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Slow decay of correlations for multi-dimensionalIntermittent mapsMichiko YuriDepartment of Business Administration, Sapporo University,Nishioka, Toyohira-ku, Sapporo 062, JapanOctober 20, 1997AbstractPolynomial decay of correlations typically happens for intermittentmaps with respect to Gibbs measures associated to (piecewise) Holdercontinuous potentials with exponent greater than 1:1 IntroductionIn this paper, we shall consider the decay of correlations for piecewise C1-mapsadmitting indi�erent periodic points (intermittent maps) with respect to Gibbsmeasures associated to piecewise Holder continuous potentials. For hyperbolicsystems there exists a unique equilibrium state � for a Holder continuous func-tion f which is a Gibbs measure. Then (auto)correlations of Holder continuousfunctions g with respect to �,Cg;g(n) = j ZX(gTn)gd�� (ZX gd�)2jdecay exponentially fast and the limitting behaviour of Pn�1i=0 gT i obeys thenormal distribution ([1]). On the other hand, the classical Thermodynamic For-malism easily fails in nonhyperbolic situation, e.g., the papers [14-20] discusseddi�erent phenomena from statistical point of view for intermittent systems. Weshall be interested in the following problem.Question When does the dynamical system (T; �) have a large class of func-tions in which we have polynomial decay of correlations ?We will give a partial answer to this question in multi-dimensional situation.There are a few results describing polynomial decay of correlations for one-dimensional intermittent maps. Papers [6] and [7] contain results establishing1



polynomial bounds on correlations for a large class of functions with respectto an absolutely continuous invariant measure. Since the existence of indi�er-ent �xed points causes the failure of bounded distortion, the measures are notGibbs. On the other hand, the paper [8] discussed slow decay of correlationswith respect to the Gibbs measure for subshift of �nite type, where functionsof summable variations were considered instead of Holder continuous functions.In section 2, we collect previous results and some observations for potentials ofsummable variations. In section 3, we show the convergence to Gibbs measuresfor piecewise invertible maps T de�ned on a subset of a compact metric spaceassociated to piecewise Holder continuous functions and we establish bounds oncorrelations with respect to the Gibbs measure for piecewise Holder continuousfunctions. The bounds that we obtain are expressed by sizes of cylinders (seeTheorem 3.1) which typically decays polynomially fast for maps admitting in-di�erent �xed points. In section 4, we apply our theorems to such intermittentmaps so that we have a large class of functions in which we have polynomialdecay of correlations with respect to Gibbs measures associated to Holder con-tinuous functions with exponent greater than 1.2 Preliminaries.Let (X; d) be a bounded metric space, F be the �-algebra of Borel subsets of Xand Q = fXaga2I be a disjoint partition ofX with Xa 2 F(8a 2 I). We assumethat there exists a compact metric space �X � X such that X0 = Sa2I intXais an open dense subset of �X: Let T : X ! �X be a piecewise invertible mapwith �nite range structure, i.e., Q is a generating partition, T jXa : Xa ! TXais a homeomorphism (8a 2 I) and U = fTn(intXa1 :::an) : 8Xa1:::an ; 8n > 0gconsists of �nitely many open subsets of �X . We call the quadraple (T;X;Q;U)a picewise invertible system with �nite range structure([13-15]). We denote thelocal inverse (T jXa)�1 by  a and (TnjXa1:::an )�1 by  a1:::an : For a function f ,we de�ne the Perron Frobenius operator Lf byLfg(x) = Xy2T�1x exp f(y)g(y):We suppose that there is a positive number p and a Borel probability measure� supported on X satisfying the equation, L�f� = p�: Su�cient conditions for�nite to one Markov maps to admit such � and p were established in [4]. Forin�nite to one Bernoulli maps(i.e., TXa = X; 8Xa 2 Q), the following conditionswere obtained in [20](cf. [12],[9]).(C-1) 90 < La < 1 such that d( ax; d ay) � Lad(x; y)(8a 2 I) and 9� 2 Rsuch that Pa2I L�a <1:(C-2) 90 < Lf <1 such that jf(x)� f(y)j � Lfd(x; y)�; (8x; y 2 Xa 2 Q):2



(C-3) 90 < K <1 such that Lf1(x) =Pa2I exp f( ax) � K(8x 2 X0):De�nition For a function f and for k � 1 we de�nevark(f) = supXa1:::ak supx;y2Xa1:::akfjf(x)� f(y)jg:De�nition A �xed point x0 is said to be indi�erent with respect to f if f(x0) =log p:A periodic point x0 with period q is said to be indi�erent with respectto f if 1=qPq�1i=0 f(T ix0) = log p:Remark A. When T is piecewise C1-invertible, � is the Lebesgue measure andf = � log j detDT j, the above de�nition coincides with the usual one ofthe indi�erent periodic point(cf. [14]).The next result gives a relation between summable variations and the exis-tence of indi�erent periodic points.Proposition 2.1 Suppose that f satis�es the summable variation i.e.,P1k=1 vark(f) <1: Then there is no indi�erent periodic points with respect tof . (Cf.[14,15]).Remark B. If there is an indi�erent �xed point with respect to f , then supX f �log p: Since d(�T jXa)=d(�jXa) = exp(logp � f); the property log p >supX f which gives supx2X (Pn�1i=0 fT i(x) � n log p) < 0(8n > 0) justimplies the expanding property (in case when f = � log j detDT j and � isthe Lebesgue measure.cf.[4,5]).Proof of Proposition 2.1. Let x0 be an indi�erent �xed point with respectto f and let Xa1:::an be a cylinder containing x0. Then we see thatsupx;y2Xa1:::an exp(n�1Xi=0 fT i(x)�n�1Xi=0 fT i(y)) = supx;y2Xa1:::an exp(Pn�1i=0 fT i(x)� n logp)exp(Pn�1i=0 fT i(y) � n logp)� exp(nf(x0) � n logp)infy2Xa1:::an exp(Pn�1i=0 fT i(y) � n log p)� 1RTnXa1 :::an exp(Pn�1i=0 fT i � n logp)( a1:::any)d�(y) = 1�(Xa1:::an ) !1(n!1):On the other hand, if f is of summable variation, we have a �nite bound of LHS.This is a contradiction. 2:Let V denote the �nite disjoint partition generated by U . De�ne for x; x0 2V 2 V,Cf (x; x0) = supn sup(a1:::an)2An n�1Xi=0(f(T i a1:::anx)� f(T i a1:::anx0)):3



Next result allows us to establish the existence of a Gibbs measure associatedto potentials of summable variation for symbolic systems.Proposition 2.2 Let f be a potential of summable variation. Suppose thatfXb1:::blgl>0 ! fxg as l !1. Let fx0ngn>0 be a sequence of points in X suchthat x0n 2 Xb1 :::bn8n > 0: Then Cf (x; x0n)! 0 as n! 0:Proof. It is easy to see that for x; x0 2 V 2 V; Cf ( a1:::akx;  a1:::akx0) �P1i=k vari(f): This completes the proof. 2:Let (�; �) be the symbolic dynamics of T with respect to the generationg par-tition Q and � : �! X be the factor map. >From Proposition 2.2 a �- invariantmeasure which is Gibbs for the function f �� is obtained by applying P.Walter'smethod in ([12]) . For the existence of a T -invariant Gibbs measure (absolutelycontinuous with respect to �), summable variation of f is not su�cient. In fact,even if f has summable variation, we do not know for x; x0 2 V 2 V belongingto di�erent cylinders ( i.e., x 2 Xa; x0 2 Xb; a 6= b ) whether Cf (x; x0) ! 0 asd(x; x0)! 0:In the rest of this section, we remark that for the symbolic system (�; �)Prospositons 3.3 and Theorem 3.2 in [16] which were obtained by Markov ap-proximations method developed in [2-3] allow us to have polynomial bounds oncorrelations with respect to the Gibbs measure for potentials of summable vari-ations immediately and the bounds are the same as those which were obtainedby M.Pollicott in [8]. More precisely, let h = d�=d�: ij(k) denotes i1j : : : ikj andXi0(k):::il(k) denotes the cylinder of rank (k + l � 1); Xi0(k) \ T�1Xi1(k) \ : : :\T�(l�1)Xil(k): (See Remark C in [16]). In order to apply Proposition 3.3 andTheorem 3.2 in [16], we need to bound the following quantities.(a) supx;y2Xi0(k):::il(k) expPl�1i=0(fT i(x)� fT i(y)),(b) supx;y2Xi0(k):::il(k) h(x)=h(y),(c) supx;y2Xi0(k):::il(k) hT l(x)=hT l(y):If f is of summable variation, then(a) � exp( 1Xj=k+1 varj(f)):Since for x; y 2 Xa1 :::an h(x)=h(y) � exp( 1Xj=n varj(f));both (b),(c) are bounded by exp(P1j=k varj(f)): Consequently the errors aris-ing from Markovian approximations, �3(k) which was given in Proposition4



3.3 ([16]) can be bounded by O(P1j=k varj(f)): Since the term related to theDoblin condition, (1� s=2)[n=m] in Theorem 3.2 ([16]) is stretched exponential,if varj(f) = O(j�r)(r� > 1) then for n > k(n); Cf;f (n) � O(k(n)�r�+1): Takingthe second parameter k(n) = n1��(� > 0) givesCf;f (n) � O(n(1��)(�r�+1)) = O(n�r�+1+�(r��1)):In particular, for � = 1;Cf;f (n) � O(n�(r�1��(r�1)))(8� > 0):3 Main resultsFor the original intermittent map T , we shall establish the convergence offLnf�logp1g to a density of the Gibbs measure with respect to �, which allowsus to have a nice property of the limit point.Theorem 3.1 (Main Theorem.) Let (T;X;Q;U) be a piecewise invertiblesystems satisfying Bernoulli condition(i.e., TXa = X for 8a 2 I): Supposethat (C-1,2,3) are satis�ed. Assume further that (C-4) P1i=1 �(i)� < 1: Thenf is of summable variation and P1i=n vari(f) � LfP1i=0 �(i)�: For a boundedfunction g ( with respect to �) satisfying (C-2), we have that for m � 1; k � 1jjLm+kf�logpg �Lmf�log pgjj1 � O( 1Xi=m(�(i))�)and we have a bounded function h > 0 satisfyingjjLnf�logpg � (ZX gd�)hjj � O( 1Xi=n �(i)�)and jh(x)� h(y)j � 1Xi=m(�(i))�(8x; y 2 Xa1 :::am ; 8Xa1:::am :)Corollary 3.1 Let � = h�. Then � is a T -invariant Gibbs measure satisfyingCg;g(n) = j ZX(gTn)gd� � (ZX gd�)2j � 1Xi=n(�(i))� :Lemma 3.1 Suppose that (C-2,4) are satis�ed. Then f is a potential of summablevariation and fLnf�logp1g is uniformly bounded. Further we have for a boundedfunction g satisfying (C-2)jLmf�logpg( b1:::bkx)� Lmf�log pg( b1:::bky)j � exp( 1Xi=0 vari(f))O(Lf 1Xi=k �(i)�)):5



Proof of Lemma 3.1 The �rst assertion is immediate from the de�nitionof vari(f): Note that(1) supx;y2TnXa1 :::an exp(Pm�1i=0 f( ai :::anx))exp(Pm�1i=0 f( ai :::any)) � exp( 1Xi=0 vari(f)):( The property is just the Renyi condition when f = � log j detDT j). Then thesecond assertion easily follows from the conformality of �. Similarly the lastassertion is obtained by (1) and the following inequalities.jLmf�logpg( b1:::bkx)� Lmf�log pg( b1:::bky)j� Xa1:::am p�m exp(m�1Xi=0 f( ai :::amb1:::bkx)j1�exp(m�1Xi=0 (f( ai :::amb1:::bkx)�f( ai :::amb1:::bky))j+ Xa1:::am p�m exp(m�1Xi=0 f( ai :::amb1:::bky))Lgd( a1:::amb1:::bkx;  a1:::amb1:::bky):2:Proof of Theorem 3.1. We can prove the theorem along the line of theProof in [11]. It follows from Lemma 3.1 that 90 < K1 < 1 satisfying K�11 <Lmf�logpg < K1(8m � 0): Then for 8k � 1; 8m � 0; we have thatK�21 Lmf�logpg(x) < Lm+kf�log pg(x) < K21Lmf�logpg(x):We put K�21 = r0;K21 = R0; and C = exp(P1i=0 vari(f)). Since (2):Lk+mf�logpg(x)� r0Lmf�log pg(x)�C�1 Xa1:::am ZXa1 :::am (Lkf�log pg(y)� r0g(y))d�(y)= Xa1:::am Lkf�log pg( a1 :::amx) exp(m�1Xi=0 fT i( a1:::amx))p�m�r0 Xa1:::am exp(m�1Xi=0 fT i( a1 :::amx))p�mg( a1 :::amx)�C�1( Xa1:::am ZXa1 :::am (Lkf�log pg(y) � r0g(y))d�(y));the conformality of � allows us to have a lower bound of (2):C�1 Xa1:::am ZXa1 :::am (Lkf�log pg( a1 :::amx)�Lkf�log pg(y))d�(y)�C�1r0 Xa1:::am ZXa1:::am (g( a1:::amx)� g(y))d�(y):6



Then it follows from Lemma 3.1 thatLk+mf�logpg(x)� r0Lmf�log pg(x)�C�1 Xa1:::am ZXa1 :::am (Lkf�log pg(y)� r0g(y))d�(y)� C�1(�O( 1Xi=m �(i)�) � Lg�(m)�):Consequently, we have the lower bound C�1O(P1i=m �(i)�) and thatLm+kg(x) = (Lm+kg(x) � r0Lkg(x)) + r0Lmg(x)� �C�1O( 1Xi=m�(i)�) +C�1 Xa1:::am ZXa1:::am (Lkg(x)� r0g(x))d�(x)+ r0Lmg(x)= Lmg(x)(�C�1K�11 O( 1Xi=m �(i)�) +C�1K�11 Xa1:::am ZXa1:::am Lkg(y)d�(y)+r0(1� C�1K�11 Xa1:::am ZXa1:::am g(x)d�(y))):Then we see that 9�(m) < 1 and �(m; k) > 0 (for su�ciently large m)Lm+kf�log pg(x) � Lmf�logpg(x)(�(m)r0 + �(m; k)):Replacing Lm+kg(x) � r0Lm(x) by R0Lmg(x) � Lm+kg(x) a similar argumentallows us to have �(m; k) > 0 such thatLm+kf�logpg(x) < Lmf�log pg(x)(�(m)R0 + �(m; k)):Put r1 = �(m)r0 + �(m; k); R1 = �(m)R0 + �(m; k): Then we haver1Lmf�log pg(x) < Lm+kf�logpg(x) < R1Lmf�log pg(x):Inductively we have two sequences:rn = �(m)rn�1 + �(m; k); Rn = �(m)Rn�1 + �(m; k)and we can show thatlimn!1 rn = �(m; k)1� �(m) = 
(m; k) + O( 1Xi=m�(i)�);where 
(m; k) = Pa1:::am RXa1:::am Lkf�logpg(y)d�(y)Pa1:::am RXa1:::am g(y)d�(y) ;7



limn!1Rn = �(m; k)1� �(m; k) = 
(m; k) +O( 1Xi=m �(i)�)and ( limn!1 rn)Lmf�log pg(x) < Lm+kf�logpg(x) < ( limn!1Rn)Lmf�log pg(x):Integrating the inequalityjLm+kg(x)� 
(m; k)Lmg(x)j � O( 1Xi=m�(i)�)gives j
(m; k) � 1j � O(P1i=m �(i)�): Finally we havejLm+kf�logpg(x)� Lmf�log pg(x)j� jLm+kg(x) � 
(m; k)Lmg(x)j+ j
(m; k) � 1jjLmg(x)j � O( 1Xi=m �(i)�)2:Proof of Corollary 3.1. Since we have C � exp(P1i=0 vari(f)) � 1 suchthat d(�TnjXa1:::an )d(�jXa1:::an ) (x)d(�TnjXa1:::an )d(�jXa1:::an ) (y) < C;we can easily see the Gibbs property of �2.Theorem 3.2 Suppose that all conditions in Theorem 3.1 are satis�ed. Assumefurther that (C � 5) 1Xk=1k( 1Xi=k �(i)�) <1:Then the central limit theorem holds for a bounded function g satisfying (C-2).Proof. We can apply Proposition 5.2 in [19]. 2:4 Examples{ Maps admitting indi�erent peri-odic pointsExample 1 (A one-parameter family of maps on the interval [0,1])For 0 < � < 1; de�ne T�(x) = x(1�x�)1=� on [0; (1=2)1=�) and T�(x) =x(1=2)1=��1+ 11�(1=2)1=� on [(1=2)1=�; 1]: T� admits an indi�erent �xed point0: Since �(i) = i�1=� ; for a potential f satisfying (C-2) with � > �; we canapply Theorem 3.1 and Corollary 3.1. If � > 3� CLT holds. (Cf.[13-20].)8



The next two examples satisfy �(i) = i�1: For a potential f satisfying (C-2)with � > 1; we can apply Theorem 3.1 and Corollary 3.1. If � > 3; then CLTholds.Example 2 (Brun's map) Let X = f(x1; x2) 2 R2 : 0 � x2 � x1 � 1g andfor i = 0; 1; 2; Xi = f(x1; x2) 2 X : xi + x1 � 1 � xi+1 + x1g; wherewe put x0 = 1 and x3 = 0: T is de�ned by T (x1; x2) = ( x11�x1 ; x21�x1 ) onX0; T (x1; x2) = ( 1x1 � 1; x2x1 ) on X1; T (x1; x2) = (x2x1 ; 1x1 � 1) on X2: Tadmits an indi�erent �xed point (0; 0): (Cf. [10,14,20].)Example 3 (A skew product map which is related to Diophantineapproximation in inhomogeneous linear class) Let X be f(x1; x2) 2R2 : 0 � x2 � 1;�x2 � x1 � �x2 + 1g: T is de�ned by T (x; y) = (1=x1�[(1 � x2)=x1] + [�(x2=x1)];�[�(x2=x1)] � (x2=x1)): T admits indi�erentperiodic points (1; 0) and (�1; 1) with period 2.(Cf.[13-20]).Acknowledgement. I should like to express my sincere gratitude toM.Pollicott for helpful discussions and for his kind hospitality during the au-thor's visit at the University of Manchester. It is pleasure to thank the ESIVien, where part of this work was done.References[1 ] R,Bowen, Equilibrium states and the ergodic theory of Anosov di�eo-morphsms, Lecture Notes in Mathematics , 470, Springer Berlin, 1975.[2 ] N.I.Chernov, Limit theorems and Markov approximations for chaotic dy-namical systems, Prob.Theor.Relat. Fields, 101, 321-362.[3 ] N.I.Chernov, Markov approximations and Decay of correlaitons for Anosov
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