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The global control of shock wavesJ. E. RubioSchool of Mathematics, University of Leeds, Leeds LS2 9JT, England, U.K.AbstractWe consider control problems associated with nonlinear wave equa-tions, in which the slope of the admissible trajectories can be madeto approach in�nity by choosing parameters in an appropriate form.Thus, the solutions near shock waves, and we try to control these.A problem is �rst reformulated as one consisting of the minimiza-tion of an integral in a space of functions satisfying a set of integralequalities; this is then transfered to a nonstandard framework, in whichLoeb measures take the place of the functions and a near-minimizercan always be found. This is mapped back to the standard world bymeans of the standard part map; its image is a minimizer, so that theoptimization is global. The minimizer is shown to be the solution of anin�nite dimensional linear program and by well-proven approximationprocedures a �nite dimensional linear program is found by means ofwhich nearly-optimal curves can be constructed for the original prob-lem. A numerical example is given.Mathematics Subject Classi�cation: 49J27, 03H10Key Words: Global Optimization, Control Theory, DiscontinuousSolutions, Colombeau Algebras, Nonstandard Analysis, Loeb measures,Standard Part Map1 IntroductionWe have developed in many publications (see [Rubio, 1994, Rubio, 1986] andthe references there) an approach to the study to the global optimization ofnonlinear optimal control problems based on the consideration of measurespaces and related mathematical structures; this approach was suggested bythe work of Young [Young, 1969] on the calculus of variations. In most of1



our previous work, all underlying sets|control sets being a special case|were taken to to be compact. In our recent work [Rubio, 1997] we haveextended this approach, to variational problems which admit discontinuoussolutions, and for which therefore the set of the slopes of the admissiblecurves is unbounded. A generalization to general �nite dimensional controlproblems has been presented in [Rubio, 1998].In this paper we deal with nonlinear wave equations and their solutionsin the sense of Colombeau; see [Aragona and Biagioni, 1991],[Colombeau, 1984, Oberguggenberger, 1992b] and the references there. Thesolutions of these equations may exhibit discontinuities|shock waves|sothat there is di�culty dealing with the derivatives of the main variablesas well as with their products with the variables themselves; this is themain problem solved by Colombeau by having recourse to particular kindsof quotient algebras.From the standpoint of the optimization problem, we need to considerunbounded sets for the slopes of the solutions, just as in our papers[Rubio, 1997, Rubio, 1998]. The actual discontinuities happen, if at all,at in�nitesimal values � = [< �p >] of a parameter, �, appearing in theequations chosen; we will consider the optimization problem for each of thevalues �p, and put the results together at the end. Thus the need to considerunbounded sets for the values taken by the slopes, the parameters �p tendto 0, and we will get closer and closer to the discontinuities, the shocks.The problem still remains, how do we enlarge our spaces? It may appearnatural to simply include `delta functions', impulses; there are many waysof doing this, such as embedding the spaces into spaces of distributions,using nonstandard versions of this same construction, and so on. Alas, it isvery di�cult to work with impulses; in particular, it is very hard to de�nefunctions of impulses; see [Rubio, 1994], Chapter 6, for a discussion of thispoint. It this paper, our idealized elements lack the familiarity of impulsesand such; they are nonstandard elements, not easily visualized but easilyhandled mathematically.Thus, our path is as follows. The control problem will be written in amanner involving the solution of a set of integral equalities; these are mappedthen into a nonstandard framework, in which the use of Loeb measuresgives rise to an important result, that a near-minimizer for the nonstandardoptimization problem always exists. The standard part map provided uswith a global minimizer for the original problem, as well as with a measure-theoretical framework in the standard world in which a linear program isobtained with the minimizer as a solution.Approximation tools developed in our previous work [Rubio, 1986] are2



then used to develop a �nite dimensional approximation of the linear pro-gram, and construct nearly-optimal solutions of the variational problem. Anumerical example is given.2 The problemConsider a system of partial di�erential equations:��uxx + ut + uux = F��vxx + vt + uvx = G;u(0; x) = u0(x); v(0; x) = v0(x): (1)where u; v : [0;1) � R ! R, u0; v0 : R ! R and � > 0. The func-tions F;G : (t; x) ! R can be considered as distributed control functions;we shall assume that their support is in J � J , with J := [0; 1]. Boundswill be put on some of these variables later on. Equations like these|without the control functions|have been studied much (see [Hopf, 1950,Biagioni and Oberguggenberger, 1992, J. J. Cauret and LeRoux, 1989]; in[Oberguggenberger, 1992a] we �nd a study of a (homogeneous) version ofour equations. Shock waves may happen for in�nitesimal �, so that theywill be approximated for small values of this parameter. Our program con-sists then in choosing an appropriate superstructure, not necessarily thesame as in Section 3|@0-saturation would su�ce here|and write� = [< �p >]; (2)with p 2 �, an appropriate index set. We shall study below an optimizationproblem associated with (1) for standard, �xed values of �, and we shallcome back to our nonstandard setting later on, once this problem is solved.Our interest now then is to study a control problem associated with (1)for small|as small as we wish|values of the standard parameter �, so thatit is convenient to consider as unbounded the sets in which the derivativesux; vx take values. As we shall see below, the second derivative uxx will playno role.Our objective is to choose the control functions so as to improve thebehaviour of the system, by for instance minimizing a performance criterionsuch as the the one de�ned in (3) below. However, it may happen|it mostlikely will happen|that no minimizer exists for this functional in the `nice'class of control-trajectories quadruples F de�ned below. As indicated above,these equations may have solutions approximating shock waves arbitrarely;3



they may need thus strange controls. According to our philosophy above,we shall start with the class of controls which are `nice', well-behaved, as astarting point, a temporary device. Then this class will be enlarged, in asense completed.Let us consider then the class F of admissible quadruples (u; v; F;G), inwhich F;G are continuously di�erentiable and (u; v) are the correspondingclassical solutions of (1). We assume that this class is nonempty and seekto minimize the functional I : F ! RI(u; v; F;G) = ZJ�J f0(t; x; u; v; ux; vx; F; G) dt dx; (3)for (u; v; F;G) 2 F . Of course, we are looking for an optimal control func-tion. Here f0 is a continuous function de�ned on
 := J � J �R�R�R�R�R�R= J � J �R6:We will be interested in the solutions of (1) on the square J � J ; thusthe supports of f0 and F;G. Note we are putting no boundary conditionsfor u; v or their derivatives on the boundary of this set.We develop some equalities. LetD0 := ft = 0g � J; D1 := fx = 1g � J;�1 := J � fx = 0g [ J � fx = 1g;Let K be the class of C1-functions � on J � J which are zero on D1 and�1. If we multiply pointwise the equations in (1) by � and do some simplealgebra, we obtainZJ�J [�u�t + �ux�x � 12u2�x � F�] dtdx = ZD0 u� dxZJ�J [�v�t + +�vx�x + uvx�� G�] dtdx = ZD0 v� dx; 8� 2 K: (4)It will be necessary to explicitely use integral relationships between u andux, v and vx. Let B be the class of C1 functions  on J �J which have zeronormal derivative  x on �1. Then,ZJ�J [�u xx + ux x] dtdx = 0ZJ�J [�v xx + vx x] dtdx = 0; 8 2 B: (5)All integrals above can and will be considered as the action of an admissiblequadruple (u; v; F;G) on a continuous function de�ned on 
. It will be4



necessary to consider in the same light integrable functions � : 
! Rwhichdepend only on (x; t). Then, trivially,ZJ�J �(t; x; u; v; ux; vx; F; G) dtdx= a�; (6)with a� the Lebesgue integral of �.As explained in [Rubio, 1994, Rubio, 1997, Fakharzadeh, 1997] we shalltake for each of these spaces countable sets of functions whose linear com-binations are dense in the corresponding spaces in appropriate topologies,f�ig for K, f jg for B, f�hg for the space associated with equation (6).Further, we shall consider a �nite number of the resulting in�nite numberof equalities:ZJ�J [�u�it + �ux�ix � 12u2�ix � F�i] dtdx = ZD0 u�i dx; i = 1; : : : ;M1;ZJ�J [�v�jt + �vx�jx + uvx�j � G�j ] dtdx = ZD0 v�j dx; j = 1; : : : ;M2;ZJ�J [�u kxx + ux kx] dtdx = 0; k = 1; : : : ;M3ZJ�J [�v kxx + vx kx] dtdx = 0; k = 1; : : : ;M3ZJ�J �h(u; v; ux; vx; F; t; x) dtdx= a�h ; h = 1; : : : ;M4: (7)Eventually we shall take limits as Mi !1; i = 1; 2; 3; 4:3 The nonstandard wayWe shall change our framework here|in a manner that appears minor. LetR be the extended real line. Instead of assuming that the derivatives ux; vxcorresponding to functions in admissible quadruples (u; v; F;G) 2 F takevalues in R, we shall take R as a place of abode for these values. There willbe no apparent change| the derivatives do take values in R and R � R.But, as we shall see below, the introduction of R is fundamental to ourdevelopment.In what follows we shall write equations (7) in a more economical wayas in (9) below; we put M :=M1 +M2+ 2M3 +M4. We consider therefore5



the problem of minimizing the functionalI(u; v; F;G) =ZJ�J f0(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x);G(t; x))dt dx; (8)of the class FM of quadruples (u; v; F;G) satisfyingZJ�J fi(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x)) dtdx= bi; i = 1; : : : ;M; (9)where u(�); v(�) 2 C1(J) and take values in closed bounded sets A;B � Rrespectively, and F;G take values in a closed bounded set U � R. Heref0; fi; i = 1; : : : ;M; are in C(
0), with
0 := J � J � A�B �R �R� U � U:The integer M � 1 is �xed, and so are the constant bi; i = 1; : : : ;M . Weassume that the class FM is nonempty. We shall develop in this sectiona procedure to enlarge the set FM , while at the same time extending thefunctional (8) to the whole of the new, larger set of admissible elements.This procedure will be based on nonstandard techniques.In our quest for in�nities, we shall start with the extended real line R.This will be part of our starting nonstandard construction, while also playinga major role when we return to the standard world. We will review brie
ysome of its properties; see [Berge, 1963, Monroe, 1953, Choquet, 1969].� The extended real line R is obtained by adding to the real line R twoelements,1 and �1, so that R := R[f1;�1g. These two elementssatisfy a number of well-known postulates, such as{ For every x 2 R, �1 < x < 1. This makes the extended realline into an ordered set.{ The extended system will not be a �eld, but we can connect thenew elements with the �eld operations by postulating that forevery real number x we have:x=�1 = 0; (�1)(�1) =1; 1+1+ x =1;etc. 6



� It is possible to put a topology on R so that it is a compact space.Such a topology is generated by the following sets:{ The open sets in R.{ The union of f1g with an open set of R containing an intervalof the form (�;1).{ The union of f�1g with an open set of R containing an intervalof the form (�1; �).We proceed now with our nonstandard construction. For general treatmentsof this topic, see [Cutland, 1988, Rubio, 1994]. We will work in a nonstan-dard framework given by a superstructure V (W ), R� W . The superstruc-ture V (�V ) is also an enlargement, and @1-saturated. We study integrals ofthe form (8,9), that is,ZJ�J f(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x))dtdx; (10)with (u; v; F;G)2 FM and f 2 C(
0). Then,(8(u; v; F;G) 2 FM)(ZJ�J f(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x)) dtdx 2 R;(11)by transfer,(8(u; v; F;G)2� FM)(�Z�J��J �f(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x);G(t; x))dtdx 2 �R;(12)where here and below we write ux(�) for (� @@xu(�), and similarly for v(�).Thus, the nonstandard version of the optimization problem (8,9) consists inminimizing�I(u; v; F;G)=� Z�J��J �f0(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x)) dt dx;(13)7



on the class �FM of quadruples (u; v; F;G) satisfying� Z�J��J �fi(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x))dtdx= bi; i = 1; : : : ;M; (14)For instance,�fi(t; x; u; v; F;G) := �u��it + ��ux +�(1=2)u2��ix � F ��; i = 1; : : : ;M1:Note that the standard � becomes of course ��.Consider now the map suggested by (11). If (u; v; F;G) 2 FM is �xed,the map�(u;v;F;G) : f !ZJ f(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x))dxdt 2 R; f 2 C(
0)(15)is linear and positive. By Riesz' Theorem, there is a measure, to be de-noted also by �(u;v;F;G), on the Borel sets B of 
0, that represents this map;remember that 
0 is compact. Then (�
0;�B;� �(u;v;F;G)) is a nonstandardmeasure space and then [Render, 1993],Lemma 1 There is a measure space (�
0;A; �(u;v;F;G)L ) so that �(u;v;F;G)L isthe Loeb measure associated with �(u;v;F;G); then,� Z�J f(t; x; u(t; x); v(t; x); ux(t; x); vx(t; x); F (t; x); G(t; x))dtdx=�(u;v;F;G)L (f) := Z�
0 fd �(u;v;F;G)L ; f 2 C(�
0): (16)The algebra A is an extension of the algebra �B.Proof Follows directly from the reference given above. �Thus, one can write the optimization problem (13,14) as the problem ofminimizing J(�(u;v;F;G)L ) := �(u;v;F;G)L (�f0); (17)over the set MLM of measures of the form �(u;v;F;G)L de�ned by�(u;v;F;G)L (�fi) = bi; i = 1; : : : ;M: (18)The following two propositions show that the solution of our problem is aglobal optimizer. 8



Proposition 1 (i) The in�ma associated with the problems (13� 14) and(17� 18) are equal.(ii) For any positive in�nitesimal s 2 �R, we can �nd a near-minimizer�s 2MLM for the functional J in (17) in the set MLM , so thatJ(�s) = infMLM J + s: (19)Proof It follows from Theorem 3.8 in [Rubio, 1994]. �Let, then, s be a �xed positive in�nitesimal in �R, and �s the correspondingnear-minimizer for J on MLM . We can proceed to map back this measure tothe standard world, by means of the standard part map, see [Henson, 1979,Aldaz, 1992, Render, 1993, Landers and Rogge, 1987].Proposition 2 There is a Baire measure �opt on 
0 so that:(i) If S is a Baire set in 
0,�opt(S) = ��s(st�1
0 (S));where st�1
0 (S) is the union of the monads of the elements of S.(ii)�opt(f0) := Z
0 f0d �opt � infFM ZJ f0(t; x; u; v; ux; vx; F; G) dtdx:(iii) The measure �opt is a solution of the following optimization problem.Minimize �(f0) (20)over the set M+M(
0) of positive Baire measures on 
0 satisfying�(fi) = bi; i = 1; : : : ;M: (21)(iv) If the support of �opt contains subsets of 
0 in which at least one ofthe variables ux; vx 2 R is either �1 or 1, the measure �opt is de�ned bya Baire measure on J � J �A �B �R�R� U � Uplus atomic measures on those subsets.9



Proof (i) See [Henson, 1979]. (ii), (iii). These statements follow from Propo-sition 1 and the fact that for all f 2 C(
0)Z
0 fd �opt = Z�
0 �(�f)d �s = � Z�
0 �fd �s;note that by continuity�(�f(w)) = f(st
0(w)) = f(yw); w 2 
;0where yw is the (unique) element of 
0 so that w is in the monad of y.(iv) We consider now the support of �opt. Consider a point(t; x; u; v; ux;1; F; G) 2 S, S being a Baire set in 
0. Thenst�1
0 (t; x; u; v; ux;1; F; G) =M �\� �(�;1] =M � �f1g;with M the monad of (t; x; u; v; ux; F; G). Then, for f 2 C(
0), for somehyperreal �, there will be a contribution to the integralZ�
0 �(�f)d �sof �[< �if(t; x; u; v; ux;1; F; G) >] = (��)f(t; x; u; v; ux;1; F; G);which proves our contention; other cases, including ux and maybe the ele-ment �1, can be treated similarly. �Note that the in�mum for the problem (20-21) can be strictly less than theclassical in�mum, as indicated in (ii) above; this is discussed in detail in[Rubio, 1994], Chapter 4-5.In fact, values �1 do not actually happen for � standard. Even so, inproblems of interest, in which the function f0 tends to in�nity at in�nity,and in which the in�mum is �nite, elements in 
0 with value 1 or �1 donot really occur anyhow in the support of �opt; note that expressions suchas 1�1 are not de�ned for the extended real line. Thus,Proposition 3 Suppose thatjf0(t; x; u; v; ux; vx; F; G)j=1whenever ux or vx are either 1 or �1, and that the minimum associatedwith the linear program (20)-(21) is �nite. Then such elements are notpresent in the support of �opt. 10



We are now in a strong position to solve our original problem| the opti-mization problem (8) and (9) in the standard world. Note that we havebeen able to construct an extension of the original space FM , made up ofelements which are not quadruples; however, the action of �opt|a globaloptimizer|can be approximated by members of FM .4 Existence and ApproximationFrom the results of the optimization problem (20-21)|which we can takeas having been obtained for instance by Rudolph's method [Rudolph, 1987,Rudolph, 1990] we can build a near-optimal control pair (F;G); these arepiecewise continuous functions on R2 with support in J � J . We considerthen the equations in Gs;g(R� [0;1)):�Uxx + Ut + UUx = F̂�Vxx + Vt + UVx = ĜU(0; �) = U0;V (); �) = V0: (22)Here U0; V0 2 Gs;g(R); F̂; Ĝ 2 Gs;g(R); of course, F̂ ; Ĝ; U0; V0 are sequencesof smooth functions obtained by mollifying F;G; u0; v0 respectively.It is not di�cult to prove the existence of the solutions of (22)in Gs;g(R�[0;1)); see [Oberguggenberger, 1992b, Oberguggenberger, 1992a],[Biagioni and Oberguggenberger, 1992]. ThenProposition 4 Suppose that the minimum in the linear program (20)-(21)is �nite, that the conditions of Proposition 3 are satis�ed, and that the func-tion f0 is Lipschitz, that is, that there is a constant h so thatjf0(t0; x0; u0; v0; z0; r0; F 0; G0)� f0(t; x; u; v; z; r; F;G)j� h(jt0 � tj+ jx0 � xk+ ju0 � uj+jv0 � vj+ jz0 � zj+ jr0 � rj+ jF 0 � F j+ jG0 �Gj) (23)for all (t0; x0; u0; v0; z0; r0; F 0; G0); (t; x; u; v; z; r; F;G) in 
. Then it is possi-ble to construct a quadruple in FM so that as M1;M2;M3;M4 ! 1 thecorresponding value of the performance index tends toinfS �(f0);with S := \(M1;M2;M3;M42N)S(M1;M2;M3;M4).11



Proof (i) Let us �x M1;M2;M3;M4, and write� := 1=max(M1;M2;M3):Let �opt be the minimizer for (20) over the set S(M1;M2;M3;M4) de�nedby (21). Then, provided M4 is su�ciently large, we can �nd piecewisecontinuous functions forming a quadruple q := (u; v; F;G) so thatj�q(f0)� �opt(f0)j � �;j�q(fi)� bij � �; 1 = 1; : : : ;M: (24)(ii) Take a solution of (1) in the algebra Gs;g(R� [0;1))as discussed above,corresponding to the piecewise-continuous controls (F;G). Then for any� > 0 we have an admissible quadruple q� = (u�; ve; F�; Ge) associated withthe solution in the algebra Gs;g(R�[0;1)); of course, F�; Ge are the molli�edfunctions F;G; the initial solutions are also molli�ed, u0�; v0�. Then, fori = 1; : : : ;M1, �q�(fi) = ZD0 u0�(x)�i(x) dx;so that j�opt � �q�)fij � j ZD0(u0�(x)� u0(x))�i(x) dxj � C�;with C > 0 a constant. This inequality is in fact true for all i = 1; : : : ; M̂ ,with M̂ :=M1 +M2 + 2M3. Thusj(�� � �q�)fij � � + C�; i = 1; : : : ; M̂ : (25)(iii) Finally, we consider the approximation of the performance criterion.Sincej�q�(f0)� �opt(f0)j � j�q�(f0)� �(u;v;F;G)(f0)j+ j�(u;v;F;G)(f0)� �opt(f0)j;and since the inequalityj�q�(f0)� �(u;v;F;G)(f0)j � hju+ v + ux + vx + F +Gj � C1�;C1 > 0, can be proved by means much like those used in proving a similarinequality in Theorem 1 in [Rubio, 1995], we have thatj�q�(f0)� �opt(f0)j � C1� + �;from which our contention follows. �12



5 Further ApproximationWe consider again the optimization problem (20)-(21). By means of a resultof Rosenbloom in [Rosenbloom, 1952], and since 
0 is compact, we can statethat the minimizer �opt for this problem has the form�opt = MX̀=1 �`�(w`); �` � 0; w` 2 
0; ` = 1; : : : ;M; (26)where �(w) is the atomic measure with support fwg 2 
0. Thus, we wish tominimize MX̀=1 �`f0(w`); (27)on the set de�ned by the elements�` � 0; w` 2 
0; ` = 1; : : : ;M;which satisfy, further,MX̀=1 �`fi(w`) = bi; i = 1; : : : ;M; (28)A further concept must be introduced now; see [Rubio, 1986] . Notethat we have in (27)-(28) a nonlinear optimization problem, in which theunknowns are the coe�cients �` and supports w`; ` = 1; : : : ;M: In order to�nd a linear approximation to this problem, we consider !, a countable densesubset of 
0. Taking N >> M elements from !, including all elements ofthe form introduced in (iv) above in which some variables take values either�1 or 1, we can write (27)-(28) as follows. We wish to minimizeNX̀=1 �`f0(w`); (29)on the set de�ned by the elements �` � 0; ` = 1; : : : ;M; which satisfy,further, NX̀=1 �`fi(w`) = bi; i = 1; : : : ;M: (30)13



Here, then, the supports w` are �xed, in !; the coe�cients �`; ` = 1; : : : ;M ,are the only unknowns; this is anM�N (�nite dimensional) linear program.Of course as N ! 1 the support of the optimal measure �opt in (27)-(28)can be approximated closer and closer by that of �Nopt, the solution of (29)-(30). Note, further, that at most M of the unknown �'s are nonzero; weshall assume that the problem has essential regularity, and that exactlyM ofthese �'s are nonzero; see [Rubio, 1986], Chapters 3 and 4, for a discussionof this point.Since no element in the support of �Nopt has values equal to either �1 or1, the approximation process has been studied in detail in [Rubio, 1986],and a quadruple in FM can be constructed approximating the action of�opt on f0. It is necessary to modify the set ! into a set !Q; in which thecoordinates of the ux; vx directions take values in a portion of the denseset ! de�ned by a number Q; if Q is large enough, all the elements in thesupport of �opt will be approximated adequately. Then,Proposition 5 Suppose that the minimum in the linear program (20)-(21)is �nite, that the conditions of Proposition 3 are satis�ed, and that the func-tion f0 is Lipschitz. Then it is possible to construct suboptimal admissiblecontrol pairs (F;G) so that:(i) As Q ! 1, the corresponding values of the perormance criteriontend to �Nopt(f0):(ii)As N !1, �Nopt(f0)! �opt(f0):The proof is much as that of Proposition 4 in [Rubio, 1997]. The actualconstruction is explained in detail in [Fakharzadeh, 1997] and[M. H. Farahi and Wilson, 1996]; see also the next Section.6 An ExampleWe have carried out the numerical computations associated with the esti-mation of a nearly-optimal control for the system (1) introduced in the lasttwo Sections. We took F � 0, v0 � 0, while u0(x) = 0:5; x 2 (0:5; 1], zerootherwise. The variables u; v; G are constrained to take values in the sameset, [0; 10]; we took � = 0:01 and aimed to approximate the high values ofux; vx by making their domain the set [0; 1000], that is Q = 1000.Our aim was to control the extent of the shocks in the variable v, so wetook f0(t; x; u; v; ux; vx; F; G) := v2 + v2x:14



We set a total of 35 equations (M1 = M2 = 6;M3 = 3;M4 = 17). Thedomains corresponding to the variables (u; v; F; vx; ux) were divided into 4subintervals, those corresponding to (x; y) into 5, so that we had a total of36864 variables. The suboptimal control is shown in Figure 1, constructed bymeans explained in detail in [Fakharzadeh, 1997], [Farahi, 1996]; the variablevx in Figure 2, constructed by the same means.
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FIG. 2. Graph of the variable vx, taking a value 1000 at the shaded areaof the (t; x)-plane, zero otherwise.Several points can be made concerning these results:� In both �gures we show the supports of the functions F and vx in the(t; x)-plane, taking values 10 and 1000 respectively.� Figure 2 shows therefore the regions in this plane where the function15



vx has large positive values, a precursor of the shocks most likely tobe exhibited when � is taken as an in�nitesimal, as explained in thenext section.� Note then the action of the control in minimizing these areas: as timesgoes by, from 0 to 1, these `shocks' get weaker and weaker, the initialones caused by the initial conditions disappearing at the end into veryweak regions; the last three `shocks' are not to scale, their width beingabout 1/100 the width of the preceding one.� These results are tentative; a thorough numerical investigation is needed,with much larger matrices and many values of �; also, the actual nu-merical solution of (1) corresponding to the control F should be ob-tained for each value of �.7 A �nal stepFinally, we go back to our original nonstandard setting, associated withequation (2). If we solve the optimization problem for each value �p; p 2�, obtaining for instance each time a suboptimal admissible control pair(F;G)p, we can say that the nonstandard object[< (F; g)p >]is a suboptimal pair for the in�nitesimal � de�ned in (2). Presumably, asexplained above, the `shocks' of the example would become actual shocks,with in�nite slopes.References[Aldaz, 1992] Aldaz, J. M. (1992). A characterization of universal Loebmeasurability for completely regular Hausdor� spaces. Canadian Journalof Mathematics, 44:673|690.[Aragona and Biagioni, 1991] Aragona, J. and Biagioni, H. A. (1991). In-trinsic de�nition of the colombeau algebra of generalized functions. Anal-ysis Mathematica, 17:75|132.[Berge, 1963] Berge, C. (1963). Topological Spaces. Oliver and Boyd.16
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