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Abstract

In order to construct examples for interacting quantum fieldtheory mod-
els, the methods of euclidean field theory have turned out to be a powerful
tools since they make use of the techniques of classical statistical mechanics.

Starting from an appropriate set of euclideann-point functions (Schwinger
distributions), a Wightman theory can be reconstructed by an application of
the famous Osterwalder-Schrader reconstruction theorem.This procedure
(Wick rotation), which relates classical statistical mechanics and quantum
field theory, is, however, somewhat subtle. It relies on the analytic proper-
ties of the euclideann-point functions.

We shall present here a C*-algebraic version of the Osterwalder-Scharader
reconstruction theorem. We shall see that, via our reconstruction scheme, a
Haag-Kastler net ofboundedoperators can directly be reconstructed.

Our considerations also include objects, like Wilson loop variables, which
are not point-like localized objects like distributions. This point of view may
also be helpful for constructing gauge theories.
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1 Introduction
Why euclidean field theory? During the last two decades it has turned
out that the techniques of euclidean field theory are a powerful tool in or-
der to construct quantum field theory models. Compared to themethod of
canonical quantization in Minkowski space, which, for example, has been
used for the construction ofP (�)2 and Yukawa2 models [10, 11, 12, 14, 20,
21], the functional integral methods of euclidean field theory simplify the
construction of interactive quantum field theory models.

In particular, the existence of the�43 model as a Wightman theory has
been established by using euclidean methods [5, 23, 18] combined with the
famous Osterwalder-Schrader reconstruction theorem [19]. For this model
the methods of canonical quantization are much more difficult to handle
and lead by no means so far as euclidean techniques do. Only the proof
of the positivity of the energy has been carried out within the hamiltonian
framework [10, 13].

One reason why the functional integral point of view simplifies a lot is
that the theory of classical statistical mechanics can be used. For example,
renormalization group analysis [9] and cluster expansions[2] can be applied
in order to perform the continuum and the infinite volume limit of a lattice
regularized model. Instead of working with non-commutative objects, one
considers the momentsSn(x1; � � � ; xn) = Z d�(�) �(x1) � � ��(xn)
of reflexion positive measures�, usually called Schwinger distributions or
euclidean correlation functions, on the space of tempered distributions.

Heuristically, the functional integral point of view leadsto conception-
ally simple construction scheme for a quantum field theory. Starting from
a given lagrangian densityL, the measure� under consideration is simply
given byd�(�) = Z�1 Ox2Rdd�(x) exp�� Z dx L(�(x); d�(x))�
where the factorZ�1 is for normalization. Therefore, the lagrangianL can
be interpreted as a germ of a quantum field theory. Moreover, this also leads
to a nice explanation of the minimal action principle. However, to give the
expression above a rigorous mathematical meaning is alwaysaccompanied
with serious technical difficulties.
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Some comments on the Osterwalder-Schrader reconstruction the-
orem. In order to motivate the main purpose of our paper, we shall make
some brief remarks on the Osterwalder-Schrader reconstruction theorem
[19] which relates Schwinger and Wightman distributions. LetT (S) be the
tensor algebra over the space of test functionsS (inRd) and let us denote byJE (E stands foreuclidean) the two-sided ideal inT (S), which is generated
by elementsf1 
 f2 � f2 
 f1 2 T (S) wheref1 andf2 have disjoint sup-
ports. We build the algebraTE(S) := T (S)=JE and take the closureT TE (S)
of it in anappropriatelocally convex topology. We claim that the euclidean
groupE(d) acts naturally by automorphisms(�g; g 2 E(d)) onT TE (S).

A linear functional� 2 T TE (S)� fulfills the Osterwalder-Schrader ax-
ioms if the following conditions hold:

(E0) � is continuous and unit preserving:< �; 1 >= 1.

(E1) � is invariant under euclidean transformations:! � �g = !.

(E2) � is reflexion positive: The sesqui-linear forma
 b 7!< �; �e(a�)b >
is a positive semi-definite on those elements which are localized at
positive times with respect to the directione 2 Sd�1 where�e is the
automorphism which corresponds to the reflexione 7! �e.

Given a linear functional� which satisfies the conditions(E0) to (E2),
the analytic properties of the distributionsSn(f1; � � � ; fn) := < �; f1 
 � � � 
 fn >

and Sn(�1; � � � ; �n) = Sn+1(x0; � � � ; xn) ; �j = xj+1 � xj
lead to the result:

Theorem 1.1 : There exists a distribution~Wn 2 S 0(Rnd) supported in the
n-fold closed forward light cone( �V+)n which is related toSn by the Fourier-
Laplace transform:Sn(�) = Z dndq exp(��0q0 � i~�~q) ~Wn(q)

The proof of this Theorem [19] relies essentially on the choice of the
topologyT . It does not apply for the ordinaryS-topology, i.e. it is not
enough to require that theSn’s are tempered distributions. This was stated
wrongly in the first paper of [19] and was later corrected in the second one.
We claim that, nevertheless, the Theorem might be true for the ordinaryS-
topology, but, at the moment, there is no correct proof for it. These problems
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show that the relation between euclidean field theory and quantum field the-
ory is indeed subtle.

In order to formulate the famous Osterwalder-Schrader reconstruction
theorem from a more algebraic point of view, we shall briefly introduce the
notion of alocal netand avacuum state.P"+-covariant local nets: A P"+-covariant local net of *-algebras is
an isotonous1 prescriptionA : O 7! A(O), which assigns to each double
coneO = V++x\V�+y a unital *-algebraA(O), on which the the Poincaré
groupP"+ acts covariantly onA, i.e. there is a group homomorphism� 2Hom(P"+;AutA), such that�gA(O) = A(gO). HereA denotes the *-
inductive limit of the netA. Furthermore, the net fulfills locality, i.e. ifO;O1 are two space-like separated regionsO � O01 then[A(O); A(O1)] =f0g. A P"+-covariant local net of C*-algebras is called aHaag-Kastlernet.

Vacuum states: A state! onA is called a vacuum state iff! is P"+-

invariant (or translationally invariant), i.e.! ��g = ! for eachg 2 P"+, and
for eacha; b 2 A Z dx < !; a�(1;x)(b) > f(x) = 0
for each test functionf 2 S with supp( ~f)\ �V+ = ;. This implies that there
exists a strongly continuous representationU of P"+ on the GNS Hilbert
space of! such that U(g)�(a)U(g)� = �(�ga)
and the spectrum ofU(1; x) is contained in the closed forward light cone.
Here� is the GNS representation of!.

Usually it is required that a vacuum state! is a pure state. This aspect is
not so important for our purpose and we do not assume this here.

An example for aP"+-covariant local net of *-algebras is given by the
prescription TM(S) : O - TM(S(O))

1Isotony:O1 � O2 impliesA(O1) � A(O2).
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whereTM(S) := T (S)=JM2 is the well knownBorchers-Uhlmann algebra.
We should mention here that now the test functions inS are test functions in
Minkowski space-time.

Let � 2 Hom(P"+;GL(S)) be the action of the Poincaré group on the
test functions which is given by�gf = f � g�1 then�g(f1 
 � � � 
 fn) := �gf1 
 � � � 
 �gfn
defines a covariant action ofP"+ onTM(S). Now, the theorem above leads
to the famous Osterwalder-Schrader reconstruction theorem:

Theorem 1.2 : Given a linear functional� which satisfies the conditions
(E0) to (E2), then there exists a vacuum state!� on the Borchers algebraTM(S) such that< !�; f1 
 � � � 
 fn > = Wn(f1; � � � ; fn)
whereWn is defined byWn(x) = Z dndq exp(�i�q) ~Wn(q) ; �j = xj+1 � xj :

The fact that!� is a vacuum state on the Borchers algebra is completely
equivalent to the statement that the distributionsWn fulfill the Wightman
axioms in its usual form (except the clustering)(see [24]).

A heuristic proposal for the treatment of gauge theories. As men-
tioned above, the main reason for using euclidean field theory is for con-
structing quantum field theory models with interaction. In four space time
dimensions, the most promising candidates for interactivequantum field the-
ory models are gauge theories. Scalar or multi-component scalar field the-
ories ofP (�)4-type are less promising to describe interaction, since their
construction either run into difficulties with renormalizability or, as conjec-
tured for the�44-model, they seem to be trivial [7].

The description of gauge theories within the Wightman framework leads
to some conceptional problems. For example, in order to study gauge invari-
ant objects in quantum electro dynamics one may think of vacuum expecta-
tion values of products of the field strengthF��W�1�1;��� ;�n�n(x1; � � � ; xn) = h
; F�1�1(x1) � � �F�n�n(xn)
i

2The idealJM (M stands for Minkowski) is the two-sided ideal inT (S), which is generated
by elementsf1 
 f2 � f2 
 f1 2 T (S) wheref1 andf2 have space-like separated supports.
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which satisfy the Wightman axioms. Here, the problem ariseswhen one
wish to include fermions. For the minimal coupling one has tostudy corre-
lation functions of the gauge field instead of those in the field strength. This
leads to such well known problems as indefinite metric, solving constraints
and so forth.

Moreover, there is another problem which we would like to mention
here. Within the Wightman framework the quantized version of the gauge
field u� is an operator valued distribution. On the other hand, the classical
concept of a gauge field leads to the notion of a connection in avector or
principal bundle over some manifold which suggests to consider as gauge
invariant objects Wilson loop variablesw
 [u] = tr[Pexp(s
 A)]
and string-like objectss
 [u;  ] = � (r(
))Pexp(s
 u) (s(
))
where is a smooth section in an appropriate vector bundle and
 is an
oriented path which starts ats(
) and ends atr(
).

Unfortunately, to expressw
(u) in terms of Wightman fields leads to
difficulties. From a perturbation theoretical point of viewone expects that
the distributionu is too singular in order to be restricted to a one-dimensional
sub-manifold.

To motivate our considerations, we shall discuss here, heuristically, an
alternative proposal which might be related to a quantized version of a gauge
theory. It is concerned with the direct quantization of regularized Wilson
loops w
(f)[u] = Z dx w
+x[u] f(x) :
Here we allowf 2 E 0(Rd) to be a distribution with compact support which
has the form f(x) = f�(x)��(x)
where� is ad� 1-dimensional hyper-plane andf� 2 C10 (�) and�� is the
natural measure on�. We claim that such a type of regularization is nec-
essary since ind-dimensional quantum field theories there are no bounded
operators which are localized withind� 2-dimensional hyper-planes [4].
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Such a point of view has been discussed by J. Fröhlich [6], E.Seiler [22]
or more recently by A. Ashtekar and J. Lewandowski [1].

In order to describe a quantum gauge theory in terms of regularized Wil-
son loop variables one wishes to construct a function
 7! w
 which assigns
to each path
 an operator valued distributionw
 : f 7! w
(f), where the
operatorsw
(f) are represented by operators on some Hilbert spaceH.

(1) The operatorsw
(f) are self-adjoint for real-valued test functions
with a joint coreD � H

(2) w should transform covariantly under the action of the Poincaré group,
i.e. wg
(f � g�1) = U(g)w
(f)U(g)� ; g 2 P"+ ;
whereU is a unitary stronglycontinuous representation of the Poincaré
group onH and the spectrum of the translations is contained in the
closed forward light cone�V+.

(2) Moreover, the operatorsw
(f) should satisfy the locality requirement,
i.e. [E(
;f)(�1);E(
1;f1)(�)] = 0
if the (convex hulls) of the regions
 + supp(f) and
1 + supp(f1)
are space-like separated. Herew
(f) = Z dE(
;f)(�) �

is the spectral resolution ofw
(f)
According to [6, 22], it has been suggested to reconstruct Wilson loop

operatorsw
 from euclidean correlation functions of loops
1; � � � ; 
n - Sn(
1; � � � ; 
n)
which satisfy the analogous axioms as the usual Schwinger distributions do,
namely the reflexion positivity and the symmetry. However, within the anal-
ysis of J. Fröhlich, K. Osterwalder and E. Seiler [8, 22], the correlation func-
tion may have singularities in those points where two loops intersect and
there are some additional technical conditions assumed which are related to
the behavior of these singularities. He has proven (comparealso [6]) that
one can reconstruct from the euclidean correlation functionsSn an operator
valued function
 7! w
 together with a unitary strongly continuous rep-
resentation ofP"+ onH [8]. Herew
 is only defined for loops which are
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contained in some space-like plane and it fulfills the covariance condition
(1). E. Seiler [22] has also discussed an idea how to proof locality (2). We
shall come back to this point later.

For our purpose, we look from an algebraic point of view at theprob-
lem of reconstructing a quantum field theory from euclidean data. Let us
consider functionsa : AE 3 u - a��Z dx w
j+x(u) fj(x); j = 1; � � � ; n�
on the space of smooth connectionsAE in a vector bundleE over the eu-
clidean spaceRd wherea� is a bounded function onRn. These functions
are bounded and thus they generate an abelian C*-algebraA with C*-normkak = supu2AE ja(u)j :
We assign to a given bounded regionU � Rd the C*-sub-algebraA(U) � A
which is generated by all functions of Wilson loop variablesw
(f)with 
+supp(f) � U . The euclidean groupE(d) acts naturally by automorphisms
onA, namely the prescription�g : a - a � g�1 : u - a(u � g)
defines for eachg 2 E(d) an appropriate automorphism ofA, which, of
course, acts covariantly on the isotonous netA : U - A(U) ;
namely we have:�gA(U) = A(gU).

Motivated by the work of E. Seiler, J. Fröhlich and K. Osterwalder
[22, 6, 8] as well as that of A. Ashtekar and J. Lewandowski [1], we pro-
pose to consider reflexion positive functionals onA, i.e. linear functionals� 2 A� which fulfill conditions, corresponding to the axioms(E0)-(E2)
above. These functionals can be interpreted as the analogueof the func-
tional integral. Note, if� is a state, then� is nothing else but a measure on
the spectrumX of the C*-algebraA. The advantage of this point of view is
based on the fact that abelian C*-algebras are rather simpleobjects namely
algebras of continuous functions on a (locally)-compact Hausdorff space.

Overview. In order to make the comprehension of the subsequent sec-
tions easier, we shall give an overview of the content of our paper by stating
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the main ideas and results. This paragraph is also addressedto quick readers
who are not so much interested into technical details.

Motivated by the considerations above, we make in Section 2 asugges-
tion for axioms which an euclidean field theory should satisfy. We start from
an isotonous net A : U - A(U) � A
of C*-algebra on which the euclidean groupE(d) acts covariantly by au-
tomorphisms of� : E(d) ! AutA, like in the example of Wilson loop
variables given in the previous paragraph. However, we assume a somewhat
weaker condition than commutativity forA. For our considerations we only
have to assume that two operators commute if they are localized in disjoint
regions. In addition to that, we consider a reflexion positive functional� onA. We shall call the triple(A; �; �), consisting of the netA of C*-algebra,
the action of the euclidean group�, and the reflexion positive functional, an
euclidean field.

We show in Section 3 how to construct from a given euclidean field a
quantum field theory in a particular vacuum representation.In order to point
out the relation between the euclidean field(A; �; �) and the Minkowskian
world, we briefly describe the construction of a Hilbert spaceH on which
the reconstructed physical observables are represented. According to our
axioms, the map a
 b - < �; �e(a�)b >
is a positive semidefinite sesqui-linear form on the algebraA(e) of operators
which are localized ineR++�e where�e is the hyper plane orthogonal to
the euclidean time directione 2 Sd�1. Here �e is the automorphism onA which corresponds to the reflexione 7! �e. By dividing the null-space
and taking the closure we obtain a Hilbert spaceH. The construction of the
observables, which turn out to be bounded operators onH, is based on two
main steps.

Step 1: In Section 3.1, we reconstruct a unitary strongly continuous
representation of the Poincaré groupU onH. To carry through this analy-
sis, it is not necessary to impose new ideas. The construction is essentially
analogous to those which has been presented in [8] (compare also [22]). In
order to keep the present paper self contained, we feel obliged to discuss this
point within our context in more detail.
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Step 2: We discuss in Section 3.2 the construction of the physical ob-
servables. At the moment this can only be done, if we assume that the alge-
braA contains operators which are localized at sharp times, i.e.we require
that the algebraA(e) \ A(�e) is larger thanC1. We shall abbreviate this
condition by (TZ) which stands fortime-zero. For the fix-point algebraB(e)
of �e inA(e) \A(�e) we obtain a *-representation� onH, where an oper-
ator�(b), b 2 B(e), is given by the prescription�(b)p(a) - p(ba) :
Herep is the quotient map, identifying an operatora 2 A(e) with its equiv-
alence classp(a) in H. Now, we consider for a given Poincaré transformg 2 P"+ and a given time-zero operatorb 2 B(e) the following bounded
operator: �(g; b) := U(g)�(b)U(g)� :
We shall say that�(g; b) is localized in a regionO in Minkowski space ifb is localized inU � �e and the transformed regiongU is contained in
the double coneO. Let us denote the C*-algebra which is generated by all
operators�(g; b), which are localized inO, by A(O). Hence we get an
isotonous net of C*-algebrasA : O - A(O)
indexed by double cones in Minkowski space on which the Poincaré group
acts covariantly by the automorphisms�g := Ad(U(g)), g 2 P"+.

The main result:

(1) The reconstructed isotonousnetA is a Haag-Kastler net: locality holds,
i.e. ifO;O1 are two double cones such thatO � O01 then[A(O);A(O1)] =f0g.

(2) Furthermore, theP"+-invariant vector
 = p(1) induces a vacuum
state ! : a - < !; a > := h
; a
i :

The non trivial aspect of this statement is the proof of locality. As already
mentioned above, E. Seiler has discussed an idea how to provelocality for a
net of Wilson loopsw
 . This idea does not rely on the fact that one considers
loops. It can also be used for general euclidean fields. However, we have not

10



found a complete proof within the common literature and therefore, which
is also one purpose of our paper, we shall present a complete proof here
(Section 3.2). The prove is based on the analytic propertiesof the functionsF (z1; z2) := h ;�X1(z1; b1)�X2(z2; b2) ̂iF̂ (z1; z2) := h ;�X2(z2; b2)�X1(z1; b1) ̂i :
We have introduced the operators�X(z; b) := U(exp(zX))�(b)U(exp(�zX))
whereb 2 B(e) is a time-zero operator andX is a Boost generator oriH
whereH is the hamiltonian with respect to the time directione.

Roughly, the argument for the proof of locality goes as follows: Supposebj is localized inUj � �e. We shall show that the regionsG (Ĝ) in whichF (F̂ ) are holomorphic are

(a) connected and they contain pure imaginary points(is1; is2) and

(b) the intersectionG\ �G contains all those points(t1; t2) for whichO1 =exp(t1X)U1 andO2 = exp(t2X2)U2 are space-like separated.

But F andF̂ coincide in the pure imaginary points since operators which
are localized in disjoint regions commute. This impliesF jG\Ĝ = F̂ jG\Ĝ
and thus by(b) we concludeh ; [�X1(t1; b1);�X2(t2; b2)] ̂i = 0
if �X1(t1; b1) and�X2(t2; b2) are localized in space-like separated regions.
We claim that the regionsG andĜ depend on the choice of the vector ̂.
However, one can find a dense sub-spaceD such thatF (F̂ ) are holomorphic
in G (Ĝ) for all  ̂ 2 D. Thus the commutator[�X1(t1; b1);�X2(t2; b2)]
vanishes on a dense sub-space and, since�X(t; b) is bounded for real pointst 2 R, the commutator vanishes onH.

In order to get analyticity ofF within a regionG which is large enough,
we prove in the appendix an statement which is the analogue ofthe famous
Bargmann-Hall-Wightman theorem [15, 16, 24].

In Section 4, we discuss some miscellaneous consequences ofour result.
Note, that for the application of our reconstruction schemeit was crucial
to assume that the there are non-trivial euclidean operators which can be
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localized at sharp times. We shall give some remarks on the condition (TZ)
in Section 4.1.

Our considerations can easily be generalized to the case in which there
are also fermionic operators present or even though for super-symmetric
theories. Here one starts with an isotonous netF : U 7! F (U) ofZ2-graded
C*-algebras which fulfills the time-zero condition (TZ), i.e. the fix-point
algebraB(e) of �e in F (e) \ F (�e) is larger thanC1. The euclidean group
acts covariantly by automorphisms onF and we require that the graded
commutator[a; b]g = 0 vanishes ifa andb are localized in disjoint regions.

Let � be a reflexion positive functional, then, by replacing the commuta-
tor by the graded commutator, we conclude that the operators�(g; b) = U(g)�(b)U(g)� ; b 2 B(e) andg 2 P"+
generate a fermionic netF of C*-algebras. This can really be done analo-
gously to the construction of the Haag-Kastler netA, described above.

Finally, we close our paper by the Section 5conclusion and outlook.

2 Axioms for euclidean field theories
In the present section we make a suggestion for axioms which an euclidean
field theory should satisfy.

In the first step, we introduce the notion of aneuclidean net of C*-
algebras. Within our interpretation this notion is related tophysical ob-
servations.

Definiton 2.1 : A d-dimensionaleuclidean netof C*-algebras is given by a
pair (A; �) which consists of an isotonous netA : Rd � U - A(U)
of C*-algebras, indexed by bounded subsets inRd and a group homomor-
phism� 2 Hom(E(d);Aut(A)).3 We require that the pair fulfills the con-
ditions:

(1) Locality: U1 \ U2 = ; implies[A(U1); A(U2)] = f0g.
(2) Euclidean covariance:�gA(U) = A(gU) for eachU .

3We denote the the C*-inductive limit ofA byA. For an unbounded region� the algebraA(�)
denotes the C*-sub-algebra which is generated by the algebrasA(U), U � �.
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For an euclidean directione 2 Sd�1 we consider the reflection�e : e 7!�e. and the sub-groupEe(d� 1) which commutes with�e. Moreover, we
set �e := ��e . As in the introduction, we denote byA(e) the C*-algebraA(eR++ �e) where�e is the hyper-plane orthogonal toe.

Now we formulate a selection criterion for linear functionals onA which
corresponds to the selection criterion for physical states. We shall see that
class of functional, which is introduced below, is the euclidean analogue of
the set of vacuum states.

Definiton 2.2 : We defineS(A; �) to be the set of all continuous linear
functionals� onA which fulfill the following conditions:

(1) e-reflexion positivity: There exists a euclidean directione 2 Sd�1
such that 8a 2 A(e) : < �; �e(a�)a > � 0 :

(2) Unit preserving:< �; 1 >= 1.

(3) Invariance:8g 2 E(d) : � � �g = �.

Remark: We easily observe that the definition ofS(A; �) is indepen-
dent of the chosen directione. In the subsequent, we call the functionals inS(A; �) reflexion positive.

For our purpose it is necessary to require a further condition for the func-
tionals under consideration.

Definiton 2.3 : We denote bySR(A; �) the set of all reflexion positive
functionals� of A for which the mapE(d) 3 g - < �; a(�gb)c >
is a continuous function for eacha; b; c 2 A. These functionals are called
regular reflexion positive.

We shall call a triple(A; �; �) which consists of an euclidean net and a
regular reflexion positive functional� aneuclidean field.

As already mentioned in the introduction, we have to assume that the
operators of the euclidean net can be localized at a sharpd� 1-dimensional
hyper plane. For an euclidean time directione we denote byB(e) the fix-
point algebra ofA(e) \A(�e) under the reflexion�e.
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Condition (TZ): A d-dimensional euclidean net of C*-algebras(A; �)
fulfills the time-zero condition (TZ) iffB(e) is a non-trivial C*-algebra, i.e.
it is notC1. We call the algebrasB(e) time-zero algebras. For a regionU ��e, we denote byB(e;U) the sub-algebra which is generated by operators
localized inU .

Remark: Let (A; �) be ad-dimensional euclidean net of C*-algebras
which fulfill the condition (TZ). Then the netBe : �e � U - B(e;U)
together with the group homomorphism�e := �jEe(d�1) is, of course, ad� 1-dimensional euclidean net of C*-algebras.

3 From euclidean field theory to quantum
field theory
In the present section, we discuss how to pass from a euclidean field(A; �; �)
to a quantum field theory in a particular vacuum representation.

In the first step we construct from a given euclidean field(A; �; �) a
unitary strongly continuous representation of the Poincaré group (Section
3.1).

In the second step we have to require that condition (TZ) is satisfied in
order to show that a concrete Haag-Kastler can be reconstructed from the
elements of the time-zero algebras and the representation of the Poincaré
group (Section 3.2).

3.1 Reconstruction of the Poincaŕe group

For e 2 Sd�1 we introduce a positive semidefinite sesqui-linear form onA(e) as follows: a
 b - < �; �e(a�)b > :
Its null space is given byN(e; �) := fa 2 A(e)j8b 2 A(e) :< �; �e(a�)b >= 0g
and we obtain a pre-Hilbert spaceD(e; �) := A(e)=N(e; �)
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The corresponding quotient map is denoted byp(e;�) : A(e) - D(e; �)
and its closureH(e; �) is a Hilbert space with scalar producthp(e;�)(a); p(e;�)(b)i := < �; �e(a�)b > :
Lemma 3.1 : The mapT(e;�) : s 2 R+ - T(e;�)(s) : p(e;�)(a) - p(e;�)(�(1;se)a)
is a strongly continuous semi-groupof contractionswith a positive generatorH(e;�) � 0.

Proof. Since < �; �e(b�)a > = 0
for eachb 2 A(e) implies< �; �e(b�)�sea > = < �; �e(�seb�)a >= 0
for eachb 2 A(e), we conclude thatT(e;�)(s)p(e;�)(a) = 0
for a 2 N(e; �). HenceT(e;�) is well defined. The fact thatT(e;�) is a
semi-group of contractions follows by standard arguments,i.e. a multiple
application of the Cauchy-Schwartz inequality. Finally, the strong continuity
follows from the regularity of�. �

We consider the setCon(e) of all cones� (in euclidean space) of the
form � = R+(Bd(r + e)) + �e whereBd(r) denotes the ball inRd with
centerx = 0 and radiusr. In addition, we define the following subspace ofH(e; �) D(�; �) := p(e;�)A(�) :
Lemma 3.2 : For each cone� 2 Con(e), the vector spaceD(�; �) is a
dense subspace ofH(e; �).
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Proof. Lemma 3.1 states thatT(e;�) is a semi-group of contractions with a
positive generator. Furthermore,D(�; �) is mapped into itself byT(e;�)(s).
Since for each operatora 2 A(e) there exists ans > 0 such thatT(e;�)(s)p(e;�)(a) 2 D(�; �) ;
we can apply a Reeh-Schlieder argument in order to prove thatD(�; �) is a
dense subspace ofH(e; �). �
Lemma 3.3 : Let V � E(d) be a small neighborhood of the unit element1 2 E(d) and let� 2 Con(e) be a cone such thatV� � eR+ + �e. Thena 2 A(�) \N(e; �) implies�ga 2 N(e; �) for eachg 2 V .

Proof. We have< �; �e(b�)�sea > = 0 for eachb 2 A(�) and hence< �; �e(b�)�ga >=< �; �e(��egb�)a >= 0. Since we may chooseV to be�e-invariant, we have��egb� 2 A(e) and the result follows by Lemma 3.2.�
Theorem 3.4 :Let� 2 SR(A; �) be a regular reflexion positive functional.
Then for eache 2 Sd�1 there exists a unitary strongly continuous represen-
tationU(e;�) of thed-dimensional Poincaré groupP"+U(e;�) 2 Hom[P"+; U(H(e; �))]
such that the spectrum of the translationsx ! U(e;�)(1; x) is contained in
the closed forward light cone�V+.

Proof. The theorem can be proven by using the proof of [22, Theorem
8.10]. We briefly illustrate the construction of the representationU(e;�). LetV � E(d) be a small neighborhood of the unit element1 2 E(d). Then
there exists a cone� 2 Con(e) such thatV� � eR+ + �e. According to
Lemma 3.3 we may define for eachg 2 V the operatorV(e;�)(g)p(e;�)(a) := p(e;�)(�ga)
with domainD(�; �). If g belongs to the groupEe(d� 1) then we conclude
thatV(e;�)(g) = U(e;�)(g) is a unitary operator.

Let e(d) be the Lie algebra ofE(d) and letee(d � 1) � e(d) be the
sub-Lie algebra ofEe(d� 1) � E(d). We decomposee(d) as follows:e(d) = ee(d� 1)�me(d� 1)
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and we obtain another real Lie algebra:p(d) := ee(d� 1)� ime(d� 1)
which is the Lie algebra of the Poincaré groupP"+.

For eachX 2 me(d � 1) there exists a self adjoint operatorL(e;�)(X)
whereD(�; �) consists of analytic vectors forL(e;�)(X) and for eachs 2 R
with exp(sX) 2 V we have:V(e;�)(exp(sX)) = exp(sL(e;�)(X)) :

According to [22, Theorem 8.10] we conclude that the unitaryoperatorsU(e;�)(exp(isX)) := exp(isL(e;�)(X)) ; X 2 me(d� 1)U(e;�)(g) := V(e;�)(g) ; g 2 Ee(d� 1)
induce a unitary strongly continuous representation of thePoincaré groupP"+. The positivity of the Energy follows from the positivity ofthe transfer
matrixT(e;�)(1). �
Remark: The vector
(e;�) := p(e;�)(1) is invariant under the action of
the Poincaré group.

3.2 Reconstruction of the net of local observables

In the subsequent, we consider a euclidean net of C*-algebras (A; �) which
fulfills the condition (TZ).

Proposition 3.5 : Let � be a regular reflexion positive functional onA.
Then the map�(e;�) : B(e) 3 b - �(e;�)(b) : p(e;�)(a) - p(e;�)(ba)
is a well defined *-representation ofB(e).
Proof. For eacha 2 N(e; �) and for eachc 2 A(e) we have< �; �e(c�)ba > = < �; �e(c�b)a > = 0
and hence�(e;�)(b) is a well defined linear and bounded operator. By con-
struction it is clear that�(e;�) is a *-homomorphism.�
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Remark: The restriction of�jB(e) is a state ofB(e). Of course, the GNS-
representation of�jB(e) is a sub-representation of�(e;�).
Definiton 3.6 :

(1) Let O be a double cone inRd. Then we defineA(e;�)(O) to be the
C*-algebra onH(e; �) which is generated by operators�(e;�)(g; b) := U(e;�)(g)�(e;�)(b)U(e;�)(g)�
with b 2 B(e;U), g 2 P"+ andgU � O.

(2) We denote byA(e;�) the net of C*-algebras which is given by the pre-
scription A(e;�) : O - A(e;�)(O) :

Theorem 3.7 :The pair(A(e;�);Ad(U(e;�))) is aP"+-covariantHaag-Kastler
which is represented onH(e; �).
Remark:

(1) Note that !(e;�) : A(e;�) 3 a - h
(e;�); a
(e;�)i
is a vacuum state sinceU(e;�) is a positive energy representation of the
Poincaré group. However, in general!(e;�) is not a pure state.

(2) For the local algebraA(e;�)(O), we do not take the von Neumann al-
gebra generated by the corresponding operators�(e;�)(g; b) since this
might to problems with locality.

Preparation of the proof of Theorem 3.7: For a Lie algebra elementX 2 ime(d � 1) and a complex numberz 2 C we define a linear (un-
bounded) operator onH(e; �) by�(e;�;X)(z; b) := U(e;�)(exp(zX))�(e;�)(b)U(e;�)(exp(�zX))
on a dense domainD(�; �)where� 2 Con(e) an appropriate cone.

In order to formulate the our next result, we define for two generatorsX1; X2 2 ime(d� 1), for an intervalI , for a neighborhoodV � L"+ of the
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unit element inP+(C ), and for two subsetsUj � �e, j = 1; 2, the regionG(V ;X1; X2;U1;U2; I) := [g2V�L"+�(z1; z2) 2 (R� iI)2 ���� 8xj 2 Uj :e Im[g(exp(z1X1)x1 � exp(z2X2)x2)] 2 R+� :
We shall prove in the appendix the lemma given below which is the analogue
of the famous BHW theorem (compare also [16, 24] and references given
there):

Lemma 3.8 : For a given intervalI , there exists a dense subspaceD �H(e; �), such that the functionF(X1;X2;b1;b2) : (z1; z2) - h 1;�(e;�;X1)(z1; b1)�(e;�;X2)(z2; b2) 2i
is holomorphic inG(V ;X1; X2;U1;U2; I) for each 1;  2 2 D.

We claim that theE(d) invariance of� yields that the dense subspaceD � H(e; �) can be chosen in such a way thatI(V ;X2; X2;U2;U1; I):= G(V ;X2; X2;U2;U1; I)\ G(V ;X1; X2;U1;U2; I)\ iR26= ; :
Lemma 3.9 : If U1 \ U2 = ; and(s1; s2) 2 I(V ;X2; X2;U2;U1; I), thenF(X1 ;X2;b1;b2)(is1; is2) = F(X2;X1;b2;b1)(is2; is1) :
Proof. The lemma is a direct consequence of the euclidean covariance and
the locality of the netA. �
Proof of Theorem 3.7: We conclude from Theorem 3.4 and the construc-
tion of the algebrasA(e;�)(O) thatA(e;�) is a Poincaré covariant net of C*-
algebras, represented onH(e; �).
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It remains to be proven thatA(e;�) is a local net. For this purpose it is
sufficient to show that for each pair(t1; t2) 2 R(X1; X2;U1;U2):= f(t1; t2) 2 R2j exp(t1X1)U1 � (exp(t2X2)U2)0g
the commutator [�(e;�;X1)(t1);�(e;�;X2)(t2)]jD = 0
vanishes on an appropriate dense domainD � H(e; �).

Since the points inR(X1; X2;U1;U2) are space-like points, we conclude
that there exist complex Lorenz boostsg� 2 V such thatImg�R(X1; X2;U1;U2)) � V� :
Hence we haveR(X1; X2;U1;U2) � G(V ;X1; X2;U1;U2; I)\G(V ; X2; X1;U2;U1; I) :
Using Lemma 3.9, we conclude thatF(X1;X2;b1;b2)(z1; z2) = F(X2;X1;b2;b1)(z2; z1)
for (z1; z2) 2 G(V ;X1; X2;U1;U2; I)\ G(V ;X2; X1;U2;U1; I)
which finally yieldsF(X1;X2;b1;b2)(t1; t2) = F(X2;X1;b2;b1)(t2; t1)
for each(t1; t2) 2 R(X1; X2;U1;U2). This proves the locality ofA(e;�). �
4 Discussion of miscellaneous consequences
Due to Theorem 3.7 we are able to pass form a euclidean field(A; �; �) to
a quantum field theory in a particular vacuum representation. One crucial
condition to apply our method is the existence of the time-zero algebras. We
shall see that the discussion of Section 4.1 covers all possible situations for
euclidean fields which fulfill the condition (TZ).

Afterwards, we discuss in Section 4.2 how the reconstruction scheme
has to be generalized in order to include fermionic operators.
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4.1 Some remarks on euclidean fields which satisfy
the time-zero condition

Let us consider ad � 1-dimensional euclidean net(B; �) of abelian C*-
algebras.

Definiton 4.1 : LetG be a group which containsE(d� 1) as a sub-group.
We defineA0(G;B; �) to be the *-algebra which is generated by pairs(g; b) 2 G�B modulo the relations:

(1) For eachg 2 G, the mapb - (g; b) is a *-homomorphism.

(2) For eachg 2 G, for eachh 2 E(d� 1), and for eachb 2 B:(gh; b) = (g; �hb)
The algebraA0(G;B; �) possesses a natural C*-norm which is given bykak := sup(H;�)2R(G;B;�)k�(a)kB(H)

whereR(G;B; �) is the set of all representations� of A0(G;B; �) by
bounded operators on a Hilbert spaceH. The closure ofA0(G;B; �) is
denoted byA(G;B; �).
Remark: There is a natural group homomorphism� 2 Hom(G;AutA(G;B; �))and a natural faithful embedding� 2 Hom�(B;A(G;B; �))
given by: �g(g1; b) := (gg1; b)�(b) := (1; b) :
Of course, we have for eachh 2 E(d� 1):� � �h = �h � � :

We are mostly interested in two cases forG, namelyG = P"+ andG =E(d). For both groupsA(G;B; �) has a natural local structure sinceP"+ andE(d) act as groups onRd.
Definiton 4.2 : For a regionO 2 Rd we defineA(G;B; �jO) to be the
C*-sub-algebra inA(G;B; �) which is generated by elements(g; b) withb 2 B(U) andgU � O and we obtain netsA(G;B; �) : O - A(G;B; �jO) :
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In order to get a Haag-Kastler net forG = P"+ and a euclidean net forG = E(d), we consider the following ideals:

(1) Jc(P"+;B; �) is the two-sided ideal which is generated by elements[(g; b); (g1; b1)] where(g; b) and (g1; b1) are localized in space like
separated regions.

(2) Jc(E(d);B; �) is the two-sided ideal which is generated by elements[(g; b); (g1; b1)] where(g; b) and(g1; b1) are localized in disjoint re-
gions.

Thus the prescriptionAG : O - AG(O) := A(G;B; �jO)=Jc(G;B; �)
is aP"+-covariant Haag-Kastler net forG = P"+, and an euclidean net of
C*-algebras forG = E(d).
Proposition 4.3 :Let(A; �) be ad-dimensionaleuclidean net which fulfills
the condition (TZ) and let(B; �) be thed � 1-dimensional euclidean net,
corresponding to the hyper plane�e. Then the map� : AE(d) 3 (g; b) - �g(b) 2 A
is a *-homomorphism which preserves indeed the net structure.

Proof. By using the relations in Definition 4.1 we conclude, by some
straight forward computations, that� is a a *-homomorphism which pre-
serves the net structure.�

An application of Theorem 3.7 gives:

Corollary 4.4 : For each regular reflexion positive functional� on AE(d)
there exists a vacuum state!� onAP"+ such that!�jB = �jB :
Remark:

(1) Note that we may viewB as a common sub algebra ofAE(d) andAP"+
sinceB \ Jc(G;B; �) = f0g.
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(2) Given an euclidean field(A; �; �), for which the time zero algebraB := B(e) is non trivial. By Proposition 4.3, we conclude that there
is a positive energy representation�(e;�) of AP"+ on the Hilbert spaceH(e; �)whose image is precisely the netA(e;�). In particular the GNS-
representation of!� is a sub-representation of�(e;�).

(3) Both, the algebraAP"+ of observables in Minkowski space and the

euclidean algebraAE(d) can be considered as sub-algebras ofAP+(C)
where the algebraAP+(C) is defined byAP+(C) := A(P+(C );B; �)=[Jc(P"+;B; �)[ Jc(E(d);B; �)] :

We close this section by illustrating the situation by the commutative
diagram, given below. AP+(C)������� I@@@@@IAP"+ � � B[6� - AE(d)@@@@@!� R C � � A?�
Here(A; �) is an euclidean net of C*-algebras andB is the time-zero alge-
bra which corresponds to the hyper-plane�e.
4.2 The treatment of fermionic operators

In order to discuss the treatment of fermionic operators we introduce the
notion of a fermionic euclidean net. The axioms for such a netcoincide with
those of an euclidean net, except the locality requirement.

Definiton 4.5 : An isotonous andE(d)-covariant net(F; �)F : Rd � U - F (U) = F+(U)� F�(U)
ofZ2-graded C*-algebras is called afermionic euclidean netiff U1\U2 = ;
implies[F (U1); F (U2)]g = f0g, where[�; �]g denotes the graded commuta-
tor.
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For a givend � 1-dimensional fermionic net(F; �), we build the C*-
algebrasA(E(d);F; �) andA(P"+;F; �) as introduced in the previous sec-

tion. Note, that the algebraA(P"+;F; �) possesses aZ2-grading, namely we
have A(P"+;F; �) = A+(P"+;F; �)�A�(P"+;F; �)
where the algebraA+(P"+;F; �) is spanned by products of elements(g; b)
containing an even number of generators inG� F�:(g1; b1) � � �(g2n; b2n) :
Therefore the sub-spaceA�(P"+;F; �) is spanned by elements which are
products of elements(g; b) containing an odd number of generators inG �F�: (g1; b1) � � �(g2n�1; b2n�1) :

Analogously to the purely bosonic case, we consider the two-sided ideals

(1) Jg(P"+;F; �)which is generated by graded commutators[(g; b); (g1; b1)]g
where(g; b) and(g1; b1) are localized in space like separated regions
and

(2) Jg(E(d);B; �)which is generated by graded commutators[(g; b); (g1; b1)]g
where(g; b) and(g1; b1) are localized in disjoint regions.

Thus the prescriptionFG : O - FG(O) := A(G;F; �jO)=Jg(G;F; �)
is a fermionicP"+-covariant Haag-Kastler net forG = P"+, and an fermionic
euclidean net forG = E(d).

By following the arguments in the proof of Theorem 3.7 and by keeping
in mind that the ordinary commutator has to be substituted bythe graded
commutator, we get the result:

Corollary 4.6 : For each regular reflexion positive functional� on the
fermionic euclidean netFE(d) there exists a vacuum state!� on FP"+ such

that !�jF = �jF :
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Remark: As described in Section 3.2 the state is defined by< !�; nYj=1(gj ; bj) > = h
(e;�); nYj=1�(e;�)(gj ; bj)
(e;�)i :
5 Conclusion and outlook

5.1 Concluding remarks and comparison

We have shown, how a quantum field theory can be reconstructedform a
given euclidean field(A; �; �) which fulfills the condition (TZ). We think,
that in comparison to the usual Osterwalder-Schrader reconstruction theo-
rem the reconstruction of a quantum field theory from euclidean fields (in
our sense) has the following advantages:� The Osterwalder-Schrader reconstruction theorem relatesSchwinger dis-
tributions to a Wightman theory. One obtains an operator valued distribution� which satisfies the Wightman axioms. The reconstructed fieldoperators�(f) are, in general, unbounded operators and in order to get a Haag-Kastler
net of bounded operators one has to prove that not only the field operators�(f), �(f1) commute iff andf1 have space-like separated supports, but
also its corresponding spectral projections. Furthermore, as mentioned in
the introduction, in order to apply the results of [19] one has to prove that
the Schwinger distributions are continuous with respect toan appropriate
topology.

Since our considerations are based on C*-algebras, we directly obtain,
via our reconstruction scheme, a Haag-Kastler net ofboundedoperators.
In our case, the technical conditions which a reflexion positive functional
has to satisfy are more natural. It has to be continuous and regular where the
continuity is automatically fulfilled if one considers reflexion positive states.

Our reconstruction scheme does also include objects, like Wilson loop
variables, which are not point-like localized objects in a distributional sense.
This point of view may also be helpful for constructing gaugetheories.

Furthermore, one also may start with an abelian C*-algebra like the
example of Wilson loop variables, given in the introduction. Abelian C*-
algebras are rather simple objects, namely nothing else butcontinuous func-
tions on a compact Hausdorff space. In comparison to the construction of
reflexion positive functional on the tensor algebraT TE (S), one may hope that
it is easier to construct reflexion positive functionals forabelian C*-algebras.
This might simplify the construction of quantum field theorymodels.
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Nevertheless, we also have to mention some drawbacks:	 Unfortunately, our reconstruction scheme is not a completegeneraliza-
tion of the Osterwalder-Schrader reconstruction. This is due to that fact,
that we have assumed the existence of enough operators inA which can be
localized on a sharpd� 1-dimensional hyper plane (condition (TZ)). Such
a condition is not needed within the Osterwalder-Schrader framework and
there are indeed examples of quantum field theories which do not fulfill this
condition, for instance the generalized free field for whichthe mass distri-
bution is notL1.

On the other hand, the known interacting models like theP (�)2, the
Yukawa2 as well as the�43 model fulfill the condition (TZ). Thus we think
that the existence of the time-zero algebras is not such a harmful require-
ment.

5.2 Work in progress

The main aim of our work in progress is concerned with the construction of
examples for euclidean fields which go beyond the free fields.

It would also be desirable to develop a generalization of ourreconstruc-
tion scheme which also lead directly to a Haag-Kastler net but which do not
rely on the condition (TZ).

A further open question is concerned with a reconstruction scheme for
euclidean fields with cutoffs. The main motivation for such aconsiderations
is based on the work of J. Magnen, V. Rivasseau, and R. Sénéor [17] where
it is claimed that the Yang-Mills4 exists within a finite euclidean volume.
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A Analytic properties
Within this appendix we give a complete proof of Lemma 3.8. Weshall use
a simplified version of the notation introduced in the previous sections by
dropping the indices(e; �).

Let (A; �; �)be an euclidean field and letU be the corresponding strongly
continuous representation of the Poincaré group onH = H(e; �) which has
been constructed by Theorem 3.4. Furthermore, let� be the *-representation
of the time-zero algebraB onH.

For a given tuple(X; b) 2 im(d�1)n�Bn , we like to study the analytic
properties of the function	n[X; b] : C 2n 3 (z; z0) - nYj=1UXj(zj)�(bj)UXj(z0j) 
where 2 D(�; �) and� is a cone which is contained inCon(e) and we
write: UX(�) := U(exp(�i�X)) :
For this purpose, we introduce some technical definitions.

Definiton A.1 : For a generatorX 2 im(d� 1), for an operatorb 2 B(U)
and for a cone� 2 Con(e), we define the regions:I(�; X) := fs0j exp(�is0X)� � eR++ �egJ(�; X; b; s0) := fsj exp(�isX)[exp(�is0X)�[ U ] � eR++�egG(�jX; b) := [s02I(�;X)[R+ iJ(�; X; b; s0)�R+ ifs0g]
Definiton A.2 :

(1) Consider a regionU which is contained in�e + e� , � � 0. We define
the corresponding time-zero algebra byB(U) := �e�B(U � e�).

(2) For a given tuple(X; b; s; s0) 2 im(d� 1)n �B(U1)� � � � � B(Un)�R2n
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Figure 1: The figure above shows, according to the Malgrange-Zerner theorem,
regions of analyticity, which are contained inG1(�;X; b), for the following cases:
1. b1 is localized in�e. 2. b1 is localized in�e + e� but is is not localized in�. 3.b1 is localized in�. If we translateb1 in positivee-direction, then we increase the
region of analyticity and the maximal region is given by case 3.

we define recursively the regions�0 := ��1(s1; s01) := conv(exp(�is1X1)[exp(�is01X1)� [ U1])�n(s1 � � �sn; s01 � � �s0n) := conv(exp(�isnXn)[exp(�is0nXn)���n�1(s1 � � �sn�1; s01 � � �s0n�1) [ Un])
Definiton A.3 : For eachn 2 N we introduce the region:Gn(�;X; b) := f(s1 � � �sn; s01 � � �s0n)j8k � n : �k(s1 � � �sk ; s01 � � �s0k) � eR++�eg
See also Figure 1 for illustration.
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Lemma A.4 : For a given tuple(X; b) 2 im(d� 1)n �B(U1)� � � � � B(Un)
the function	n[X; b] is holomorphic inR2n+ iGn(�;X; b).
Proof. We prove the statement by induction. The vector 2 D(�; �) is
contained in the domain ofUX1(is01) as long ass01 2 I(�; X1). For a fixed
values01 2 I(�; X1) the vector�(b1)UX1(is01) is contained in the domain
of UX1(is1) for s1 2 J(�; X1; b1; s01). This implies that	1[X1; b1] is holo-
morphic inG(�jX1; b1) � R+ iG1(�;X; b) (see Figure 2 for illustration).

s1Γ(    ) U1

Γ

Figure 2: The figure illustrates the fact that the vector�(b1)UX1(is01) is contained
in the domain ofUX1(is1) for an sufficient smalls1. Here�(s01) is the cone rotated
by s01 andU1 is the localizing region ofb1.

Suppose	n�1[X1 � � �Xn�1; b1 � � �bn�1] is holomorphic inR2(n�1) +iGn�1(�;X; b). By the same argument as above we conclude that for a
fixed values(s; s0) 2 Gn�1(�;X; b) the function(zn; z0n) - 	n[X; b](is; zn; is0; z0n)
is holomorphic in G(�n�1(s; s0)jXn; bn)
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and hence it is holomorphic in[(s;s0)2Gn�1(�;X;b)R2(n�1)+ if(s; s0)g �G(�n�1(s; s0)jXn; bn)
which is a region containingGn(�;X; b).�
B Proof of Lemma 3.8
For a given euclidean field(A; �; �)we introduce the following notions:

Definiton B.1 :

(1) We define the subspaceD(�; �) := p(e;�)A(�) and D̂(�; �) := U(e;�)(L"+)D(�; �) :
(2) LetX 2 im(d� 1). For two regions�1 � � we defineI(�1;�;X) := fs 2 R+j exp(�isX)�1 � �g :
(3) For a generatorX 2 im(d� 1) we define the regionU(s;X) := exp(�isX)U

for eachs 2 R.

(4) Given two regionsU1;U2 inRd, we defineGe(X1; X2;U1;U2; I) := �(z1; z2) 2 (R� iI)2 ���� 8xj 2 Uj :e Im(exp(z1X1)x1 � exp(z2X2)x2) 2 R+�Gge(X1; X2;U1;U2; I) := �(z1; z2) 2 (R� iI)2 ���� 8xj 2 Uj :e Im[g(exp(z1X1)x1 � exp(z2X2)x2)] 2 R+�
whereg 2 P+(C ) is a complex Poincaré transformation.

Lemma B.2 : Let�1;� 2 Con(e) be two conic regions such thatg�1 � �
is a proper inclusion. Then there exists an intervalI such that for eachb1 2 B(U1); b2 2 B(U2) and for each 1;  2 2 D̂(�1; �) the functionF ( 1 ; 2)(X1 ;X2;b1;b2) : (z1; z2) - h 1;�X1(z1; b1)�X2(z2; b2) 2i
is holomorphic inGe(X1; X2;U1;U2; I).
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Proof. First we obtain by an application of Lemma A.4, that for each 1 2H(e; �) and for each 2 D(�; �), the function(z; �) - h 1;�X2(z; b2)UX(�) 2i
is holomorphic forIm� 2 I(�1;�;X) and Imz 2 I(�;X2). for X 2im(d�1). The holomorphy is due to the fact thatU is a strongly continuous
representation of the Poincaré group and thatD(�; �) consists of analytic
vectors for the boost generators.

For a fixed valuess0 2 I(�1;�;X) ands 2 I(�;X2), we have�X2(is; b2)U(e;�;X)(�is0) 2 2 D(�̂; �)
for each region̂� � eR++ �e which contains� [ U2(s;X2).

Γ ^

U

U

    ^

       ^

1

2

e-component of the difference

Figure 3: There exists a conê� such that region̂U1 \ �̂ = ; andÛ2 � �̂.

Now, as illustrated by Figure 3, for a given point(z; is) 2 Ge(X1; X2;U1;U2; I)
there exists a conic region�(z; is) 2 Con(e) with �(z; is) � �[U2(s;X2)
such thatD(�(z; is); �) is contained in the domain of�X1(z; b2). Further-
more, for a given intervalI , the cone� can be chosen to be small enough
such that this holds for each(z; is) with Imz; s 2 I . Since�1 isO(d� 1)-
invariant, the result follows.�

Let V � L"+ be a neighborhood of the identity inP+(C ). We may
choose a coneC(�;V) 2 Con(e) such thatgC(�;V) � � :
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for eachg 2 E(d)\ V . Note that the representationU can be extended toV
by unbounded operators with domain̂D(�1; �) where�1 � C(�;V).

In order to finish the proof of Lemma 3.8, we show the followingstate-
ment:

Lemma B.3 : Let U1;U2 be two bounded disjoint regions and let�1 2Con(e) such that�1 � C(�;V) is a proper inclusion. Then the functionF ( 1; 2)(X1;X2;b1;b2) has an extension̂F ( 1; 2)(X1;X2;b1;b2) which is holomorphic inG(V ;X1; X2;U1;U2; I) := [g2VGge(X1; X2;U1;U2; I)
for each 1;  2 2 D̂(�1; �).
Proof. For a given neighborhoodV � L"+ of the unit element inP+(C )
and for a given cone� 2 Con(e), there exists� > 0 such thatgU2+ �e � �.
We easily observe that the substitution 0j := T (�)U(g) jX 0j := exp(�i�H)gXjg�1 exp(i�H)
yields F ( 01; 02)(X 01;X 02;b1;b2)(z1; z2) = F ( 1; 2)(X1;X2;b1;b2)(z1; z2)
for each(z1; z2) 2 Ge(X1; X2;U1;U2; I)whereH is the generator of trans-

lations ine-direction. According to Lemma B.2, the functionF ( 01 ; 02)(X 01 ;X 02;b1;b2)
is holomorphic inGge(X1; X2;U1;U2; I) which implies the result.�
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