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Abstract

In order to construct examples for interacting quantum file&bry mod-
els, the methods of euclidean field theory have turned ouéta powerful
tools since they make use of the techniques of classic#@titat mechanics.

Starting from an appropriate set of euclideapoint functions (Schwinger
distributions), a Wightman theory can be reconstructedrbgi@plication of
the famous Osterwalder-Schrader reconstruction theorEnis procedure
(Wick rotation), which relates classical statistical magics and quantum
field theory, is, however, somewhat subtle. It relies on thal\gic proper-
ties of the euclidean-point functions.

We shall present here a C*-algebraic version of the Ostelevebcharader
reconstruction theorem. We shall see that, via our recoottm scheme, a
Haag-Kastler net dboundecdbperators can directly be reconstructed.

Our considerations also include objects, like Wilson loapables, which
are not point-like localized objects like distributionsig point of view may
also be helpful for constructing gauge theories.



1 Introduction

Why euclidean field theory? During the last two decades it has turned
out that the techniques of euclidean field theory are a pav&bl in or-
der to construct quantum field theory models. Compared tortbinod of
canonical quantization in Minkowski space, which, for exden has been
used for the construction df(¢), and Yukawa models [10, 11, 12, 14, 20,
21], the functional integral methods of euclidean field tiyesimplify the
construction of interactive quantum field theory models.

In particular, the existence of th&f model as a Wightman theory has
been established by using euclidean methods [5, 23, 18]io@alwith the
famous Osterwalder-Schrader reconstruction theorem [ESt this model
the methods of canonical quantization are much more difficuhandle
and lead by no means so far as euclidean techniques do. Gnlyrdlof
of the positivity of the energy has been carried out withia tamiltonian
framework [10, 13].

One reason why the functional integral point of view simpbfa lot is
that the theory of classical statistical mechanics can led.usor example,
renormalization group analysis [9] and cluster expansjghsan be applied
in order to perform the continuum and the infinite volume tiofi a lattice
regularized model. Instead of working with non-commutaibbjects, one
considers the moments

Sulw1,++2n) = / du(6) $(z1) - Blzn)

of reflexion positive measures usually called Schwinger distributions or

euclidean correlation functions, on the space of tempeistdlalitions.
Heuristically, the functional integral point of view leattsconception-

ally simple construction scheme for a quantum field theomgart®ig from

a given lagrangian densitl, the measur@ under consideration is simply

given by

du(e) = 77" () do(x) exp(— / de<¢<x>,d¢<x>>)

zERJ

where the facto ~! is for normalization. Therefore, the lagrangiarcan

be interpreted as a germ of a quantum field theory. Moreoveraiso leads
to a nice explanation of the minimal action principle. Hoee\wo give the
expression above a rigorous mathematical meaning is ala@@mpanied
with serious technical difficulties.



Some comments on the Osterwalder-Schrader reconstruction the-
orem. In order to motivate the main purpose of our paper, we shalema
some brief remarks on the Osterwalder-Schrader recorigirutheorem
[19] which relates Schwinger and Wightman distributionst L'(.5) be the
tensor algebra over the space of test functisii;m R?) and let us denote by
JE (I stands foeuclidear) the two-sided ideal ii’(.5), which is generated
by elementsf; @ f; — f: @ f1 € T'(S) wheref; and f; have disjoint sup-
ports. We build the algebrBg (S) := 7(S)/.Jg and take the closurEf (S)
of it in anappropriatelocally convex topology. We claim that the euclidean
groupk(d) acts naturally by automorphisnis,, g € E(d)) onTZ (55).

A linear functionaly € T7 (S)* fulfills the Osterwalder-Schrader ax-
ioms if the following conditions hold:

(EQ) n is continuous and unit preserving: 7,1 >= 1.
(E1) nisinvariant under euclidean transformationss o, = w.

(E2) nis reflexion positive: The sesqui-linear fom b —< n, t.(a*)b >
is a positive semi-definite on those elements which are iexhlat
positive times with respect to the directienc S?—! where., is the
automorphism which corresponds to the reflexion —e.

Given a linear functionah which satisfies the conditior(&0) to (E2),
the analytic properties of the distributions

6n(f17"'7fn) = <777f1®®fn>

and Sn(fbvfn) = 6n+1($07"'7$n) ; gj:xj—l—l_xj

lead to the result:

Theorem 1.1 : There exists a distributio’,, € S’(R"?) supported in the
n-fold closed forward light cong’; )™ which is related te,, by the Fourier-
Laplace transform:

Sa(€) = /d”dq exp(—€2¢° —i€q) Wa(q)

The proof of this Theorem [19] relies essentially on the chaf the
topology 7. It does not apply for the ordinary-topology, i.e. it is not
enough to require that th®,,'s are tempered distributions. This was stated
wrongly in the first paper of [19] and was later corrected ie s$econd one.
We claim that, nevertheless, the Theorem might be true otdinarys-
topology, but, at the moment, there is no correct proof foffiese problems
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show that the relation between euclidean field theory andiguafield the-
ory is indeed subtle.

In order to formulate the famous Osterwalder-Schradermnsaction
theorem from a more algebraic point of view, we shall briefifroduce the
notion of alocal netand avacuum state

P -covariant local nets: A P! -covariant local net of *-algebras is
an isotonoug prescription4 : O — A(O), which assigns to each double
cone® = V, +zNV_+y aunital *-algebrat (), on which the the Poincaré
groupPTF acts covariantly o, i.e. there is a group homomorphisme
Hom(P1, AutA), such thain, A(O) = A(g0). Here A denotes the *-
inductive limit of the netdA. Furthermore, the net fulfills locality, i.e. if
0, O, are two space-like separated regi@hs- O] then[A(O), A(O,)] =
{0}. A Pl-covariant local net of C*-algebras is calletHaag-Kastlemet.

Vacuum states: A statew on A is called a vacuum state iff is P’ -

invariant (or translationally invariant), i.e: o a;, = w for eachyg € P!, and
foreacha,b € A

/dx <w a00yb) > flz) = 0

for each test functiorf € S with supp(f) NV, = (. This implies that there
exists a strongly continuous representatiorof Pl on the GNS Hilbert
space ofv such that

Ulg)m(a)U(g)" = m(aga)

and the spectrum df (1, z) is contained in the closed forward light cone.
Herer is the GNS representation ot

Usually it is required that a vacuum states a pure state. This aspect is
not so important for our purpose and we do not assume this here

An example for anr-covariant local net of *-algebras is given by the
prescription

Ta(S) : O —— Ty (S(0))

Ysotony:O; C O, implies A(O1) C A(O3).



whereT) (S) := T(S)/Ju? is the well knowrBorchers-Uhlmann algebra
We should mention here that now the test function$ are test functions in
Minkowski space-time

Let - € Hom(PL,GL(S)) be the action of the Poincaré group on the
test functions which is given by, f = f o g~! then

ag(f1®®fn) = Tgfl@"'®7—gfn

defines a covariant action @fl on1';,(S). Now, the theorem above leads
to the famous Osterwalder-Schrader reconstruction tineore

Theorem 1.2 : Given a linear functionah which satisfies the conditions
(EO) to (E2), then there exists a vacuum stajeon the Borchers algebra
T (S) such that

<w77,f1®"'®fn> == mn(flvmfn)

where2l,, is defined by
W () Z/d”dq exp(—ifq) Walq) 5 & =wj41—2; .

The fact thatv,, is a vacuum state on the Borchers algebra is completely
equivalent to the statement that the distributi@s fulfill the Wightman
axioms in its usual form (except the clustering)(see [24]).

A heuristic proposal for the treatment of gauge theories. As men-
tioned above, the main reason for using euclidean field yhisofor con-
structing quantum field theory models with interaction. duif space time
dimensions, the most promising candidates for interacisantum field the-
ory models are gauge theories. Scalar or multi-componetasteld the-
ories of P(¢)4-type are less promising to describe interaction, sincé the
construction either run into difficulties with renormaliikity or, as conjec-
tured for thesj-model, they seem to be trivial [7].

The description of gauge theories within the Wightman framor leads
to some conceptional problems. For example, in order toysyadge invari-
ant objects in quantum electro dynamics one may think of wacexpecta-
tion values of products of the field strength,

mmvlwwunl’n (xlv T 7xn) = <Qv Fﬂ«ll’l (xl) o 'Funl/n (xn)9>

2The idealJy; (M stands for Minkowski) is the two-sided ideal i(.S), which is generated
by elementsf; @ f» — fo ® fi € T(S) wheref, and f, have space-like separated supports.
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which satisfy the Wightman axioms. Here, the problem anshen one
wish to include fermions. For the minimal coupling one hasttaly corre-
lation functions of the gauge field instead of those in the fegfength. This
leads to such well known problems as indefinite metric, sgwionstraints
and so forth.

Moreover, there is another problem which we would like to trem
here. Within the Wightman framework the quantized versibthe gauge
field u, is an operator valued distribution. On the other hand, thssital
concept of a gauge field leads to the notion of a connectionviecéor or
principal bundle over some manifold which suggests to aersas gauge
invariant objects Wilson loop variables

wyfu] = tr[Pexp({ A)]

and string-like objects
sylu, ¥ = lﬁ(r(v))Pexp({ w)p(s(7))

where ) is a smooth section in an appropriate vector bundle -ansl an
oriented path which starts aty) and ends ait(~).

Unfortunately, to express., (u) in terms of Wightman fields leads to
difficulties. From a perturbation theoretical point of vi@me expects that
the distribution: is too singular in order to be restricted to a one-dimendiona
sub-manifold.

To motivate our considerations, we shall discuss here,istaally, an
alternative proposal which might be related to a quantizzdion of a gauge
theory. It is concerned with the direct quantization of legaed Wilson
loops

w (Pl = [ do v pfu] fo)

Here we allowf € E’(R?) to be a distribution with compact support which
has the form

f(2) = fe(z)ds(x)

whereX is ad — 1-dimensional hyper-plane anfgd € C5°(X) anddy, is the
natural measure olt. We claim that such a type of regularization is nec-
essary since iW-dimensional quantum field theories there are no bounded
operators which are localized withih— 2-dimensional hyper-planes [4].



Such a point of view has been discussed by J. Frohlich [6elder [22]
or more recently by A. Ashtekar and J. Lewandowski [1].

In order to describe a quantum gauge theory in terms of regehWil-
son loop variables one wishes to construct a functien w., which assigns
to each pathy an operator valued distributios., : f — w.(f), where the
operatorsw., ( f) are represented by operators on some Hilbert space

(1) The operatorsw,(f) are self-adjoint for real-valued test functions
with a joint coreD C H

(2) w should transform covariantly under the action of the Pai@gaoup,
ie.

Wy (fog™) =Ulg)w,(HU(g)" : g€ Pl |

wherel is a unitary strongly continuous representation of the Eai@
group on and the spectrum of the translations is contained in the
closed forward light con&’, .

(2) Moreover, the operatoss., ( f) should satisfy the locality requirement,
ie.

[E(w,f)(Al)v E(W17f1)(A)] =0

if the (convex hulls) of the regiong + supp(f) and~; + supp(fi)
are space-like separated. Here

wy(f) = /dE(%f)(/\)/\

is the spectral resolution &f.,( f)

According to [6, 22], it has been suggested to reconstrutsdiiloop
operatorsw., from euclidean correlation functions of loops

Y1y Y > G105 Vn)

which satisfy the analogous axioms as the usual Schwinggitalitions do,
namely the reflexion positivity and the symmetry. Howevathim the anal-
ysis of J. Frohlich, K. Osterwalder and E. Seiler [8, 22§ tlorrelation func-
tion may have singularities in those points where two logpsrsect and
there are some additional technical conditions assumedhére related to
the behavior of these singularities. He has proven (comalsie[6]) that
one can reconstruct from the euclidean correlation funsi#®, an operator
valued functiony — w., together with a unitary strongly continuous rep-
resentation OPTF onH [8]. Herew, is only defined for loops which are
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contained in some space-like plane and it fulfills the carae condition
(1). E. Seiler [22] has also discussed an idea how to proof fiyc@). We
shall come back to this point later.

For our purpose, we look from an algebraic point of view at pheb-
lem of reconstructing a quantum field theory from euclideatad Let us
consider functions

a:AE9UI—>a0(/dxw%+x(u) fj($)§j:1,"',n)

on the space of smooth connectiofg in a vector bundle” over the eu-
clidean spac®? wherea® is a bounded function oR™. These functions
are bounded and thus they generate an abelian C*-algefiish C*-norm

lall = sup [a(u)] .
uEAg
We assign to a given bounded regiérc R? the C*-sub-algebral (/) C A
which is generated by all functions of Wilson loop variables f) with v+
supp(f) C U. The euclidean group(d) acts naturally by automorphisms
on A, namely the prescription

Qg at—saogtiut—s a(uog)
defines for eacly € E(d) an appropriate automorphism df, which, of
course, acts covariantly on the isotonous net

AU —— AlU)

namely we havew, A(U) = A(glf).

Motivated by the work of E. Seiler, J. Frohlich and K. Ostelder
[22, 6, 8] as well as that of A. Ashtekar and J. Lewandowski Y& pro-
pose to consider reflexion positive functionals.éni.e. linear functionals
n € A* which fulfill conditions, corresponding to the axion(iB0)-(E2)
above. These functionals can be interpreted as the anattfgihe func-
tional integral. Note, i is a state, ther is nothing else but a measure on
the spectrumX of the C*-algebrad. The advantage of this point of view is
based on the fact that abelian C*-algebras are rather sioipéets namely
algebras of continuous functions on a (locally)-compaaisdrif space.

Overview. In order to make the comprehension of the subsequent sec-
tions easier, we shall give an overview of the content of @y by stating



the main ideas and results. This paragraph is also addresgedtk readers
who are not so much interested into technical details.

Motivated by the considerations above, we make in Sectiosijges-
tion for axioms which an euclidean field theory should sgtigfe start from
an isotonous net

A:U+—— AU) C A

of C*-algebra on which the euclidean grotifjd) acts covariantly by au-
tomorphisms ofv : E(d) — AutA, like in the example of Wilson loop
variables given in the previous paragraph. However, werassaisomewhat
weaker condition than commutativity fer. For our considerations we only
have to assume that two operators commute if they are |l@chirzdisjoint
regions. In addition to that, we consider a reflexion positisnctional; on
A. We shall call the tripld A4, «, ), consisting of the netl of C*-algebra,
the action of the euclidean group and the reflexion positive functional, an
euclidean field.

We show in Section 3 how to construct from a given euclidedd fe
guantum field theory in a particular vacuum representationrder to point
out the relation between the euclidean fieltl o, ) and the Minkowskian
world, we briefly describe the construction of a Hilbert spat on which
the reconstructed physical observables are representedording to our
axioms, the map

a@br— < n(a)b>

is a positive semidefinite sesqui-linear form on the algetid of operators
which are localized irR ;. + 3. whereX., is the hyper plane orthogonal to
the euclidean time direction € S9~!. Here.. is the automorphism on
A which corresponds to the reflexien— —e. By dividing the null-space
and taking the closure we obtain a Hilbert sp&teThe construction of the
observables, which turn out to be bounded operator# pis based on two
main steps.

Step 1: In Section 3.1, we reconstruct a unitary strongly contirsiou
representation of the Poincaré grolipon . To carry through this analy-
sis, it is not necessary to impose new ideas. The construigtiessentially
analogous to those which has been presented in [8] (comfzr¢22]). In
order to keep the present paper self contained, we feeleabtmdiscuss this
point within our context in more detail.



Step 2: We discuss in Section 3.2 the construction of the physical ob
servables. At the moment this can only be done, if we assuatétib alge-
bra A contains operators which are localized at sharp timeswiestequire
that the algebrai(e) N A(—e) is larger thanC1. We shall abbreviate this
condition by (TZ) which stands faime-zero For the fix-point algebra (e)
of .. in A(e) N A(—e) we obtain a *-representationon #, where an oper-
atorm(b),b € B(e), is given by the prescription

m(b)p(a) —— p(ba) .

Herep is the quotient map, identifying an operatoe A(e) with its equiv-
alence clasg(a) in H. Now, we consider for a given Poincaré transform
g € Pl and a given time-zero operatbre B(e) the following bounded
operator:

®(g,0) = Ulg)r(b)U(g)" .

We shall say thaf(g, b) is localized in a regior®? in Minkowski space if

b is localized inl{ C X. and the transformed regiogi{/ is contained in
the double con®. Let us denote the C*-algebra which is generated by alll
operators®(g, b), which are localized ir0, by 2(0). Hence we get an
isotonous net of C*-algebras

A: 0 +— 2A(0)

indexed by double cones in Minkowski space on which the Roengroup
acts covariantly by the automorphismg := Ad(U/(g)), g € PL.

The main result:

(1) Thereconstructed isotonous Reis a Haag-Kastler net: locality holds,
i.e. if O, O, are two double cones such tiatC O] then[2(0),A(O,)] =

{0}
(2) Furthermore, thePl-invariant vector? = p(1) induces a vacuum
state

wiab— <w,a> = (Q,a8) .

The non trivial aspect of this statement is the proof of liigaRs already
mentioned above, E. Seiler has discussed an idea how to jocaléy for a
net of Wilson loopsv.,. This idea does not rely on the fact that one considers
loops. It can also be used for general euclidean fields. Hernvexe have not
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found a complete proof within the common literature and eéfeme, which
is also one purpose of our paper, we shall present a completé pere
(Section 3.2). The prove is based on the analytic propesfiése functions

F(Zl, 2’2) = <¢7 (I)Xl (217 bl)q)X2 (227 b2)¢>

Flai,z) = (0, @x,(22,02) @, (21, 01) )
We have introduced the operators
Oy (z,0) == U(exp(2X))m(b)U (exp(—2X))

whereb € B(e) is a time-zero operator antl is a Boost generator a¥{
whereH is the hamiltonian with respect to the time direction

Roughly, the argument for the proof of locality goes as f@do Suppose
b; is localized in4; C X.. We shall show that the regioiis () in which
F (F) are holomorphic are

(a) connected and they contain pure imaginary pofiss, is;) and

(b) the intersectioiz NG contains all those points; , t,) for which©; =
exp(t1 X )U; andO;z = exp(t2 X2)U, are space-like separated.

But F' and F' coincide in the pure imaginary points since operators which
are localized in disjoint regions commute. This implies

F|Gné = F|G0G

and thus by(b) we conclude

<¢7 [(I)Xl (tlv bl)v (I)X2 (t27 b2)]¢> = 0

if ®x,(t1,01) and®y, (t2, b2) are localized in space-like separated regions.
We claim that the regions& and(; depend on the choice of the vector
However, one can find a dense sub-spaaich that” (£) are holomorphic
in G (G) for all » € D. Thus the commutatd®y, (t1,b1), ®x, (2, b2)]
vanishes on a dense sub-space and, sknog, b) is bounded for real points
t € R, the commutator vanishes 6n

In order to get analyticity of” within a regionGG which is large enough,
we prove in the appendix an statement which is the analogtieedamous
Bargmann-Hall-Wightman theorem [15, 16, 24].

In Section 4, we discuss some miscellaneous consequencesresult.
Note, that for the application of our reconstruction schetneas crucial
to assume that the there are non-trivial euclidean operatbich can be
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localized at sharp times. We shall give some remarks on thditon (TZ)
in Section 4.1.

Our considerations can easily be generalized to the casaichwhere
are also fermionic operators present or even though forrssypametric
theories. Here one starts with an isotonousinet/ — F(i{) of Zy-graded
C*-algebras which fulfills the time-zero condition (TZ)ei. the fix-point
algebraB(e) of .. in F'(e) N I'(—e) is larger tharC1. The euclidean group
acts covariantly by automorphisms dnand we require that the graded
commutatofa, b], = 0 vanishes ifu andb are localized in disjoint regions.

Let 7 be a reflexion positive functional, then, by replacing thenowita-
tor by the graded commutator, we conclude that the operators

®(g,b) = U(g)m(b)U(g)" ;b B(e)andg € PL

generate a fermionic ngt of C*-algebras. This can really be done analo-
gously to the construction of the Haag-Kastler 2ietlescribed above.
Finally, we close our paper by the Sectiood&nclusion and outlook

2 Axioms for euclidean field theories

In the present section we make a suggestion for axioms wini@uelidean
field theory should satisfy.

In the first step, we introduce the notion of anclidean net of C*-
algebras Within our interpretation this notion is related physical ob-
servations

Definiton 2.1 : A d-dimensionakuclidean nebf C*-algebras is given by a
pair (A, «) which consists of an isotonous net

A:RYDU—— AU)

of C*-algebras, indexed by bounded subset®ihand a group homomor-
phisma € Hom(E(d), Aut(A)).2 We require that the pair fulfills the con-
ditions:

(1) Locality: Uy Nz = O implies[A(U,), A(Us)] = {0}.

(2) Euclidean covariancer, A(U) = A(glf) for eachi/.

3We denote the the C*-inductive limit of by A. For an unbounded regidiithe algebrai (%)
denotes the C*-sub-algebra which is generated by the adgetits), ¢/ C .
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For an euclidean directione S?~! we consider the reflectiofy : ¢ —
—e. and the sub-grouf. (d — 1) which commutes witl#.. Moreover, we
set.. := ag_. As in the introduction, we denote by(e) the C*-algebra
A(eR4 4 X.) whereX, is the hyper-plane orthogonal to

Now we formulate a selection criterion for linear functidsan A which
corresponds to the selection criterion for physical staW¥e shall see that
class of functional, which is introduced below, is the ededin analogue of
the set of vacuum states.

Definiton 2.2 : We defineS(A, «) to be the set of all continuous linear
functionalsy on A which fulfill the following conditions:

(1) e-reflexion positivity: There exists a euclidean directione S¢~!
such that
Va € A(e) 1 < n,te(a®)a> >0 .

(2) Unitpreserving< n,1 >=1.
(3) InvarianceVg € E(d) : noa, = 1.

Remark: We easily observe that the definition 8{ A, «) is indepen-
dent of the chosen directian In the subsequent, we call the functionals in
S(A, «) reflexion positive

For our purpose itis necessary to require a further condftiothe func-
tionals under consideration.

Definiton 2.3 : We denote bySr(A4, «) the set of all reflexion positive
functionalsy of A for which the map

E(d) 3 g —— < n,a(azb)c>

is a continuous function for each b, c € A. These functionals are called
regular reflexion positive

We shall call a triplg A, v, n) which consists of an euclidean net and a
regular reflexion positive functionglan euclidean field

As already mentioned in the introduction, we have to assuraethe
operators of the euclidean net can be localized at a sharp-dimensional
hyper plane. For an euclidean time directiowe denote byB(e) the fix-
point algebra ofd(e) N A(—e) under the reflexion..

13



Condition (TZ): A d-dimensional euclidean net of C*-algebras, «)
fulfills the time-zero condition (TZ) iffB(e) is a non-trivial C*-algebra, i.e.
itis notC1. We call the algebraB (¢) time-zero algebras. For a regibhC

Y., we denote byB(e, /) the sub-algebra which is generated by operators
localized ini/.

Remark: Let (4, «) be ad-dimensional euclidean net of C*-algebras
which fulfill the condition (TZ). Then the net

B Y, DU +—— Ble,U)

together with the group homomorphis#i := «|g,4-) is, of course, a
d — 1-dimensional euclidean net of C*-algebras.

3 From euclidean field theory to quantum
field theory

In the present section, we discuss how to pass from a eunlfagd (A, «, )
to a quantum field theory in a particular vacuum represeortati

In the first step we construct from a given euclidean field o, ) a
unitary strongly continuous representation of the Poiaamoup (Section
3.1).

In the second step we have to require that condition (TZ)tisfgad in
order to show that a concrete Haag-Kastler can be recomstrdiom the
elements of the time-zero algebras and the representatitredoincaré
group (Section 3.2).

3.1 Reconstruction of the Poincage group

Fore € S9! we introduce a positive semidefinite sesqui-linear form on
Ale) as follows:

a@br— < n(a)b>
Its null space is given by
N(e,n):={a € Ale)|Vb e Ae) :< 1,t(a”)b >= 0}
and we obtain a pre-Hilbert space

D(e,n) == A(e)/N(e,n)
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The corresponding quotient map is denoted by
Pey) * Ale) — D(e,n)
and its closuré{ (e, n) is a Hilbert space with scalar product
(Pley (@), Peny(0)) == <miee(a”)d >
Lemma 3.1 : The map
Tiery 8 € Ry b= T(c ) (8) : e,y (@) > Den)(@(1,5¢))

is a strongly continuous semi-group of contractions witloaipve generator
H(&n) 2 0

Proof. Since
<nye(da> = 0
for eachb € A(e) implies
<y te(b)asea > = <, te(asedb™)a >=10
for eachb € A(e), we conclude that

T(e,n) (S)p(e,n) (a) =0

fora € N(e,n). Hencel|. ,, is well defined. The fact that|. ,) is a

semi-group of contractions follows by standard argumeirgs, a multiple

application of the Cauchy-Schwartz inequality. Finalhe strong continuity
follows from the regularity of;. O

We consider the saton(e) of all conesl (in euclidean space) of the
formT' = R (B4(r + ¢)) + ce where B,(r) denotes the ball iR with
centerz = 0 and radiusg-. In addition, we define the following subspace of

He,n)
D(I5n) = p(en AL)

Lemma 3.2 : For each cond’ € Con(e), the vector spacé (I, n) is a
dense subspace #f(e, 7).
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Proof. Lemma 3.1 states théd. ) is a semi-group of contractions with a
positive generator. Furthermor®,(I', n) is mapped into itself by’ ) (s).
Since for each operatarc A(e) there exists an > 0 such that

Tie)(5)P(e,y(a) € DTy m)

we can apply a Reeh-Schlieder argument in order to prove/#Bt ») is a
dense subspace #f(e, ). O

Lemma 3.3 : LetV C E(d) be a small neighborhood of the unit element
1 € E(d) and letl’ € Con(e) be a cone such thatl' C eR; + X.. Then
a € A(I') N N(e,n) impliesaya € N (e, n) foreachg € V.

Proof. We have< 7,:.(b*)as.a > = 0 foreachb € A(I') and hence
<, Le(bF)aga >=< 1, te(ag,4b%)a >= 0. Since we may choose to be
f.-invariant, we havey,_,b* € A(e) and the result follows by Lemma 3.2.
O

Theorem 3.4 :Letn € Sp(A, ) be aregular reflexion positive functional.
Then for each € S?~! there exists a unitary strongly continuous represen-
tationU. ,,y of thed-dimensional Poincaré grouBTF

Utey € Hom[PL U (H (e, n))]

such that the spectrum of the translations> U, (1, z) is contained in
the closed forward light con€,..

Proof. The theorem can be proven by using the proof of [22, Theorem
8.10]. We briefly illustrate the construction of the represgiont. ). Let

V C E(d) be a small neighborhood of the unit elemént E(d). Then
there exists a cone € Con(e) such that’I' C eR, + X.. According to
Lemma 3.3 we may define for eaghe V' the operator

Vien(9)Pem (@) = Pe ) (@ga)

with domainD(I', ). If ¢ belongs to the group. (d — 1) then we conclude
thatVi. .\ (9) = U, (g) is a unitary operator.

Let ¢(d) be the Lie algebra oE(d) and lete.(d — 1) C e(d) be the
sub-Lie algebra oF. (d — 1) C E(d). We decompose(d) as follows:

e(d)=¢.(d—1)Fm.(d-1)
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and we obtain another real Lie algebra:
p(d) :=e.(d—1)Him.(d - 1)

which is the Lie algebra of the Poincaré grop.

For eachX € m.(d — 1) there exists a self adjoint operatby, ,\(X)
whereD(I', ) consists of analytic vectors fdr. ,, (X ) and for eachs € R
with exp(sX') € V we have:

Viemy(exp(sX)) = exp(sLc,(X)) .
According to [22, Theorem 8.10] we conclude that the unitgpgrators

Ue,ny(exp(isX)) = exp(isL(c) (X)) ; X € m.(d— 1)

Uea(9) == Viemy(9) 5 g € Ec(d—1)

induce a unitary strongly continuous representation ofRbacaré group
Pl. The positivity of the Energy follows from the positivity tiie transfer
matrix T, ) (1). O

Remark: The vector. ) = p(.,,) (1) is invariant under the action of
the Poincaré group.

3.2 Reconstruction of the net of local observables

In the subsequent, we consider a euclidean net of C*-alg¢lray) which
fulfills the condition (TZ).

Proposition 3.5 : Let n be a regular reflexion positive functional of.
Then the map

77(5,77) : B(@) Y 77(6777)(()) : p(em)(a) f— p(em)(ba)

is a well defined *-representation &f(e).

Proof. For eachu € N (e,n) and for each: € A(e) we have
< Myte(c)ba > = < nyi(cb)a> = 0
and hencer . ,,)(b) is a well defined linear and bounded operator. By con-

struction it is clear that . .y is a *-homomorphism(J
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Remark: The restriction ofj| 5. is a state of3(¢). Of course, the GNS-
representation of| z(.) is a sub-representation of. , ).

Definiton 3.6 :

(1) Let O be a double cone iR?. Then we defin&l,. ,(0) to be the
C*-algebra on{(e, ) which is generated by operators

e (9,0) = Uy (9)7 .y (D) Uty (9)”

with b € B(e,U), g € Pl andgd C 0.

(2) We denote b, ,, the net of C*-algebras which is given by the pre-
scription

Q[(e,n) 0 —— Q[(em)((/)) .

Theorem 3.7 :The pair(2. ), Ad(U. ,))) is aP! -covariant Haag-Kastler
which is represented oH (e, 7).

Remark:
(1) Note that

Wiem) Q[(e,n) S ab— <Q(e,77)7 aQ(em)>
is a vacuum state sine§. ) is a positive energy representation of the

Poincaré group. However, in genesgl ) is not a pure state.

(2) For the local algebral. ,,(O), we do not take the von Neumann al-
gebra generated by the corresponding operabprs) (g, b) since this
might to problems with locality.

Preparation of the proof of Theorem 3.7: For a Lie algebra element
X € im.(d — 1) and a complex number € C we define a linear (un-
bounded) operator oH (e, i) by

D(c,,x)(2:0) i = Uge) (exp(2X)) 7 (e, (D) Ue ) (exp(=2X))

on adense domaif (I, ) wherel' € Con(e) an appropriate cone.
In order to formulate the our next result, we define for two gramors
X1, Xs € im.(d — 1), for an intervall, for a neighborhoo® > Ll of the
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unit element inP 4 (C), and for two subsets; C X, j = 1, 2, the region

G(V;Xl,Xg;Ul,UQ;I) = U (2’172’2) S (R X 1])2 ‘ VX]‘ S u]‘ .

gEVxLI_
e Im[g(exp(z1 X1)x1 — exp(z2X2)x2)] € R+} :

We shall prove in the appendix the lemma given below whichesainalogue
of the famous BHW theorem (compare also [16, 24] and refea®mgiven
there):

Lemma 3.8 : For a given intervall, there exists a dense subspdeeC
(e, n), such that the function

F(X17X27bl7b2) : (Zl7 ’22) <¢17 (I)(e,n,Xl)(Zlv bl)(I)(e,n,XQ) (227 b2)¢2>

is holomorphicinG'(V; X1, Xo; Uy, Uz, I') for eachyy, vy € D.

We claim that the'(d) invariance ofy yields that the dense subspace
D C #H(e,n) can be chosen in such a way that

(Vs Xo, Xos Uy, Uys 1)
= G(V; Xo, Xoj Uy, Ur;: 1) N G(V; X1, Xo3 Uy, Uy T) NIR?
£0 .

Lemma 3.9 :If U Ny = @ and(Sl7 82) € I(V;Xg,Xg;Ug,Ul; I), then
X, Xo b1 ,00) (151,182) = Fix, x, 0,5, (1525 181)

Proof. The lemma is a direct consequence of the euclidean covaramt
the locality of the netd. O

Proof of Theorem 3.7: We conclude from Theorem 3.4 and the construc-
tion of the algebrasi. ,)(0) that¥. , is a Poincaré covariant net of C*-
algebras, represented df(e, 7).
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It remains to be proven th&(em) is a local net. For this purpose it is
sufficient to show that for each pair

(ti,t2) € R(Xy, Xosly, Us)

= {(t1,t2) € R¥exp(ty X1)Uy C (exp(taXo)lha)'}
the commutator

[q)(e,n,Xl)(tl)7 q)(e,n,XQ)(tQ)”D =0

vanishes on an appropriate dense domiaia 7 (e, 7).
Since the points i (X1, X2; Uy, Us) are space-like points, we conclude
that there exist complex Lorenz boogts € V such that

Imgy R(Xy, Xo; Uy, Us)) C Vi .

Hence we have
R(X1, XogslUy, Us) C G(V; X1, Xo3 Uy, Uz I) NGV, X, Xas Uz, Uns 1)
Using Lemma 3.9, we conclude that

Fixy xam00) (215 22) = Fix, X, 00,51) (225 21)
for

(z1,22) € G(V; Xy, XosUy Uy )N G(V; X, X3 Uz, Uy T

which finally yields

Fixy x5 5000) (L1 t2) = Fix, xy 0.60) (L2511

for each(ty, ) € R(X1, Xo:U1,Uz). This proves the locality ol . O

4 Discussion of miscellaneous consequences

Due to Theorem 3.7 we are able to pass form a euclidean(figld, ») to
a quantum field theory in a particular vacuum representati®ne crucial
condition to apply our method is the existence of the time-aégebras. We
shall see that the discussion of Section 4.1 covers all plessituations for
euclidean fields which fulfill the condition (TZ).

Afterwards, we discuss in Section 4.2 how the reconstracsicheme
has to be generalized in order to include fermionic opesator
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4.1 Some remarks on euclidean fields which satisfy
the time-zero condition

Let us consider & — 1-dimensional euclidean néB, 3) of abelian C*-
algebras.

Definiton 4.1 : Let (¢ be a group which contairis(d — 1) as a sub-group.
We define A¢(G'; B, 3) to be the *-algebra which is generated by pairs
(g,b) € G x B modulo the relations:

(1) For eacty € GG, the maph —— (g, b) is a *-homomorphism.

(2) Foreacty € G, foreachh € E(d — 1), and for eacth € B:
(gh7 b) = (gv ﬁhb)

The algebrai, (G B, 3) possesses a natural C*-norm which is given by

lall:=  sup  |7(a)|ls)
where R(G; B, 3) is the set of all representations of Ay(G; B, 3) by
bounded operators on a Hilbert spake The closure ofdy(G; B, ) is
denoted byA (G B, ).

Remark: There is a natural group homomorphism
a € Hom (G, AutA(G; B, §)) and a natural faithful embeddinge Hom™ (B, A(G; B, )
given by:

ag(g1,) = (991.)
¢(b) = (1,0) .

Of course, we have for ea¢he E(d — 1):
pofy = apod .

We are mostly interested in two cases fornamely: = Pl andG =

E(d). For both groups!(Gi; B, ) has a natural local structure sine and
E(d) act as groups oR“.

Definiton 4.2 : For a region® € R? we defineA(G; B, 3|0) to be the
C*-sub-algebra inA(G; B, ) which is generated by elementg, b) with
b € B(U) andgl{ C O and we obtain nets

A(G; B, 3): O — A(G; B, 8|0) .
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In order to get a Haag-Kastler net f6f = Pl and a euclidean net for
G = E(d), we consider the following ideals:

(1) J.(P1; B, 3) is the two-sided ideal which is generated by elements
[(g,0),(g1,01)] Wwhere(g,b) and (g1, b1) are localized in space like
separated regions.

(2) J.(E(d); B, p) is the two-sided ideal which is generated by elements
[(g,0), (g1,b1)] where(g, b) and (g1, b1) are localized in disjoint re-
gions.

Thus the prescription
Ar 1 O —— U (0) := A(G; B, 5|0)/J.(G; B, )

is a Pl -covariant Haag-Kastler net fa¥ = P}, and an euclidean net of
C*-algebras folG = E(d).

Proposition 4.3 : Let (A4, ) be ad-dimensional euclidean net which fulfills
the condition (TZ) and letB, 5) be thed — 1-dimensional euclidean net,
corresponding to the hyper plai&. Then the map

X Aga) 2 (9,0) — ay(b) € A

is a *-homomorphism which preserves indeed the net stractur

Proof. By using the relations in Definition 4.1 we conclude, by some
straight forward computations, thagtis a a *-homomorphism which pre-
serves the net structurel

An application of Theorem 3.7 gives:

Corollary 4.4 : For each regular reflexion positive functionglon g4
there exists a vacuum statg on®(+ such that
+

wylg =nlB -

Remark:

(1) Note that we may viewB as a common sub algebraf; ;) and2i
+
sinceBN J.(G; B, 3) = {0}.
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(2) Given an euclidean fieldA, «, ), for which the time zero algebra
B := B(e) is non trivial. By Proposition 4.3, we conclude that there
is a positive energy representatiop ,,) of 2.+ on the Hilbert space

+

H(e, n) whose image is precisely the iR, ). In particular the GNS-
representation af, is a sub-representation of. , ).

(3) Both, the algebral,+ of observables in Minkowski space and the

euclidean algebr@LE(;) can be considered as sub-algebrasigf c,
where the algebrélp, (¢ is defined by

Up, () = A(P+(C): B, B)/[J.(PL: B, B) U J.(E(d); B, B)] .

We close this section by illustrating the situation by thenoautative
diagram, given below.

AUpy ()
Q[PI- - 0 B C Q[E(d)
X
“n
C A

Ui

Here(A, «) is an euclidean net of C*-algebras aBds the time-zero alge-
bra which corresponds to the hyper-plane

4.2 The treatment of fermionic operators

In order to discuss the treatment of fermionic operators mieoduce the
notion of a fermionic euclidean net. The axioms for such acoé&icide with
those of an euclidean net, except the locality requirement.

Definiton 4.5 : An isotonous andk(d)-covariant net £, «)
F:RIDU+— FU)=Fp(U)D F_(U)

of Zy-graded C*-algebras is calledermionic euclidean neff 24, N, = 0
implies[F'(Uy), F(U2)], = {0}, where[-, -], denotes the graded commuta-
tor.

23



For a givend — 1-dimensional fermionic nett’, 3), we build the C*-
algebrasA(E(d); F, ) andA(PL F, 3) as introduced in the previous sec-

tion. Note, that the aIgebrA(Pl; F, 3) possesses#,-grading, namely we
have

APLF 8) = AL (PLsF 8y @ A_(PL F, )

where the algebrahr(Pl; F, 3) is spanned by products of elemeriis b)
containing an even number of generators:irx F_:

(917 b1) ce (gzm b2n) .

Therefore the sub-spaoﬁe_(Pl; F, 3) is spanned by elements which are
products of elementsy, b) containing an odd number of generatorgin<
F_:

(917 bl) ce (gzn—h bzn—1) .

Analogously to the purely bosonic case, we consider thedided ideals

(1) J,(PL; F, 3) which is generated by graded commutaféysb), (g1, b1)],
where(g, b) and (g1, b1) are localized in space like separated regions
and

(2) J,(E(d); B, 8) whichis generated by graded commutafoysb), (g1, b1)],
where(g, b) and(g1, b1) are localized in disjoint regions.

Thus the prescription
S 0 O Fc(0) == A(G; F, B|O)/J,(G; F, B)

is a fermionicP? -covariant Haag-Kastler net fét = P1, and an fermionic
euclidean net fot; = E(d).

By following the arguments in the proof of Theorem 3.7 and bgiing
in mind that the ordinary commutator has to be substitutethieygraded
commutator, we get the result:

Corollary 4.6 : For each regular reflexion positive functional on the
fermionic euclidean nefy,4) there exists a vacuum statg on §+ such
+

that

wolr =1nlF -
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Remark: As described in Section 3.2 the state is defined by

n n

< Wiy H(g]7 b]) > = <Q(e,77)7 H q)(em) (9]7 b])Q(e,n)> :

j=1 7=1
5 Conclusion and outlook

5.1 Concluding remarks and comparison

We have shown, how a quantum field theory can be reconstricteda
given euclidean field 4, «, ) which fulfills the condition (TZ). We think,
that in comparison to the usual Osterwalder-Schrader stoaction theo-
rem the reconstruction of a quantum field theory from euelidéelds (in
our sense) has the following advantages:

& The Osterwalder-Schrader reconstruction theorem refatbwinger dis-
tributions to a Wightman theory. One obtains an operatara@distribution

& which satisfies the Wightman axioms. The reconstructed Gpkfators

& ( f) are, in general, unbounded operators and in order to getg-Kaatler

net of bounded operators one has to prove that not only theedigrators
¢(f), ®(f1) commute if f and f; have space-like separated supports, but
also its corresponding spectral projections. Furthermasementioned in
the introduction, in order to apply the results of [19] one ba prove that
the Schwinger distributions are continuous with respedrtaappropriate
topology.

Since our considerations are based on C*-algebras, wetlgir@atain,
via our reconstruction scheme, a Haag-Kastler nébamindedoperators.
In our case, the technical conditions which a reflexion pasitunctional
has to satisfy are more natural. It has to be continuous andaewhere the
continuity is automatically fulfilled if one considers refien positive states.

Our reconstruction scheme does also include objects, likeowloop
variables, which are not point-like localized objects instributional sense.
This point of view may also be helpful for constructing gatigeories.

Furthermore, one also may start with an abelian C*-algelka the
example of Wilson loop variables, given in the introductiokbelian C*-
algebras are rather simple objects, namely nothing elsedmiinuous func-
tions on a compact Hausdorff space. In comparison to thetwarti®n of
reflexion positive functional on the tensor algeia(.S), one may hope that
itis easier to construct reflexion positive functionalsdbelian C*-algebras.
This might simplify the construction of quantum field theonpdels.

25



Nevertheless, we also have to mention some drawbacks:

© Unfortunately, our reconstruction scheme is not a comggetesraliza-
tion of the Osterwalder-Schrader reconstruction. Thisus tb that fact,
that we have assumed the existence of enough operatdrsvimich can be
localized on a sharg — 1-dimensional hyper plane (condition (TZ)). Such
a condition is not needed within the Osterwalder-Schradenéwork and
there are indeed examples of quantum field theories whictodtufiill this
condition, for instance the generalized free field for whilse mass distri-
butionis notl;.

On the other hand, the known interacting models like #{@)., the
Yukawg, as well as thes? model fulfill the condition (TZ). Thus we think
that the existence of the time-zero algebras is not suchrafbarequire-
ment.

5.2 Work in progress

The main aim of our work in progress is concerned with the troiegon of
examples for euclidean fields which go beyond the free fields.

It would also be desirable to develop a generalization offeconstruc-
tion scheme which also lead directly to a Haag-Kastler newbich do not
rely on the condition (TZ).

A further open question is concerned with a reconstructwreme for
euclidean fields with cutoffs. The main motivation for suatoasiderations
is based on the work of J. Magnen, V. Rivasseau, and R. $§h&owvhere
it is claimed that the Yang-Millsexists within a finite euclidean volume.
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A Analytic properties

Within this appendix we give a complete proof of Lemma 3.8. 3Nell use
a simplified version of the notation introduced in the presgections by
dropping the indicese, 7).

Let (A, a, n) be an euclidean field and lEtbe the corresponding strongly
continuous representation of the Poincaré groug{os (e, ) which has
been constructed by Theorem 3.4. Furthermores le# the *-representation
of the time-zero algebr& onA.

Fora given tuplé X, b) € im(d—1)" x B", we like to study the analytic
properties of the function

WX, 0] C2 S (2, 7)) — H Ux, (z))7(b;)Ux, (25)¢

wherey € D(I',n) andl" is a cone which is contained {fon(e) and we
write:

Ux (C) = Ulexp(~i¢ X)) .
For this purpose, we introduce some technical definitions.

Definiton A.1 : For a generatoX ¢ im(d — 1), for an operatob € B({/)
and for a coné’ € Con(e), we define the regions:

I, X) = {s]exp(—is’X)[' C eRy + .}
J(,X,b,8) = {s|exp(=isX)[exp(—is’ X) T UU] C eR; + 3.}
GIIX,0) = | R+IJI,X,bs) xR+i{s'}]
s'el(T,X)
Definiton A.2 :

(1) Consider aregiotf which is contained it + er, 7 > 0. We define
the corresponding time-zero algebraByi{) := a.. B(U — eT).

(2) Foragiven tuple

(X,b,s,8) €im(d —1)" x B(Uy) x --- x B(U,) x R*"
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Figure 1: The figure above shows, according to the Malgrange-Zerner theorem,
regions of analyticity, which are containeddn (I'; X, b), for the following cases:

1.5, is localized inX.. 2. b, is localized inX. + ec but is is not localized ii'. 3.

b, is localized inl'. If we translaté; in positivee-direction, then we increase the
region of analyticity and the maximal region is given by case 3.

we define recursively the regions

FO = T
[1(s1,s7) = conv(exp(—is; X1)[exp(—isiX1)T'Ul])
sy 8n, 8y --s0) = conv(exp(—is, X,)[exp(—is, X,) x
X p_1(s1Su_1, 8 -+s_1)UlU,])

Definiton A.3 : For eache € N we introduce the region:
Go(T; X,0) :={(s1-+8n,8,--+s)|Vk <m:Tg(sy--sp,s)-5;) CeRy+ 3.}

See also Figure 1 for illustration.
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Lemma A.4 : For a given tuple
(X,b) €eim(d — 1)" x B(ly) X -+ X B(Uy)

the function¥,,[ X, b] is holomorphic inR?" + i, (T'; X, b).

Proof. We prove the statement by induction. The veatoe D(T', 7) is
contained in the domain dfx, (is}) as long ass} € I(I', X;). For a fixed
values} € I(I', X;) the vectorr (b1)Ux, (is} ) is contained in the domain
of UX1 (iSl) fors; € J(F, X1, b17 8/1) This |mp||eS thaﬂll[Xh bl] is holo-
morphic inG(I'| X1, b1) D R+ iG4(I'; X, b) (see Figure 2 for illustration).

r(%) U

Y

Figure 2: The figure illustrates the fact that the veetgr, ) Ux, (is )« is contained
in the domain of/x, (is; ) for an sufficient smalt,. Herel'(s}) is the cone rotated
by s} andi{, is the localizing region ob; .

Supposel,,_[X; --- X, _1,by - --b,_1] is holomorphic inR2(*~1) 4
iG,—1(I'; X, b). By the same argument as above we conclude that for a
fixed valueqs, s’) € G,,—1 (I'; X, b) the function

(2, 20) —— U, [X, ] (is, 25,15, 21,)
is holomorphicin

G(Ty—1 (5,8 X0, by)
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and hence it is holomorphicin

U R2(n=1) | i{(s,8)} x G(T1(s, 8 )| Xy by)
(5,8")€Gn_1(I;X,b)

which is a region containing’, (I'; X, b). O

B Proof of Lemma 3.8

For a given euclidean field4, «, ) we introduce the following notions:
Definiton B.1 :

(1) We define the subspace

D(I';m) = p(e, AT) and D(I's ) := U,y (L) D(T5p)
(2) LetX € im(d — 1). For two regiond’; C I' we define
(T, T;X) :={s € Ry|exp(—isX)['; CT} .
(3) For ageneratoX € im(d — 1) we define the region
U(s, X) := exp(—isX)U
for eachs € R.
(4) Given two regiong/{; , U, in R?, we define

Go( Xy, XosUy, Uy I) = {(21722) € (Rxil)? ‘ Vx; €U :
e Im(exp(z1X1)x1 — exp(22X2)x2) € R+}
G Xy, XosUy Uy 1) = {(21722) € (Rxil)? ‘ Vx; €U :

e Im[g(exp(z1X1)x1 — exp(z9X2)x2)] € R+}

whereg € P (C) is a complex Poincaré transformation.

LemmaB.2 :Letl'y,I' € Con(e) be two conic regions such that'y C I'
is a proper inclusion. Then there exists an Ainteniad;uch that for each
by € B(Uy),bs € B(U,) and for eachy, 102 € D(I'1;n) the function

F((;(pizﬁ),bl,bz) F (21, 22) > (Y1, @x, (21, 01) Px, (22, 02) 12)
is holomorphicinG. (X, Xo; Uy, Us; T).
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Proof. First we obtain by an application of Lemma A.4, that for eaghe
H(e,n) and for eachy € D(I', ), the function

(2, Q) = (b1, P, (2, b2) Ux (C) ¢h2)

is holomorphic forlm¢ € I(I'y, [ X) andlmz € I(I'; X3). for X €
im(d —1). The holomorphy is due to the fact tHatis a strongly continuous
representation of the Poincaré group and that'; ;) consists of analytic
vectors for the boost generators.

For a fixed values’ € I(I'y,I'; X)) ands € I(I'; X3), we have

D, (is,b2)Upe . x) (=i )b € D(I'; )

for each regior’ C eR_. + X, which containd” U Uy (s, X3).

(=5

|
|
e-component oflthe difference

v

Figure 3: There exists a coresuch that region; N I' = () andit, C T

Now, as illustrated by Figure 3, for a given poiatis) € G (X1, Xo;Uy, Us; 1)
there exists a conic regidnz, is) € Con(e) with I'(z,1s) D I'Uls (s, X3)
such thatD(I'(z, is); n) is contained in the domain dfx, (z, b;). Further-
more, for a given interval, the conel’ can be chosen to be small enough
such that this holds for eadh, is) with Imz, s € I. Sincel'; isO(d — 1)-
invariant, the result follows]

LetV D Ll be a neighborhood of the identity i, (C). We may
choose a con€'(I', V) € Con(e) such that

gC(, vyl .
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for eachg € E(d) N'V. Note that the representatiéhcan be extended 9
by unbounded operators with domdir(I';, ) wherel’y C C(I', V).

In order to finish the proof of Lemma 3.8, we show the followstigte-
ment:

LemmaB.3 : Leti4, U, be two bounded disjoint regions and &t <
Con(e) such thatl’y ¢ C(I',V) is a proper inclusion. Then the function

((;(/”1:%2)761762) has an extensioﬁ((§1:§2)7bl7b2) which is holomorphicin

G(V; Xy, Xoj Uy, Up; 1) = || GL(Xy, Xo3 Uy, U 1)
gev

for eachey, vy € D(I'1; 7).

Proof. For a given neighborhood > LI of the unit element i (C)
and for a given con€ € Con(e), there exists > 0 such thayll, +¢ce C I'.
We easily observe that the substitution

Ui = T(QU(g)dy

XJ/‘ = eXP(—iGH)!]ng_I exp(ieH)
yields
(1.4%) (v )
F(X}7X2£7517b2)(21’ 2) = F(X17X227bl7b2)(217 )

foreach(z1, z2) € G(X1, Xg;Uh,Us; I) whereH is the generator of trans-

lations ine-direction. According to Lemma B.2, the functi ;ﬁ} 7§2')51 b)
1432 El

is holomorphic inG? (X1, Xo; Uy, Us; T) which implies the result]
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