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Abstract

We consider control problems associated with nonlinear wave equa-
tions, in which the slope of the admissible trajectories can be made
to approach infinity by choosing parameters in an appropriate form.
Thus, the solutions near shock waves, and we try to control these.

A problem is first reformulated as one consisting of the minimiza-
tion of an integral in a space of functions satisfying a set of integral
equalities; this is then transfered to a nonstandard framework, in which
Loeb measures take the place of the functions and a near-minimizer
can always be found. This is mapped back to the standard world by
means of the standard part map; its image 1s a minimizer, so that the
optimization is global. The minimizer is shown to be the solution of an
infinite dimensional linear program and by well-proven approximation
procedures a finite dimensional linear program is found by means of
which nearly-optimal curves can be constructed for the original prob-
lem. A numerical example is given.
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1 Introduction

We have developed in many publications (see [Rubio, 1994, Rubio, 1986] and
the references there) an approach to the study to the global optimization of
nonlinear optimal control problems based on the consideration of measure
spaces and related mathematical structures; this approach was suggested by
the work of Young [Young, 1969] on the calculus of variations. In most of



our previous work, all underlying sets—control sets being a special case—
were taken to to be compact. In our recent work [Rubio, 1997] we have
extended this approach, to variational problems which admit discontinuous
solutions, and for which therefore the set of the slopes of the admissible
curves is unbounded. A generalization to general finite dimensional control
problems has been presented in [Rubio, 1998].

In this paper we deal with nonlinear wave equations and their solutions

in the sense of Colombeau; see [Aragona and Biagioni, 1991],
[Colombeau, 1984, Oberguggenberger, 1992b] and the references there. The
solutions of these equations may exhibit discontinuities—shock waves—so
that there is difficulty dealing with the derivatives of the main variables
as well as with their products with the variables themselves; this is the
main problem solved by Colombeau by having recourse to particular kinds
of quotient algebras.

From the standpoint of the optimization problem, we need to consider
unbounded sets for the slopes of the solutions, just as in our papers
[Rubio, 1997, Rubio, 1998]. The actual discontinuities happen, if at all,
at infinitesimal values A = [< A, >] of a parameter, A, appearing in the
equations chosen; we will consider the optimization problem for each of the
values A,, and put the results together at the end. Thus the need to consider
unbounded sets for the values taken by the slopes, the parameters A, tend
to 0, and we will get closer and closer to the discontinuities, the shocks.

The problem still remains, how do we enlarge our spaces? It may appear
natural to simply include ‘delta functions’, impulses; there are many ways
of doing this, such as embedding the spaces into spaces of distributions,
using nonstandard versions of this same construction, and so on. Alas, it is
very difficult to work with impulses; in particular, it is very hard to define
functions of impulses; see [Rubio, 1994], Chapter 6, for a discussion of this
point. It this paper, our idealized elements lack the familiarity of impulses
and such; they are nonstandard elements, not easily visualized but easily
handled mathematically.

Thus, our path is as follows. The control problem will be written in a
manner involving the solution of a set of integral equalities; these are mapped
then into a nonstandard framework, in which the use of Loeb measures
gives rise to an important result, that a near-minimizer for the nonstandard
optimization problem always exists. The standard part map provided us
with a global minimizer for the original problem, as well as with a measure-
theoretical framework in the standard world in which a linear program is
obtained with the minimizer as a solution.

Approximation tools developed in our previous work [Rubio, 1986] are



then used to develop a finite dimensional approximation of the linear pro-
gram, and construct nearly-optimal solutions of the variational problem. A
numerical example is given.

2 The problem

Consider a system of partial differential equations:

_Auacx +up + uty = F
—AUpy + U + UV, = G7 (1)
u(0,2) = wo(), v(0,2) = vo().

where u,v : [0,00) x R = R, ug,vp : R - R and A > 0. The func-
tions F,G : (t,2) — R can be considered as distributed control functions;
we shall assume that their support is in J x J, with J := [0,1]. Bounds
will be put on some of these variables later on. Equations like these—
without the control functions—have been studied much (see [Hopf, 1950,
Biagioni and Oberguggenberger, 1992, J. J. Cauret and LeRoux, 1989]; in
[Oberguggenberger, 1992a] we find a study of a (homogeneous) version of
our equations. Shock waves may happen for infinitesimal A, so that they
will be approximated for small values of this parameter. Our program con-
sists then in choosing an appropriate superstructure, not necessarily the
same as in Section 3—WNg-saturation would suffice here—and write

A=[< A, >, (2)

with p € I, an appropriate index set. We shall study below an optimization
problem associated with (1) for standard, fixed values of A, and we shall
come back to our nonstandard setting later on, once this problem is solved.

Our interest now then is to study a control problem associated with (1)
for small—as small as we wish—values of the standard parameter A, so that
it is convenient to consider as unbounded the sets in which the derivatives
Uy, U take values. As we shall see below, the second derivative u,, will play
no role.

Our objective is to choose the control functions so as to improve the
behaviour of the system, by for instance minimizing a performance criterion
such as the the one defined in (3) below. However, it may happen—it most
likely will happen—that no minimizer exists for this functional in the ‘nice’
class of control-trajectories quadruples F defined below. As indicated above,
these equations may have solutions approximating shock waves arbitrarely;



they may need thus strange controls. According to our philosophy above,
we shall start with the class of controls which are ‘nice’, well-behaved, as a
starting point, a temporary device. Then this class will be enlarged, in a
sense completed.

Let us consider then the class F of admissible quadruples (u,v, F,G), in
which F, G are continuously differentiable and (u,v) are the corresponding
classical solutions of (1). We assume that this class is nonempty and seek
to minimize the functional I : F =+ R

I(u,v, F,G) = folt,z, u, v uy, vy, G dt da, (3)
JxJ
for (u,v, F,G) € F. Of course, we are looking for an optimal control func-
tion. Here fy is a continuous function defined on

QD=JxJxRxRxRxRxRxR=.Jx.J xRS

We will be interested in the solutions of (1) on the square J X J; thus
the supports of fo and F,(G. Note we are putting no boundary conditions
for w, v or their derivatives on the boundary of this set.

We develop some equalities. Let

Dy:={t=0}xJ, Dy:={a=1}xJ,71:=J x{e=0}UJ x{z =1},

Let K be the class of C'{-functions ¢ on J x J which are zero on D; and
7. If we multiply pointwise the equations in (1) by ¢ and do some simple
algebra, we obtain

/ [—udy + Ay, — lu2q§$ — F¢|dtde = / ue da
IxJ 2 Do n
/ [—vd: + +Avp0, + uv, ¢ — Gol dtdx = / vode, Vo € K.

JxJ

Do

It will be necessary to explicitely use integral relationships between u and
Uy, v and v,. Let B be the class of € functions @ on J x J which have zero
normal derivative . on 7. Then,

JxJ (5)
/ [_Ulbacx + Ux¢x] dtdz = 0,V € B.
JxJ

All integrals above can and will be considered as the action of an admissible
quadruple (u,v, F,G) on a continuous function defined on Q. It will be



necessary to consider in the same light integrable functions £ : Q — R which
depend only on (z,t). Then, trivially,

E(t,x,u, v, uy, vy, FyG) dtde = ag, (6)
JxJ
with ag the Lebesgue integral of £.

As explained in [Rubio, 1994, Rubio, 1997, Fakharzadeh, 1997] we shall
take for each of these spaces countable sets of functions whose linear com-
binations are dense in the corresponding spaces in appropriate topologies,
{¢i} for K, {1;} for B, {&,} for the space associated with equation (6).
Further, we shall consider a finite number of the resulting infinite number
of equalities:

1
/ bt + Misbio — —uiy — Fo] dida = / wdide,i=1,..., M
IxJ 2 Do

/ (00t + AV iy + uvpdp; — Goj] dtdx = / vo;de,j=1,..., My;
JxJ

Do

/ [_u¢kxw + ux¢kx] ditdx = 07 k= 17 ce 7]\43

JxJ

/ [_U¢kww + Ux¢kx] ditdx = 07 k= 17 ce 7]\43
JxJ

En(u, v, up, vy, Fit z) dtde = ag, ,h =1,..., M.
JxJ

Eventually we shall take limits as M; — oo, = 1,2,3,4.

3 The nonstandard way

We shall change our framework here—in a manner that appears minor. Let
R be the extended real line. Instead of assuming that the derivatives wu,, v,
corresponding to functions in admissible quadruples (u,v, F,G) € F take
values in R, we shall take R as a place of abode for these values. There will
be no apparent change— the derivatives do take values in R and R C R.
But, as we shall see below, the introduction of R is fundamental to our
development.

In what follows we shall write equations (7) in a more economical way
as in (9) below; we put M := My + My + 2Ms + My. We consider therefore



the problem of minimizing the functional

I(u,v, F,G) =

o folt,z, ul(t, z), v(t, x), ust, @), ve(t, 2), F(t,2),G(t, ) dt dz, ®)

of the class Fys of quadruples (u, v, F, () satisfying

filtyz,ut, z), v(t, ), u.(t, ), ve(t, z), F(t,2),G(t, ) dtdx
JxJ

—byi=1,..., M,

where u(+),v(-) € C1(J) and take values in closed bounded sets A, B C R
respectively, and F,G take values in a closed bounded set U C R. Here
fo, fiyi=1,..., M, are in C(Q'), with

QA=JxJxAxBxR xRxUxU.

The integer M > 1 is fixed, and so are the constant b;,¢ = 1,..., M. We
assume that the class Fjs is nonempty. We shall develop in this section
a procedure to enlarge the set Fpr, while at the same time extending the
functional (8) to the whole of the new, larger set of admissible elements.
This procedure will be based on nonstandard techniques.

In our quest for infinities, we shall start with the extended real line R.
This will be part of our starting nonstandard construction, while also playing
a major role when we return to the standard world. We will review briefly
some of its properties; see [Berge, 1963, Monroe, 1953, Choquet, 1969].

e The extended real line R is obtained by adding to the real line R two
elements, oo and —oo, so that R := RU{oc, —oo}. These two elements
satisfy a number of well-known postulates, such as

— For every 2 € R, —o0 < & < oo. This makes the extended real
line into an ordered set.

— The extended system will not be a field, but we can connect the
new elements with the field operations by postulating that for
every real number x we have:

x/+ 00 =0; (£oo)(Eoo) = 00; 00+ 00+ & = 00,

etc.



e It is possible to put a topology on R so that it is a compact space.
Such a topology is generated by the following sets:

— The open sets in R.

— The union of {oo} with an open set of R containing an interval
of the form (A, 00).

— The union of {—oco} with an open set of R containing an interval
of the form (—oo, ).

We proceed now with our nonstandard construction. For general treatments
of this topic, see [Cutland, 1988, Rubio, 1994]. We will work in a nonstan-
dard framework given by a superstructure V (W), R C W. The superstruc-
ture V(*V) is also an enlargement, and Ny-saturated. We study integrals of
the form (8,9), that is,

g Jf(t,x,u(t,x),v(t,x),ux(t,x),vx(t,x),F(t,ac),G(t,x))dtdw, (10)
X
with (u,v, F,G) € Fpr and f € C (). Then,
(V(u,v, F,G) € Far)
( flt,zut, ), v(t, 2), us(t, z), va(t, z), F(t,2),G(t,z)) dtdz € R,
JxJ (11)
by transfer,
(V(u,v, F,G) € Far)
(*/ Flt,z,u(t, ), v(t, z), uy(t, z), va(t, x), F(t, ), G(t,2)) dtdx € *R,
*Jx*J (12)

where here and below we write u,(-) for (*<u(:), and similarly for v(-).
Thus, the nonstandard version of the optimization problem (8,9) consists in

minimizing

“I(u,v, F,G)
:* / *fo(t7x7u(t7 x)7v(t7 x)7u$(t7 $)7/Uls(t7 $)7F(t7 $)7G(t7 x)) dtdw7
*JIx*J

(13)



on the class *Fys of quadruples (u, v, F, () satisfying

. / oty 2 ult @), olt, 2), walt, @), valt, @), F(t, 2), Gt 7)) dide
*Jx*J
—bi=1,..., M,

For instance,
*fz(t7 L, U, v, F7 G) = _U*¢it + *Aux + _(1/2)u2*¢m’ - F*¢7Z = 17 s 7M1-

Note that the standard A becomes of course *A.
Consider now the map suggested by (11). If (u,v, F,G) € Fas is fixed,
the map

V(uw,F,G) :f —

/ flt,zult, ), v(t, ), us(t, z), va(t, z), F(t,2),G(t, z)) dedt € R, f € C()
' (13

is linear and positive. By Riesz’ Theorem, there is a measure, to be de-

noted also by v(,,,.F ), on the Borel sets B of Y, that represents this map;

remember that ' is compact. Then (*Q',* B* I/(u7U7F7g)) is a nonstandard
measure space and then [Render, 1993],

Lemma 1 There is a measure space (*Q’,A,u%u’U’F’G)) so that ,uiu’U’F’G) is

the Loeb measure associated with v, , rq); then,

* /g flt e, ult,z), vt @), us(t,z), vp(t, ), F(t,z),G(t, z)) dtde =

(16)
u,v, FG u,v, FG *
pp = [ gt re cee).
The algebra A is an extension of the algebra *B.
Proof Follows directly from the reference given above. °

Thus, one can write the optimization problem (13,14) as the problem of
minimizing

Tt = O ), (1)
over the set MY, of measures of the form ,uiu’U’F’G) defined by

S B py = b i =1, M. (18)

The following two propositions show that the solution of our problem is a
global optimizer.



Proposition 1 (i) The infima associated with the problems (13 — 14) and
(17 — 18) are equal.

(ii) For any positive infinitesimal s € *R, we can find a near-minimizer
s € M, for the functional J in (17) in the set MY, so that

J(ps) = inf J + s. (19)
t
Proof 1t follows from Theorem 3.8 in [Rubio, 1994]. .

Let, then, s be a fixed positive infinitesimal in *R, and u, the corresponding
near-minimizer for J on M& We can proceed to map back this measure to
the standard world, by means of the standard part map, see [Henson, 1979,
Aldaz, 1992, Render, 1993, Landers and Rogge, 1987].

Proposition 2 There is a Baire measure i, on ' so that:
(i) If S is a Baire set in €,

Hopt () = “hs (st (5)),
where sté,l(S) s the union of the monads of the elements of 5.
(ii)
Popt(fo) = Jod propt < inf/ folt,z, u, v, uy, vy, FyG) dtdz.
0% FuJg

(7i1) The measure oyt is a solution of the following optimization problem.
Minimize

p(fo) (20)
over the set M1, () of positive Baire measures on ' satisfying
p(fiy=bii=1,..., M. (21)

(iv) If the support of pept contains subsets of Q' in which at least one of
the variables ug, v, € R is either —oo or oo, the measure iy is defined by
a Baire measure on

JXIXAXBXxRXRxUxU

plus atomic measures on those subsets.



Proof (i) See [Henson, 1979]. (ii), (iii). These statements follow from Propo-
sition 1 and the fact that for all f € C(Q)

/ deOpt:/ O(*f)d,uszo *fd,u5§
Q/ *Q/ *Q/

note that by continuity
*(f(w)) = flstar(w)) = flyw),w € Q/

where y,, is the (unique) element of Q' so that w is in the monad of y.
(iv) We consider now the support of p,,.  Consider a point
(t,z,u, v, ugz 00, F,G) € S, S being a Baire set in €. Then

:s‘cé,l(t,ac,u,v,ugg,oo,F7 G)=M x m*(/\,oo] =M x *{oo},
A

with M the monad of (¢,z,u,v,u,, F,G). Then, for f € C ('), for some
hyperreal «, there will be a contribution to the integral

[@, *Chd s
of

O[< alf(t7x7u7 U? ul’? OO7 F7 G) >] — (Oa)f(t7$7u7 /U7ul’7 OO7 F7 G)7

which proves our contention; other cases, including wu, and maybe the ele-
ment —oo, can be treated similarly. °

Note that the infimum for the problem (20-21) can be strictly less than the
classical infimum, as indicated in (ii) above; this is discussed in detail in
[Rubio, 1994], Chapter 4-5.

In fact, values 0o do not actually happen for A standard. Even so, in
problems of interest, in which the function f; tends to infinity at infinity,
and in which the infimum is finite, elements in ©’ with value oo or —oc do
not really occur anyhow in the support of fi,,:; note that expressions such
as 0o — oo are not defined for the extended real line. Thus,

Proposition 3 Suppose that
|f0(t7$7u7vvul’7 U907F7 G)| =

whenever u, or v, are either oo or —oo, and that the minimum associated
with the linear program (20)-(21) is finite. Then such elements are not
present in the support of pop;.
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We are now in a strong position to solve our original problem— the opti-
mization problem (8) and (9) in the standard world. Note that we have
been able to construct an extension of the original space Fys, made up of
elements which are not quadruples; however, the action of j,,;—a global
optimizer—can be approximated by members of Fyy.

4 Existence and Approximation

From the results of the optimization problem (20-21)—which we can take
as having been obtained for instance by Rudolph’s method [Rudolph, 1987,
Rudolph, 1990] we can build a near-optimal control pair (F,(); these are
piecewise continuous functions on R? with support in J x .J. We consider
then the equations in G 4(R X [0, 00)):

N, +U, +UU, = F
U,-)=UV(),) = Vo.

Here Uy, Vp € G57Q(R),F7G € G5 4(R); of course, F,G, Uy, Vo are sequences
of smooth functions obtained by mollifying F, G, ug, vg respectively.

It is not difficult to prove the existence of the solutions of (22)in G 4(R x
[0,00)); see [Oberguggenberger, 1992b, Oberguggenberger, 1992a],
[Biagioni and Oberguggenberger, 1992]. Then

Proposition 4 Suppose that the minimum in the linear program (20)-(21)
is finite, that the conditions of Proposition 3 are satisfied, and that the func-
tion fo is Lipschitz, that is, that there is a constant h so that

|f0(t/7$/7ul7vl7zlvr/7 FlvG/) - fo(t7$7u7?]72’77‘7 F7 G)|
<A =t + 2" =2l 4 o' - u] + (23)
Vol 1 = 4 el |F - P16 - )

for all (t',a' o' W' 2 r' ' G, (t, ¢, w0, 2,0, FyG) in Q. Then it is possi-

ble to construct a quadruple in Fy; so that as My, My, M3, My — oo the
corresponding value of the performance index tends to

inf u(fo),

with S := O, My My Myem)S (M1, Mo, M3, My).

11



Proof (i) Let us fix My, My, M3, My, and write
¢ := 1/ max(My, Ma, Ms).

Let pope be the minimizer for (20) over the set S(My, My, M3, M4) defined
by (21). Then, provided My is sufficiently large, we can find piecewise
continuous functions forming a quadruple ¢ := (u, v, I, G) so that

|1 (fo) = popt (fo)| < ¢,
|luq(f2) _b2| < C71: 17 7M'

(ii) Take a solution of (1) in the algebra G5 ;(R X [0, 00))as discussed above,
corresponding to the piecewise-continuous controls (F,G). Then for any
€ > 0 we have an admissible quadruple g. = (u.,ve, I, G) associated with
the solution in the algebra G, ;(R x[0,00)); of course, F,, G are the mollified
functions F,; the initial solutions are also mollified, wug., vo.. Then, for

i=1,...,M,

(24)

te (fi) = /D o ()¢ (x) da,

so that
|Hopt = pigc) fil < | i (woe (@) — uo(2))di(z) da| < Ce,
0
with C' > 0 a constant. This inequality is in fact true for all ¢ = 1,... ,M,
with M := My + M5 + 2M5. Thus
(e — g )l < C+ Ceri=1,... BT (25)

(iii) Finally, we consider the approximation of the performance criterion.
Since

|,uqe (fO) - Hopt(f0)| S |:uqe (fO) - :u(u,v,F,G) (f0)| + |:u(u,v,F,G) (fo) - Hopt(f0)|7

and since the inequality
|,uq6 (fO) - ,u(u,v,F,G) (f0)| S h|u + v+ Uy + vz + F+ G| S 0167

C > 0, can be proved by means much like those used in proving a similar
inequality in Theorem 1 in [Rubio, 1995], we have that

|14 (fo) = popt(fo)] < Cre+C,

from which our contention follows. °

12



5 Further Approximation

We consider again the optimization problem (20)-(21). By means of a result
of Rosenbloom in [Rosenbloom, 1952], and since Q' is compact, we can state
that the minimizer p,,; for this problem has the form

M
popt = > d(we), a0 > 0,wp € Y 0 =1,..., M, (26)
=1

where é(w) is the atomic measure with support {w} € €'. Thus, we wish to
minimize

M
Zaéfo(wé)v (27)
=1

on the set defined by the elements
ap > 0,wy € Q/,f: 1,..., M,

which satisfy, further,

M
> aufi(w) =biyi=1,..., M, (28)
=1

A further concept must be introduced now; see [Rubio, 1986] . Note
that we have in (27)-(28) a nonlinear optimization problem, in which the
unknowns are the coeflicients «y and supports we, £ =1,..., M. In order to
find a linear approximation to this problem, we consider w, a countable dense
subset of . Taking N >> M elements from w, including all elements of
the form introduced in (iv) above in which some variables take values either
—00 or 0o, we can write (27)-(28) as follows. We wish to minimize

N
Z ay fo(we), (29)
=1

on the set defined by the elements oy > 0, = 1,..., M, which satisfy,
further,

N
Zaffi(wf):bi7i:17"'7M' (30)
=1

13



Here, then, the supports w, are fixed, in w; the coefficients ay, 0 =1,... , M,
are the only unknowns; this is an M x N (finite dimensional) linear program.
Of course as N — oo the support of the optimal measure gy in (27)-(28)
can be approximated closer and closer by that of ,uf)\;t, the solution of (29)-
(30). Note, further, that at most M of the unknown a’s are nonzero; we
shall assume that the problem has essential regularity, and that exactly M of
these a’s are nonzero; see [Rubio, 1986], Chapters 3 and 4, for a discussion
of this point.

Since no element in the support of ,uf)\;t has values equal to either —oo or
oo, the approximation process has been studied in detail in [Rubio, 1986],
and a quadruple in Fjp; can be constructed approximating the action of
Hopt ON fo. It is necessary to modify the set w into a set wq, in which the
coordinates of the u;, v, directions take values in a portion of the dense
set w defined by a number @Q); if @) is large enough, all the elements in the
support of ., will be approximated adequately. Then,

Proposition 5 Suppose that the minimum in the linear program (20)-(21)
is finite, that the conditions of Proposition 3 are satisfied, and that the func-
tion fo is Lipschitz. Then it is possible to construct suboptimal admissible
control pairs (F,G) so that:

(i) As Q — oo, the corresponding values of the perormance criterion
tend to 2, ( fo).

(ii)As N — oo,

H%t(fo) — popt(fo)-

The proof is much as that of Proposition 4 in [Rubio, 1997]. The actual
construction is explained in detail in [Fakharzadeh, 1997] and
[M. H. Farahi and Wilson, 1996]; see also the next Section.

6 An Example

We have carried out the numerical computations associated with the esti-
mation of a nearly-optimal control for the system (1) introduced in the last
two Sections. We took F' = 0, vg = 0, while ug(z) = 0.5,2 € (0.5, 1], zero
otherwise. The variables u, v, G are constrained to take values in the same
set, [0, 10]; we took A = 0.01 and aimed to approximate the high values of
Uz, vy by making their domain the set [0, 1000], that is ¢ = 1000.

Our aim was to control the extent of the shocks in the variable v, so we
took

Jolt,x,u, v, up, vy, F,G) 1= v + vl

14



We set a total of 35 equations (M; = My = 6, M5 = 3, My = 17). The
domains corresponding to the variables (u, v, I, vy, u,) were divided into 4
subintervals, those corresponding to (z,y) into 5, so that we had a total of
36864 variables. The suboptimal control is shown in Figure 1, constructed by
means explained in detail in [Fakharzadeh, 1997], [Farahi, 1996]; the variable
v, in Figure 2, constructed by the same means.

1.00
z  0.50
0.25 4 b—— ——]
0.00 - T T T 1
0.00 0.25 050 0.75 1.00

t

FIG. 1. Graph of the suboptimal control, taking a value 10 at the shaded
area of the (t, x)-plane, zero otherwise.

1.00

075 — e—r—r—n

z 0.50 -
0.95 4 === —_—
[ I

0.00 - T T 1
0.00 0.25 0.50 0.75 1.00

t

FIG. 2. Graph of the variable v,, taking a value 1000 at the shaded area
of the (t,x)-plane, zero otherwise.

Several points can be made concerning these results:

e In both figures we show the supports of the functions I’ and v, in the
(t,z)-plane, taking values 10 and 1000 respectively.

e Figure 2 shows therefore the regions in this plane where the function

15



v, has large positive values, a precursor of the shocks most likely to
be exhibited when A is taken as an infinitesimal, as explained in the
next section.

e Note then the action of the control in minimizing these areas: as times
goes by, from 0 to 1, these ‘shocks’ get weaker and weaker, the initial
ones caused by the initial conditions disappearing at the end into very
weak regions; the last three ‘shocks’ are not to scale, their width being
about 1/100 the width of the preceding one.

o These results are tentative; a thorough numerical investigation is needed,
with much larger matrices and many values of A; also, the actual nu-
merical solution of (1) corresponding to the control I should be ob-
tained for each value of A.

7 A final step

Finally, we go back to our original nonstandard setting, associated with
equation (2). If we solve the optimization problem for each value A,,p €
II, obtaining for instance each time a suboptimal admissible control pair
(F,G),, we can say that the nonstandard object

[< (F'g)p >]

is a suboptimal pair for the infinitesimal A defined in (2). Presumably, as
explained above, the ‘shocks’ of the example would become actual shocks,
with infinite slopes.
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