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ABsSTRACT. This paper treats the Pinsker algebra of a dynamical system in a way
which avoids the use of an ordering on the acting group. This enables us to prove some
of the classical results about entropy and the Pinsker algebra in the general setup of
measure preserving dynamical systems, where the acting group is a discrete countable
amenable group. We prove a basic disjointness theorem which asserts the relative
disjointness in the sense of Furstenberg, of 0-entropy extensions from completely
positive entropy (c.p.e.) extensions. This theorem is used to prove several classical
results in the general setup. E.g. we show that the Pinsker factor of a product system
is equal to the product of the Pinsker factors of the component systems. Another
application is to obtain a generalization (as well as a simpler proof) of the quasifactor
theorem for 0-entropy systems of [GW].

§0. INTRODUCTION

The classical theory of entropy was developed for Z actions and was based in
part on the natural order on that group; i.e. the “time” order. For example a
process (P, T) has zero entropy if and only if it is deterministic in the sense that P
is contained in the “past” of the process defined as \/jil TJP. The “remote past”

defined by
NV mr,

n=m j=m

played an essential role in proving basic theorems like the equivalence of the K-
property, namely the triviality of the remote past, with the property of “complete
positive entropy”; or more generally in proving the Rokhlin-Sinai theorem, which
identifies the Pinsker algebra, II(T') as the remote past of a generating partition P.
Other important theorems then follow as easy consequences of this identification.
E.g. for two measure preserving automorphisms S and T' we get

(T % S) = I(T) x II(S),

(see for example, [P]).

The goal of this paper is to find a way of dealing with the Pinsker algebra
of a dynamical system which avoids the use of an ordering on the acting group,
and which enables us to prove some of the classical results about entropy and the
Pinsker algebra, in the general setup of measure preserving dynamical systems,
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2 E. GLASNER, J.-P. THOUVENOT AND B. WEISS

where the acting group is a discrete countable amenable group. (See [RW] for a
related approach, where the classical equivalence of the K-property (i.e. complete
positive entropy) with a uniform mixing property for Z-actions, is generalized to
amenable group actions.)

Thus, in this work G will be a discrete amenable group. The objects we work
with are probability measure preserving G-systems (X, X, u, G), where (X, X, )
is a Lebesgue space. In some of the results we need to assume that G acts freely.
This is a standing assumption in [OW,2]. For simplicity we will do the same in
this work. Usually we omit the o-algebra X' and the group G from the notation of
a system. Thus unless it is stated otherwise (X, p), or even X, if the measure is
clear, stands for (X, X, u, G). Often we confuse the space and the o-algebra; thus we
may sometimes say that a function f is X-measurable rather than AX'-measurable.
When (X, X, u, G)> (Y,Y,v,G) is a homomorphism of two such systems we say
that (Y,v) is a factor of (X,u) or that (X,u) is an estension of (Y,v) and we
consider Y as a subalgebra of X. If (Y,Y,v,G)and (Z, Z,n, G)are two factors of
(X, X, 1, G)we denote by Y V Z the factor system of (X, X, u, G)defined by, YV Z,
the G-invariant o-subalgebra of X' generated by Y and Z. E,(f) = E(f) will
denote the expectation of the function f with respect to u; i.e. E(f) is simply the
integral [ fdu. And, when (X, X,p, G)> (Y,Y,v,G)is a homomorphism, EY (f)
is the conditional expectation of f with respect to the o-algebra Y. Thus if

= /Yuy dv(y),

is the disintegration of p over v, then v a.e.

EY (f)(y) = /X Fduy.

Given a G-system (X, X, 1, G), a measurable partition P of X and a subset F
of G we let PI' = \/gEF g~ 'P. The entropy of the process (P, G) is given by

h(P) = h(P,G) = lim

n—oo |Fn|

H(P"),

where {F,} is a Fglner sequence in the group G and H is the usual partition
entropy. As is shown in [OW 2] (see also [Ki,1]) the limit exists and is independent
of the Fglner sequence. The entropy of the system (X, X, u, G)is defined by

h(X, ) = sup{h(P) : P a finite partition of X }.

For the conditional entropy of P with respect to a G-invariant sub g-algebra Y C A
we set:

h(P|Y) = lim

n—oo |Fn|

H(P ).

Once again one can deduce the existence of this limit and its independence of the
sequence {F,} from the information provided in [OW,2]. This is worked out in
[KR]. The approach in [Ki,1] was extended to the conditional case in [WaZ]. The
conditional entropy of (X, 1) with respect to (Y, r) is defined by

R(X|Y') = sup{h(P|Y) : P a finite partition of X }.
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An extension (X, p) — (Y, v) will be called a 0-entropy extension if h(X|Y) = 0.
It will be called a completely positive entropy extension or c.p.e. extension if for
any intermediate extension (X, u) — (Z,n) — (Y,v) with (Z,n) — (Y,v) a proper
extension, h(Z|Y) > 0.

The Pinsker algebra of the system (X, X, u, G)is defined as the o-algebra of all
subsets A € X such that h({A, A°}) = 0, and the corresponding factor is called the
Pinsker factor of the system (X, p). The relative Pinsker factor for an extension
(X, X, 1,G)> (Y, Y, v,G), is defined similarly.

A Bernoulli G-system is a system (X, X, u, G)where an independent generating
partition P exists.

In section 1 we present a basic formula (lemma 1.1 (1)) which governs entropy
calculations, and deduce some corollaries. One of these is the definition of the
Pinsker (relative Pinsker) factor of a system (an extension). In section 2 we use a
lemma of J-P. Thouvenot (lemma 2.2, see [LPT]) to prove a disjointness theorem
which asserts the relative disjointness in the sense of Furstenberg, of 0-entropy
extensions from c.p.e. extensions. In section 3 we show how the c.p.e. property lifts
through certain diagrams. This is used in section 4 to deal with the Pinsker factor of
product systems. Next we generalize some theorems of K. Berg on maximal entropy
and independence, [B]. Finally in the last section we use the relative disjointness
theorem from section 2 to obtain a generalization (as well as a simpler proof) of
the quasifactor theorem for 0-entropy systems of [GW].

An important part of the work on this paper was done during the special year
in ergodic theory at the Institute for Advanced Studies of the Hebrew University
in Jerusalem, 1996-7, where all three authors participated. We would like to thank
the Institute for the very pleasant time we spent there.

§1. BACKGROUND

Recall that the conditional entropy of a finite measurable partition P with respect
to a G-invariant sub o-algebra Y C X is defined as:

—_ 1 F,
In case G = Z, it is well known that
lim lH(P[Ov”)) — inf lH(p[Om))_
n—oco N n n

This is a consequence of the fact that translates of the interval [0, n) tile Z exactly.
For amenable groups, where Fglner sets that tile perfectly are not known to exist in
general, we can substitute the e-quasi-tiling developed in [OW,2]. That gives for any
€ > 0, a k and a rate of growth for the almost invariance of F,,, Fy,,, ..., Fy,, (n1 <
ng < --- < ny) such that

h(P) < max

Fr;
< s, G H(PP™) 4 cH(P)

for all finite partitions P, and the same holds for the conditional entropy with
respect to any invariant o-algebra C:

(1) h(P|C) < max

Fa,
T 1<i<k |Fn|H(7D

C)+ eH(P).
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Let now R, be any sequence of finite partitions such that RY refines to Y. We
then have

(*) h(P|Y) = lim h(PIR}).
In fact, denoting h = h(P|Y), we clearly have for all n, h < h(P|RY). For the
other direction, by definition of h = h(P|)), for n; sufficiently large

1
(2) T,

H(Pi

V) <h+e.

We now fix n;, 1 <i <k satisfying (1) and (2). If m is large enough then by the
martingale convergence theorem, for all n;, 1 <1 <k,

1 1
(3) )2 RG) < o H(P™

\ N

V) +e,

and by (1), (2) and (3) we get

h(PIRS) (2 max !
T A<k | By, |

(3) 1

< e

(2)

< (h+ 2¢) + ¢,

H(PF’” R,Si) + e

H(Pn

V) + 2¢

so that (*) follows.
We let
R(X|Y') = sup{h(P|Y) : P a finite partition of X }.

As usual the continuity of the entropy function enables one to replace the sup over
all finite partitions by the sup over a dense set of partitions.

Lemma 1.1. Let (X, X, p, G)be a G-system with factor (Z,2,n,G).
(1) For any two finite measurable partitions P and Q:
PV QIZ)=h(P|Z)+hQIPYV Z).
(2) If P is a finite partition and h(P|Z) = H(P) then the process (P,G) is
Bernoulli and moreover PY is independent of Z.

Proof. (1) For Z trivial this is theorem 4.4 of [WaZ]. If Z is generated by a finite

partition R then we can write
APV QVR)=hR)+h(PVQRY) =h(R)+h(PVQ|Z)
and then

h(PVQ|Z)=h(PVQVR)—h(R)
PVR)+hQIPYV Z) - h(R)
PVR)—h(R)+h(QIPTV Z)

P|Z)+ h(Q|PC Vv Z).

h(
h(
h(
h(
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In the general case we let R, be a sequence of finite partitions such that RS refines

to Z. Then for each n
h(PV QIRY) = h(PIRy) + h(QIPY Vv RY),
and in the limit, by (*),
PV QIZ)=h(P|Z)+hQIPYV Z).
(2) The proof proceeds by showing that if for any finite set F' C G one would
have
(**) H(P|2) =|F|-H(P)~§

with § > 0, then h(P|Z) < H(P). On the other hand, if for all finite F' one
has equality in (#*) with § = 0, then the conclusions that the process (P,G) is
independent and that P% is independent of Z follow immediately. To establish the
first claim, let F,, be a Fglner set that is almost F-invariant and let {Fg; : 1 <
i < L} be a maximal set of disjoint translates of F' that lie in F,. If « € F,, and
Fa C F, and one cannot add Fa to the collection {Fg;}, it means that a € F~1 Fg;
for some g;. It follows that L-|F| > ¢-|F,| for some positive constant ¢ that depends
only on F.
We can now estimate

H(Pf|2) < Z H(pFo|z

~

Z)+ H(P"|2),

where E = F,, \ UiL:1 Fg;. By the invariance of the measure we conclude that
H(P™|2) < L-(|F| H(P)—8)+ |E| - H(P)
— (L |F|+|Bl)- H(P) - 0L
= |F,|-H(P)—4L.
from which it would follow that h(P|Z) < H(P), contrary to our assumption. [

Lemma 1.2.

(1) If (X, 1) = (Z,n) and (Y,v) % (Z,n) are 0-entropy extensions and \ is a
joining of p and v over n (i.e. ™ X G(N) =na), then (X x Y, \) = (Z,n)
18 also a 0-entropy extension.

(2) If {(Yi,vi) % (Z,m)} is an inverse system of 0-entropy extensions then so
is the inverse limit extension \/(Yi,vi) — (Z,n).

Proof. (1) This follows directly from lemma 1.1 by taking P and Q any finite
partitions which are X and Y measurable respectively.

(2) Again the assertion follows from lemma 1.1 and the observation that the
collection of finite partitions measurable with respect to some Y; are dense in the
set of all finite measurable partitions of \/(Y;,v;). O

Let (X, X, 1, G)=(Y,Y,v,G)be an extension of ergodic systems. Put
IX|Y)={Aec X :h({4,A}|Y) =0}.
Another corollary of lemma 1.1 is the fact that II(X|Y") is a G-invariant sub-o-
algebra of X which of course contains Y. We call this algebra the Pinsker algebra
of X relative to Y, and the corresponding factor the relative Pinsker factor. When

Y is the trivial algebra we get the Pinsker algebra and Pinsker factor of X and we
denote this factor by II(X).
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§2. THE RELATIVE DISJOINTNESS THEOREM

We say that (X, X, u, G)Z (Y, Y, v, G)is an ergodic extension if every G-invariant
X-measurable function is Y-measurable.

Lemma 2.1. Let (X, p,id) = (Z,n,id) and (Y, v, G) % (Z,n,id) be extensions of
G-actions, where id denotes the trivial action, and assume that the extensionY — Z
is ergodic. Then (X, u,id) and (Y,v,G) are relatively disjoint over (Z,n,id) i.e.
A = p X v s the only joining of X and Y over Z.

"

Proof. Let X be any joining of the systems (X, i, id) and (Y, v, G) over their common

factor (Z,n,id). Let
= / [z dn(z),
Z

be the disintegration of p over n, and

A :/ Ay X 8y dv(y).
Y

the disintegration of A over v. Then for every g € G

A= (idxg)\ = / Ay X gy dv(y)
Y

:/ Ag—1y X 0y dv(y).
Y

By uniqueness of disintegration we have \, = A,—1, v-a.e., hence, by ergodicity

y
of the extension ¥ % Z, Ay = Ap(y) = . v-a.e. (the latter equality follows by
projecting the disintegration of A onto the X coordinate). Thus

3= [ o x 3, dvty

= [ [ e 8, av-tiants
= [ ([ by dvtw) ante)

/szvzdn z)
/,L

4

Lemma 2.2. Let (X, p) and (Y,v) be Lebesgque spaces (not necessarily G-systems),
A a jowning of p and v. Let

A :/ dp X Ap du(x),
X
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be the disintegration of N over p and define a probability measure Aoy on X x Y7
by:
Ao :/ Op X (o X Ag X Ape-+) du(x).
X

Let Z denote the largest o-algebra common to the algebras X and Y* mod Ao
and let (Z,n) denote the corresponding factor Lebesgue space. Then X and Y% are
relatively independent over Z with respect to Ao

Proof. Define a transformation S : X x Y% — X x YZ by S(z,y) = (z,0y) where
y = (- ,y—1,%0,¥Y1, -+ ) € Y and o is the left shift on YZ. If f(x, ) is an S-
invariant function on X x Y% then for every z the function f,(y) = ( y) is a
o-invariant function on (Y2, \%), hence a constant; i.e. f(z,y) = f(z), A\so a.e..
Thus every S-invariant function is X'-measurable and in particular the extension

(Y2, veo,0) = (Z,n,id), where

z/oo:/X(---x/\xx/\x---)d/,L(x),

is an ergodic extension. Now we apply lemma 2.1 to the diagram

(X xYZ )\, 9)

v ¢
(X, p,id) (YZ,I/OO,O')

N\ v
(Z,n)

to deduce that X and V7 are relatively independent over Z as claimed. O

Theorem 1. Let (X,pu) = (Z,n) and (Y,v) 5 (Z,n) be two ergodic systems
extending the system (Z,n). Suppose 7 is a c.p.e. extension while o is a zero-
entropy extension. Then

(1) X and Y are disjoint over Z; i.e. the relatively independent joining (1 X v
"

is the only joining of u and v over n. In particular (taking (Z,n) to be the
trivial one point system) we have that every c.p.e. system is disjoint from
every zero-entropy system.
(2) The extension (X é Yiuxv) = (Y,v) is a c.p.e. extension; i.e. Y s
"

the relative Pinsker factor of X XY over Z. In particular (taking Z to be
Z

trivial) when X is a c.p.e. system and Y a zero-entropy system thenY s the
Pinsker factor of X XY ; i.e. the extension X XY — Y s a c.p.e. extension.

Proof. (1) Let A be a joining of (X, u) and (Y, v) over (Z,n). As in lemma 2.2, let

A :/ dp X Ag du(zx),
X

be the disintegration of A over p and define a probability measures Ao on X x Y7
and vs, on Y7 by:

/\oo:/ dp X (oo X Ag X Ap -+ ) du(x)
X
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and

z/oo:/X(---x/\xx/\x---)d/,L(x).

Let Z denote the largest o-algebra common to the algebras X and Y% mod Ao
and let (Z, n) denote the corresponding factor system. Then clearly Z C Z and by
lemma 2.2, X and Y% are relatively independent over Z with respect to Aoo.

Now lemma 1.2 implies that the extension (Y72 v.) — (Z,7n) is a 0-entropy
extension and a fortiori (Z,7) — (Z,n) is a O-entropy extension. On the other
hand (X, ) — (Z,n) is a c.p.e. extension; hence so is the extension (Z, n) — (Z,n)
and we conclude that Z = Z. This completes the proof of part (1).

(2) Denote A = p x v and let (U, () be the relative Pinsker factor of X ; Y over
Y: !

(X xY,\) — (U, Q)

v

/N

(Y,v)

If U # Y then we let f be any bounded Ly()\) non-zero function which is U
measurable but orthogonal to Ly()), so that EY(f) = 0. Let ¢ and h be any
bounded X and Y measurable functions respectively. Then by part (1), as fh is
U-measurable and U — Z is a 0-entropy extension, EZ(fgh) = EZ(fh)E%(g).
Now EZ(fh) = E?(EY(fh)) = E#(hEY(f)) = 0. Thus E#(fgh) = 0, whence
E(fgh) = 0. Since linear combinations of functions of the form gh are dense in
Ly()), this leads to a contradiction and we conclude that f =Y . O

The following theorem is a simple application of the disjointness theorem.

Theorem 2. If the ergodic system (X,p) is the wnverse limit of the sequence
(X, ptn) and X and X,, are the corresponding Pinsker factors, then X is the inverse
limit of the sequence X,,.

Proof. Let X be the Pinsker factor of X and for each n, X,, the Pinsker factor of
X,. Finally let Z be the inyerse limit of the X,,. Since the extension X,, — X, is
c.p.e. while the extension X — X, is a zero-entropy extension we get by theorem

1, that X,, x X is the relatively independent joining over X,. Let f be an X,
Xn

measurable function and ¢ an X measurable function. Then, since f is also &),
measurable for m > n we have for such m:

EXr(fg) = B* (f) - EX"(9)
By the martingale convergence theorem we get
E”(fg) = E*(f)- E”(9).

Since the union of the A, measurable functions is dense, we conclude that X is
relatively independent of X over Z, which is possible only when X = Z. 0O
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§3. LIFTING C.P.E. EXTENSIONS

Our goal in this section is to obtain the assertion of theorem 1.(2) without the
assumption that the extension (Y,v) % (Z,n) is a O-entropy extension (theorem
3, below). Our strategy will be to put together two special cases of the theorem.
The first is the case when o is assumed to be a 0-entropy extension; i.e. theorem
1.(2). The second will be the case when Y = Z x B, where B is a Bernoulli system
(see also [RW]). For this we need the following three lemmas. The proof of the first
lemma is straightforward. Denote by Aut(X, i, G) the group of measure preserving
transformations of (X, u) that commute with the action of G.

Lemma 3.1. Let (B,v,G) be a G-Bernoulli system; i.e. B =1{0,1,...,5 —1}%
v a Bernoulli measure on B and the action is the canonical left action: gx(h) =

(g7 h), ® € B,g,h € G. Define the right action of G on B by
gox(h)=xz(hg), (x € B,g,h € G).

Then the left and right actions of G commute. In particular the right G-action
defines a subgroup of Aut(B,v,G) which acts ergodically on B.

In preparation for the next lemma we make the observation that for a Lebesgue
space (X, X, 1), the space of all sub o-algebras of X' (mod p) can be viewed as a
Polish space. One way to see this is to identify a sub o-algebra A C X, with the
corresponding conditional expectation operator B : Lo(X, 1) — Lo(A, ).

Lemma 3.2. Let (X,u) = (Z,n) be a c.p.e. extension and (Y,v) an ergodic G-
system with the property that the group Aut(Y,v,G) acts ergodically on Y. Then
the extension (X X Y, u xv) = (Z xY,nxv) s a cp.e. extension.

Proof. Let X xY — U — Z xY be the relative Pinsker factor. Fix I' a countable
dense subgroup of Aut(Y,r, &), and note that I' also acts ergodically on (Y,v).
Choose a countably generated sub-o-algebra U whose completion is the o-algebra
of U such that (i) ¢ is invariant under G and Id x~ for every v € T' and (ii) U
contains a sub-o-algebra whose completion is the o-algebra of Z. Consider the
map y — U, of ¥ into the Polish space of sub o-algebras of X', where U, is the
o-algebra defined as the trace of U on the fiber X x {y}, and the latter is identified
with X. With ¢, we also take the conditional expectation operator defined on
L2(X, ) to the closed subspace spanned by the Uf,-measurable functions, E%. It
is now easy to check that the map y — E% is measurable. Moreover, since clearly
for each v € T, the factor U is I x v-invariant, it follows that i/, = U,. Since I" acts
ergodically on Y we conclude that, v a.e, ¢, does not depend on y € ¥ and defines
a G-invariant factor o-algebra U of X with Z C U. If U # Z then—as X — Z is
a c.p.e. extension—it follows that the entropy of U is strictly larger than that of
Z. However since X and Y are independent and U is a factor of X it follows that
also the entropy of UxY is strictly larger than that of Y. Finally since UxYisa
factor of U we get a contradiction to the assumption that U is the relative Pinsker

factor of X x Y — Y. Thus U = Z and we conclude that U = Z x Y. O

Lemma 3.3. If (Z,n) is a factor of (Y,v) with strictly smaller entropy then there
18 a Bernoully factor of Y, B independent of Z such that Z x B has full entropy in
Y.
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For Z this result is essentially found in [O]. It was made explicit in [OW,1] and
[T]. (For another treatment of the relative theory see [Ki,2]). For discrete amenable
groups all of this carries over in a straight forward fashion using the basic machinery
developed in [OW.2]. It was not done there explicitly because the extension to
continuous amenable groups presents new difficulties (cf. the discussion there in

Appendix C).

™ [

Theorem 3. Let (X,p) — (Z,n) and (Y,v) — (Z,n) be two ergodic systems

extending the system (Z,n). Suppose 7 is a c.p.e. extension. Let N\ = p X v be
"

the relatively independent joining of p and v over n. Then the extension my wn the

diagram
(X xY,\)
Z
e Ty
(X, 1) (Y, v)
™\ o
(Z,m)

18 @ c.p.e. extension.

Proof. By lemma 3.3, there exists a Bernoulli factor Y — B independent of Z and

such that Y — Z x B is a zero-entropy extension. Notice that X x (Z xB) =2 X x B.
Z

By lemma 3.1, Aut(B, G) acts ergodically on B and we can apply lemma 3.2 to the
diagram

X xB
e \TB
X Z x B
™\ o
Z

to deduce that 7p is a c.p.e. extension. Next observe that [X x (Z x B)] x Y &
Z ZxB

(X xB) x Y =X xY, then apply theorem 1 to the diagram
ZxB Z

X xY
Z

v Ny
X xB Y
B \¢ v O-ent.

Z x B

to deduce that 7y : X XY — Y is a c.p.e. extension. [
Z

§4. THE PINSKER FACTOR OF A PRODUCT SYSTEM

In this section our main goal is a generalization to discrete amenable groups of
the well known fact that for Z-actions the product of two K-systems is a K -system.
For previous results in this direction see e.g. [Ka].

T g

Theorem 4. Let (X,pu) — (Z,n) and (Y,v) = (Z,n) be two ergodic systems
extending the system (Z,n) with relative Pinsker factors X and Y respectively. Then

X x Y is the relative Pinsker factor of the relative product system (X x Y,u x v)
z Z n
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over (Z,n). In particular (for the case that Z s trivial) we have that the Pinsker
factor of the product system is the product of the Pinsker factors and specializing
once again, the product of two c.p.e. systems is a c.p.e. system.

Proof. Let A = pu x v. The measure space we work with is (X x Y, \). Let U be
n Z

the relative Pinsker factor of X x Y over Z. First consider the diagram

Z
X xY
Z
v N\
X X xY
Z
¢ - v
X

By theorem 3 the extension X x Y — X x Y is a c.p.e. extension.
Z Z

Now consider the systems X VU and Y VU. Since the extension UVY — X xY
Z
is clearly a zero-entropy extension, theorem 1 implies that X x Y is independent of
Z
UVY over X xY. Since the algebra corresponding to X x Y is the total o-algebra,
Z Z

we deduce that U VY, and in particular U, is X x Y measurable. Symmetrically

Z
we get that U is X x Y measurable, and therefore deduce that U is X x Y =
Z Z
(X xY)N (X xY) measurable;ie. U= X xY. O
Z Z Z

§5. MAXIMAL ENTROPY AND INDEPENDENCE

™ [

Theorem 5. Let (X,p) — (Z,n) and (Y,v) — (Z,n) be two ergodic systems
extending the system (Z,n) with finite entropy and such that = is a c.p.e. extension.
Let X be a joining of p and v over n (i.e. \ projects under © X o onto the diagonal
measure n?) on Z x Z ). Suppose

hA(X X ¥|Z) = h(X|Z) +h(Y|Z)

then X us the relatively independent joining of p and v over n.

Proof. The measure space we work with is (X x Y, \). Entropies are computed
Z

with respect to the measure \. We let 'R, S and U be finite generating partitions
for X,Y and Z respectively (see [Ro]).

(1) Assume first that Y = B x Z where B is a Bernoulli factor of V" independent
of Z. We let P be a finite Bernoulli generating partition for B. By lemma 1.1 (1)
and our assumption

ha(X < Y|Z)=h(RVS|Z)=h(R|Z) + h(S|RE v Z)
= h(X|Z)+h(Y|XV Z)=hX|Z)+ h(Y|Z),

hence A(Y|X VZ)=h(Y|X)=h(Y]|Z). Now

MY |X)=h(PVU|IX)=h(P|X)+hUP°VX)=h(P|X),
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hence
RPIX)=h(PVUIX)=RY|X)=hY|Z)=h(PVU|Z)=H(P),

and lemma 1.1 (2) implies that B is independent of X. ;From this we get that
Y = B x Z is relatively independent of X over Z as required.

(2) In the general case we observe first that when h(Y|Z) = 0, the assertion
follows from theorem 1. If h(Y|Z) > 0, we apply lemma 3.3 to choose a Bernoulli
factor B of Y such that h(B) = h(Y'|Z) and B is independent of Z. Now by (1), B
is independent of X, and B x Z is relatively independent of X over Z. By theorem
3, in the diagram

X x B

N

¢
Z x B
v

Z

Y

the extension X x B — Z X B is a c.p.e. extension. Now, since Y — Z x B is a
zero-entropy extension, we can apply theorem 1 to the diagram

X xY. )\
(é,)

4 K
X x B Y
pN 4

Z x B

Y

and conclude that X x B and Y are relatively independent over Z x B. Now let f
and ¢g be bounded X and ) measurable functions, respectively. Then

E{(fg) = EZ(E?*P(fg)) = EZ/(E”*P(f)E?*" (g))
= EZ(E”(f)E?*"(g)) = E”(f)E”(g).

Thus X and Y are relatively independent over Z and A = p X v as required. [
"

Theorem 6. Let (X;, ;) = (Z,n), i = 1,2 be two ergodic systems extending the
system (Z,n). Let X be a joining of X1 and X5 over Z. Let (Z;,n;) — (Z,n) be the
relative Pinsker factors, 1 = 1,2, and assume further that

ha(X1 V X2|Z) = h(X1|Z) + h(X,|Z).

Then A s the relatively independent joining of the two systems (X, p;),1 = 1,2
over the joining induced by \ on the o-algebra generated by the two relative Pinsker
factors (Z;,m;),1 = 1,2. In particular if with respect to \, Z1 and Zy are independent
over Z, then also X1 and Xs are independent over Z; i.e. X s the relatively
independent joining of p1 and py over n.

Proof. Consider the diagram

X1VZ2 Zl \/XZ

P\ v P2
Z1N Zs
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where for example X7 V Z; denotes the factor of (X; x X3, \) generated by the
factors X7 and Z;. By theorem 1.(2), p; is a c.p.e. extension while by using lemma
1.1, we have

ha(X1V Xa| 20V Z3) = h(X1V Zo|Z0 NV Za) + h(Zy V Xa|Z4 NV Za).

Thus theorem 5 implies that Xy V Z3 and Z; V X5 are independent over Zy V Zs.
Let f; be bounded functions on X; x X3 which are Xj;-measurable, : = 1,2. Then

EZY%(fifa) = EZV2(fi) - EZV2(fa).

This proves the first part of the theorem; for the second part we use the relative
independence of Z; and Z; over Z to get:

EZ(fif2) = EZ(E”Y?2(f1 f))
= EZ(EZY%(fi) - EDV2(f)

= EZ(E”(f1)- E”(f2)) = EZ(f1) - EZ(fa).
Thus X and X3 are relatively independent over Z as claimed. O

§6 QUASI—FACTORS OF ZERO-ENTROPY EXTENSIONS

Our last application of theorem 1 is to obtain a new proof of the fact that a
quasifactor of a zero-entropy system has zero-entropy. In fact we get a generaliza-
tion of this statement to zero-entropy extensions and moreover this new proof is
simpler than both proofs in [GW]. Of course the main application of the quasifactor
theorem in [GW] was to get a proof of the absolute version of theorem 1.

Let (X,X,u,G) be an ergodic system. Let (M(X), &) be the Borel space of
probability measures on X with the induced G-action. Recall that a quasifactor of
(X, X, 1, G) is any probability measure A on M(X), invariant under GG, and with
barycenter equal to u:

/ 6 d\(6) = su.

M(X)

Let (X, X, 1, G) = (Y, Y, v, G) be a homomorphism of ergodic systems. Let M, (X)
be the subspace of M(X) consisting of measures 6 for which =(6) = 4, for some
y €Y. We let Q(r) be the set of all quasifactors of (X, Y, u, @) and we denote
by Q= (u) the subset of those quasifactors A € Q(p) that are supported on M (X)
i.e. those A € Q(p) for which for A almost every § € M(X) there exists y = y(6) € YV’
with 8(7~1(y)) = 1.

The projection map 7 : X — Y induces a map from M(X) onto M(Y) which
for convenience we also denote by m. Given an element A\ € Qr(u) we get this
way (identifying the Dirac measure §, with the point y € Y') a factor map = :
(Mz(X),\,G) — (Y,r,G). We now have the corresponding disintegration of A

over v
= [t
Y

with A\, a probability measure on M(Z).
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Theorem 7. Let (X, X, 1, T) = (Y, Y,v,T) be a homomorphism of ergodic sys-
tems with h,(X|Y) =0. Then every quasifactor A\ € Q~(p) satisfies

ha(Mz|Y)=0.
Proof. Let A\ € Qr(p) be a quasifactor and let (U, () be the relative Pinsker factor
of (Mz,\) over (Y, v):
(M d) 5 (U.Q)

N\ v
(Y,v)

Form the joining x, of A and pu, defined by

K :/ 8y % 6 dN(8),
MTr

and consider the diagram

(MzV X, k)

N ¢ % id
(M, \) (UVX,~)
PN\ P

(U.¢)

where v = (¢ x id)s. In this diagram, by definition, ¢ is a c.p.e. extension and
by lemma 1.2, p is a 0-entropy extension. Thus, by theorem 1, k = A x ~. If

¢
A= fU Ay dC(u) and we let 1, = fMﬁ 6 d\,(0), then

v = (¢ xid)r = //5 X 6 d\y(6)dC(u)

- /5u X (/9 A\ (8))dC(u) = /5u X i d¢(u).

Thus implementing the isomorphism

My x (U X) 2 My V X
(given by (8, (¢(0),2)) — (0,2)) we get on one hand:

= [ b dctu) /Auxmdam

//%dA (6)) x4ty dC(u // S % pru dAu(8)dC(u)

= / 59 X e (6) d/\(e),
M,
and on the other

K :/ 89 % 6 dX(6).
MTr

By uniqueness of disintegration we conclude that for A-a.e 6,

Ho(6) = /M 0" Aoy = 0.

This clearly implies that ¢ is an isomorphism, hence that (M, \) — (Y,v) is a
0-entropy extension; 1.e.

ha(Mz|Y) =0,

as claimed. O
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