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Preliminary versionSeptember, 1998The Cappelli-Itzykson-Zuber A-D-E Classi�cationTerry GannonDepartment of Mathematical Sciences, University of Alberta,Edmonton, Alberta, Canada, T6G 1G8e-mail: tgannon@math.ualberta.caAbstract. In 1986 Cappelli, Itzykson and Zuber classi�ed all modular invariant partitionfunctions for the conformal �eld theories associated to the a�ne A1 algebra; they foundthey fall into an A-D-E pattern. Their proof was di�cult and attempts to generalise itto the other a�ne algebras failed { in hindsight the reason is that their argument ignoredmost of the rich structure present. We give here the \modern" proof of their result; it isan order of magnitude simpler and shorter, and much of it has already been extended toall other a�ne algebras. We conclude with some remarks on the A-D-E pattern appearingin this and other RCFT classi�cations.1. The problemOne of the more important results in conformal �eld theory is surely the classi�cationdue to Cappelli, Itzykson, and Zuber [3; see also 4] of the genus 1 partition functionsfor the theories associated to A(1)1 (which in turn implies the classi�cation of the minimalmodels). Their list was curious: Kac noticed that their partition functions fall into the A-D-E pattern familiar from the �nite subgroups of SU2(C ), simple singularities, simply-lacedLie algebras, subfactors with index < 4, etc. See e.g. [9].The problem can be phrased as follows. Fix any integer n � 3. Let P+ = f1; 2; : : : ; n�1g, and let S and T be the (n � 1) � (n � 1) matrices with entriesSab =r 2n sin(� abn ) ; Tab = exp[�i a22n ] �a;b :Find all (n � 1)� (n� 1) matrices M such that� M commutes with S and T : MS = SM and MT = TM� M has nonnegative integer entries: Mab 2Z+ for all a; b 2 P+� M is normalised so that M11 = 1 . 1



Call any such M a physical invariant. Since most entries Mab are usually zero, it is moreconvenient to formally express M as the coe�cient matrix for the combinationZ = n�1Xa;b=1Mab �a ��b :Theorem [3]. The complete list of physical invariants is (using Ja def= n� a)An�1 = n�1Xa=1 j�aj2 ; 8n � 3Dn2+1 = n�1Xa=1 �a ��Jaa ; whenever n2 is evenDn2+1 = j�1 + �J1j2 + j�3 + �J3j2 + � � �+ 2j�n2 j2 ; whenever n2 is oddE6 = j�1 + �7j2 + j�4 + �8j2 + j�5 + �11j2 ; for n = 12E7 = j�1 + �17j2 + j�5 + �13j2 + j�7 + �11j2+ �9 (�3 + �15)� + (�3 + �15)��9 + j�9j2 ; for n = 18E8 = j�1 + �11 + �19 + �29j2 + j�7 + �13 + �17 + �23j2 ; for n = 30 :These realise the A-D-E pattern, in the following sense. The Coxeter number h of thename X` equals the corresponding value of n, and the exponents of X` (i.e. the mi in theeigenvalues 4 sin2(� mi2n ) of its Cartan matrix) equal those a 2 P+ for which Maa 6= 0.Cappelli-Itzykson-Zuber proved this by �rst �nding an explicit basis for the space of allmatrices commuting with S and T . Unfortunately their proof of the theorem was long andformidable. Considering all of the structure implicit in the problem, we should anticipatea much more elementary argument. This is not merely of academic interest, because thereis a natural generalisation of this problem to all other a�ne algebras. Several people hadtried to extend the argument of [3] to these larger algebras, but with [1] it became clearthat some other approach was necessary, or the generalisation would never be achieved.And of course another reason is that the more transparent the argument, the better thechance of understanding the connection with A-D-E.In this paper we provide a considerably shorter proof of the theorem, bearing noresemblance to the older arguments. Our proof is an example of the \modern" approachto physical invariant classi�cations. See [6] for a summary of the current status of theseclassi�cations for the other a�ne algebras.The argument which follows is completely elementary: no knowledge of e.g. CFT orKac-Moody algebras is assumed. It is based on various talks I've given, most recentlyat the Schr�odinger Institute in Vienna where I wrote up this paper and who I thank forgenerous hospitality. 2



2. The combinatorial backgroundIn this section we include some of the basic tools belonging to any classi�cation of the sort,and we give a 
avour of their proofs. We will state them for the speci�c problem givenabove, but everything generalises without e�ort [5].First note that commutation of M with T implies the selection ruleMab 6= 0 =) (a + 1)2 � (b + 1)2 (mod 4n) : (2:1)Next, let us write down some of the basic properties obeyed by S. S is symmetric andorthogonal, and S1b � S11 > 0 : (2:2)The permutation J of P+, de�ned by Ja = n� a, corresponds to the order 2 symmetry ofthe extended Dynkin diagram of A(1)1 ; it satis�esSJa;b = (�1)b+1Sab : (2:3)Note that the element 1 2 P+ is both physically and mathematically special; our strat-egy will be to �nd all possible �rst rows and columns of M , and then for each of thesepossibilities to �nd the remaining entries of M .The easiest result follows by evaluating MS = SM at (1; a) for any a 2 P+:S11 + n�1Xb=2M1b Sba � 0 ; (2:4)with equality i� the ath column of M is identically 0. Equation (2.4) has two uses: itseverely constrains the values ofM1b (and duallyMb1), and it says precisely which columns(and rows) are nonzero.Another simple observation is1 =M11 = n�1Xa;b=1S1aMab S1b � S211 n�1Xa;b=1Mab :This tells us that each entry Mab is bounded above by 1S211 (we will use this below). Inparticular, there can only be �nitely many physical invariants for each n. (This samecalculation shows more generally that there will only be �nitely many physical invariantsfor a given a�ne algebra X(1)r and level k.)Next, let's apply the triangle inequality to sums involving (2.3). Choose any i; j 2f0; 1g. Then MJi1;Jj1 = n�1Xa;b=1(�1)(a+1)i S1aMab (�1)(b+1)j S1b :3



Taking absolute values, we obtainMJi1;Jj1 � n�1Xa;b=1S1aMab S1b =M11 = 1 :Thus MJi1;Jj1 can equal only 0 or 1. If it equals 1, then we obtain the selection rule:(a+1)i � (b+1)j (mod 2) wheneverMab 6= 0. This implies the symmetryMJia;Jjb =Mabfor all a; b 2 P+.Whenever you have nonnegative matrices in your problem, and it makes sense to mul-tiply those matrices, then you should seriously consider using Perron-Frobenius theory { acollection of results concerning the eigenvalues and eigenvectors of nonnegative matrices.Our M is nonnegative, and although multiplying M 's may not give us back a physicalinvariant, at least it will give us a matrix commuting with S and T . In other words, thecommutant is much more than merely a vector space, it is in fact an algebra.Important applications of this thought are the following two lemmas.Lemma 1. Let M be a physical invariant, and suppose Ma1 = �a;1 { i.e. the �rst columnof M is all zeros except for M11 = 1. Then M is a permutation matrix { i.e. there is somepermutation � of P+ such that Mab = �b;�a, and S�a;�b = Sab.This is proved by �rst showing that also M1a = �1;a (evaluate MS = SM at (1,1)),and then studying the powers (MMT )L as L goes to in�nity: its diagonal entries will growexponentially with L, unless there is at most one nonzero entry on each row of M , and itequals 1. (Recall that the entries of (MMT )L must be bounded above.) Lemma 1 wasfound independently by Schellekens and Gannon.That argument is elementary enough that it required no knowledge of Perron-Frobenius.But that knowledge is needed to generalise it. In this fancier language, what the precedingargument shows is: write M as the direct sum of indecomposable submatrices; then thelargest eigenvalue of the submatrix containing (1,1) bounds above the one for each othersubmatrix. Arguing with a little more sophistication, we obtain much more. The specialcase we need is:Lemma 2 [5]. Let M be a physical invariant, and suppose Ma1 6= 0 only for a = 1 anda = J1, and similarly for M1a { i.e. the �rst row and column of M are all zeros exceptfor MJi1;Jj1 = 1. Then the ath row (or column) of M will be identically 0 i� a is even.Moreover, let a; b 2 P+, both di�erent from n2 , and suppose Mab 6= 0. ThenMac = � 1 if c = b or c = Jb0 otherwiseand a similar formula holds for Mcb.This lemma says that the indecomposable submatrices of M which don't involve n2(the �xed-point of J) will either be trivial (0) (for even places on the diagonal), or involveblocks � 1 11 1�. You can check this for the Deven and E7 partition functions.4



Our �nal ingredient is a Galois symmetry obeyed by S, and its consequence for M .Again, see e.g. [5] for a proof. Let L be the set of all ` coprime to 2n. For each ` 2 L,there is a permutation a 7! [`a] of P+, and a choice of signs �` : P+ ! f�1g, such thatMab = �`(a) �`(b)M[`a];[`b] ; (2:5)for all a; b 2 P+. In particular, write fxg for the number congruent to x (mod 2n) satisfying0 � fxg < 2n. Then if f`ag < n, put [`a] = f`ag and �`(a) = +1, while if f`ag > n,put [`a] = 2n � f`ag and �`(a) = �1. This `Galois symmetry' (2.5) comes from hittingM = SMS with the `th `Galois automorphism'. Any polynomial over Q with a 2nth rootof unity � as a zero { and M = SMS can be interpreted in that way { also has �` as azero. We then use sin(� `abn ) = �`(a) sin(� [`a]bn ). From (2.5) and the positivity of M , weget for all ` 2 L the Galois selection ruleMab 6= 0 =) �`(a) = �`(b) : (2:6)(2.5) and (2.6), valid for any a�ne algebras, were �rst found independently by Gannonand Ruelle-Thiran-Weyers. The Galois interpretation, and extension to all RCFT, is dueto Coste-Gannon.3. The \modern" proof of the A(1)1 classi�cationThe last section reviewed the basic tools shared by all modular invariant partition functionclassi�cations. In this section we specialise to A(1)1 .The �rst step will be to �nd all possible values of a such that M1a 6= 0 or Ma1 6= 0.These a are severely constrained. We know two generic possibilities: a = 1 (good for alln), and a = J1 (good when n2 is odd). We now ask the question, what other possibilitesfor a are there? Our goal is to prove (3.4). Assume a 6= 1; J1.There are only two constraints on a which we will need. One is (2.1):(a � 1) (a + 1) � 1 (mod 4n) : (3:1)More useful is the Galois selection rule (2.6), which we can write as sin(�` an ) sin(�` 1n) > 0,for all ` 2 L. But a product of sines can be rewritten as a di�erence of cosines, so we getcos(� ` a� 1n ) > cos(� ` a+ 1n ) : (3:2)Since ` obeys (3.2) i� `+n does, we can take ` in (3.2) to be coprime merely to n insteadof 2n. Call L0 the set of these `. (3.2) is strong and easy to solve; here is my argument.De�ne d = gcd(a � 1; 2n), d0 = gcd(a + 1; 2n). Note from (3.1) that gcd(d; d0) = 2and dd0 = 4n, so d; d0 � 6. We can choose `0; `0 2 L0 so that `0 (a + 1) � d0 (mod 2n) and`0 (a � 1) �8<: n� d if d2 is odd and n2 is evenn� 2d if d2 is odd and n2 is oddn� d2 otherwise; i:e: if d02 is odd (mod 2n) :5



Now de�ne `i = 2nid + `0. Then `i (a� 1) � `0 (a� 1) (mod 2n) for all i, and for 0 � i < d2the numbers `i (a + 1) will all be distinct (mod 2n). For those i, precisely �(d2 ) of the `iwill be in L0, where �(x) is the Euler totient, i.e. the number of positive integers less thanx coprime to x.Now, the numbers `i (a + 1) are all multiples of d0. So (3.2) with ` = `i gives us(�(d2) � 1) d0 < 8<: 2d if d2 is odd and n2 is even4d if d2 is odd and n2 is oddd otherwise : (3:3)Also, (3.2) with ` = `0 requires d < d0. Combining this with (3.3), we get �(d2 )� 1 < 2, 4,or 1, which has the solutions d = 6 (for n some multiple of 4), and d = 6 or 10 (for n anodd multiple of 2). (3.3) now gives us exactly 3 possibilities: d = 6, d0 = 8, n = 12 (whichyields E6 as we will see below); d = 6, d0 = 20, n = 30, and d = 10, d0 = 12, n = 30 (bothwhich correspond to E8).So what we have shown is that, provided n 6= 12; 30, M obeys the strong conditionMa1 6= 0 or M1a 6= 0 =) a 2 f1; J1g : (3:4)Consider �rst case 1: Ma1 = �a;1. This is the condition in Lemma 1, and so we knowMab = �b;�a for some permutation � of P+ obeying Sab = S�a;�b. We know �1 = 1, soput m := �2. Then sin(� 2n ) = sin(� mn ), and so we get either m = 2 or m = J2. ByT -invariance (2.1), the second possibility can only occur if 4 � (n � 2)2 (mod 4n), i.e. 4divides n. Then Dn2+1 is also a permutation matrix. Thus replacing M if necessary withthe matrix product M Dn2+1, we can require m = 2, i.e. �2 = 2.Now take any a 2 P+ and write b = �a: we have both sin(� an) = sin(� bn) andsin(� 2an ) = sin(� 2bn ). Dividing these gives cos(� an) = cos(� bn ), and we read o� thatb = a, i.e. that M is the identity matrix An�1.The other possibility, case 2, is that both M1;J1 6= 0 and MJ1;1 6= 0. Then Lemma 2applies. (2.1) says 1 � (n� 1)2 (mod 4n), i.e. n2 is odd. n = 6 is trivial (the only unknownentry, M3;3, is �xed by MS = SM at (1,3)), so consider n � 10. The role of `2' in case 1will be played here by `3'. The only di�erence is the complication caused by the �xed-pointn2 . Can M3;n2 6= 0? If so, then Lemma 2 would imply M3;a = 0 for all a 6= n2 . EvaluatingMS = SM at (3; 1), we obtain M3;n2 = 2 sin(� 3n), i.e. n = 18, which corresponds to E7 aswe show later.Thus we can assume for now that both M3;n2 =Mn2 ;3 = 0, and so by Lemma 2 therewill be a unique m < n2 for which M3;m 6= 0. MS = SM at (3; 1) now gives m = 3.For any odd a 2 P+, a 6= n2 , can we have Mn2 ;a 6= 0? If so then MS = SM at (1; a)and (3; a) would give us 2 sin(� an ) = Mn2 ;a = 2 sin(� 3an ), which is impossible for n2 odd.Therefore Lemma 2 again applies, and we get a unique b < n2 for which Mba 6= 0. Theusual argument forces b = a, and we obtain the desired result: M = Dn2+1.6



3.1. The exceptional at n = 12We know M1a � 1 for some a 2 P+ with gcd(a + 1; 24) = 8 { i.e. a = 7. >From (2.4)at a = 2, we get sin(�6 )�M1;7 sin(�6 ) � 0. ThusM1;7 = 1. Applying the Galois symmetry(2.5) for ` = 5; 7; 11, we obtain the terms j�1 + �7j2 + j�5 + �11j2 in E6. Now use (2.4) toshow that among the remaining entries of M , only the 4th and 8th rows and columns willbe nonzero. MJ1;J1 = 1 tells us M44 = M88 and M84 = M48. These must be equal, byevaluating MS = SM at (4,2), and then either Perron-Frobenius or MS = SM at (1; 4)forces that common value to be 1. We thus obtain M = E6.3.2. The exceptional at n = 18We know M3;9 = 1 and that M3;a = 0 for all other a 6= 9. T -invariance (2.1) andLemma 2 applied to the other odd a < 9, force Maa = 1. The only remaining entry isM9;9, which is �xed by MS = SM at (9,1). We get M = E7.3.3. The exceptional at n = 30We know either M1;11 or M1;19 is nonzero; the only other (potentially) nonzero M1aare at a = 1; J1. Suppose �rst that M1;J1 = 1, so M1;11 = M1;19. Then (2.4) at a = 3forces M1;11 = 1; Galois (2.5) for ` = 7; 11; 13; 17; 19; 23; 29 gives us all the nonzero termsin E8, and (2.4) tells us all other entries of M must vanish.If instead M1;J1 = 0, then (2.4) at a = 3; 2; 4 gives our contradiction.4. Closing remarksThere are two reasons to be optimistic about the possibilities of a classi�cation of allmodular invariant partition functions (=physical invariants) for all simple Xr . One is themain general result in the problem [5], which gives the analogue of the A?, D?, and E7physical invariants for any Xr . See [6] for a discussion. The other cause for optimism isthe shortness and simplicity of the above proof for A(1)1 .The reader should be warned though that A(1)1 is an exceptionally simple case { theproof quickly reduces essentially to combinatorics. Our argument here is a projection ofthe general argument onto this special case, and this loses most of the structure present inthe general proofs. The general arguments are necessarily more subtle and sophisticated.Nevertheless this paper should help the interested reader understand the further literatureon this fascinating problem, and make the proof of the important classi�cation of Cappelli-Itzykson-Zuber more accessible.A big question is, does this new proof shed any light on the main mystery here: theA-D-E pattern to our Theorem? It does not appear to. But it should be remarked thatit is entirely without foundation to argue that this A(1)1 classi�cation is `equivalent' toany other A-D-E one. There is a connection with the other A-D-E classi�cations whichshould be explained, and which has not yet been satisfactorily explained. But what weshould look for is some critical combinatorial part of a proof which can be identi�ed withcritical parts in other A-D-E classi�cations. There has been some progress elsewhere atunderstanding this A-D-E. Nahm [10] constructed the invariant X` in terms of the compactsimply-connected Lie group of type X`, and in this way could interpret the n = h and7



Mmimi 6= 0 coincidences. A very general explanation for A-D-E has been suggested byOcneanu [11] using his theory of path algebras on graphs, but unfortunately it has neverbeen published. Related to this is the work by Zuber and Petkova on fusion graphs (seee.g. [12]). Nevertheless, the A-D-E in CFT remains almost as mysterious now as it did adozen years ago...Incidently, there is a nice little curiousity contained within many modular invariants:another A-D-E! This A-D-E applies to any physical invariant (i.e. for any RCFT, notnecessarily related to A(1)1 ) which looks like Z = j�1 + �10 j2 + stu�. The label 10 canbe anything in P+, and `stu�' can be any sesquilinear combination of �i's, provided itdoesn't contain �1 (the vacuum) or �10 . In other words, the indecomposable submatrix ofM containing (1; 1) is required to be � 1 11 1�, but otherwise M is unconstrained. Thento M we can associate several extended Dynkin diagrams of A-D-E type, as follows.Put a node on the left of the page for each a 2 P+ whose rowMa? is nonzero, and puta node on the right of the page for each b 2 P+ whose column M?b is nonzero. Connecta (on the left) and b (on the right) with precisely Mab edges. The result will be a set ofextended Dynkin diagrams of A-D-E type! (For these purposes we will identify two nodesconnected with 2 lines as the extended A1 diagram.)For example, let's apply this to our A(1)1 classi�cation. Any partition function D2` isof this kind, and its corresponding graph will consist of ` � 1 diagrams of (extended) A2type, and one of A1 type. The exceptional E6 consists of three A2's, and the exceptionalE7 consists of three A2's and one D5. Again, this fact (proved in [5]) is not restricted tothe A(1)1 physical invariants.This little curiousity is not as deep or mysterious as the Cappelli-Itzykson-Zuber A-D-E pattern, and has to do with the Z+-matrices with largest eigenvalue 2.There are 4 other claims for A-D-E classi�cations of families of RCFT physical invari-ants, and all of them inherit their (approximate) A-D-E pattern from the more fundamentalA(1)1 one. The two rigourously established ones are the c < 1 minimal models, also provenin [3], and the N = 1 superconformal minimal models, proved in [2]. In both cases thephysical invariants are parametrised by pairs of A-D-E diagrams. The list of known c = 1RCFTs [8] also looks like A-D-E (two series parametrised by Q+, and three exceptionals),but the completeness of that list has never been successfully proved.The fourth classi�cation often quoted as A-D-E, is the N = 2 superconformal minimalmodels. The only rigourous classi�cation of these is accomplished in [7], assuming thegenerally believed but still unproven coset realisation (SU(2)k � U(1)4)=U(1)2k+4. Theconnection here with A-D-E turns out to be rather weak: e.g. 20, 30, and 24 distinctinvariants would have an equal right to be called E6, E7, and E8 respectively. It appearsto this author that the frequent claims that the N = 2 minimal models fall into an A-D-Epattern are without serious foundation, or at least require major reinterpretation.8
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