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JOHN’S THEOREM FOR AN ARBITRARY PAIR
OF CONVEX BODIES

A. GIANNOPOULOS, I. PERISSINAKI AND A. TSOLOMITIS

Abstract

We provide a generalization of John’s representation of the identity for
the maximal volume position of L inside K, where K and L are arbitrary
smooth convex bodies in R™. ;From this representation we obtain Banach-
Mazur distance and volume ratio estimates.

1. Introduction.

The definition of the Banach-Mazur distance between symmetric convex bodies
can be extended to the non-symmetric case as follows [Gr]: Let K and L be two
convex bodies in R”. Their geometric distance is defined by

(1) d(K,L)=1inf{ab: (1/0)L C K CalL}.

If 21,25 € R”, we consider the translates K — z; and L — z9 of K and L, and their
distance with respect to z1, 29,

(2) dsy oo (K, L) = inf{d(T(K — z1), L — z2)},

where the inf is taken over all invertible linear transformations 7" of R™. Finally,
we let z1, z9 vary and define

(3) d(K,L) =1inf{d,, ,,(K,L) : 21,22 € R"}.

John’s theorem [J] provides a first estimate for d(K, L). If K is any convex body
in R™ and F is its maximal or minimal volume ellipsoid, then d , (K, E) < n, where
z 18 the center of . Actually, the distance between the simplex and the ball is equal
to n, and the simplex is the only body with this property [P]. It follows that the
distance between any two convex bodies is at most n?. Rudelson [R] has recently
proved that d(K, L) < cn4/310gﬁ n for some absolute constants ¢, 3 > 0 (see also
recent work of Litvak and Tomczak-Jaegermann [LTJ]). A well-known theorem of
Gluskin [Gl] shows that d(K, L) can be of the order of n even for symmetric bodies
K and L.

In this paper we study the mazimal volume position of a body L inside K: we
say that L s of marimal volume in K if L C K and, for every w € R™ and every
volume preserving linear transformation 7' of R”, the affine image w + T(L) of L



is not contained in the interior of K. A simple compactness argument shows that
for every pair of convex bodies K and L there exists an affine image L of L which
is of maximal volume in K.

Our main result is the following:

Theorem. Let L be of mazimal volume in K. If z € int(L), we can find contact
points vi,...,vm of K —z and L — z, contact points uy, ..., um of (K — z)° and
(L — 2)°, and positive reals A1, ..., Am, such that: 3" Aju; = o, {uj,v;) =1, and

(4) Id:Z/\jUj(@vj.

j=1

We shall prove the above fact under the assumption that both K and L are
smooth enough. The theorem may be viewed as a generalization of John’s rep-
resentation of the identity even in the case where L is the Euclidean unit ball.
This generalization was observed by V.D. Milman in the case where K and L are
o-symmetric and z = o (see [TJ], Theorem 14.5). Using the theorem, we give a
direct proof of the fact that d(K, L) < n when both K and L are symmetric, and
we obtain the estimate d(K, L) < 2n —1 when L is symmetric and K is any convex
body (this was recently proved by Lassak [L]).

Using the maximal volume position of L inside K, one can naturally extend the
notion of volume ratio to an arbitrary pair of convex bodies. We define

5) vi(K, L) = (fﬂ) "

where L is an affine image of L which is of maximal volume in K (by |- | we denote
n-dimensional volume). In Section 3, we prove the following general estimate:

Theorem. Let K and L be two convex bodies in R™. Then,

(6) vr(K, L) < n.

The same estimate can be given through K. Ball’s result on vr(K, D,) and
vi(Dy, K), where D, is the Euclidean unit ball. Ball [Ba] proved that both
vi(K, D) and vr(Dp, K) are maximal when K is the simplex S,,. Tt follows that

vi(K, L) < vr(K, Dp)vr(Dy, L) < vr(Sy, Dy)ve(Dy, Sy) = n.

However, our proof is direct and might lead to a better estimate; it might be true
that vr(K, L) is always bounded by c/n.
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2. The main theorem and distance estimates.

We assume that R” is equipped with a Euclidean structure {-,-), and denote
the corresponding Euclidean norm by |-|. We write D,, for the Euclidean unit ball,
and S”~! for the unit sphere.

If W is a convex body in R™ and z € int(W), we define the radial function
pw (z, ) of W with respect to z by

(7) pw(z,0) =max{A >0:z+ A0 € W}
for 0 € S~ and extend this definition to R™\{z} by

) pw(,2) = 3w (2.0,

where # = z +16, ¢t >0 and 6 € S"~1. If € S"~1 we will write pw (z,0) instead
of pw (%, 2+ 6) (this will cause no confusion).
The polar body W# of W with respect to z € int(W) is the body

(9) Wo=(W-=2)°={yeR": {y,x—z) < 1lforalla € W}.

Let o denote the origin. Since pw (2, 2) = pw_; (0, — z), the support function
hyw - of W7 satisfies

1

(10) hw:(x —z) = m

for all z € R™{z}.

Recall that, if o € int(W), W is strictly convex and hy is continuously dif-
ferentiable, then Vhyw () is the unique point on the boundary of W at which the
outer unit normal to W is 8, and Vhw (M) = Vhw (0) for all A > 0.

With these definitions, we have the following description of the maximal volume
position of L in K:

Lemma 1. Let K and L be two conver bodies in R™. Then, L s of mazrimal
volume in K if and only if, for every z € int(L), for every w € R™ and every
volume preserving T, there exists 0 € S~ such that

(11) PK (z,z—l— w—i—T(pL(z,H)H)) <1. O

We assume that the bodies K and L are smooth enough: we ask that they are
strictly convex and their support functions are twice continuously differentiable.
Under this assumption, we have that hg- and hp- are twice continuously differen-
tiable for every z € int(L).

Lemma 2. Let L be of mazimal volume in K, and z € int(L). Then, for every
w € R™ and every S € L(R",R") we can find @ € S"~* such that pr,(z,0) = px(z,0)
and

trS
(12) hice (w0 + pic(2,0)5(0)) > =



Proof: We follow the argument of [GM]. Let w € R® and S € L(R™",R"). If ¢ > 0
is small enough, then T, = (I + &S)/[det(I + £S)]*/" is volume preserving, hence,
using (10) and Lemma 1 for 7. and ew, we find 6. € S"~! such that

(13) hic (6w—|—T€(pL(z,9€)9€)) > 1.

Since [det(I +£9)]Y/" =1+ 25 4 O(e?), we get

trS
(14) i (pr(z, 00 + 2w +2pu(2,0.)5(0.)) > 1+ =22 4+ 0(E).

Since L C K, we have hg:(pr(z,0:)0:) = pr(2,0:)/pr(z,0.) < 1, and the subad-
ditivity of hg- gives

(15) hi- (w—I—pL(z,HE)S(Hg)) > %Jr()(e).

By compactness, we can find ¢,, — 0 and § € S"~! such that 6. — 6. Then,
taking limits in (15) we get

trS
(16) hi- (w + (2, 9)5(9)) >
and taking limits in (13) we see that hg:(pr(z,0)0) > 1, which forces pr(z,0) =
pK(z,0). O

Making one more step, we obtain the following condition:

Lemma 3. Let L be of mazimal volume in K, and z € int(L). Then, for every w €

R"™ and every T € L(R",R"™) we can find 0 € S~ such that pr(z,0) = p(z,0)
and

tr’l’

n

(17) (Vhic=(6), w + pic (2, )T ()

Proof: Let T € L(R™ R"), and define S, = I + T, ¢ > 0. By Lemma 2, we can
find 6. € S"~! such that pg(z,0.) = pr(z,0.) and

tr(l 4 T tr7
(18) s (10 + pic (2,000 + epic (2,0 T(0.)) > SUEED _ BT
The left hand side is equal to
(19) hi:(px (2,0:)0:) + e(Vh- (62), w4 pr (z,0.)T(6.)) + O(?)

=1 (Vi (02), w0+ prc (=, 0)T(02) + O(E?).
Therefore,

(20) (Vi (00), w4 pc (2, 0T0.)) > 4 0(c).



Choosing again &, — 0 such that 6., — 6 € S"~! we see that px(z,0) = pr(z,0)
and 6 satisfies (17). O

Lemma 3 and a separation argument give us a generalization of John’s repre-
sentation of the identity:

Theorem 1. Let L be of mazimal volume in K, and z € int(L). There exist
m < n?+n+ 1 vectors b1,...,0, € S*71 such that px(z,0;) = pr(z,0;) and
AL,y Am > 0, such that:

(1) Z/\JVhK” (9]) = 0,
(ii) 1d = 3N [(Vhi=(0;)) @ (pk (2,07)0;)].

Proof: We identify the affine transformations of R” with points in R”2+”, and
consider the set

(21) C= co{[Vth(H) © pic(2,0)0] + Vhic-(6) 1 0 € 5", pre(2,0) = po(z, 9)}.

Then, C is a compact convex set with the Euclidean metric, and we claim that
Id/n € C. If not, there exist w € R™ and T' € L(R™,R™) such that

(22) (1d/n, T+ w) > ([Vhic (0) © prc (2,0)0) + Vhic: (6), T + w)

whenever pg (z,0) = pr(z,0). But, (22) is equivalent to

(23) it > (Vhg:(0),w+ pr(z,0)T(9)),

n

and this contradicts Lemma 3.
Caratheodory’s theorem shows that we can find m < n? +n + 1 and positive
reals A1, ..., A, such that

(24) 1d =30 ([Vhic: (65) © prc (2, 05)05) + Vha=(65))
j=1
for 61,...,0,, € S"~! with px (2,6;) = pr(2,0;). This completes the proof. O
Remark. Let 6 € S"~! be such that px(z,0) = pr(z,0). Observe that
(25) (Vhig:(0), pr (2,0)0) = pr (z,0)hk-(0) = 1.

Also, # = Vhr:(f) is the unique point of L* for which (x,0) = hp:(0) = hg-(0).
Since (Vhg=(0),0) = hg-(0) and Vhg:(0) € K* C L?, we must have

(26) Vhi-(6) = Vhr-(6).

Hence, the theorem can be stated in the following form:



Theorem 2. Let L be of maxzimal volume in K. For every z € int(L), we can find
contact points vi,...,v, of K —z and L — z, contact points uy, ..., um of K* and
L?, and positive reals A1, ..., Am, such that: 3" Aju; = o, {uj,v;) =1, and

(27) Id:ZAjuj®vj. O

j=1

Remark. The analogue of the Dvoretzky-Rogers lemma [DR] in the context of
Theorem 2 is the following: If F' 1s a k-dimensional subspace of R™ and Pr denotes
the orthogonal projection onto F', then there exists j € {1,...,m} such that

k

(Pr(uj), Prlvi)) = ~

This can be easily checked, since

k=trPr = Z/\j<PF(Uj)a PF(vj)>’

j=1
and " A; =n.

As an application of Theorem 1, we give a direct proof of the fact that the
diameter of the Banach-Mazur compactum is bounded by n:

Proposition 1. Let K and L be symmetric convex bodies in R"™. Then, d(K, L) <
n.

Proof: We may assume that K and L satisfy our smoothness hypotheses, and that
K is symmetric about o. Let Ly be an affine image of L which 1s of maximal volume
in K.
Claim: Lq is also symmetric about o.

[Let z be the center of Ly. Then Ly = 2z — L1 C K and the symmetry of K
shows that L, — 2z C K. It follows that

~ L Ly —2

(28) L:Ll—z:¥gm
and Ly — z is o-symmetric. If z # o, we obtain a contradiction as follows: we
define a linear map 7' which leaves 2~ unchanged and sends z to (1 + «)z, where
0 < a<|z|*/hr,—.(2). One can easily check that T(L; —z) C co(Ly, L1 —2z) C K
and |T(L1 — 2)| = (1 + &)|L1] > |L1]]

We write L for L. Let # € R™ and choose z = w = o and T'(y) = (Vhro(2), y)x
in Lemma 3. Then there exists € S"~! such that pg (0,0) = pr(0,0) and

hL° (l‘) .

n

(29) (Vhice(8), (Vhro(x), pro,0)0)2) >



But, Vhge(x) € L° and pr(0,0)0 € L. Since L is o-symmetric, we have
(30) (Vhio(), pr(0,0)0)] < 1.

Using now the o-symmetry of K and the fact that Vhg.(#) € K°, from (29) and
(30) we get

hL° (l‘) .

n

Therefore, L° C nK°, and this shows that K C nL. i

bl

We now assume that L is symmetric and K is any convex body:

Proposition 2. Let L be a symmetric conver body and K be any conver body in
R™. Then, d(K,L) <2n—1.

Proof: We may assume that L is of maximal volume in K and L is symmetric about
0.

Let d > 0 be the smallest positive real for which hg(y)
y € R™. Then, duality, the symmetry of L and the fact that
hig (=) < dhp(—=z) = dhp(z) < dhg (z) for every x € R™.

We define T(y) = (nVhro(z),y)x and w = vz, where vy € [0,n) is to be
determined. ;From Lemma 3, there exists € S"~! such that px(0,0) = pr(0,0)
and

hio(y) for all

<d
L C K show that

n(Vhro(x),z)

n

(32) <VhKo(9), e+ n(Vhie(z), pr (o, 9)9>x> > — ().

Since Vhpo(z) € L°, pr(0,0)0 € L and L is o-symmetric, we have
(Vhpe(2),pr(o,0)0)] <1,

therefore

(33) v =<y +n(Vhee(2), pr(0,0)8) <5 +n.

Let s = (Vhro(z), pr(0,6)0). Since Vhgo(x) € K°, from (32) and (33) we get

(34) hre(x) < (y 4+ n)hi(2),

if y+ns >0, and

(35) hie(z) < (n—vy)dhgo (),

if v+ ns < 0. It follows that

(36) hpe(z) < max{y+n, (n —v)d}hko(z).
This shows that d < max{y + n, (n —v)d}, and choosing y = n(d — 1)/(d + 1) we
get d < 2n — 1. Hence, L° C (2n — 1)K° and the result follows. O



3. Volume ratio.

In this Section we give an estimate for the volume ratio of two convex bodies:

K|/|L)Y" < n.

Theorem 3. Let L be of mazimal volume in K. Then, (

Proof: Without loss of generality we may assume that o € int(L). Then, Theorem
2 with z = o shows that

m
(37) Id =" \u; @ vj,
j=1
where A; > 0, uy,..., uy, are contact points of K° and L°, vy,..., v, are contact

points of K and L, and > Aju; = 0. This last condition shows that m > n + 1.
Since u; € K°, j =1,...,m, we have the inclusion
(38) KCU:=A{z:(z,u;)<1,j=1,...,m}.

Observe that U is a convex body, because >~ A;u; = 0. On the other hand, v; € L,
j=1,...,m. Therefore,

(39) LDV :=colvi,...,vm}.
It follows that

[/7
(40) e M

Ll = VI
We define 9; € R"+! by

- n .

(41) v; = (—v;, 1) |, j=1,...,m.

n+1

Then, we can estimate |V| using the reverse form of the Brascamp-Lieb inequality
(see [Bar]):

Lemma 4. Let
det (Z}n:l Ajov; @ vj)
Dg = inf o, N
Hj:l O‘j]

Then, the volume of V' satisfies the inequality

Doaj >0, j:l,?,...,m}.

n+1\"*" /Dy
(12) vz (2H) L
n n!
Proof: Let
inf{zzn:l a; : a;>0and z = Zzn:l a;0;} il such «; exist
Ny (z) =

400 , otherwise.



Let also C' = co{—v1, —va, ..., —0m}.

Claim: If # = (y,r) for some y € R™ and r € R, then

Ny (e _mt1,
(43) M) < pyerarXrsoye

[If » < 0 then Ny (x) = 400 and the inequality is true. Otherwise, let a; > 0
be such that z = Zzn:l o;0; and Zzn:l «; = Ny (z). Then, it is immediate that
Ny (z) = ”nir >0and y = HL_H Zzn:l a;(—v;) € rC. From this (43) follows.]

Integrating the inequality (43) we get

n n+1
/ e M) gy < n! V.
R+l - n—+1

We now set d; = ”ni/\j and apply the reverse form of the Brascamp-Lieb
inequality to the left hand side integral:

_Nv(x)d _ / —ocjd
[ r = su [ xr
/]Rn+1 Rr+l ajZI)D H

sy 5
w=T T g0y

m

dv
_ aj/d; ) ’
= su e o
/ﬂw s ] (/% X{as30

Zjer o585 50

m 00 d
Z \/DgH (/ e_tdt) :\/Dg.
j=1 0
iFrom this (42) follows. a
We now turn to find an upper bound for |U]: as above, let d; = ”ni/\j and set
U; = (—uj,%) forj=1,...,m.

Lemma 5. The volume of U satisfies the inequality

1 1 n+1
(44) (P, ek
— Dy nln
where
det(S™ dsavsiis @ s
(45) Dy = inf{ et L LTI 0}.
H%’

Proof: We apply the Brascamp-Lieb inequality [BL] (see also [Bar]) in the spirit of
K. Ball’s proof of the fact that among all convex bodies having the Euclidean unit
ball as their ellipsoid of maximal volume, the regular simplex has maximal volume

[Ba].



For each j =1,...,m, define f; : R — [0,00) by f;(t) = e™"x[0,00)(t), and set
(46) H (i, 2%, @ e R,

The Brascamp-Lieb inequality gives

47 L ¢D—H</ ):%

As in [Ba], writing z = (y,r) € R” x R, we see that F'(z) = 0if r < 0. When r > 0,
we have F'(x) # 0 precisely when y € (r/n)U, and then, taking into account the
facts that >~ Aju; = o and Y d; = n + 1, we see that F' is independent of y and
equal to

(48) F(z) = exp(—r(n+1)/n).
It follows from (47) that

nln

(49) J_ /exp n+1)/n)(£)n|U|dr:|U|m.

Combining the two lemmata, we get

50 — < .
(50) |L| = /DDy

Observe that u;, ; and d; satisfy (4;,9;) =1,j=1,...,m, and

Id = Zdjﬂj ®1~)j.
j=1

Thus, in order to finish the proof of Theorem 3 it suffices to prove the following
proposition.

Proposition 3. Let A\y,... . Ay > 0, ug,... Uy v1,...,0, be vectors satisfying
(uj,vj)y=1forall j=1,...m and

(51) Id:Z/\jUj(@vj.
j=1

Then Dy Dy > 1.

Proof: For I C{1,2,...,m} we use the notation A\ = [[;c; Ai, ar = [[;¢; @i, and
for I’s with cardinality n, we write Uy = det (u; : ¢ € I) and Vi = det (v; : ¢ € ).
Moreover, we write (AU)y for det (A\ju; 2 ¢ € I).

10



Applying the Cauchy-Binet formula we have

(52) det i/\jajuj ®v; | = Z Oq(\/XU)[(\/XV)]

|I|=n
1C{1,2,...,m}

But S (VAU)r(VAV)r = det (Z;n:l Ajuj ® uj) = det/ = 1. Hence, applying the

arithmetic-geometric means inequality to the right side of (52) we deduce that

Z aI(\/XU)I(\/XV)] > H a(IﬁU)I(\/XV)I

|[I]|=n |T|=n
I1C{1,2,...,m} Cc{1,2,...,m}

ﬁ rer 11n (VAU (VAV);

Observe now that the exponent of a; in the above product equals A;:

ST OAUNNVAV) = D (VAUVAV) =D (VAU (VAV),

jE€I, |I|=n | I|=n J€I, |I|=n

Z/\jUj@Uj —det([—/\juj®vj)
j=1
= A]’

since (u;,v;) = 1. Thus, we have shown that

Y
Il
-

v
—:
K)Qk‘y

(53) det Z/\jaju]' @ vj

Now, for any v;, ¢; > 0 we have

Z/\j’yju]' ®Uj det Z/\j(Sjvj ®vj
j=1 j

= 2 VAT X eV
| I|=n | I|=n
By the Cauchy-Schwarz inequality this i1s greater than

2

Z A0 Ur vy

| I|=n

11



Apply now (53) to get
det (Z}n:l Ajyi; © Uj) det (Z}n:l Ajdjv; @ vj) -
m A m Aj -
Hj:l R Hj:l J;

completing the proof. a

bl

Remark. A different argument shows that vr(K, S,) < ¢y/n for every convex body
K in R" where ¢ > 0 is an absolute constant.

Without loss of generality we may assume that K is of maximal volume in D, .
Then, John’s theorem gives us A1,..., Ay > 0 and contact points uq, ... uy, of K
and D,, such that

Id = Z/\ju]' ®u]’.

j=1

The Dvoretzky-Rogers lemma [DR] shows that we can choose w1, . .., u, among the
u;’s so that

a1\ 2
|Pspan{u5:s<i}J-ui| Z <&) s 122,,77,

n

Therefore, the simplex S = co{o,u1,...,u,} has volume

1 (n—it1\'? 1

and S C K C D,. It follows that

) |Dn| 1/n (n')l/Zn\/ﬁﬁ
SIS (|5|) S GO

< evn.

This supports the question if vr(K, L) is always bounded by cv/n.
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