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ENTROPY THEORY WITHOUT PASTE. Glasner, J.-P. Thouvenot and B. WeissFebruary 4, 1998Abstract. This paper treats the Pinsker algebra of a dynamical system in a waywhich avoids the use of an ordering on the acting group. This enables us to prove someof the classical results about entropy and the Pinsker algebra in the general setup ofmeasure preserving dynamical systems, where the acting group is a discrete countableamenable group. We prove a basic disjointness theorem which asserts the relativedisjointness in the sense of Furstenberg, of 0-entropy extensions from completelypositive entropy (c.p.e.) extensions. This theorem is used to prove several classicalresults in the general setup. E.g. we show that the Pinsker factor of a product systemis equal to the product of the Pinsker factors of the component systems. Anotherapplication is to obtain a generalization (as well as a simpler proof) of the quasifactortheorem for 0-entropy systems of [GW].x0. IntroductionThe classical theory of entropy was developed for Zactions and was based inpart on the natural order on that group; i.e. the \time" order. For example aprocess (P; T ) has zero entropy if and only if it is deterministic in the sense that Pis contained in the \past" of the process de�ned as W1j=1 T jP. The \remote past"de�ned by 1\n=m 1_j=m T jP;played an essential role in proving basic theorems like the equivalence of the K-property, namely the triviality of the remote past, with the property of \completepositive entropy"; or more generally in proving the Rokhlin-Sinai theorem, whichidenti�es the Pinsker algebra, �(T ) as the remote past of a generating partition P.Other important theorems then follow as easy consequences of this identi�cation.E.g. for two measure preserving automorphisms S and T we get�(T � S) = �(T ) ��(S);(see for example, [P]).The goal of this paper is to �nd a way of dealing with the Pinsker algebraof a dynamical system which avoids the use of an ordering on the acting group,and which enables us to prove some of the classical results about entropy and thePinsker algebra, in the general setup of measure preserving dynamical systems,1991 Mathematics Subject Classi�cation. 28D05. Typeset by AMS-TEX1



2 E. GLASNER, J.-P. THOUVENOT AND B. WEISSwhere the acting group is a discrete countable amenable group. (See [RW] for arelated approach, where the classical equivalence of the K-property (i.e. completepositive entropy) with a uniform mixing property for Z-actions, is generalized toamenable group actions.)Thus, in this work G will be a discrete amenable group. The objects we workwith are probability measure preserving G-systems (X;X ; �;G), where (X;X ; �)is a Lebesgue space. In some of the results we need to assume that G acts freely.This is a standing assumption in [OW,2]. For simplicity we will do the same inthis work. Usually we omit the �-algebra X and the group G from the notation ofa system. Thus unless it is stated otherwise (X;�), or even X, if the measure isclear, stands for (X;X ; �;G). Often we confuse the space and the �-algebra; thus wemay sometimes say that a function f is X-measurable rather than X -measurable.When (X;X ; �;G) �! (Y;Y; �;G) is a homomorphism of two such systems we saythat (Y; �) is a factor of (X;�) or that (X;�) is an extension of (Y; �) and weconsider Y as a subalgebra of X . If (Y;Y; �;G)and (Z;Z; �;G)are two factors of(X;X ; �;G)we denote by Y _Z the factor system of (X;X ; �;G)de�ned by, Y _Z,the G-invariant �-subalgebra of X generated by Y and Z. E�(f) = E(f) willdenote the expectation of the function f with respect to �; i.e. E(f) is simply theintegral R fd�. And, when (X;X ; �;G) �! (Y;Y; �;G)is a homomorphism, EY (f)is the conditional expectation of f with respect to the �-algebra Y. Thus if� = ZY �y d�(y);is the disintegration of � over �, then � a.e.EY (f)(y) = ZX fd�y:Given a G-system (X;X ; �;G), a measurable partition P of X and a subset Fof G we let PF = Wg2F g�1P. The entropy of the process (P; G) is given byh(P) = h(P; G) = limn!1 1jFnjH(PFn );where fFng is a F�lner sequence in the group G and H is the usual partitionentropy. As is shown in [OW,2] (see also [Ki,1]) the limit exists and is independentof the F�lner sequence. The entropy of the system (X;X ; �;G)is de�ned byh(X;�) = supfh(P) : P a �nite partition of Xg:For the conditional entropy of P with respect to a G-invariant sub �-algebra Y � Xwe set: h(PjY) = limn!1 1jFnjH(PFn jY):Once again one can deduce the existence of this limit and its independence of thesequence fFng from the information provided in [OW,2]. This is worked out in[KR]. The approach in [Ki,1] was extended to the conditional case in [WaZ]. Theconditional entropy of (X;�) with respect to (Y; �) is de�ned byh(XjY ) = supfh(PjY) : P a �nite partition of Xg:



ENTROPY THEORY WITHOUT PAST 3An extension (X;�)! (Y; �) will be called a 0-entropy extension if h(XjY ) = 0.It will be called a completely positive entropy extension or c.p.e. extension if forany intermediate extension (X;�) ! (Z; �)! (Y; �) with (Z; �)! (Y; �) a properextension, h(ZjY ) > 0.The Pinsker algebra of the system (X;X ; �;G)is de�ned as the �-algebra of allsubsets A 2 X such that h(fA;Acg) = 0, and the corresponding factor is called thePinsker factor of the system (X;�). The relative Pinsker factor for an extension(X;X ; �;G) �! (Y;Y; �;G), is de�ned similarly.A Bernoulli G-system is a system (X;X ; �;G)where an independent generatingpartition P exists.In section 1 we present a basic formula (lemma 1.1 (1)) which governs entropycalculations, and deduce some corollaries. One of these is the de�nition of thePinsker (relative Pinsker) factor of a system (an extension). In section 2 we use alemma of J-P. Thouvenot (lemma 2.2, see [LPT]) to prove a disjointness theoremwhich asserts the relative disjointness in the sense of Furstenberg, of 0-entropyextensions from c.p.e. extensions. In section 3 we show how the c.p.e. property liftsthrough certain diagrams. This is used in section 4 to deal with the Pinsker factor ofproduct systems. Next we generalize some theorems of K. Berg on maximal entropyand independence, [B]. Finally in the last section we use the relative disjointnesstheorem from section 2 to obtain a generalization (as well as a simpler proof) ofthe quasifactor theorem for 0-entropy systems of [GW].An important part of the work on this paper was done during the special yearin ergodic theory at the Institute for Advanced Studies of the Hebrew Universityin Jerusalem, 1996-7, where all three authors participated. We would like to thankthe Institute for the very pleasant time we spent there.x1. BackgroundRecall that the conditional entropy of a �nite measurable partitionP with respectto a G-invariant sub �-algebra Y � X is de�ned as:h(PjY) = limn!1 1jFnjH(PFn jY);In case G =Z, it is well known thatlimn!1 1nH(P [0;n)) = infn 1nH(P [0;n)):This is a consequence of the fact that translates of the interval [0; n) tile Zexactly.For amenable groups, where F�lner sets that tile perfectly are not known to exist ingeneral, we can substitute the �-quasi-tiling developed in [OW,2]. That gives for any� > 0, a k and a rate of growth for the almost invariance of Fn1; Fn2 ; : : : ; Fnk ; (n1 <n2 < � � � < nk) such thath(P) � max1�i�k 1jFnijH(PFni ) + �H(P);for all �nite partitions P, and the same holds for the conditional entropy withrespect to any invariant �-algebra C:(1) h(PjC) � max1�i�k 1jFnijH(PFni jC) + �H(P):



4 E. GLASNER, J.-P. THOUVENOT AND B. WEISSLet now Rn be any sequence of �nite partitions such that RGn re�nes to Y. Wethen have(*) h(PjY) = limn!1h(PjRGn ):In fact, denoting h = h(PjY), we clearly have for all n, h � h(PjRGn ). For theother direction, by de�nition of h = h(PjY), for ni su�ciently large(2) 1jFni jH(PFni jY) � h+ �:We now �x ni; 1 � i � k satisfying (1) and (2). If m is large enough then by themartingale convergence theorem, for all ni; 1 � i � k;(3) 1jFni jH(PFni jRGm) � 1jFnijH(PFni jY) + �;and by (1), (2) and (3) we geth(PjRGm) (1)� max1�i�k 1jFni jH(PFni jRGm) + �(3)� max1�i�k 1jFni jH(PFni jY) + 2�(2)� (h+ 2�) + �;so that (*) follows.We let h(XjY ) = supfh(PjY) : P a �nite partition of Xg:As usual the continuity of the entropy function enables one to replace the sup overall �nite partitions by the sup over a dense set of partitions.Lemma 1.1. Let (X;X ; �;G)be a G-system with factor (Z;Z; �;G).(1) For any two �nite measurable partitions P and Q:h(P _QjZ) = h(PjZ) + h(QjPG _ Z):(2) If P is a �nite partition and h(PjZ) = H(P) then the process (P; G) isBernoulli and moreover PG is independent of Z.Proof. (1) For Z trivial this is theorem 4.4 of [WaZ]. If Z is generated by a �nitepartition R then we can writeh(P _Q _R) = h(R) + h(P _ QjRG) = h(R) + h(P _QjZ)and then h(P _QjZ) = h(P _ Q_ R)� h(R)= h(P _ R) + h(QjPG _ Z) � h(R)= h(P _ R)� h(R) + h(QjPG _ Z)= h(PjZ) + h(QjPG _ Z):



ENTROPY THEORY WITHOUT PAST 5In the general case we let Rn be a sequence of �nite partitions such that RGn re�nesto Z. Then for each nh(P _QjRGn ) = h(PjRGn ) + h(QjPG _ RGn );and in the limit, by (*),h(P _QjZ) = h(PjZ) + h(QjPG _ Z):(2) The proof proceeds by showing that if for any �nite set F � G one wouldhave(**) H(PF jZ) = jF j �H(P) � �with � > 0, then h(PjZ) < H(P). On the other hand, if for all �nite F onehas equality in (��) with � = 0, then the conclusions that the process (P; G) isindependent and that PG is independent of Z follow immediately. To establish the�rst claim, let Fn be a F�lner set that is almost F -invariant and let fFgi : 1 �i � Lg be a maximal set of disjoint translates of F that lie in Fn. If a 2 Fn andFa � Fn and one cannot add Fa to the collection fFgig, it means that a 2 F�1Fgifor some gi. It follows that L�jF j � c�jFnj for some positive constant c that dependsonly on F .We can now estimateH(PFn jZ) � LXi=1H(PFgi jZ) +H(PE jZ);where E = Fn nSLi=1 Fgi. By the invariance of the measure we conclude thatH(PFn jZ) � L � (jF j �H(P) � �) + jEj �H(P)= (L � jF j+ jEj) �H(P) � �L= jFnj �H(P) � �L:from which it would follow that h(PjZ) < H(P), contrary to our assumption. �Lemma 1.2.(1) If (X;�) �! (Z; �) and (Y; �) �! (Z; �) are 0-entropy extensions and � is ajoining of � and � over � ( i.e. � � �(�) = ��), then (X � Y; �) ! (Z; �)is also a 0-entropy extension.(2) If f(Yi; �i) �i! (Z; �)g is an inverse system of 0-entropy extensions then sois the inverse limit extension W(Yi; �i)! (Z; �).Proof. (1) This follows directly from lemma 1.1 by taking P and Q any �nitepartitions which are X and Y measurable respectively.(2) Again the assertion follows from lemma 1.1 and the observation that thecollection of �nite partitions measurable with respect to some Yi are dense in theset of all �nite measurable partitions of W(Yi; �i). �Let (X;X ; �;G) �!(Y;Y; �;G)be an extension of ergodic systems. Put�(XjY ) = fA 2 X : h(fA;AcgjY) = 0g:Another corollary of lemma 1.1 is the fact that �(XjY ) is a G-invariant sub-�-algebra of X which of course contains Y. We call this algebra the Pinsker algebraof X relative to Y, and the corresponding factor the relative Pinsker factor. WhenY is the trivial algebra we get the Pinsker algebra and Pinsker factor of X and wedenote this factor by �(X).



6 E. GLASNER, J.-P. THOUVENOT AND B. WEISSx2. The relative disjointness theoremWe say that (X;X ; �;G) �! (Y;Y; �;G)is an ergodic extension if every G-invariantX -measurable function is Y-measurable.Lemma 2.1. Let (X;�; id) �! (Z; �; id) and (Y; �;G) �! (Z; �; id) be extensions ofG-actions, where id denotes the trivial action, and assume that the extension Y ! Zis ergodic. Then (X;�; id) and (Y; �;G) are relatively disjoint over (Z; �; id) i.e.� = � �� � is the only joining of X and Y over Z.Proof. Let � be any joining of the systems (X;�; id) and (Y; �;G) over their commonfactor (Z; �; id). Let � = ZZ �z d�(z);be the disintegration of � over �, and� = ZY �y � �y d�(y):the disintegration of � over �. Then for every g 2 G� = (id�g)� = ZY �y � �gy d�(y)= ZY �g�1y � �y d�(y):By uniqueness of disintegration we have �y = �g�1y �-a.e., hence, by ergodicityof the extension Y �! Z, �y = ��(y) = �z �-a.e. (the latter equality follows byprojecting the disintegration of � onto the X coordinate). Thus� = ZY ��(y) � �y d�(y)= ZZ ZY �z � �y d�z(y)d�(z)= ZZ �z � �ZY �y d�z(y)� d�(z)= ZZ �z � �z d�(z)= ��� �:�Lemma 2.2. Let (X;�) and (Y; �) be Lebesgue spaces (not necessarily G-systems),� a joining of � and �. Let � = ZX �x � �x d�(x);



ENTROPY THEORY WITHOUT PAST 7be the disintegration of � over � and de�ne a probability measure �1 on X � Y Zby: �1 = ZX �x � (� � � � �x � �x � � � ) d�(x):Let Z denote the largest �-algebra common to the algebras X and YZ mod �1and let (Z; �) denote the corresponding factor Lebesgue space. Then X and YZ arerelatively independent over Z with respect to �1.Proof. De�ne a transformation S : X � Y Z ! X � Y Z by S(x; y) = (x; �y) wherey = (� � � ; y�1; y0; y1; � � � ) 2 Y1 and � is the left shift on Y Z . If f(x; y) is an S-invariant function on X � Y Z then for every x the function fx(y) = f(x; y) is a�-invariant function on (Y Z ; �Zx), hence a constant; i.e. f(x; y) = f(x); �1 a.e..Thus every S-invariant function is X -measurable and in particular the extension(Y Z ; �1; �)! (Z; �; id), where�1 = ZX(� � � � �x � �x � � � ) d�(x);is an ergodic extension. Now we apply lemma 2.1 to the diagram(X � Y Z ; �1; S). &(X;�; id) (Y Z ; �1; �)& .(Z; �)to deduce that X and YZ are relatively independent over Z as claimed. �Theorem 1. Let (X;�) �! (Z; �) and (Y; �) �! (Z; �) be two ergodic systemsextending the system (Z; �). Suppose � is a c.p.e. extension while � is a zero-entropy extension. Then(1) X and Y are disjoint over Z; i.e. the relatively independent joining � �� �is the only joining of � and � over �. In particular (taking (Z; �) to be thetrivial one point system) we have that every c.p.e. system is disjoint fromevery zero-entropy system.(2) The extension (X �Z Y; � �� �) ! (Y; �) is a c.p.e. extension; i.e. Y isthe relative Pinsker factor of X �Z Y over Z. In particular (taking Z to betrivial) when X is a c.p.e. system and Y a zero-entropy system then Y is thePinsker factor of X�Y ; i.e. the extension X�Y ! Y is a c.p.e. extension.Proof. (1) Let � be a joining of (X;�) and (Y; �) over (Z; �). As in lemma 2.2, let� = ZX �x � �x d�(x);be the disintegration of � over � and de�ne a probability measures �1 on X � Y Zand �1 on Y Z by: �1 = ZX �x � (� � � � �x � �x � � � ) d�(x)



8 E. GLASNER, J.-P. THOUVENOT AND B. WEISSand �1 = ZX(� � � � �x � �x � � � ) d�(x):Let ~Z denote the largest �-algebra common to the algebras X and YZ mod �1and let ( ~Z; ~�) denote the corresponding factor system. Then clearly Z � ~Z and bylemma 2.2, X and YZ are relatively independent over ~Z with respect to �1.Now lemma 1.2 implies that the extension (Y Z ; �1) ! (Z; �) is a 0-entropyextension and a fortiori ( ~Z; ~�) ! (Z; �) is a 0-entropy extension. On the otherhand (X;�)! (Z; �) is a c.p.e. extension; hence so is the extension ( ~Z; ~�)! (Z; �)and we conclude that ~Z = Z. This completes the proof of part (1).(2) Denote � = ��� � and let (U; �) be the relative Pinsker factor of X �Z Y overY : (X �Z Y; �) �! (U; �)& .(Y; �) :If U 6= Y then we let f be any bounded L2(�) non-zero function which is Umeasurable but orthogonal to L2(Y), so that EY (f) = 0. Let g and h be anybounded X and Y measurable functions respectively. Then by part (1), as fh isU-measurable and U ! Z is a 0-entropy extension, EZ(fgh) = EZ(fh)EZ (g).Now EZ(fh) = EZ(EY (fh)) = EZ(hEY (f)) = 0: Thus EZ(fgh) = 0, whenceE(fgh) = 0. Since linear combinations of functions of the form gh are dense inL2(�), this leads to a contradiction and we conclude that U = Y . �The following theorem is a simple application of the disjointness theorem.Theorem 2. If the ergodic system (X;�) is the inverse limit of the sequence(Xn; �n) and �X and �Xn are the corresponding Pinsker factors, then �X is the inverselimit of the sequence �Xn.Proof. Let �X be the Pinsker factor of X and for each n, �Xn the Pinsker factor ofXn. Finally let Z be the inverse limit of the Xn. Since the extension Xn ! �Xn isc.p.e. while the extension �X ! �Xn is a zero-entropy extension we get by theorem1, that Xn ��Xn �X is the relatively independent joining over �Xn. Let f be an Xnmeasurable function and g an �X measurable function. Then, since f is also Xmmeasurable for m � n we have for such m:E �Xm(fg) = E �Xm(f) �E �Xm(g):By the martingale convergence theorem we getEZ(fg) = EZ(f) �EZ(g):Since the union of the Xn measurable functions is dense, we conclude that �X isrelatively independent of X over Z, which is possible only when �X = Z. �



ENTROPY THEORY WITHOUT PAST 9x3. Lifting c.p.e. extensionsOur goal in this section is to obtain the assertion of theorem 1.(2) without theassumption that the extension (Y; �) �! (Z; �) is a 0-entropy extension (theorem3, below). Our strategy will be to put together two special cases of the theorem.The �rst is the case when � is assumed to be a 0-entropy extension; i.e. theorem1.(2). The second will be the case when Y = Z �B, where B is a Bernoulli system(see also [RW]). For this we need the following three lemmas. The proof of the �rstlemma is straightforward. Denote by Aut(X;�;G) the group of measure preservingtransformations of (X;�) that commute with the action of G.Lemma 3.1. Let (B; �;G) be a G-Bernoulli system; i.e. B = f0; 1; : : : ; s � 1gG ,� a Bernoulli measure on B and the action is the canonical left action: gx(h) =x(g�1h); x 2 B; g; h 2 G. De�ne the right action of G on B byg � x(h) = x(hg); (x 2 B; g; h 2 G):Then the left and right actions of G commute. In particular the right G-actionde�nes a subgroup of Aut(B; �;G) which acts ergodically on B.In preparation for the next lemma we make the observation that for a Lebesguespace (X;X ; �), the space of all sub �-algebras of X (mod �) can be viewed as aPolish space. One way to see this is to identify a sub �-algebra A � X , with thecorresponding conditional expectation operator EA : L2(X ; �)! L2(A; �).Lemma 3.2. Let (X;�) �! (Z; �) be a c.p.e. extension and (Y; �) an ergodic G-system with the property that the group Aut(Y; �;G) acts ergodically on Y . Thenthe extension (X � Y; �� �)! (Z � Y; � � �) is a c.p.e. extension.Proof. Let X � Y ! U ! Z � Y be the relative Pinsker factor. Fix � a countabledense subgroup of Aut(Y; �;G), and note that � also acts ergodically on (Y; �).Choose a countably generated sub-�-algebra U whose completion is the �-algebraof U such that (i) U is invariant under G and Id�
 for every 
 2 � and (ii) Ucontains a sub-�-algebra whose completion is the �-algebra of Z. Consider themap y 7! Uy of Y into the Polish space of sub �-algebras of X , where Uy is the�-algebra de�ned as the trace of U on the �ber X �fyg, and the latter is identi�edwith X. With Uy we also take the conditional expectation operator de�ned onL2(X ; �) to the closed subspace spanned by the Uy-measurable functions, EUy . Itis now easy to check that the map y 7! EUy is measurable. Moreover, since clearlyfor each 
 2 �, the factor U is I�
-invariant, it follows that U
y = Uy. Since � actsergodically on Y we conclude that, � a.e, Uy does not depend on y 2 Y and de�nesa G-invariant factor �-algebra Û of X with Z � Û . If Û 6= Z then|as X ! Z isa c.p.e. extension|it follows that the entropy of Û is strictly larger than that ofZ. However since X and Y are independent and Û is a factor of X it follows thatalso the entropy of Û �Y is strictly larger than that of Y . Finally since Û �Y is afactor of U we get a contradiction to the assumption that U is the relative Pinskerfactor of X � Y ! Y . Thus Û = Z and we conclude that U = Z � Y . �Lemma 3.3. If (Z; �) is a factor of (Y; �) with strictly smaller entropy then thereis a Bernoulli factor of Y , B independent of Z such that Z �B has full entropy inY .



10 E. GLASNER, J.-P. THOUVENOT AND B. WEISSFor Zthis result is essentially found in [O]. It was made explicit in [OW,1] and[T]. (For another treatment of the relative theory see [Ki,2]). For discrete amenablegroups all of this carries over in a straight forward fashion using the basic machinerydeveloped in [OW,2]. It was not done there explicitly because the extension tocontinuous amenable groups presents new di�culties (cf. the discussion there inAppendix C).Theorem 3. Let (X;�) �! (Z; �) and (Y; �) �! (Z; �) be two ergodic systemsextending the system (Z; �). Suppose � is a c.p.e. extension. Let � = � �� � bethe relatively independent joining of � and � over �. Then the extension �Y in thediagram (X �Z Y; �). &�Y(X;�) (Y; �)�& .�(Z; �)is a c.p.e. extension.Proof. By lemma 3.3, there exists a Bernoulli factor Y ! B independent of Z andsuch that Y ! Z�B is a zero-entropy extension. Notice that X�Z (Z�B) �= X�B.By lemma 3.1, Aut(B;G) acts ergodically on B and we can apply lemma 3.2 to thediagram X �B. &�BX Z �B�& .�Zto deduce that �B is a c.p.e. extension. Next observe that [X �Z (Z �B)] �Z�B Y �=(X �B) �Z�B Y �= X �Z Y , then apply theorem 1 to the diagramX �Z Y. &�YX �B Y�B& .0-ent.Z �Bto deduce that �Y : X �Z Y ! Y is a c.p.e. extension. �x4. The Pinsker factor of a product systemIn this section our main goal is a generalization to discrete amenable groups ofthe well known fact that forZ-actions the product of two K-systems is a K-system.For previous results in this direction see e.g. [Ka].Theorem 4. Let (X;�) �! (Z; �) and (Y; �) �! (Z; �) be two ergodic systemsextending the system (Z; �) with relative Pinsker factors �X and �Y respectively. Then�X �Z �Y is the relative Pinsker factor of the relative product system (X �Z Y; ��� �)



ENTROPY THEORY WITHOUT PAST 11over (Z; �). In particular (for the case that Z is trivial) we have that the Pinskerfactor of the product system is the product of the Pinsker factors and specializingonce again, the product of two c.p.e. systems is a c.p.e. system.Proof. Let � = � �� �. The measure space we work with is (X �Z Y; �). Let U bethe relative Pinsker factor of X �Z Y over Z. First consider the diagramX �Z Y. &X �X �Z Y& .�X :By theorem 3 the extension X �Z Y ! �X �Z Y is a c.p.e. extension.Now consider the systems X _U and Y _U . Since the extension U _Y ! �X�Z Yis clearly a zero-entropy extension, theorem 1 implies that X �Z Y is independent ofU _Y over �X�Z Y . Since the algebra corresponding to X�Z Y is the total �-algebra,we deduce that U _ Y , and in particular U , is �X �Z Y measurable. Symmetricallywe get that U is X �Z �Y measurable, and therefore deduce that U is �X �Z �Y =(X �Z �Y ) \ ( �X �Z Y ) measurable; i.e. U = �X �Z �Y . �x5. Maximal entropy and independenceTheorem 5. Let (X;�) �! (Z; �) and (Y; �) �! (Z; �) be two ergodic systemsextending the system (Z; �) with �nite entropy and such that � is a c.p.e. extension.Let � be a joining of � and � over � (i.e. � projects under � � � onto the diagonalmeasure �(2) on Z �Z). Supposeh�(X �Z Y jZ) = h(XjZ) + h(Y jZ)then � is the relatively independent joining of � and � over �.Proof. The measure space we work with is (X �Z Y; �). Entropies are computedwith respect to the measure �. We let R;S and U be �nite generating partitionsfor X;Y and Z respectively (see [Ro]).(1) Assume �rst that Y = B�Z where B is a Bernoulli factor of Y independentof Z. We let P be a �nite Bernoulli generating partition for B. By lemma 1.1 (1)and our assumptionh�(X �Z Y jZ) = h(R _ SjZ) = h(RjZ) + h(SjRG _ Z)= h(XjZ) + h(Y jX _ Z) = h(XjZ) + h(Y jZ);hence h(Y jX _ Z) = h(Y jX) = h(Y jZ). Nowh(Y jX) = h(P _ UjX) = h(PjX) + h(UjPG _ X ) = h(PjX);



12 E. GLASNER, J.-P. THOUVENOT AND B. WEISShence h(PjX) = h(P _ UjX) = h(Y jX) = h(Y jZ) = h(P _ UjZ) = H(P);and lemma 1.1 (2) implies that B is independent of X. >From this we get thatY = B � Z is relatively independent of X over Z as required.(2) In the general case we observe �rst that when h(YjZ) = 0, the assertionfollows from theorem 1. If h(YjZ) > 0, we apply lemma 3.3 to choose a Bernoullifactor B of Y such that h(B) = h(Y jZ) and B is independent of Z. Now by (1), Bis independent of X, and B�Z is relatively independent of X over Z. By theorem3, in the diagram X �B. &X Z �B& .Z ;the extension X � B ! Z � B is a c.p.e. extension. Now, since Y ! Z � B is azero-entropy extension, we can apply theorem 1 to the diagram(X �Z Y; �). &X �B Y& .Z �B ;and conclude that X �B and Y are relatively independent over Z �B. Now let fand g be bounded X and Y measurable functions, respectively. ThenEZ� (fg) = EZ(EZ�B(fg)) = EZ(EZ�B(f)EZ�B (g))= EZ(EZ(f)EZ�B (g)) = EZ(f)EZ (g):Thus X and Y are relatively independent over Z and � = � �� � as required. �Theorem 6. Let (Xi; �i) �i! (Z; �), i = 1; 2 be two ergodic systems extending thesystem (Z; �). Let � be a joining of X1 and X2 over Z. Let (Zi; �i)! (Z; �) be therelative Pinsker factors, i = 1; 2, and assume further thath�(X1 _X2jZ) = h(X1jZ) + h(X2jZ):Then � is the relatively independent joining of the two systems (Xi; �i); i = 1; 2over the joining induced by � on the �-algebra generated by the two relative Pinskerfactors (Zi; �i); i = 1; 2. In particular if with respect to �, Z1 and Z2 are independentover Z, then also X1 and X2 are independent over Z; i.e. � is the relativelyindependent joining of �1 and �2 over �.Proof. Consider the diagramX1 _ Z2 Z1 _X2p1& .p2Z1 _ Z2



ENTROPY THEORY WITHOUT PAST 13where for example X1 _ Z2 denotes the factor of (X1 � X2; �) generated by thefactors X1 and Z2. By theorem 1.(2), p1 is a c.p.e. extension while by using lemma1.1, we haveh�(X1 _X2jZ1 _ Z2) = h(X1 _ Z2jZ1 _ Z2) + h(Z1 _X2jZ1 _ Z2):Thus theorem 5 implies that X1 _ Z2 and Z1 _X2 are independent over Z1 _ Z2.Let fi be bounded functions on X1 �X2 which are Xi-measurable, i = 1; 2. ThenEZ1_Z2(f1f2) = EZ1_Z2(f1) �EZ1_Z2(f2):This proves the �rst part of the theorem; for the second part we use the relativeindependence of Z1 and Z2 over Z to get:EZ(f1f2) = EZ(EZ1_Z2(f1f2))= EZ(EZ1_Z2(f1) �EZ1_Z2(f2))= EZ(EZ1(f1) �EZ2(f2)) = EZ(f1) �EZ(f2):Thus X1 and X2 are relatively independent over Z as claimed. �x6 Quasi-factors of zero-entropy extensionsOur last application of theorem 1 is to obtain a new proof of the fact that aquasifactor of a zero-entropy system has zero-entropy. In fact we get a generaliza-tion of this statement to zero-entropy extensions and moreover this new proof issimpler than both proofs in [GW]. Of course the main application of the quasifactortheorem in [GW] was to get a proof of the absolute version of theorem 1.Let (X;X ; �;G) be an ergodic system. Let (M(X); G) be the Borel space ofprobability measures on X with the induced G-action. Recall that a quasifactor of(X;X ; �;G) is any probability measure � on M(X), invariant under G, and withbarycenter equal to �: ZM(X)� d�(�) = �:Let (X;X ; �;G) �! (Y;Y; �;G) be a homomorphism of ergodic systems. LetM�(X)be the subspace of M(X) consisting of measures � for which �(�) = �y for somey 2 Y . We let Q(�) be the set of all quasifactors of (X;Y; �;G) and we denoteby Q�(�) the subset of those quasifactors � 2 Q(�) that are supported on M�(X)i.e. those � 2 Q(�) for which for � almost every � 2M(X) there exists y = y(�) 2 Ywith �(��1(y)) = 1.The projection map � : X ! Y induces a map from M(X) onto M(Y ) whichfor convenience we also denote by �. Given an element � 2 Q�(�) we get thisway (identifying the Dirac measure �y with the point y 2 Y ) a factor map � :(M�(X); �;G) ! (Y; �;G). We now have the corresponding disintegration of �over � � = ZY �y d�(y)with �y a probability measure on M(Z).



14 E. GLASNER, J.-P. THOUVENOT AND B. WEISSTheorem 7. Let (X;X ; �; T ) �! (Y;Y; �; T ) be a homomorphism of ergodic sys-tems with h�(XjY ) = 0. Then every quasifactor � 2 Q�(�) satis�esh�(M�jY ) = 0:Proof. Let � 2 Q�(�) be a quasifactor and let (U; �) be the relative Pinsker factorof (M�; �) over (Y; �): (M� ; �) ��! (U; �)& .(Y; �) :Form the joining �, of � and �, de�ned by� = ZM� �� � � d�(�);and consider the diagram (M� _X;�). &�� id(M� ; �) (U _X;
)�& .p(U; �)where 
 = (� � id)�. In this diagram, by de�nition, � is a c.p.e. extension andby lemma 1.2, p is a 0-entropy extension. Thus, by theorem 1, � = � �� 
. If� = RU �u d�(u) and we let �u = RM� � d�u(�), then
 = (�� id)� = Z Z �u � � d�u(�)d�(u)= Z �u � �Z � d�u(�)�d�(u) = Z �u � �u d�(u):Thus implementing the isomorphismM� �U (U _X) �=M� _X(given by (�; (�(�); x)) 7! (�; x)) we get on one hand:� = ZU �u � �u � �u d�(u) �= ZU �u � �u d�(u)= ZU � ZM� �� d�u(�)���u d�(u) = ZU ZM� �� � �u d�u(�)d�(u)= ZM� �� � ��(�) d�(�);and on the other � = ZM� �� � � d�(�):By uniqueness of disintegration we conclude that for �-a.e �,��(�) = ZM� �0 d��(�0) = �:This clearly implies that � is an isomorphism, hence that (M� ; �) ! (Y; �) is a0-entropy extension; i.e. h�(M�jY ) = 0;as claimed. �
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