was observed by V.D. Milman in the case where K and L areo-symmetric and z = o (see [TJ], Theorem 14.5). Using the theorem, we give adirect proof of the fact that d(K;L) � n when both K and L are symmetric, andwe obtain the estimate d(K;L) � 2n�1 when L is symmetric and K is any convexbody (this was recently proved by Lassak [L]).Using the maximal volume position of L inside K, one can naturally extend thenotion of volume ratio to an arbitrary pair of convex bodies. We de�ne(5) vr(K;L) = � jKjj~Lj � 1n ;where ~L is an a�ne image of L which is of maximal volume in K (by j � j we denoten-dimensional volume). In Section 3, we prove the following general estimate:Theorem. Let K and L be two convex bodies in Rn. Then,(6) vr(K;L) � n:The same estimate can be given through K. Ball's result on vr(K;Dn) andvr(Dn;K), where Dn is the Euclidean unit ball. Ball [Ba] proved that bothvr(K;Dn) and vr(Dn;K) are maximal when K is the simplex Sn. It follows thatvr(K;L) � vr(K;Dn)vr(Dn; L) � vr(Sn; Dn)vr(Dn; Sn) = n:However, our proof is direct and might lead to a better estimate; it might be truethat vr(K;L) is always bounded by cpn.Acknowledgement. The �rst named author acknowledges the hospitality ofthe Erwin Schr�odinger International Institute for Mathematical Physics in Vienna,where his contribution to this work has been completed.2



2. The main theorem and distance estimates.We assume that Rn is equipped with a Euclidean structure h�; �i, and denotethe corresponding Euclidean norm by j � j. We write Dn for the Euclidean unit ball,and Sn�1 for the unit sphere.If W is a convex body in Rn and z 2 int(W ), we de�ne the radial function�W (z; �) of W with respect to z by(7) �W (z; �) = maxf� > 0 : z + �� 2Wgfor � 2 Sn�1, and extend this de�nition to Rnnfzg by(8) �W (z; x) = 1t �W (z; �);where x = z + t�, t > 0 and � 2 Sn�1. If � 2 Sn�1, we will write �W (z; �) insteadof �W (z; z + �) (this will cause no confusion).The polar body W z of W with respect to z 2 int(W ) is the body(9) W z = (W � z)� = fy 2 Rn : hy; x� zi � 1 for all x 2Wg:Let o denote the origin. Since �W (z; x) = �W�z(o; x� z), the support functionhWz of W z satis�es(10) hWz (x� z) = 1�W (z; x)for all x 2 Rnnfzg.Recall that, if o 2 int(W ), W is strictly convex and hW is continuously dif-ferentiable, then rhW (�) is the unique point on the boundary of W at which theouter unit normal to W is �, and rhW (��) = rhW (�) for all � > 0.With these de�nitions, we have the following description of the maximal volumeposition of L in K:Lemma 1. Let K and L be two convex bodies in Rn. Then, L is of maximalvolume in K if and only if, for every z 2 int(L), for every w 2 Rn and everyvolume preserving T , there exists � 2 Sn�1 such that(11) �K�z; z + w + T (�L(z; �)�)� � 1: 2We assume that the bodies K and L are smooth enough: we ask that they arestrictly convex and their support functions are twice continuously di�erentiable.Under this assumption, we have that hKz and hLz are twice continuously di�eren-tiable for every z 2 int(L).Lemma 2. Let L be of maximal volume in K, and z 2 int(L). Then, for everyw 2 Rn and every S 2 L(Rn;Rn) we can �nd � 2 Sn�1 such that �L(z; �) = �K(z; �)and(12) hKz�w + �K(z; �)S(�)� � trSn :3



Proof: We follow the argument of [GM]. Let w 2 Rn and S 2 L(Rn;Rn). If " > 0is small enough, then T" = (I + "S)=[det(I + "S)]1=n is volume preserving, hence,using (10) and Lemma 1 for T" and "w, we �nd �" 2 Sn�1 such that(13) hKz�"w + T"(�L(z; �")�")� � 1:Since [det(I + "S)]1=n = 1 + " trSn + O("2), we get(14) hKz��L(z; �")�" + "w + "�L(z; �")S(�")� � 1 + " trSn +O("2):Since L � K, we have hKz (�L(z; �")�") = �L(z; �")=�K (z; �") � 1, and the subad-ditivity of hKz gives(15) hKz�w + �L(z; �")S(�")� � trSn +O("):By compactness, we can �nd "m ! 0 and � 2 Sn�1 such that �"m ! �. Then,taking limits in (15) we get(16) hKz�w + �L(z; �)S(�)� � trSn ;and taking limits in (13) we see that hKz (�L(z; �)�) � 1, which forces �L(z; �) =�K (z; �). 2Making one more step, we obtain the following condition:Lemma 3. Let L be of maximal volume in K, and z 2 int(L). Then, for every w 2Rn and every T 2 L(Rn;Rn) we can �nd � 2 Sn�1 such that �L(z; �) = �K(z; �)and(17) hrhKz (�); w + �K(z; �)T (�)i � trTn :Proof: Let T 2 L(Rn;Rn), and de�ne S" = I + "T , " > 0. By Lemma 2, we can�nd �" 2 Sn�1 such that �K(z; �") = �L(z; �") and(18) hKz ("w + �K (z; �")�" + "�K (z; �")T (�")) � tr(I + "T )n = 1+ " trTn :The left hand side is equal to(19) hKz (�K (z; �")�") + "hrhKz (�"); w + �K(z; �")T (�")i+ O("2)= 1 + "hrhKz (�"); w + �K(z; �")T (�")i+ O("2):Therefore,(20) hrhKz (�"); w + �K(z; �")T (�")i � trTn +O("):4



Choosing again "m ! 0 such that �"m ! � 2 Sn�1, we see that �K (z; �) = �L(z; �)and � satis�es (17). 2Lemma 3 and a separation argument give us a generalization of John's repre-sentation of the identity:Theorem 1. Let L be of maximal volume in K, and z 2 int(L). There existm � n2 + n + 1 vectors �1; : : : ; �m 2 Sn�1 such that �K (z; �j) = �L(z; �j) and�1; : : : ; �m > 0, such that:(i)P�jrhKz(�j ) = o,(ii) Id =P�j [(rhKz(�j)) 
 (�K (z; �j)�j)].Proof: We identify the a�ne transformations of Rn with points in Rn2+n, andconsider the set(21) C = con[rhKz(�) 
 �K(z; �)�] +rhKz(�) : � 2 Sn�1; �K(z; �) = �L(z; �)o:Then, C is a compact convex set with the Euclidean metric, and we claim thatId=n 2 C. If not, there exist w 2 Rn and T 2 L(Rn;Rn) such that(22) hId=n; T + wi > D[rhKz (�) 
 �K (z; �)�] +rhKz (�); T + wEwhenever �K (z; �) = �L(z; �). But, (22) is equivalent to(23) trTn > hrhKz(�); w + �K (z; �)T (�)i;and this contradicts Lemma 3.Caratheodory's theorem shows that we can �nd m � n2 + n + 1 and positivereals �1; : : : ; �m such that(24) Id = mXj=1 �j�[rhKz(�j )
 �K (z; �j)�j ] +rhKz (�j)�;for �1; : : : ; �m 2 Sn�1 with �K (z; �j) = �L(z; �j). This completes the proof. 2Remark. Let � 2 Sn�1 be such that �K(z; �) = �L(z; �). Observe that(25) hrhKz (�); �K (z; �)�i = �K (z; �)hKz (�) = 1:Also, x = rhLz(�) is the unique point of Lz for which hx; �i = hLz (�) = hKz (�).Since hrhKz(�); �i = hKz (�) and rhKz (�) 2 Kz � Lz , we must have(26) rhKz (�) = rhLz(�):Hence, the theorem can be stated in the following form:5



Theorem 2. Let L be of maximal volume in K. For every z 2 int(L), we can �ndcontact points v1; : : : ; vm of K � z and L� z, contact points u1; : : : ; um of Kz andLz , and positive reals �1; : : : ; �m, such that: P�juj = o, huj; vji = 1, and(27) Id = mXj=1 �juj 
 vj: 2Remark. The analogue of the Dvoretzky-Rogers lemma [DR] in the context ofTheorem 2 is the following: If F is a k-dimensional subspace of Rn and PF denotesthe orthogonal projection onto F , then there exists j 2 f1; : : : ;mg such thathPF (uj); PF (vj)i � kn:This can be easily checked, sincek = trPF = mXj=1 �jhPF (uj); PF (vj)i;and P�j = n.As an application of Theorem 1, we give a direct proof of the fact that thediameter of the Banach-Mazur compactum is bounded by n:Proposition 1. Let K and L be symmetric convex bodies in Rn. Then, d(K;L) �n.Proof: We may assume that K and L satisfy our smoothness hypotheses, and thatK is symmetric about o. Let L1 be an a�ne image of L which is of maximal volumein K.Claim: L1 is also symmetric about o.[Let z be the center of L1. Then L1 = 2z � L1 � K and the symmetry of Kshows that L1 � 2z � K. It follows that(28) ~L = L1 � z = L1 + (L1 � 2z)2 � K;and L1 � z is o-symmetric. If z 6= o, we obtain a contradiction as follows: wede�ne a linear map T which leaves z? unchanged and sends z to (1 + �)z, where0 < � < jzj2=hL1�z(z). One can easily check that T (L1�z) � co(L1; L1�2z) � Kand jT (L1 � z)j = (1 + �)jL1j > jL1j.]We write L for L1. Let x 2 Rn and choose z = w = o and T (y) = hrhL�(x); yixin Lemma 3. Then there exists � 2 Sn�1 such that �K (o; �) = �L(o; �) and(29) DrhK�(�); hrhL� (x); �L(o; �)�ixE � hL�(x)n :6



But, rhL�(x) 2 L� and �L(o; �)� 2 L. Since L is o-symmetric, we have(30) jhrhL�(x); �L(o; �)�ij � 1:Using now the o-symmetry of K and the fact that rhK�(�) 2 K�, from (29) and(30) we get(31) hK� (x) � hL�(x)n :Therefore, L� � nK�, and this shows that K � nL. 2We now assume that L is symmetric and K is any convex body:Proposition 2. Let L be a symmetric convex body and K be any convex body inRn. Then, d(K;L) � 2n� 1.Proof: We may assume that L is of maximal volume in K and L is symmetric abouto. Let d > 0 be the smallest positive real for which hL�(y) � dhK�(y) for ally 2 Rn. Then, duality, the symmetry of L and the fact that L � K show thathK(�x) � dhL(�x) = dhL(x) � dhK(x) for every x 2 Rn.We de�ne T (y) = hnrhL�(x); yix and w = x, where  2 [0; n) is to bedetermined. >From Lemma 3, there exists � 2 Sn�1 such that �K (o; �) = �L(o; �)and(32) DrhK�(�); x + nhrhL�(x); �L(o; �)�ixE � nhrhL�(x); xin = hL�(x):Since rhL�(x) 2 L�, �L(o; �)� 2 L and L is o-symmetric, we havejhrhL�(x); �L(o; �)�ij � 1;therefore(33)  � n �  + nhrhL�(x); �L(o; �)�i �  + n:Let s = hrhL�(x); �L(o; �)�i. Since rhK�(x) 2 K�, from (32) and (33) we get(34) hL�(x) � ( + n)hK� (x);if  + ns � 0, and(35) hL�(x) � (n� )dhK� (x);if  + ns < 0. It follows that(36) hL�(x) � maxf + n; (n� )dghK� (x):This shows that d � maxf + n; (n � )dg, and choosing  = n(d� 1)=(d+ 1) weget d � 2n� 1. Hence, L� � (2n� 1)K� and the result follows. 27



3. Volume ratio.In this Section we give an estimate for the volume ratio of two convex bodies:Theorem 3. Let L be of maximal volume in K. Then, (jKj=jLj)1=n � n.Proof: Without loss of generality we may assume that o 2 int(L). Then, Theorem2 with z = o shows that(37) Id = mXj=1 �juj 
 vj ;where �j > 0, u1; : : : ; um are contact points of K� and L�, v1; : : : ; vm are contactpoints of K and L, andP�juj = o. This last condition shows that m � n+ 1.Since uj 2 K�, j = 1; : : : ;m, we have the inclusion(38) K � U := fx : hx; uji � 1; j = 1; : : : ;mg:Observe that U is a convex body, because P�juj = o. On the other hand, vj 2 L,j = 1; : : : ;m. Therefore,(39) L � V := cofv1; : : : ; vmg:It follows that(40) jKjjLj � jU jjV j :We de�ne ~vj 2 Rn+1 by(41) ~vj = nn+ 1(�vj ; 1) ; j = 1; : : : ;m:Then, we can estimate jV j using the reverse form of the Brascamp-Lieb inequality(see [Bar]):Lemma 4. LetD~v = inf(det�Pmj=1 �j�jvj 
 vj�Qmj=1 ��jj : �j > 0; j = 1; 2; : : :;m):Then, the volume of V satis�es the inequality(42) jV j � �n+ 1n �n+1 pD~vn! :Proof: LetNV (x) = 8<: inf fPmi=1 �i : �i � 0 and x =Pmi=1 �i~vig , if such �i exist+1 , otherwise.8



Let also C = cof�v1;�v2; : : : ;�vmg.Claim: If x = (y; r) for some y 2 Rn and r 2 R, then(43) e�NV (x) � �fy2rCg�fr�0ge�n+1n r:[If r < 0 then NV (x) = +1 and the inequality is true. Otherwise, let �i � 0be such that x = Pmi=1�i~vi and Pmi=1 �i = NV (x). Then, it is immediate thatNV (x) = n+1n r � 0 and y = nn+1Pmi=1 �i(�vi) 2 rC. From this (43) follows.]Integrating the inequality (43) we getZRn+1 e�NV (x) dx � n!� nn+ 1�n+1 jV j:We now set dj = n+1n �j and apply the reverse form of the Brascamp-Liebinequality to the left hand side integral:ZRn+1 e�NV (x) dx = ZRn+1 sup�j�0x=Pmj=1 �j ~vj mYj=1 e��j dx= ZRn+1 supx=Pmj=1 �j~vj mYj=1�e�j=dj�f�j�0g�dj� pD~v mYj=1�Z 10 e�t dt�dj =pD~v:>From this (42) follows. 2We now turn to �nd an upper bound for jU j: as above, let dj = n+1n �j and set~uj = ��uj; 1n� for j = 1; : : : ;m.Lemma 5. The volume of U satis�es the inequality(44) jU j � 1pD~u (n+ 1)n+1n!n ;where(45) D~u = inf�det(P dj�j~uj 
 ~uj)Q�djj ;�j > 0�:Proof: We apply the Brascamp-Lieb inequality [BL] (see also [Bar]) in the spirit ofK. Ball's proof of the fact that among all convex bodies having the Euclidean unitball as their ellipsoid of maximal volume, the regular simplex has maximal volume[Ba]. 9



For each j = 1; : : : ;m, de�ne fj : R! [0;1) by fj(t) = e�t�[0;1)(t), and set(46) F (x) = mYj=1 fj(h~uj; xi)dj ; x 2 Rn+1:The Brascamp-Lieb inequality gives(47) ZRn+1 F (x)dx � 1pD~u mYj=1�ZRfj�dj = 1pD~u :As in [Ba], writing x = (y; r) 2 Rn�R, we see that F (x) = 0 if r < 0. When r � 0,we have F (x) 6= 0 precisely when y 2 (r=n)U , and then, taking into account thefacts that P�juj = o and P dj = n + 1, we see that F is independent of y andequal to(48) F (x) = exp(�r(n+ 1)=n):It follows from (47) that(49) 1pD~u � Z 10 exp(�r(n + 1)=n)� rn�n jU jdr = jU j n!n(n+ 1)n+1 : 2Combining the two lemmata, we get(50) jKjjLj � nnpD~uD~v :Observe that ~uj, ~vj and dj satisfy h~uj; ~vji = 1, j = 1; : : : ;m, andId = mXj=1 dj~uj 
 ~vj :Thus, in order to �nish the proof of Theorem 3 it su�ces to prove the followingproposition.Proposition 3. Let �1; : : : ; �m > 0, u1; : : :um v1; : : : ; vm be vectors satisfyinghuj ; vji = 1 for all j = 1; : : :m and(51) Id = mXj=1 �juj 
 vj :Then DuDv � 1.Proof: For I � f1; 2; : : : ;mg we use the notation �I = Qi2I �i, �I = Qi2I �i, andfor I's with cardinality n, we write UI = det (ui : i 2 I) and VI = det (vi : i 2 I).Moreover, we write (�U )I for det (�iui : i 2 I).10



Applying the Cauchy-Binet formula we have(52) det0@ mXj=1�j�juj 
 vj1A = XjIj=nI�f1;2;:::;mg �I(p�U )I(p�V )I :But P(p�U )I(p�V )I = det�Pmj=1 �juj 
 uj� = detI = 1. Hence, applying thearithmetic-geometric means inequality to the right side of (52) we deduce thatXjIj=nI�f1;2;:::;mg �I(p�U )I(p�V )I � YjIj=nI�f1;2;:::;mg �(p�U)I(p�V )II= mYj=1�Pj2I;jIj=n(p�U)I (p�V )Ij :Observe now that the exponent of �j in the above product equals �j:Xj2I; jIj=n(p�U )I(p�V )I = XjIj=n(p�U )I(p�V )I �Xj 62I; jIj=n(p�U )I(p�V )I= det0@ mXj=1 �juj 
 vj1A � det(I � �juj 
 vj)= �j ;since huj; vji = 1. Thus, we have shown that(53) det0@ mXj=1 �j�juj 
 vj1A � mYj=1��jj :Now, for any j ; �j > 0 we havedet0@ mXj=1 �jjuj 
 uj1A det0@ mXj=1 �j�jvj 
 vj1A= XjIj=n I(p�U )2I XjIj=n �I(p�V )2I :By the Cauchy-Schwarz inequality this is greater than0@XjIj=n�IpI�IUIVI1A2 :11



Apply now (53) to getdet �Pmj=1 �jjuj 
 uj�Qmj=1 �jj det�Pmj=1 �j�jvj 
 vj�Qmj=1 ��jj � 1;completing the proof. 2Remark. A di�erent argument shows that vr(K;Sn) � cpn for every convex bodyK in Rn, where c > 0 is an absolute constant.Without loss of generality we may assume that K is of maximal volume in Dn.Then, John's theorem gives us �1; : : : ; �m > 0 and contact points u1; : : : ; um of Kand Dn such that Id = mXj=1 �juj 
 uj :The Dvoretzky-Rogers lemma [DR] shows that we can choose u1; : : : ; un among theuj's so that jPspanfus:s<ig?uij � �n� i + 1n �1=2 ; i = 2; : : : ; n:Therefore, the simplex S = cofo; u1; : : : ; ung has volumejSj � 1n! nYi=2�n� i+ 1n �1=2 = 1(n!nn)1=2 ;and S � K � Dn. It follows thatvr(K;Sn) � � jDnjjSj �1=n � (n!)1=2npnp�[�(n2 + 1)]1=n� cpn:This supports the question if vr(K;L) is always bounded by cpn.References[Ba] K.M. Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math.Soc. (2) 44 (1991), 351-359.[Bar] F. Barthe, In�egalit�es de Brascamp-Lieb et convexit�e, C. R. Acad. Sci. Paris 324(1997), 885-888.[BL] H.J. Brascamp and E.H. Lieb, Best constants in Young's inequality, its converse andits generalization to more than three functions, Adv. in Math. 20 (1976), 151-173.12
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