
ESI The Erwin Schr�odinger International Boltzmanngasse 9Institute for Mathematical Physics A-1090 Wien, Austria
A Uni�ed Conformal Field Theory Descriptionof Paired Quantum Hall StatesA. CappelliL. S. GeorgievI. T. Todorov

Vienna, Preprint ESI 621 (1998) October 15, 1998Supported by Federal Ministry of Science and Transport, AustriaAvailable via http://www.esi.ac.at



A Uni�ed Conformal Field Theory Descriptionof Paired Quantum Hall StatesA. Cappelli �I.N.F.N. and Dipartimento di Fisica,Largo E. Fermi 2, I-50125 Firenze, ItalyL. S. Georgiev y I. T. Todorov zE. Schr�odinger Inst. for Mathematical Physics,Boltzmanngasse 9, A-1090 Wien, AustriaandInstitute for Nuclear Research and Nuclear Energy,Tsarigradsko Chaussee 72, BG-1784 So�a, BulgariaAbstractThe wave functions of the Haldane-Rezayi paired Hall state havebeen previously described by a non-unitary conformal �eld theory withcentral charge c = �2. Moreover, a relation with the c = 1 unitaryWeyl fermion has been suggested. We construct the complete unitarytheory and show that it consistently describes the edge excitations ofthe Haldane-Rezayi state. Actually, we show that the unitary (c = 1)and non-unitary (c = �2) theories are related by a local map betweenthe two sets of �elds and by a suitable change of conjugation. Theunitary theory of the Haldane-Rezayi state is found to be the sameas that of the 331 paired Hall state. Furthermore, the analysis ofmodular invariant partition functions shows that no alternative uni-tary descriptions are possible for the Haldane-Rezayi state within theclass of rational conformal �eld theories with abelian current algebra.Finally, the known c = 3=2 conformal theory of the Pfa�an state isalso obtained from the 331 theory by a reduction of degrees of freedomwhich can be physically realized in the double-layer Hall systems.Preprint ESI 621 (1998) and DFF 329/10/98, hep-th/9810105�E-mail: andrea.cappelli@�.infn.ityE-mail: lgeorg@inrne.bas.bgzE-mail: todorov@inrne.bas.bg, itodorov@esi.ac.at1



Contents1 Introduction 31.1 Review of the Haldane-Rezayi State . . . . . . . . . . . . . . . 41.2 Outline of the Paper . . . . . . . . . . . . . . . . . . . . . . . 72 The 331 Model as a Z2 Orbifold of an Orthogonal LatticeAlgebra 82.1 The (m+ 1)(m+1)(m� 1) Holomorphic Wave Function andthe Associated Charge Lattice . . . . . . . . . . . . . . . . . 82.2 Superselection Sectors: Spectrum of Charges and Dimensions;Partition Function . . . . . . . . . . . . . . . . . . . . . . . . 113 SU(2) Invariance versus Unitarity in the Haldane-RezayiModel:the Mapping from c = �2 to c = 1 143.1 SU(2) Covariant OPE of  �(z) �(w) . . . . . . . . . . . . . . 143.2 Other Choices of the Stress Tensor . . . . . . . . . . . . . . . 153.3 Operator Correspondence between the c = �2 and c = 1 The-ories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Admissible c = 2 Descriptions of the � = 12 Double LayerStates 215 Gauge Reductions 235.1 The Pfa�an State as a Projection of the 331 State in theLow-Barrier Limit . . . . . . . . . . . . . . . . . . . . . . . . 235.2 Maximally Symmetric c = 3 Description of Paired Hall States 266 Conclusions 29Appendix A Charge Lattices, Cyclic Groups and Orbifolds 31Appendix B Conformal OPE for the HRAnticommuting Fields 35Appendix C Modular Invariants Partition Functions Involvingthe Chiral Algebra A(�8;4) 37
2



1 IntroductionThe so-called 331 [1], Pfa�an [2] and Haldane-Rezayi (HR) [3] � = 1=2 (5=2)quantum Hall (QH) states [4] have been analysed extensively in the recentliterature. They are called paired Hall states [5] because they contain twokinds of electrons, carrying spin or layer index, which �rst bind in pairs andthen form incompressible 
uids [6].One would like to identify the Conformal Field Theories (CFT) [7] corre-sponding to these states, which describe their low-energy edge excitations [8].This requires some guesswork and ingenuity for reconstructing the completeHilbert space from the knowledge of the ground-state wave function and pos-sibly some quasi-particle states. There are well-established procedures whichhave been used for the spin-polarized single-layer Hall states [8, 4], but theydo not seem good enough for the paired states. In particular, the CFT pro-posed for the HR state is puzzling for the lack of unitarity [9, 10, 11], orlocality [12, 13].In this paper, we present a uni�ed description of the paired Hall stateswhich uses the same conformal �elds (or a subset of them) in all three cases.We show that an unitary description of the HR state is possible and that thisis given by the same CFT as that of the 331 state; furthermore, we interpretthe Pfa�an as a projection of the 331 state, which can be obtained in thelimit of low potential barrier between the two layers [5].This common CFT description is rather useful for the physical interpreta-tion; moreover, it allows the discussion of the W1+1 symmetry of the pairedstates. This symmetry characterizes the incompressible Hall 
uids [14], andis a de�nitive building criterion for the CFTs of the hierarchical single-layerstates [15]. We show that the W1+1 symmetry also characterizes the 331and HR double-layer states, and that it is broken at the quantum level inthe Pfa�an state.In view of the controversial literature on this subject, it is important tostate the hypotheses made in this work: we consider rational conformal �eldtheories (RCFT), whose completeness can be checked by computing theirmodular invariant partition functions [16]; we require the unitarity of thetheories, because they describe physical excitations propagating at the edge.Moreover, we consider, whenever possible, theories with a (multi-component)abelian current algebra, which possess the W1+1 symmetry and can beextended to RCFTs [17] (henceforth called lattice RCFTs).Therefore, in this paper we speci�cally prove that there is only one c = 2unitary lattice RCFT suitable for the HR state { that of the 331 state.In particular, the HR ground state appears as an excited state in the 331CFT. This result is at variance with the common opinion that these Hall3



states identify two independent universality classes, with di�erent numericalenergy spectrum [3, 18] and topological order [3, 19]. Our result may implythat this is not completely correct, or, alternatively, that the HR state is notdescribed by a lattice RCFT; in either case, the unitarity problem is clearedup. Finally, the Pfa�an state is consistently described in terms of the same331 conformal �elds.1.1 Review of the Haldane-Rezayi StateHere we review the basic characteristics of the model and its available the-oretical treatments. The wave function 	 of a paired QH system of 2Nelectrons is written as a product of the usual Gaussian factor and an ana-lytic function of the electron coordinates zi and wi of the �rst and the secondlayer, respectively (alternatively, of the up and down spin components):	(zi; wi; �zi; �wi) = �(z1; w1; : : : zN ; wN ) exp �14Xi (jzij2 + jwij2)!: (1.1)In the framework developed in [2][9] (see also earlier work cited there), theanalytic factor � is interpreted as the CFT correlation function:h�N j�1(z1) � � ��1(zN)�2(w1) � � � �2(wN)j0i, where �i is a chiral conformal �eldof e�ective charge qi (i = 1; 2) representing the electrons of layer i, and h�N jis the out state carrying a compensating charge N(q1+q2). The holomorphicwave function of the HR state [3] is written as the product,�HR(zi;wi) = �m(zi;wi)�ds(zi;wi) ; (1.2)of a Laughlin type wave-function [6],�m(zi;wi) =Yi<j (zijwij)mYi;j (zi�wj)m; m = 2; 4; : : : ; zij = zi� zj ; (1.3)and a neutral d-wave spin-singlet part, �ds, that is skew-symmetric in (z1; : : : ; zN)and in (w1; : : : ; wN ), separately:�ds(zi;wi) = (�1)N(N�1)2 det� 1(zi � wj)2� : (1.4)This expression can be viewed, following Ref.[9], as the 2N -point vacuumexpectation value of a pair of Fermi �elds  �(z) ( � 12 (z), the subscript of  referring, alternatively to spin projection or layer):�ds(zi;wi) = h0j +(z1) � � � +(zN)  �(w1) � � � �(wN )j0i : (1.5)4



Equation (1.4) would then follow (in a local �eld theory with energy boundedfrom below): (i) from the \quasi-free" anti-commutation relations [9, 10]:[ �(z);  �(w)]+ = �"���0(z � w) ; "�� = �"�� ; "+� = 1 ; (1.6)where �(z�w) is the Dirac delta function for holomorphic test functions; and(ii) from the knowledge of the 2-point functions (which restricts the choiceof vacuum). We adopt (1.6) in what follows as a phenomenological input.The knowledge of the 2N -point function (1.5) allows to determine theoperator content of (the vacuum sector of) the CFT generated by the pair �(z). To do that we write the determinant in Eq. (1.4) in the formdet� 1(zi � wj)2� = det� 1zi � wj�perm� 1zi � wj� ;det� 1zi �wj� = (�1)N(N�1)=2 Qi<j zijwijQi;j (zi � wj) ;here the permanent is the symmetrized product of (zi � wj)�1 which has anon-zero limitperm� 1zi � wj� = X�2SN NYi=1 1zi �w�(i) ! N !(z � w)N ;for zi ! z, wj ! w, i; j = 1; : : : ; N . These properties of the 2N -point func-tion (1.4) imply that products of  �(z) give rise to a sequence of composite�elds V�s (V� 12 (z) =  �(z)) of dimension �(2s) determined inductively bythe operator-product expansion (OPE): �(z1)V�s(z2) � z2s12 V�s� 12 (z2) ; (2s = 0; 1; 2; : : :) ; (1.7)implying,�(�2s�1)��(�2s)��(�1) = 2s ) �(�2s) = s (2s+ 2�(�1) � 1) :(1.8)Eq. (1.7) allows to express V�s as (normal) products of  � and their deriva-tives: V�s(z) = 2sYi=1 : 1(2s � i)!@2s�i �(z): : (1.9)The values �(�1) depend on the choice of the stress energy tensor; however,according to (1.4) their sum is �xed:�(1) + �(�1) = 2 : (1.10)5



In Ref. [9], it was further assumed that  � are primary conformal �elds.This implies that these Fermi �elds have conformal dimension one in violationof the spin-statistics relation for a unitary CFT. Indeed, these �elds canbe found [9, 10, 11] in the non-unitary extension of the Virasoro minimalconformal models [7] with central charge cp = 1� 6=(p(p+1)), for the valuep = 1, -i.e., c = �2. The non-unitary stress tensor T (z) = : � +: is theninvariant under the SU(2)-spin group and so are the OPEs of any number of � factors (see [9] as well as Section 3 and Appendix B below). It followsthat for each 2s = 0; 1; 2; : : :, the composite operators V�s (1.9) are the lowestand highest spin projection components of a (2s + 1)-dimensional multipletof �elds �sm(z), m = �s;�s + 1; : : : ; s, of the same dimension (1.8) (for�(1) = 1): �(�2s) = s(2s+ 1) (2s = 0; 1; 2; : : :): (1.11)This c = �2 CFT is known in the literature as the �-� \ghost system"[20], which is de�ned by the pair of canonical Fermi �elds,[�(z); �(w)]+ = �(z � w) ;[�(z); �(w)]+ = 0 = [�(z); �(w)]+ ;h0j�(z)�(w)j0i = 1z �w ; (1.12)of conformal dimensions �� = 0; �� = 1. Their normal product de�nes thecurrent j : �(z)�(w) = 1z �w + :�(z)�(w): ; (1.13)j(z) = :�(z)�(z): =Xn2Zjnz�n�1 : (1.14)We can set:  �(z) = �0(z) ;  +(z) = �(z) : (1.15)Note that the zero mode j0 acts as (minus twice) the spin projection operatorS3, which counts the di�erence between spin up and spin down components �: [ �(z); j0] � [ �(z); 2S3] = � �(z), with ~S = (S1; S2; S3) standing forthe spin operator. Moreover, the stress tensor T (z) = :�0(z)�(z): assignsdimension one to  �, and the central charge is c = �2.According to the Kac determinant formula, the conformal dimensions ofthe c = �2 primary �elds are given by [7]:�l = l2 � 18 � �18 ; l = 0; 1; 2; : : : (1.16)6



In particular, for odd l, l = 4s+1 (2s = 0; 1; 2; : : :), we recover the spin multi-plets of integer dimensions given by (1.11). The state of lowest dimension inthis theory is the disorder state [9] with �0 = �1=8, which is a spin singlet;it gives rise to aZ2 twisted sector in which the �eld  � creates double-valuedquasi-particles with dimensions �2n = (n2=2) � 1=8. In fact, it follows from(1.16) that:  �(z)j�0i � z� 12 j�2i ; ��2 ��0 = 12� : (1.17)The appearance of negative norm states, like T (0)j0i, and a negative con-formal dimension (�0 = �18) is certainly untenable from a physical point ofview. This non-unitarity problem has been recognized and various solutionshave been proposed in Refs. [10, 11, 12, 13].In this paper, we choose to relax the assumption that the �elds  � areprimary, while keeping, at the same time, the property (1.17) for the quasi-particle excitations. We obtain a unitary theory of the HR model whichis based on the correspondence between the Hilbert space and the �elds ofthe c = �2 CFT and those of the c = 1 Weyl fermion theory (see alsoRefs.[11, 12, 13]); we keep the expression (1.2-1.4) of the HR wave functionwhile preserving both conformal invariance and modular invariance [16, 21].Moreover, we can de�ne a hermitean stress tensor which, however, is notSU(2) invariant.1.2 Outline of the PaperIn Section 2, we �rst introduce a U(1) � U(1) current algebra CFT, whoseorthogonal lattice contains a Weyl fermion �eld and a Laughlin boson. Weuse it to describe the 331 CFT as a Z2 orbifold (in the sense of [17]), whose(Z2-even) states possess charge and fermion number coupled by the parity(\projection") rule de�ned in Ref.[10]. The modular invariant partition func-tion for the 331 RCFT is also obtained in agreement with this rule.In Section 3, we present the c = �2 to c = 1 correspondence for theHR theory: we �rst discuss the improvement of the c = �2 stress tensorwhich leads to a unitary theory and then map the �elds and the charactersof the current-algebra representations. Furthermore, we �nd that the c = �2partition function of the HR model proposed in Ref. [10] is mapped into the331 one; this shows that the CFT descriptions of the two models coincide,once unitarity is enforced; moreover, we �nd that the parity rule is the samein the two theories.In Section 4, we classify all possible U(1)�U(1) lattice current algebras,which can be made with the excitations of the 331 and HR theories (assuming7



the standard charge-statistics relation for the observable electron-like excita-tions). We �nd that there is a unique modular invariant partition function:thus, there is only one possible unitary lattice RCFT which can describe theedge excitations of the HR state, which is the same as that of the 331 state.In Section 5, we show that the Pfa�an state can be obtained from the331 model by a generalized gauge reduction: namely, its c = 3=2 CFT of aMajorana fermion and a Laughlin boson [2] is reproduced by projecting outthe imaginary part of the Weyl fermion of the 331 CFT. The correspondingreduction at the level of partition functions shows that the Pfa�an theoryinherits the parity rule of the two other paired Hall states. This gaugereduction breaks the W1+1 symmetry present in the 331 theory and givesrise to non-Abelian statistics for the quasi-particles. In Section 5.2, a similarreduction allows to relate the maximally-symmetric SU(2) � SU(2) c = 3lattice RCFT of Ref.[22] with the 331 CFT.In the Conclusions (Section 6), we discuss some problems left open byour analysis, most notably the possible ways to distinguish between the 331and the HR states. The Appendices contain more technical discussions:Appendix A sums up some basic facts about charge lattices and orbifoldsof �nite cyclic groups needed in the text. In Appendix B we prove that theSU(2) invariant OPE of  �(z) �(w) is independent of the choice of the stresstensor and of the dimensions of these �elds. Finally, Appendix C provides acomplete list of modular invariants of the orthogonal lattice algebra (Section2) underlying both the 331 and the HR states. This is used in Section 4 toshow that there is a unique lattice RCFT for the 331 and HR states.2 The 331 Model as a Z2 Orbifold of an Or-thogonal Lattice Algebra2.1 The (m+1)(m+1)(m� 1) Holomorphic Wave Func-tion and the Associated Charge LatticeWe shall be dealing in this section with a natural generalization of the 331model corresponding to the �lling fraction � = 1=m, m even, and to theholomorphic wave function:�(m+1)(m+1)(m�1) (zi;wi) = Y1�i<j�N (zijwij)m+1Yi;j (zi � wj)m�1= (�1)N(N�1)=2�m (zi;wi) det� 1zi � wj� ;(2.1)8



where �m is the U(1) factor (1.3). This ground state wave function is re-produced in a c = 2 RCFT whose chiral algebra A(L) is an extension of thedu(1)�du(1) current algebra by two pairs of oppositely charged �elds of chargevectors q1 and q2 spanning a two-dimensional lattice L. The Gram matrixof L isGL = �(qijqj)� = �m+ 1 m� 1m� 1 m+ 1� ; (m = 2; 4; : : :) : (2.2)The resulting RCFT, called the (m + 1)(m + 1)(m � 1) model, can be con-structed from the following observation: we can embed the lattice L in a�ner, orthogonal one, such that the corresponding conformal theory is thedirect product of a Weyl fermion and a Laughlin anyon with � = 1=m (Fig.1). This basis will give the natural description for the quasi-particle excita-tions of all the paired Hall states, which will only di�er in the treatment ofthe neutral fermionic factor.Figure 1: The original lattice L (encircled dots) as a sub-lattice of the or-thogonal �m;1 (dots)
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Proposition 2.1 (a) The lattice L is a sub-lattice of index two of the (inte-gral) orthogonal lattice �m;1 =Ze1�Ze2 with Gram matrix:Gm;1 = �(eijej)� = �m 00 1� : (2.3)9



(b) We associate with the lattice L a du(1)
du(1) chiral current algebra Am;1,by letting the vectors �e1 correspond to a pair of oppositely charged Bose�elds Eg(z) , g = �pm, of dimension m=2 2 N, and �e2 to a pair ofconjugate Weyl fermions ( (z);  �(z)) of dimension 1=2. Then, the algebraAm;1 admits an involutive inner automorphism � de�ned on the generating�elds by:� [Eg(z)] = �Eg(z) ; � � (�)(z)� = � (�)(z) ; g = �pm ; (2.4)while A(L) appears as the sub-algebra of Z2 invariant elements of Am;1 (the�xed points of �). It is generated by the products of commuting �elds: 1(z) =  �(z)E�pm(z) ;  2(z) =  (z)E�pm(z) : (2.5)Proof. (a) The lattice L = Zq1 +Zq2 is identi�ed as a sub-lattice of�m;1 by setting, q1 = e1 + e2; q2 = e1 � e2 : (2.6)Note that detGL = 4m = 22 detGm;1. (This is a necessary condition for thelattice L to be a sub-lattice of index two of �m;1.)(b) The vertex operator Eg(z) is constructed in the standard fashion fromthe electric current J(z) (see Appendix A) and satis�es the OPE:J(z1)Eg(z2) � gz12Eg(z2) , [J(z1); Eg(z2)] = g�(z12)Eg(z2) : (2.7)The second du(1) current (commuting with J) is the counterpart of the \spincurrent" (1.14) in the unitary c = 2 theory:j(z) = : �(z) (z): ; [ (�)(z1); Eg(z2)] = 0 = [j(z1); J(z2)] ; (2.8)with both j and J normalized by h0jj(z1)j(z2)j0i = h0jJ(z1)J(z2)j0i = z�212 .The automorphism �[A], A 2 Am;1 is de�ned by:� [A] = ei�J10Ae�i�J10 ; J10 = 1pmJ0 + j0 ; (2.9)(note that �[�[A]] = A for all A 2 Am;1). The property (2.4) is implied by(2.9) (in view of (2.7) and (2.8)). The invariance of (2.5) is then obvious.Remark 2.1 This provides a simple example of the Z2 orbifold con-struction [17, 23]; in the present case, the orbifold actually corresponds to amanifold (with no singular points) because both du(1) currents are invariantunder the parity operation. 10



2.2 Superselection Sectors: Spectrum of Charges andDimensions; Partition FunctionWe proceed to studying the positive-energy representations of A(L) whichde�ne the superselection sectors for our RCFT and are equipped with thefusion rules corresponding to the addition of charges.Proposition 2.2 (a) The superselection sectors H� of the A(L) theory arelabelled by the elements of the cyclic group,L�=L 'Z4m ; (jL�=Lj = detGL = 4m) ; (2.10)where L� is the lattice dual to L:L� =Zq�1+Zq�2; (qijq�j) = �ij ; GL� = 14m �m+ 1 1 �m1 �m m+ 1� ; (2.11)while L�=L = f�q�1 + L;� mod 4mg.(b) The (visible-in the terminology of ref. [22]) electric charge vector Q,whose square gives the �lling fraction of the model, belongs to the orthogonalsub-lattice ��m;1 = ��m � ��1 of L�:Q = q�1 + q�2 = e�1; (eije�j ) = �ij) (Qjqi) = 1 ; jQj2 = � = 1m : (2.12)The cyclic group (2.10) is generated by either of the four cosets �q�i + L.(c) The characters ��(�; �;m) of the coset (�) is expressed in terms ofsums of products of c = 1 lattice characters:��(�; �;m) = e� �m (Im �)2Im� ch�L(�; �); (2.13)ch�L(�; �) � trH� �e2�i[�(L0�1=12)+�J0=pm]�= K�(� ; 4)K�(�; 2�; 4m) +K�+2(� ; 4)K�+2m(�; 2�; 4m) ;(2.14)where Kl(�; �;M) is given by,Kl(�; �;M) = 1�(� )Xn2ZqM2 (n+ lM )2e2�i�(n+ lM ) ; (2.15a)q = e2�i� ; �(� ) = q 124 1Yn=1(1 � qn); (2.15b)and we used the notation Kl(� ;M) = Kl(�; 0;M).11



Remark 2.2. The non-analytic prefactor multiplying the character ch�Lcorresponds to a constant term added to the Hamiltonian and ensures theinvariance under the \spectral 
ow" [16, 21] of the resulting partition function(see Eq. (2.21b) below).Sketch of the proof. Statement (a) is known (see Appendix A for a briefreview of background material). (b) One can choose in each class a repre-sentative q� such that the absolute value of the electric charge j(Qjq�)j andits conformal dimension � = jq�j2=2 are minimal. In Table 1, we list therepresentatives of each coset (�) = �q�1 + L along with the correspondingelectric charge and conformal dimension.The periodicity condition:K�+M (�; �;M) = K�(�; �;M) ; (2.16)con�rms that there are precisely 4m di�erent characters �� (2.14). We alsonote the symmetry property:K��(�;��;M) = K�(�; �;M) ; (2.17)which clari�es, in particular, the observation that the cosets (��) in Table 1give rise to the same conformal dimension.Table 1: (m+ 1)(m+ 1)(m� 1) superselection sectorscoset representative charge dimension(�) = �q�1 + L q� (Qjq�) � = 12 jq�j2(0) 0 0 0(�1) �q�1 � 12m m+18m�(2m� 1) �q�2 � 12m m+18m� � � � � � � � � � � �(�m) �(�1)m=2 12e1 �(�1)m=2 12 m8(m� 1) 12 �� (m� 1)Q��(�1)m=2 12e2	 �m�14 m2�m+18m� � � � � � � � � � � �(2m) e2 0 12The partition function of any RCFT is given by the quadratic form [7]:Z =X�;�� N��� �� ��� ;12



where the chiral (resp. antichiral) factors �(��) pertain to the outer (inner)edge of the annular quantum Hall sample [16]. The integer coe�cients N���are obtained by the conditions of modular invariance of Z which are speci�cfor the quantum Hall systems. They have been formulated in Ref.[16] andanalyzed for lattice theories in Ref.[21]; Z should be invariant under thetransformations S and T 2 which generate a subgroup of SL(2;Z), as well asunder the U and V transformations speci�ed below.The SL(2,Z) transformation properties of K�,T : K�(� + 1; �;M) = ei�(�2M � 112 )K�(�; �;M) ;S : K�(�1� ; �� ;M) = 1pM X�modM e�2�i��MK�(�; �;M) ; (2.18)imply the following transformations for ��:T 2 : ��(� + 2; �) = ei�(�2m+12m )� 13��(�; �) ; (2.19a)S : ��(�1� ; �� ) = ei��2m� X�modM S����(�; �) ;S�� = 12pme�i�m+12m �� : (2.19b)The diagonal partition function:Z(m+1)(m+1)(m�1) = 2mX�=1�2m j��(�; �)j2 (2.20)is then invariant under (2.19) as well as under the �-shift U and the spectral
ow V : U : ��(�; �) ! ��(�; � + 1) = ei� �m��(�; �) ; (2.21a)V : ��(�; �) ! ��(�; � + � ) = e�2�im Re(�+ �2 )��+2m+2(�; �): (2.21b)This diagonal partition function has the standard form for a lattice RCFTdiscussed at length in Refs.[16][21].Let us brie
y recall here the physical meaning of these modular invari-ance conditions [16]: the T 2 (resp. U) conditions require that the observ-able electrons have half-integer spin (resp. integer charge); S (resp. V ) areself-consistency conditions for the completeness of the excitations under thechange of temperature (resp. electric potential).In the following, we shall consider the modular invariance of the partitionfunction as part of the building criteria; this leads to the following postulate:13



P1.The partition function of the RCFT describing a fractional QH systemshould be invariant under (2.19) and (2.21).In the following, we are mostly interested in the 331 theory, correspondingto m = 2; in Section 4 and Appendix C, we prove that the partition function(2.20) is the unique solution to the modular invariance conditions P1.An explicit expression of the 331 partition function (2.20), m = 2, isuseful for the following discussion:Z331 = 1Xr=0njK0(� ; 4)K2r(�; 2�; 8) +K2(� ; 4)K2r+4(�; 2�; 8)j2+jK2(� ; 4)K2r(�; 2�; 8) +K0(� ; 4)K2r+4(�; 2�; 8)j2+jK1(� ; 4)K2r+1(�; 2�; 8) +K�1(� ; 4)K2r�3(�; 2�; 8)j2+jK�1(� ; 4)K2r+1(�; 2�; 8) +K1(� ; 4)K2r�3(�; 2�; 8)j2o ;(2.22)(we used the periodicity condition (2.16)). This expression coincides, termby term, with that obtained in Ref. [10], for � = 0 (see their Eq. (4.20)), bytaking into account the symmetry (2.17) for the last two terms.3 SU(2) Invariance versus Unitarity in theHaldane-Rezayi Model: the Mapping fromc = �2 to c = 13.1 SU(2) Covariant OPE of  �(z) �(w)The four-point function of the fermionic �eld  �, � = �1=2, appearing inthe HR wave function (1.4) and (1.5) can be written in a manifestly SU(2)invariant form:h0j �1(z1) �2(z2) �3(z3) �4(z4)j0i = "�1�2"�3�4z212z234 + "�1�4"�2�3z214z223 � "�1�3"�2�4z213z224 :(3.1)(Note that it is only non-vanishing for �1+�2+�3+�4 = 0 and then the righthand side of (3.1) involves two non-zero terms.) It follows that the OPE oftwo  �elds can also be written in an SU(2) covariant form (see Appendix B).We stress that this OPE just follows from the expression for the 2N -pointcorrelation function: it does not use the Virasoro properties of the �elds;in fact, it does not require the knowledge of the stress energy tensor (andadmits di�erent CFT implementations). Keeping the �rst three terms in the14



small distance expansion we can write (using (B.2) and (B.14)): �(z) �(w) = "��� 1(z �w)2 � T (w)� z � w2 T 0(w)�� (z � w)V�+�(w) +O((z � w)2) ; (3.2)where T and V are composite �elds of  �,T (z) = : �(z) +(z): ;V�+�(z) = 12:f �(z)@ �(z)� (@ �(z)) �(z)g:; (3.3)(cf. (1.9)). They satisfy:h0j �(z1) �(z2)T (z3)j0i = "��z213z223 ; h0jT (z1)T (z2)j0i = � 1z412 ; (3.4)h0j �(z1) �(z2)Va(z3)j0i = � z12z313z323G�+�;a ; h0jVa(z1)Vb(z2)j0i = G0abz612 ;(3.5)where the non-zero elements of Gab (for a; b = 0;�1) are G00 = �1 andG1�1 = G�11 = 2. A salient feature of this OPE is the absence of thecurrent j (1.14) from the right hand side of (3.2); however, it will reenter ourdiscussion when we impose unitarity.3.2 Other Choices of the Stress TensorIf we now assume that  �(z) are primary �elds (of dimension 1), we shouldidentify T with the stress tensor of the theory; then, we arrive, in agreementwith [9], at a non-unitary conformal model with c = �2 (indeed, one identi�esthe coe�cient �1 in front of T in the right hand side of (3.2) with 2�=c,yielding c = �2 for � = �(�1) = 1 [7]).One can, however, preserve conformal invariance without allowing fornegative norm squares and negative dimensions. We remark that the canon-ical anticommutation relations (1.12) and the two-point function (1.13,1.14)are su�cient for determining the HR wave function (1.4). These relationsgive room to a family of stress tensors [20]:T�(z) = (1��):�0(z)�(z):��:�(z)�0(z): = 12 �:j2(z): + (1� 2�)j 0(z)� ; (3.6)j(z) = :�(z)�(z): ; (3.7)15



where T0 � T . The dimensions of �(z) = �(z; �) and �(z) = �(z; 1 � �)become � and (1 � �), respectively. The current anomaly and the Virasorocentral charge depend on �:T�(z1)j(z2) � @@z2 [z�112 j(z2)] + (2�� 1)z�312 ; (3.8a)c� = 1 � 3(2� � 1)2 : (3.8b)Clearly,  � = �0 (1.15) is only primary for � = 0, i.e., c = �2, which accountsfor this choice in [9, 10, 11]).Here we remark that there is a unique unitary point, � = 1=2, c = 1,in which the current is primary, and we can construct a model for the HRstate satisfying all desiderata listed in the Introduction. In this case, we canidentify �-� with a pair of conjugate Weyl spinors:�(z; 12) �  (z) ; �(z; 12) �  �(z) ; (3.9a)furthermore, the stress tensor (3.6) takes the canonical form,T (z) = T 12 (z) = 12 :� �0(z) (z)�  �(z) 0(z)�:: (3.9b)The identi�cation (3.9a) implies a change of hermitean conjugation, which isonly possible at � = 1=2, where �; � have the same dimension. For � 6= 1=2,we had instead �� = � and �� = �. Note that the current j(z) (3.7) is onlyhermitean with respect to the new conjugation rule (3.9a).The SU(2) invariant tensor T (z) appearing in the OPE (3.2) becomesnow non-hermitean: in terms of modes, setting T (z) = Pn2ZLnz�n�2 andT (z) = Pn2ZLnz�n�2, we have:Ln = Ln�n+ 12 jn; L�n = L�n�nj�n ; L�n = L�n ; j�n = j�n : (3.10)The tensor T (z) is an SU(2) singlet, while the unitary one, T (z), is not,because j0 / S3 as discussed in Section 1.2.Remark 3.1. The inner products of du(1) ground states jc; �i, where � isthe eigenvalue of j0, and the behaviour of jn under conjugation depend on c.Indeed, the properties of the vacuum ket j � 2; 0i and of its bra counterpartare dictated by the expression (1.12) for the �-� two-point function and themode expansions:�(z) = Xn �nz�n ; �(w) =Xn �nw�n�1 ;) �0�0j � 2; 0i = j � 2; 0i ; �0j � 2; 0i = 0 : (3.11)16



Furthermore, for c = �2, the independent hermiticity of � and � implies thefollowing conjugation properties of the current:jn = Xm��n ��m�m+n�Xm�1 ��m�m+n ) j�n = �n;0�j�n ; (c = �2): (3.12)As a corollary, there are di�erent bra-ket couplings in the two cases:h�2; �j � 2; � i = �1�+� ; h1; �j1; � i = ��;� : (3.13)In particular, the bra counterpart of the ket vacuum j � 2; 0i is h�2; 1j bothbeing annihilated by the c = �2 Virasoro energyL0 = 12j0(j0 � 1) + 1Xn=1 j�njn (= L�0) : (3.14)It is the presence of a second conjugation for c = 1 (which, incidently, doesnot change the hermiticity of L0) which renders the c = 1 model unitary. Itis remarkable that this c dependence of inner products and conjugation doesnot a�ect the correlation functions of charged �elds.Remark 3.2. Lee and Wen [12] (building on a development in [10])propose a di�erent way out of the unitarity problem. They abandon the CFTcalculations and give instead an explicit construction of the Fermi �elds in(1.5):  "(z) = 1Xn=1pn(cn;"z�n�1 + c�n;#zn�1) ; (3.15) #(z) = 1Xn=1pn(cn;#z�n�1 � c�n;"zn�1) ;where cn� satisfy canonical anticommutation relations, which imply (1.6) (for � =  "#). The Hamiltonian of the system is de�ned by the manifestly SU(2)invariant expression: H = 1Xn=1 n �c�n;"cn;" + c�n;#cn;#� ; (3.16)(but no attempt is made to introduce a hermitean stress energy tensor).H and  � are found to satisfy the standard commutation relations for adimension 1 �eld: [H; �(z)] = (z ddz + 1) �(z). (Incidently, the expression(3.15) for a pair of Fermi �elds of integer dimension is a special case of a17



procedure proposed in Ref. [24] to circumvent the spin-statistics theorem inany number of space-time dimensions.)The �elds  � (3.15) - much like ours, (1.15)(3.9)- are not conjugate toeach other. The SU(2) symmetry, however, has a more fundamental sta-tus in [12]: the Hamiltonian (3.16) is SU(2) invariant, the �elds  " and  #(3.15) have the same dimension 1. What we regard, on the other hand, asa shortcoming of this model displayed is its non-locality whenever the �eldshermitean conjugate to (3.15) are included; indeed, while:[ "(z1);  #(z2)]+ = 1Xn=1 n(zn�11 z�n�12 � z�n�11 zn�12 ) = �0(z12) ;one has:[ "(z1);  �"(z2)]+ = 1Xn=1 n(zn�11 z�n�12 + z�n�11 zn�12 ) = 1z212 + 1z221 :3.3 Operator Correspondence between the c = �2 andc = 1 TheoriesWe relate the c = �2 and the c = 1 models by identifying their du(1) currents.Noting that Eq. (3.6) expresses, for � = 0 and 1=2, the corresponding stressenergy tensors T and T in terms of j, we consider the du(1) extension ofthe c = �2 Virasoro algebra Vir(-2) and compare it with the correspondingknown du(1) extension at c = 1. Next, the Vir(-2) primary �eld  �(z) = �0(z)satis�es [j(z); �0(w)] = �(w) @@w �(z � w); hence, it isn't primary with respectto the current algebra. As a result, it is not primary with respect to Vir(1)either. On the other hand, the du(1)- primary �elds for c = �2 are also du(1)primary for c = 1.Proposition 3.1 Let �� be a Vir(-2) primary �eld of j0-\charge" � anddimension �(�2)� . Then it is du(1)- and, by implication, Vir(1)-primary i�the dimension and charge are related by:�(�2)� = 12�(� � 1) ; (3.17)moreover, �� satis�es the Knizhnik{Zamolodchikov equation [7],ddz �� = :j��: � 1Xn=0(j�n�1zn�� + ��jnz�n�1) : (3.18)18



The Vir(1) dimension, on the other hand, is symmetric under charge conju-gation: �(1)� = 12�2 : (3.19)The proof uses standard current algebra techniques (see, e.g., [7]).We remark that the dimension (3.17) of the V ir(�2) �elds reproducesthe Kac formula �l (1.16) for l = 2� � 1; however, we �nd that only asubset of the degenerate V ir(�2) �elds (forming SU(2) multiplets) satisfythe charge-dimension relation. A complete set of du(1)-primary �elds (whichare single-valued in the vacuum sector) is given by:��(z) = �(z)0! �0(z)1! � � � �(��1)(z)(� � 1)! ;���(z) = �(z)0! �0(z)1! � � � �(��1)(z)(� � 1)! ; (3.20)Each du(1) primary ��� can be identi�ed with the lowest spin-projectionmember �s;�s of the SU(2) spin multiplet �sm , 2s = �, which was discussedin the Introduction (see the text preceding Eq.(1.11)). All other �elds �sm,m 6= �s, are still Vir(-2) primary �elds but are not du(1)-primary (and noteven quasi-primary with respect to Vir(1)).In order to construct an RCFT involving the series (3.20) we considerthe extended chiral algebra A(c; �2) for both c = �2 and c = 1, which isgenerated by the � = �2 local Bose �elds:�2(z) = �(z)�0(z) ; ��2(z) = �(z)�0(z): (3.21)It is the even part of the superalgebra S(c) of the �-� pair. The bosonicalgebraA(c; 4) has 4 irreducible representations (with energy bounded below)whose state spaces H(c)� split into in�nite direct sums of irreducible du(1)modules V�: H(c)� =Mn2ZV�+2n; � = 0;�12 ; 1: (3.22)The integer \charges", � = 0; 1, correspond to the Neveu-Schwarz sector ofS(c); � = �12 label the Ramond sector.Eqs. (3.22) and (3.10) for n = 0 allow to compute the c = �2 charactersin terms of the standard c = 1 lattice characters,�(1)� (�; �) = trH(1)� e2�if�(L0� 124 )+ 12 �j0g = K2�(�; �; 4) ; (3.23)where K�(�; �;M) is de�ned in (2.15).19



Indeed, we have, in view of (3.10),�(�2)� (�; �) = trH(�2)� qL0+ 112 e2�i� 12 j0 = q 18 trH(1)� qL0� 124 e2�i(���) 12 j0= q 18K2�(�; � � � ; 4) = K2��1(�; �; 4) : (3.24)This correspondence between the c = �2 and c = 1 dimensions �(c)� andcharacters �(c)� is summarized in Table 2; the \index shift" for the characters(Kl(� ; 4)! Kl+1(� ; 4)) is graphically represented on Fig. 2.H l2Kl�1(� ; 4) Kl(� ; 4)c = 1c = �2 HHHHHj������ -�Figure 2: Shift of the characters in the mapping between the c = �2 andc = 1 theories.Furthermore, in Ref. [10], a partition function for the c = �2 CFT hasbeen proposed (see their Eq. (4.16)). This can be written in our notation asfollows:ZHR = 1Xr=0njK0(� ; 4)K2r+1(�; 2�; 8) +K2(� ; 4)K2r�3(�; 2�; 8)j2+jK2(� ; 4)K2r+1(�; 2�; 8) +K0(� ; 4)K2r�3(�; 2�; 8)j2+jK1(� ; 4)K2r(�; 2�; 8) +K�1(� ; 4)K2r+4(�; 2�; 8)j2+jK�1(� ; 4)K2r(�; 2�; 8) +K1(� ; 4)K2r+4(�; 2�; 8)j2o :(3.25)This expression is not modular invariant; however, under the c = �2 ! 1mapping this remarkably becomes the 331 partition function (2.22) found inSection 2: ZHR ! Z331 ; for c! 1 : (3.26)This shows that the CFT for the HR state proposed in Ref. [10], once madeunitary, becomes the same as the 331 CFT. Furthermore, the parity rulescoupling neutral and charged excitations is the same in the two Hall 
uids.Actually, the above mapping amounts to a rede�nition of the energy and ofthe scalar product on the same set of states (see also Refs.[12, 13, 25]).20



Table 2: The c = �2 () c = 1 correspondencel � = l=2 �(c=�2)� = �(� � 1)=2 �(�2)� (� ) �(c=1)� = �2=2 �(1)� (� )�1 �1=2 3=8 K2(� ; 4) 1=8 K�1(� ; 4)0 0 0 K�1(� ; 4) 0 K0(� ; 4)1 1=2 �1=8 K0(� ; 4) 1=8 K1(� ; 4)2 1 0 K1(� ; 4) 1=2 K2(� ; 4)The correspondence between the dimensions in the two models is givenby: �(�2)�+ 12 + 112 = �(1)� � 124 ; (3.27)(the additive constant on each side being just �c=24). The �elds (3.20), forinteger �, satisfy (for both values of c) the charge{statistics relation:��(z)��(w) = (�1)���� (w)��(z): (3.28)4 Admissible c = 2 Descriptions of the � = 12Double Layer StatesIn the previous section we have shown that the 331 model and the (unitarized)HR model of Ref. [10] share the same partition function and therefore havethe same RCFT description. Nevertheless, we have not so far excluded thepossibility of other modular invariants made by the same basis of stateswhich could correspond to an alternative RCFT for the HR theory. Theconstruction of the 331 partition function in Section 2 shows that its chiralbuilding blocks (2.14) are expressed as sums of products ofA(�8)- andA(�4)-characters corresponding to the orthogonal lattice�8;4 = �8 � �4 � L � �2;1 � ��2;1 � L� � ��8;4: (4.1)This orthogonal basis of states allows, in principle, for other RCFTs withdi�erent couplings between neutral and charged sectors, i.e. with di�erentparity rules. We have the following result.Theorem 4.1 There are 7 distinguishable RCFT models with (c = 2 ex-tensions of the) chiral algebra A(�8;4) that have modular invariant partition21



functions (see P1 in Section 2.2). Six of them factorize into products ofneutral and charged partsZ(l)8;4(�; �) = Z(l)8 (�; �)Z4(�; 0); l = 1;�3; (4.2)Z(l)8;1(�; �) = Z(l)8 (�; �)Z1(�; 0); l = 1;�3; (4.3)Z2;4(�; �) = Z2(�; �)Z4(�; 0) ; (4.4)Z2;1(�; �) = Z2(�; �)Z1(�; 0) ; (4.5)where Z(l)M (�; �) = e� 4�M (Im�)2Im� X�modMK�(�; 2�;M)Kl�(�; 2�;M) ; (4.6)and ZM (� ; �) � Z(1)(�; �). The only non-factorizable one is Z331 (2.20).Remark 4.1. Here and in what follows we deal exclusively with physicalpartition functions in which all characters enter with non-negative integermultiplicities and the vacuum character appears with multiplicity one (cf.Refs.[16, 21]).A proof of Theorem 4.1, based on ref. [21], is given in Appendix C.We shall analyze the seven RCFT singled out by the above theorem inorder to select those which can describe the � = 1=2 state. To begin with, wenote that all 7 partition functions contain a pair of �elds with the propertiesof the electrons in the two layers, 1(z) =  �(z)E�p2(z) ;  2(w) =  (w)E�p2(w) ; (4.7)of charges qi with Gram matrix and electric charge:� (q1jq1) (q1jq2)(q2jq1) (q2jq2)� = � 3 11 3� ; (Qjqi) = 1; i = 1; 2; jQj2 = � = 12(4.8)(thus  i(z) can be identi�ed with Eqi(z) in the notation of Appendix A).This has been made explicit in Eq. (2.5) for theZ2 orbifold model of partitionfunction Z331 (2.22). Such fermion �elds also belong to the chiral algebra ofthe Z2;1 model (Eq. (4.5)) and to suitable extensions A = A(�phys) of thelattice chiral algebras A(�), � = �2:4�;4� ; �; � = 0; 1; corresponding to theother six cases. Here �phys is an integral extension of � satisfying [22]:� � �phys � ��;9qi 2 �phys; i = 1; 2; so that (Qjqi) = 1 = jqij2 mod2: (4.9)22



In fact, if we exclude the case �phys = L � �8;4 which naturally leads toZ331 for all 3 lattices (� = �8;4;�8;1;�2;4), �phys coincides with the maximalintegral extension �2;1 of �; this contains two charges e1 and e2 of lengths2 and 1, respectively (corresponding to the �elds E�p2(z) and  (�) of (4.7))and hence their sum and di�erence q1;2 = e1 � e2 satisfy (4.8).There are, however, important distinctions between the Z331 model andthe models with factorizable partition functions (4.2-4.5). The common fac-torizable extensions �2;1 of the three � involves a pair of Fermi �elds  (�) ofdimension 1=2 - smaller than the dimension 3=2 of the basic electron �elds i. Moreover, all factorizable models contradict a natural postulate aboutthe charge{statistics relation [15][22].P2. If Q is the electric charge vector (cf. (2.12)), then there exists aq0 2 �phys such that (Qjq0) = 1 and for any q 2 �phys we must have:(Qjq) = jqj2 mod2 �Q 2 ��phys� ; (4.10)(i.e., Q is an odd vector with respect to �phys in the terminology of ref. [22]).This postulate states that there exists an electron excitation in the spec-trum and that all observable charged excitations are made out of electrons.Thus the two postulates P1 and P2 together with the requirement:�8;4 � �phys � �2;1 = fZe1+Ze2g ; Q = e�1 ; (4.11)yield �phys = L (2.6), i.e., a unique lattice CFT with partition function Z331.5 Gauge Reductions5.1 The Pfa�an State as a Projection of the 331 Statein the Low-Barrier LimitThe c = 3=2 Pfa�an state [2] could describe a double-layer sample in theparticular limit in which the tunnelling amplitude between the layers is largeand the two species of electrons become indistinguishable [5]. This limitcan be described in CFT by performing the following (generalized) gaugereduction on the 331 CFT of distinguishable electrons. Splitting the Weylspinor  into real and imaginary Majorana components '1;2 ('�j (z) = 'j(z)): �(z) = 1p2 ('1(z) + i'2(z)) ;  (z) = 1p2 ('1(z)� i'2(z)) ; (5.1)we observe that the two layers just di�er by the sign of '2; thus, in the limitof low potential barrier between the two layers, the imaginary part '2 of  23



should be \gauged away". This is achieved by the usual coset construction[26], which consists �rst in decomposing the stress tensor in two parts, asfollows: TL(z) = TPf (z) + 12 :'2(z)'02(z):: (5.2)The last term is then projected out, leading to a c = 3=2 CFT. The resultingtheory can once more be viewed as aZ2 orbifold - this time the chiral algebraAPf appears as the Z2 invariant part of the tensor product algebra A(�2)
AIsing('1). The Pfa�an ground state wave function is fully antisymmetric[2]: �Pf (z1; : : : ; z2N) = h0j'1(z1)'1(z2) � � �'1(z2N)j0i�m(z1; : : : ; z2N)= Pf � 1zij��m(z1; : : : ; z2N) (5.3)where �m is the usual Laughlin factor (1.3) and the Pfa�an is,Pf � 1zij� = 12NN ! X�2S2N sgn(�) NYk=1 1z�(2k�1) � z�(2k) : (5.4)The resulting CFT exhibits some interesting features and deserves a spe-cial attention. The total antisymmetry of the wave function signals the factthat the electrons of the two layers are indeed indistinguishable. The neutralpart (5.3) of the wave function appears as the vacuum expectation value of aproduct of free Majorana fermions which generate the Neveu-Schwarz sectorof the c = 1=2 Ising model [7]. The Pfa�an model has topological order6. The resulting representation spaces H� (� = 0;�1;�2; 4) have lowestconformal weights:�0 = 0 ; ��1 = 18 ; ��2 = 14 ; �4 = 12 ; (5.5)and the same charges as the 331 model - see Table 1.The characters ch� are expressed, in parallel with (2.14), in terms ofproducts of the Ising characters �� , � = 0; 1; 2 and the characters Kl(�; 2�; 8)of the 331 CFT:ch2n(�; �) = �0(� )K2n(�; 2�; 8) + �2(� )K2n+4(�; 2�; 8) ; n = 0;�1; 2; (5.6a)�0(� )� �2 = q�1=48 1Yn=1�1 � qn� 12� ;ch�1(�; �) = �1(� ) (K�1(�; 2�; 8) +K�3(�; 2�; 8)) ; (5.6b)�1(� ) = q1=24 1Yn=1 (1 + qn) :24



The modular invariant partition function of the Pfa�an state is obtainedby the diagonal quadratic form in the basis (5.6):ZPf = 1Xr=0nj�0(� )K2r(�; 2�; 8) + �2(� )K2r+4(�; 2�; 8)j2+j�2(� )K2r(�; 2�; 8) + �0(� )K2r+4(�; 2�; 8)j2+j�1(� ) (K2r+1(�; 2�; 8) +K2r�3(�; 2�; 8)) j2o: (5.7)This coincides with the expression proposed in Ref. [10] (Eq.(4.13)); we haveveri�ed that it satis�es the modular conditions (postulate P1); in particular,the Pfa�an S matrix,Smn = 12 sin��4�m�n� e�i�4mn; �n = 3� (�1)n2 ; m; n = 0;�1;�2; 4:(5.8)has dimension 6� 6; this matches the topological order 6, in agreement withthe general arguments of Ref.[16].It is instructive to see the gauge reduction from the 331 CFT to thePfa�an in the partition functions. Using the Jacobi identity, the neutralcharacters Kl(� ; 4) in the 331 partition function (2.22) can be written infermionic Fock-space form:K0;2(� ; 4) = q�1=242  1Yn=1 �1 + qn� 12�2 � 1Yn=1 �1� qn� 12�2! ;K�1(� ; 4) = q1=12 1Yn=1 (1 + qn)2 : (5.9)The projection of one Majorana fermion can be realized by eliminating thesquares in these characters, i.e.,K0(� ; 4) ! �0(� ) ; K2(� ; 4) ! �2(� ) ; K�1(� ; 4) ! �1(� ) : (5.10)Moreover, only one for each pair of twisted sectors of the 331 CFT survivesin (5.6). After these transformations the 331 partition function (2.22) is seento become the Pfa�an one (5.7). It follows, in particular, that the Pfa�antheory inherits the parity rule of the 331 state.The quantum dimension [27] of the representations (�1) (of characters(5.6b)) is p2 signalling the presence of a non-abelian (braid group) statisticsfor quasi-holes [2, 28, 18]. The corresponding fusion rules [7] read:(�1)� (�1) = (2) + (�2) ; (1)� (�1) = (0) + (4): (5.11)25



One may speculate that we observe here a manifestation of a more generalphenomenon: the non-abelian statistics comes from a gauge reduction (in thiscase the projection '2 ! 0) of a lattice abelian model. The U(1)n latticemodels possess the characteristic W1+1 symmetry of the incompressiblequantum Hall 
uids under area preserving di�eomorphisms [14]. This hasbeen found to be a crucial feature of the CFT describing the single-layerhierarchical Hall states [15]. Therefore, it seems natural to expect it to bepresent in the paired Hall states as well. However, the Pfa�an state is notdescribed by a W1+1 CFT; this is signalled by the fact that its centralcharge c = 3=2 is not an integer [15]. We thus see that the W1+1 symmetryis broken by the gauge reduction, which is a quantum e�ect occuring in thelow potential barrier limit of a two-layer system.It is important to remark that the W1+1 symmetry is still present atthe semiclassical level, which corresponds to the limit N !1 [14]; actually,in this limit, the Pfa�an wave function (5.4) is dominated by the Laughlinfactor (angular momentumof order O(N2)), while the Pfa�an is a subleadingO(1=N) relative correction. The dominant term corresponds to the latticeRCFT which is W1+1 symmetric.5.2 Maximally Symmetric c = 3 Description of PairedHall StatesUntil now we restricted our attention to rank 2 charge lattices which corre-spond to central charge c = 2. It seems natural to assume that the chargelattice associated with a QH state should have minimal possible rank. Fromthis point of view it may appear super
uous, once we have a satisfactorydescription of the 331 state (2.1) in terms of the c = 2 RCFT of Section2, to search for higher rank lattices in connection with this state. It hasbeen argued, however, by Fr�ohlich et al. (see Sections 5 and 7 and Table(B.2) in Appendix B of the second of Ref. [22]), that a rank 3 lattice pro-vides a \maximally symmetric" RCFT for this � = 1=2 state. It involves anSU(2)�SU(2) current algebra symmetry corresponding to spin rotation andlayer; it is realized by a pair of Weyl fermions which are intertwined with theLaughlin boson.We shall also demonstrate that the c = 2 CFT considered in the Sections 2appears as a U(1) gauge reduction of this one, by projecting out the di�erenceof the two Weyl currents. This identi�es layer and spin quantum numbersof excitations, yielding the 331 CFT. In Ref.[22], the chiral QH lattice, - i.e.,the pair (�;Q), is de�ned in a normal basis as follows:� = �phys = fZq+Z�1 +Z�2g ;26



G� = 0@ 3 1 11 2 01 0 21A ; Q = q� = q2 � �1 + �24 : (5.12)The structure of superselection sectors and their fusion rules is similar tothat of the 331 model. We have:��=� =Z8 () j�j = detG� = 8) ; (5.13)this shows [16] that the topological order is again 8. In Table 3, we dis-play representatives of the non zero-elements of the additive group ��=� (inparallel to the basis of L�=L given in Table 1).Table 3: Superselection sectors for A(�)coset representative charge dimension(�) = ���1 + � q� (Qjq�) � = 12 jq�j2(0) 0 0 0(�1) ���1 �14 516(�2) �(2��1 � �1) �12 14(�3) �(3��1 � 2�1 + q) �14 516(4) 12(�1 + �2) 0 12We note that the dimensions �2n corresponding to the untwisted sectorof even charge cosets (�0 = 0; ��2 = 1=4; �4 = 1=2) coincide preciselywith those of the Z4 subgroup of L�=L given in Table 1 for m = 2 and� = 0;�m; 2m. The same is true for the minimal (absolute) values of theinner products ofQ with vectors in each such coset, listed in the third columnof Table 3. In both cases, the smallest positive (fractional) electric charge ofa quasi-particle is 1=4. The lattice � (5.12) obeys the postulate P2 and theelectric charge satis�es (4.8) (jQj2 = � = 1=2).In order to verify this statement we pass from the normal basis (5.12) of� to its symmetric basis [22]:q1 = q� �1; q2 = q� �2; q3 = q; () �i = q3 � qi; i = 1; 2); (5.14a)characterized by,G�(qi) = �(qijqj)i;j=1;2;3� = 0@ 3 1 21 3 22 2 31A ; (Qjqi) = 1: (5.14b)27



The resulting RCFT with chiral algebra A(�) can again be viewed as a Z2orbifold of a tensor product algebra corresponding to the orthogonal integrallattice �2;1;1 (that extends �):(� �)�2;1;1 = fZe0�Ze1�Ze2g; e0 = 2Q = q� e1; e1 = 12(�1 + �2);e2 = 12(�1 � �2) (e�je�) = je�j2���; �; � = 0; 1; 2;je0j2 = 2; je1j2 = je2j2 = 1: (5.15)Indeed, if we introduce the current:J(z) = JQ(z) + J�1(z) ; �1 = e1 + e2 ; JQ(z) = 12Je0(z) ; (5.16)then the inner automorphism � of the extended chiral algebra given by�(A) = ei�J0 A e�i�J0 ; for A 2 A2;1;1 ; (5.17)leaves invariant each element of the physical subalgebra A(�) while changingthe sign of the basic charge shift operators E�e� and the associated Bose (for� = 0) and Fermi (for � = 1; 2) local charged �elds (see Eqs. (A.8-A.10) ofAppendix A).The characters ���(�; �) of the irreducible representations of the chiralalgebra A(�) are given by the following counterpart of (2.13) and (2.14)���(�; �) = e��2 (Im �)2Im � ch��(�; �) ; (5.18a)ch��(�; �) = K0(� ; 2)K�(� ; 2)K��(�; 2�; 8) +K1(� ; 2)K�+1(� ; 2)K4��(�; 2�; 8)(5.18b)(�mod8) where the K-functions are again given by (2.15). The proof of(5.18) is completely analogous to that of (2.15) given in Appendix A.We end up once more with a diagonal modular invariant partition functionof type (2.20), Z�(�; �) = 4X�=�3 j���(�; �)j2: (5.19)In addition, there is an [su(2)
[su(2) current subalgebra of A(�) generatedby the charged currents E��i(z) satisfying:[E�i(z1); E��j(z2)] = �J�i(z2)�(z12)� �0(z12)� �ij ; (5.20)where J� are the corresponding Cartan currents which commute with theelectromagnetic (u(1) - ) current JQ(z) (de�ned in (5.16)). It provides a local28



realization of the SU(2)spin�SU(2)layer symmetry of the model (justifying theterm \maximally symmetric" of [22]).The rank 2 (A(L)) realization of the � = 12 state, given in the precedingsections, is recovered if we gauge the u(1) current:I(z)(� Je2(z)) = 12 �J�1(z)� J�2(z)� ; (5.21)generated by the pair of conjugate Weyl spinors,'(z) = E�e2(z) ; '�(z) = Ee2(z) ) I(z) = :'�(z)'(z): : (5.22)In particular, the new stress tensor is:TL(z) = 12:nJ1(z)J1(z) + J2(z)J2(z)o: (5.23)where fJ ig and fJig are dual bases in the Cartan subalgebra of A(L) (cf.(A.12)). TL(z) is obtained from the stress tensor T�(z) ofA(�) by subtractingthe Sugawara contribution of I(z):TL(z) = T�(z)� 12 :I2(z):: (5.24)In other words, A(L) is obtained fromA(�) by gauging out the second factorin the extended algebra,A(�2;1;1) = A(�2;1)
A(�1) ; (5.25)corresponding to the lattice (5.15) and then taking the Z2 orbifold.Let us �nally remark that the choice between this c = 3 models and its331 reduction should be decided by experiment.6 ConclusionsWe presented a uni�ed description of the double-layer � = 1=2 Hall stateswhich was based on two assumptions: (P1) the use of lattice c = 2 CFTs withmodular invariant partition functions; and (P2) the usual charge { statisticsrelation for the observed electron-like excitations.Our analysis has singled out a unique c = 2 RCFT which correspondsto the already proposed model for the 331 state. We have shown that thec = �2 CFT previously proposed for the HR state is in fact equivalent tothe 331 CFT, which is the unitary description of the same set of states. Theresult has been obtained by a one-to-one mapping between the c = �2 and29



c = 1 CFTs (Section 3). Furthermore, in Section 4 we proved that there areno alternative lattice RCFTs for the HR state which are made of the samechiral building blocks (e.g., there are no alternative parity rules for combiningthe fermion number and the charge).The Pfa�an state has also been related to this unique CFT by a gaugereduction which has physical interpretation in the double-layer geometry.This projection eliminates the fermionic U(1) current and breaks the W1+1symmetry at the quantum level; the parity rule for the excitations remainsthe same.In our description, the d-wave spin-singlet part of the HR wave function(1.4) is represented in terms of the c = 1 Weyl fermion as follows:	ds = h0j@ �(z1) � � � @ �(zN) (w1) � � � (wN)j0i= @N@z1 � � � @zN det� 1zi �wj� = (�1)N det 1(zi � wj)2! :(6.1)The physical electron �elds can also be written::j(z) 1(z): = :j(z) �(z):E�p2(z) ; 2(z) =  (z)E�p2(z) ; (6.2)here, we have used the K-Z equation [7] to substitute the derivative of  � byits product with the current j, and  1 and  2 are the electron �elds of the331 state in Section 2.Equations (6.1,6.2) show that in our unitary description the HR groundstate is an excited state of the 331 CFT. Moreover, it has the same topologicalorder 8 (for m = 2, i.e., � = 1=2) and its excitations obey abelian statistics asin any lattice RCFT. These results are conclusive in the framework of latticeRCFTs.On the other hand, there are arguments in the literature in favour ofdistinguishing the HR from the 331 state:� There is a wide spread opinion that the HR quasi-particles obey non-abelian statistics [9, 10, 12, 18].� The wave functions for the excitations of 2n quasi-holes on the sphereare represented by symmetric polynomials spanning a 22n�1 dimen-sional space for the 331 model and a 22n�3 dimensional one for the HRstate [18].� The topological order of the HR state has been found to be 10 byconstructing its ground-state wave functions on the torus [3, 19, 18]and by numerically diagonalizing the energy spectrum [3].30



Finally, the unitary description of the HR state in this paper does notexplain the stability of the HR ground state, which can naively decay in the331 ground state. Possible solutions to these problems might be found bydescribing the HR with other, non-lattice conformal theories; for example,orbifold theories obtained from the 331 RCFT, which give rise to non-abelianstatistics. Furthermore, other quantizations of the original �-� system mightbe possible based on a careful analysis of the zero modes, as suggested inRefs.[20, 11]. These issues are left for future investigations.AcknowledgementsL.G. and I.T. would like to thank INFN, Sezione di Firenze, and SISSA,Trieste for hospitality. Their work was supported in part by the BulgarianNational Foundation for Scienti�c Research under contract F-404. A.C. alsothanks SISSA for hospitality and acknowledges the European Communityprogramme FMRX-CT96-0012. All three authors thank the Schr�odingerInstitute for Mathematical Physics, Vienna, for hospitality during the �nalstage of this work.Appendix A Charge Lattices, Cyclic Groupsand OrbifoldsWe brie
y recall some background material about integral lattices (concise,physicist oriented surveys can be found in [22, 21]). An Euclidean integrallattice � of rank r is an r-dimensional Z-module (free abelian group) with apositive de�nite integer valued bilinear form:� =Ze1+ � � �Zer; (eijej) = (ejjei) 2Z; (A.1)� 3 v) (vjv) 2Z+; (vjv) = 0, v = 0: (A.2)The basis fe1; : : : ; erg of � is determined up to GL(n,Z) transformations,GL(n;Z) 3 A = (aij) : ei ! aijej; aij 2Z; i; j = 1; : : : ; r; detA = �1:(A.3)Hence, the determinant j�j of the Gram matrix G� is an invariant of thelattice �. The dual lattice �� is de�ned as the set of all vectors u 2 Rr suchthat (ujv) 2 Z for any v 2 �. The basis fe�ig � �� is dual to feig � �if (eije�j) = �ij. Clearly, � � �� is an (invariant) subgroup of the (abelian)group ��. The quotient ��=� is a �nite abelian group (a product of cyclic31



groups) of order j�j:j��=�j = � detG�detG���12 = detG� = j�j (G�� = G�1� ): (A.4)Let L be a sub-lattice of the integral lattice �. Then �� � L� and the �niteabelian groups �=L and L�=�� are isomorphic:L � � � �� � L�; L�=�� ' �=L: (A.5)To each integral lattice � there corresponds a chiral vertex algebra A(�)(see, e.g., Section 1.2 of [17] and references therein). It involves, to beginwith, r linearly independent u(1) currents J i(z) =Pn J inz�n�1 (in the basisfei; i = 1; : : : ; rg of �) such that:[J i(z1); J j(z2)] = �(eijej)�0(z12) , [J in; J jm] = (eijej)�0n+m: (A.6)It de�nes a free Bose �eld subalgebra Ar of A(�). We consider a (reducible)positive energy vacuum representation of Ar in a Hilbert space H� that splitsinto an in�nite direct sum of irreducible Ar modules Hv with distinguishedcyclic vectors jvi (v 2 �):H� =Mv2�Hv; jvi 2 Hv; J injvi = (eijv)�0njvi for n � 0: (A.7)To each (u 2 �) we associate a unitary shift operator Eu acting in H� suchthat: Eujvi = "(u;v)ju+ vi ; J inEu = Eu �J in + (eiju)�0n� : (A.8)The factor "(u;v) takes values �1. It is a 2-cocycle, - i.e.,"(u1;u2)"(u1 + u2;u3) = "(u1;u2 + u3)"(u2;u3);and satis�es"(u; 0) = "(0;u) = 1; "(u;v) = (�1)juj2jvj2�(ujv)"(v;u); juj2 = (uju);thus guaranteeing the normal spin-statistics relation for di�erent �elds.To each vector v = viei in the real r-dimensional space Rr we associatea u(1) current Jv by:Jv(z) = viJ i(z) ; (J i(z) = Jei(z)): (A.9)32



If v 2 � then there exists a local (Bose or Fermi) charged �eld Ev(z) suchthat: Ev(z)j0i = exp( 1Xn=1 Jv�n znn ) jvi; jvi = Evj0i ; (A.10)and Eu(z)Ev(w) = (�1)juj2jvj2Ev(w)Eu(z) for w 6= z: (A.11)Let fJi(z) := Je�i (z)g be a basis of u(1) currents dual to fJ i(z)g. Thestress energy tensor T for each chiral algebra A(�) belongs to its subalgebraAr and is given by the Sugawara formula:T (z) = 12 :Ji(z)J i(z): : (A.12)It implies that the energy of a ground state vector v of Ar is given by:(L0� 12 jvj2)jvi = 0 if (Jin� �0nvi)jvi = 0 for n � 0; vi = (vje�i ): (A.13)The irreducible positive energy representations of A(�) are labeled by theelements of the �nite abelian group ��=�. Let v� 2 �� be a representative ofthe coset v� + � satisfying:jv�j2 = infu2� jv� + uj2: (A.14)Such a v� is, in general, not unique in v� + �, however the representationspace, Hv�+� =Mu2�Hv�+u ; (A.15)which generalizes the vacuum space (A.7) is clearly independent of the choiceof v�. The minimal (ground state) energy in Hv� is 12 jv�j2 (provided (A.14)takes place).Returning to the chain of embedded lattices (A.5) we shall demonstratethat A(L) � A(�) appears as an orbifold of �.Proposition A.1 The �nite abelian group L�=�� acts by automorphisms onthe chiral algebra A(�) leaving each element of its subalgebra Ar � A(�)invariant.Proof. Indeed, for each u� 2 L� we can de�ne a gauge operator U(= Uu�) =e2�iJu�0 satisfying:�u�[Ev] = UEvU�1 = expf2�i(u�jv)gEv ; (v 2 �): (A.16)33



(Although the operator U depends on the choice of representative u� in thecoset u� + �� the automorphism �u� of A(�) does not.) For v 2 L(� �)(u�jv) 2Zso that Ev is unaltered by the automorphism �u� in (A.16).We are now prepared to apply Proposition A1 to the pair L � �m;1 ��m � �1 of integral lattices studied in Section 2. In this case:jLjj�m;1j = 4mm = 22 ) L�=��m;1 'Z2 (��m;1 = ��m � ��1) ; (A.17)and the non-trivial automorphism � is given by (2.4); note that the cosetL�=��m;1 can be represented by either of the four vectors �q�i and we have,Jq�1 (z) = 12J1(z) = 12 � 1pmJ(z) + j(z)� ; (A.18)in the notation (2.7-2.9).We shall now sketch a derivation of the formula (2.14) for the characterof the representation (�) = �q�1 + L of the orbifold algebra A(L).Proposition A.2 The character ch�L(�; �) (2.14) is the chiral partition func-tion of the conformal Hamiltonian L0� 224 and the visible charge operator JQ0in the A(L) module H� (= H�q�1+L):ch�L(�; �) = trH� nqL0� 112 e2�i�JQ0 o ; q = e2�i� : (A.19)Proof. Substitute H� by the direct sum (A.15),H� = Mn1;n22ZH�q�1+n1q1+n2q2 ;n1q1 + n2q2 = (n1 + n2)e1 + (n1 � n2)e2: (A.20)The contribution of each term to the trace (the sum over the currents' ex-citations in H� ) gives a factor [�(� )]�2e2�if �2 (u+�q�1)2+�(Qju+�q�1)g where Q isgiven by (2.12). Noting that n1+n2 and n1�n2 have the same parity we splitthe resulting double sum in two terms: one with n1+n2 = 2n, n1�n2 = 2n0and another with n1 + n2 = 2n + 1, n1 � n2 = 2n0 + 1 . The �rst of theseterms gives the �rst summand in (2.14):1�2(� )Xn;n0 q2m(n+ �4m )2+2(n0+�4 )2e4�i�(n+ �4m ) = K�(� ; 4)K�(�; 2�; 4m):Similarly, the second one reproduces the second term,K�+2(� ; 4)K�+2m(�; 2�; 4m),thus completing the proof of the proposition.A di�erent method of computing ch�L(�; �) (and hence of proving Propo-sition A2) using technique of orbifold theory [17] is provided in [29].34



Appendix B Conformal OPE for the HR An-ticommuting FieldsStandard (global) conformal OPE are written as series of integrals of quasi-primary �elds with respect to a given stress energy tensor ( see, e.g., Ap-pendix A of [30], [31] and [29]). Here we shall write down such an expansionfor the product of (free) �elds  �(z) �(w) without committing ourselves to achoice of the stress energy tensor (and the associated Virasoro algebra). Allwe shall need is the 4-point function (3.1) with typical element:h0j +(z1) �(w1) +(z2) �(w2)j0i == (z1 � w1)�2(z2 � w2)�2 � (z1 �w2)�2(w1 � z2)�2: (B.1)We shall verify (using techniques developed in the above references) that itgives rise to an OPE of the form:(z � w)2 �(z) �(w) = "��8<:1� zZw [6(z � �)(� � w)z � w T (�)+70(z � �)3(� � w)3(z �w)3 �(�)]d� + (z � w)6S(z;w)��30 zZw (z � �)2(� � w)2(z � w)2 V�+�(�)d�+(z � w)5R�+�(z;w) ; �; � = �12 : (B.2)Here the T ; � and Va are (translation invariant) local �elds satisfying:h0j �(z) �(w)T (�)j0i = "��(z � �)2(w � �)2 ; (B.3a)T (z1)T (z2) = �z�412 + 12z�512 z1Zz2 (z1 � �)(� � z2)T (�)d� + :T (z1)T (z2):�(z) = :T (z)2:; h0j �(z) �(w)�(�)j0i = 65 "��(z � w)2(z � �)4(w � �)4 ; (B.3b)h0j �(z) �(w)Va(�)j0i = �G�+�;a z �w(z � �)3(w � �)3 ; (B.4a)Va(z1)Vb(z2) = Gab8<:z�612 + 18z712 z1Zz2 (z1 � �)(� � z2)T (�)d� + � � �9=;35



+30Ccabz812 z1Zz2 (z1 � �)2(� � z2)2Vc(�)d� + � � � ; (B.4b)where the non-zero elements of Gab and Ccab are:G1�1 = G�11 = 2; G00 = �1; C01�1 = �C0�11 = �2; C�1�10 = �1: (B.4d)In fact, the expansion (B.2) and the conditions (B.3) (B.4) are impliedby the following result.Proposition B.1 The 4-point function (B.1) is reproduced by the OPE, +(z) �(w) = 1(z �w)2 � 1Xl=1 (z � w)l�1 zZw Pl(z;w; �)�l+1(�)d� (B.5)where the (normalized) weight function,Pl(z;w; �) = (2l + 1)!(l!)2 (z � �)l(� � w)l(z �w)2l+1 0@ z2Zz1 Pl(z1; z2; �)d� = 11A ;(B.6)is determined by the condition,z2Zz1 Pl(z1; z2; �)(� � z3)�2l�2d� = z�l�113 z�l�123 (zij = zi � zj); (B.7)while the �elds �n are mutually orthogonal satisfying,h0j�n(z1)�m(z2)j0i = �Cn(z12)�2n�nm ; (B.8)h0j +(z) �(w)�n(�)j0i = Cn (z � w)n�2(z � �)n(w � �)n ; n = 2; 3; : : : ;(B.9)and the constants Cn are given by,Cn+1 = n(n+ 1)�2nn � ; n = 1; 2; : : : (C2 = 1 = C3): (B.10)Conversely, the �elds �n can be expressed from (B.5) as composites of  �:�n+1(z) = � 1(2n)! limz1;z2!z @n1 (�@2)nfzn+112 : +(z1) �(z2):g= �(n+ 1)!(2n)! n�1Xk=0(�1)n�k�1�nk�� nk + 1�:@k +(z)@n�k�1 �(z): :(B.11)36



The proof is based on the expansion:(1 � �)�2 = 1Xn=2 CnF (n; n; 2n; �) ; (B.12)for Cn satisfying the recurrence relation,n�1Xl=1 Cl+1 (2l + 1)!(n� 2)!(n� 1)!(l!)2(n� l � 1)!(n+ l)! = 1 ;which is solved by (A.9); here we use the following representation for theHypergeometric function (cf. [31, 29]):F (n; n; 2n; �) = zn12wn12 z2Zw2 Pn�1(z2; w2; �)(z1 � �)n(w1 � �)nd� ; � = (z1 � w1)(z2 � w2)z12w12 :(B.13)It remains to set �2 = T , �3 = V0, �4 = 12� in order to recover (B.2).The OPE of composite �elds (Eqs. (B.3b) (B.4b) etc.) follow from theirexpressions (B.11) in terms of the free �elds  �. Short distance expansions(like (3.2)) are obtained from here using:zZw Pl(z;w; �)�l+1(�)d� = �l+1(w) + z � w2 �0l+1(w) +O((z � w)2): (B.14)Appendix C Modular Invariants Partition Func-tions Involving the Chiral Alge-bra A(�8;4)Let the lattice base vectors ei and their dual e�i , i = 1; 2 satisfy:G2;1 = �(eijej)� = � 2 00 1� ; e1 = 2e�1; e2 = e�2: (C.1)The corresponding du(1) currents (which de�ne, for r = 2, the stress energytensor (A.11) ) are:J1(z) (� Je1(z)) = 2J1(z); and J2(z) = J2(z):We are going to classify the (c = 2) RCFT whose chiral algebra includes thetensor product algebra A(�8;4) where the lattice �8;4 is spanned by 2e1; 2e2.37



We shall continue, however, to identify the electric charge Q with (2.12), -that is, Q = e�1 ; �jQj2 = 12� : (C.2)Proposition C.1 There are 5 S and T 2 invariant partition functions forthe c = 1 chiral algebra A(�8), 3 such invariants for A(�4) and hence 15factorizable partition functions for A(�8;4). The rank 2 chiral algebra A(�8;4)also admits 4 non-factorizable modular invariants.Proof. We �rst note that the choice (C.2) of the electric charge requiressubstituting � by 2� in the second argument of the characters K�(:; :; 8)(2.15a).According to ref. [21] there are 4 S invariants made out of K�(�; 2�; 8)(and their conjugate) for which the chiral algebra is unextended and thenumber of superselection sectors is 8. They can be labeled by an integerlmod8 satisfying l2 = 1mod 8 and are given byZl;8(�; �) = 4X�=�3K�(�; 2�; 8)Kl�(�; 2�; 8) for l = �1;�3: (C.3)Two of them, Z1;8 and Z�1;8 are SL(2,Z) invariant; the two others,Z3;8 = K0K0 +K4K4 + �K1K3 +K�1K�3 +K2K�2 + c:c:� ;and Z�3;8 are only S and T 2 invariant. There is one more invariant partitionfunction corresponding to theA(�2) � A(�8) extension of the chiral algebra:Z2(�; �) (= Z(�2 � �8)) = jK0(�; 2�; 8) +K4(�; 2�; 8)j2+ jK2(�; 2�; 8) +K�2(�; 2�; 8)j2 : (C.4)Due to the identity:K2l(�; 2�; 4m) +K2l+2m(�; 2�; 4m) = Kl(�; �;m) ; (C.5)Eq.(C.4) is just the diagonal invariant of the level 1 su(2) current algebra.Similarly, there are two modular invariants:Z�1;4(� ) = 2X�=�1K�(� ; 4)K��(� ; 4) ; (C.6)of the A(�4) RCFT and one S invariant,Z1(� ) = jK0(� ; 4) +K2(� ; 4)j2 (= Z1(�;+2)) ; (C.7)38



corresponding to the A(�1) � A(�4) fermionic extension of the bosonic chiralalgebra A(�4). The products of each of the 3 invariants (C.6) (C.7) with anyof the 5 invariants (C.3) (C.4) give the 15 factorizable partition functions.The 4 non-factorizable S invariants correspond to the A(L) � A(�8;4)extension of the original chiral algebra where L is de�ned by (2.6) and (2.2)with m = 2. They are related to the partition function (2.20) (for m = 2)in the same way as the invariants (C.3) are related to the diagonal one forA(�8):Zl;L(�; �) = 4X�=�3 (K�(� ; 4)K�(�; 2�; 8) +K�+2(� ; 4)K�+4(�; 2�; 8))��Kl�(� ; 4)Kl�(�; 2�; 8) +Kl�+2(� ; 4)Kl�+4(�; 2�; 8)� ;l = �1;�3: (C.8)The argument of Gannon [21] then proves that there are no other S invari-ants.Remark C1. Note that Gannon1 [21] (see, in particular, Example 2 ofSection 4) identi�es rank 2 charge lattices obtained from each other by arotation by � and hence views partition functions di�ering only in the signof l as equivalent. In his count there are, therefore, 3� 2 (rather than 5� 3)factorizable and 2 (rather than 4) non-factorizable invariants. We shall seethat some of the partition functions, viewed as equivalent in [21], actuallydi�er in their U � V transformation properties.Proposition C.2 U-invariance leaves us with 9 factorizable and 2 non-factorizable partition functions (among the 15 + 4 ones given by PropositionC1). If modi�ed by a suitable prefactor of the type appearing in (2.13) theybecome automatically also V -invariant.Proof. U (i.e., � ! � + 1) of Zl;8 (C.3) requires:�� l� = 0 mod4 for � 3 � � � 4 ; (C.9)which is only satis�ed for l = 1;�3. The same is true for the invariants(C.8).Given that the electric charge vector (C.2) has no projection in the di-rection of e2 one can view a re
ection of the e2 axis as a symmetry andregard as indistinguishable theories obtained from one another by such a re-
ection (they indeed have identical partition functions). (Thus we substitutethe \equivalence" (e1; e2) ! (�e1;�e2) used in [21] - see Remark C1 - by(e1; e2)! (e1;�e2). )1We thank T. Gannon for a helpful correspondence on this point39
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