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Abstract

Polynomial decay of correlations typically happens for intermittent
maps with respect to Gibbs measures associated to (piecewise) Holder
continuous potentials with exponent greater than 1.

1 Introduction

In this paper, we shall consider the decay of correlations for piecewise C''-maps
admitting indifferent periodic points (intermittent maps) with respect to Gibbs
measures assoclated to piecewise Holder continuous potentials. For hyperbolic
systems there exists a unique equilibrium state p for a Holder continuous func-
tion f which is a Gibbs measure. Then (auto)correlations of Holder continuous
functions g with respect to p,

Cyg(n) = I/X(gT”)gdﬂ—(/X gdp)?|

decay exponentially fast and the limitting behaviour of E?:_Ol gT" obeys the
normal distribution ([1]). On the other hand, the classical Thermodynamic For-
malism easily fails in nonhyperbolic situation, e.g., the papers [14-20] discussed
different phenomena from statistical point of view for intermittent systems. We
shall be interested in the following problem.

Question When does the dynamical system (7, ) have a large class of func-
tions in which we have polynomial decay of correlations 7

We will give a partial answer to this question in multi-dimensional situation.
There are a few results describing polynomial decay of correlations for one-
dimensional intermittent maps. Papers [6] and [7] contain results establishing



polynomial bounds on correlations for a large class of functions with respect
to an absolutely continuous invariant measure. Since the existence of indiffer-
ent fixed points causes the failure of bounded distortion, the measures are not
Gibbs. On the other hand, the paper [8] discussed slow decay of correlations
with respect to the Gibbs measure for subshift of finite type, where functions
of summable variations were considered instead of Holder continuous functions.
In section 2, we collect previous results and some observations for potentials of
summable variations. In section 3, we show the convergence to Gibbs measures
for piecewise invertible maps 7' defined on a subset of a compact metric space
assoclated to piecewise Holder continuous functions and we establish bounds on
correlations with respect to the Gibbs measure for piecewise Holder continuous
functions. The bounds that we obtain are expressed by sizes of cylinders (see
Theorem 3.1) which typically decays polynomially fast for maps admitting in-
different fixed points. In section 4, we apply our theorems to such intermittent
maps so that we have a large class of functions in which we have polynomial
decay of correlations with respect to Gibbs measures associated to Holder con-
tinuous functions with exponent greater than 1.

2 Preliminaries.

Let (X, d) be a bounded metric space, F be the g-algebra of Borel subsets of X
and @ = {X, }aer be a digjoint partition of X with X, € F(Va € T). We assume
that there exists a compact metric space X D X such that Xo = [J,¢;int X,
is an open dense subset of X. Let 7' : X — X be a piecewise invertible map
with finite range structure, i.e., ) is a generating partition, T|x, : Xq — TX,
is a homeomorphism (Va € T) and U = {T"(int X4, a,) : VX4, a,,Yn > 0}
consists of finitely many open subsets of X. We call the quadraple (T, X, Q,U)
a picewise invertible system with finite range structure([13-15]). We denote the
local inverse (T'|x,)™" by ¢q and (T"|x,, .. )~" by ¥a,. a,. For a function f,
we define the Perron Frobenius operator £ by

Lrg(z)= > exp f(y)g(y).

yeT -1z

We suppose that there is a positive number p and a Borel probability measure
v supported on X satisfying the equation, E;ZV = pv. Sufficient conditions for
finite to one Markov maps to admit such v and p were established in [4]. For
infinite to one Bernoulli maps(i.e., TX, = X,¥X, € Q), the following conditions
were obtained in [20](cf. [12],[9]).

(C-1) 30 < L, < oo such that d(¢qx, dipgy) < Led(z,y)(Va € I) and 30 € R

such that 3 ., L% < oo.

(C-2) 30 < Ly < oo such that |f(2) = J(5)] < Lyd(z,1)" (Yo, y € X, € Q).



(C-3) 30 < K < oo such that Ly1(x) =3 ., exp f(Yaz) < K(Vr € Xo).

Definition For a function f and for & > 1 we define

varg(f) = sup  sup  {[f(x) - f(y)[}.

Xay..ap T,Y€Xa). . .ay

Definition A fixed point z¢ is said to be indifferent with respect to fif f(xo) =
log p. A periodic point zy with period ¢ is said to be indifferent with respect

to fif 1/¢ 321 f(T" o) = logp.

Remark A. When T is piecewise C'l-invertible, v is the Lebesgue measure and
J = —log|det DT, the above definition coincides with the usual one of
the indifferent periodic point(cf. [14]).

The next result gives a relation between summable variations and the exis-
tence of indifferent periodic points.

Proposition 2.1 Suppose that [ satisfies the summable variation i.e.,
> ey varg(f) < co. Then there is no indifferent periodic points with respect to

I~ (CL[14,15)).

Remark B. If there is an indifferent fixed point with respect to f, then supy f >
logp. Since d(vT|x,)/d(v|x,) = exp(logp — f), the property logp >
supy f which gives SpreX(Z?:_ol fTi(z) — nlogp) < 0(Vn > 0) just
implies the expanding property (in case when f = —log|det DT| and v is
the Lebesgue measure.cf.[4,5]).

Proof of Proposition 2.1. Let g be an indifferent fixed point with respect
to f and let Xg4, 4, be a cylinder containing . Then we see that

n—1 n—1 n—1 .
: ; exp(YIS) ST (z) — nlogp)
sup  exp(» [T ()= fT'(y)) = sup i=t '
TYEXay . an iZ:; ZZ:; TYEXay. . an eXp(Zizol fTZ(y) — n]ogp)
exp(nf(zg) —nlogp)
Toinfyex,, ., eXP(Z?Z_Ol FT(y) —nlogp)
1 1

> _ |
Z anXa1~~.an GXP(Z?:_Ol fri— nlogp)(Ya,. a,y)dv(y) V(Xa ) — oo(n — 00)

On the other hand, if f is of summable variation, we have a finite bound of LHS.

This 1s a contradiction. O.
Let V denote the finite disjoint partition generated by &. Define for z,z’ €
Vev,

n—1

Cr, )y =sup  sup S (F(Tay a,2) = F(T a,_a,')).

N (ar...an)€EA, i—0



Next result allows us to establish the existence of a Gibbs measure assocliated
to potentials of summable variation for symbolic systems.

Proposition 2.2 Let f be a potential of summable variation. Suppose that
{ Xy b his0 = {2} as 1 — oo, Let {al, }nso be a sequence of points in X such
that =}, € X, 5,¥n > 0. Then C¢(x,2,) — 0 asn — 0.

Proof. It is easy to see that for x, 2’ € V € V,Ct(¥a,. . .an® Yay. ax®’) <
Yo var(f). This completes the proof. O.

Let (X, o) be the symbolic dynamics of T with respect to the generationg par-
tition @ and p : ¥ — X be the factor map. ; From Proposition 2.2 a o- invariant
measure which is Gibbs for the function f o p is obtained by applying P.Walter’s
method in ([12]) . For the existence of a T-invariant Gibbs measure (absolutely
continuous with respect to v), summable variation of f is not sufficient. In fact,
even if f has summable variation, we do not know for z, 2’ € V € V belonging
to different cylinders ( i.e., 2 € X,,2' € Xp,a # b ) whether C¢(z,2') - 0 as
d(z,z') — 0.

In the rest of this section, we remark that for the symbolic system (X, o)
Prospositons 3.3 and Theorem 3.2 in [16] which were obtained by Markov ap-
proximations method developed in [2-3] allow us to have polynomial bounds on
correlations with respect to the Gibbs measure for potentials of summable vari-
ations immediately and the bounds are the same as those which were obtained
by M.Pollicott in [8]. More precisely, let h = du/dv. i;(k) denotes z} .. z? and
Xio(k)...i;(k) denotes the cylinder of rank (k +1— 1), X; () N T_lXil(k) n...N
T_(l_l)Xil(k). (See Remark C in [16]). In order to apply Proposition 3.3 and
Theorem 3.2 in [16], we need to bound the following quantities.

=1 i i
(a) SupxnyXzD(k).,.zl(k) eXp ZZ:O(fT (l‘) - fT (y))’
(b) Supl‘,yEX,D(k).H”(k) h(x)/h(y)’
(C) Supx,yEX,D(k)m,l(k) th($)/th(y)

If f is of summable variation, then

oQ

(a) <exp( Y wvary(f)).

j=k+1
Since for z,y € X4, 4,

oQ

h(x)/h(y) < exp(Y var;(f)),

j=n

both (b),(c) are bounded by exp(z;x;k var;(f)). Consequently the errors aris-
ing from Markovian approximations, As(k) which was given in Proposition



3.3 ([16]) can be bounded by O(Z -, var;(f)). Since the term related to the

Doblin condition, (1 — s/2)[*/™ in Theorem 3.2 ([16]) is stretched exponential,
if var;(f) = O(j=")(r0 > 1) then for n > k(n), Ct t(n) < O(k(n)~"%+!). Taking
the second parameter k(n) = n'=¢(e > 0) gives

Oy 5 (n) < O(nA= D) = Q(p=ré+t+elro=1)y
In particular, for = 1,

Cr.g(n) <O~ U= (ve > 0).

3 Main results

For the original intermittent map 7', we shall establish the convergence of
{Ef logpl} to a density of the Gibbs measure with respect to v, which allows
us to have a nice property of the limit point.

Theorem 3.1 (Main Theorem.) Let (T, X,Q,U) be a piecewise invertible
systems satisfying Bernoulli condition(i.e., TX, = X for Ya € I). Suppose
that (C-1,2,3) are satisfied. Assume further that (C-4) El 1 0'( )¢ < co. Then
[ is of summable variation and i wvar;(f) < Ly ey 0(i)?. For a bounded
funetion g ( with respect to v) satisfying (C-2), we have that for m > 1,k > 1

oQ

L7659 = LT 10559100 < O (0(i))")

i=m

and we have a bounded function h > 0 satisfying

1€ 10000 </ gd)hl| < O(Y o)

and
(o)

h(z) = h(m)] <> (i) (Yo, ¥ € Xay. 0, ¥ Xay o an )

i=m

Corollary 3.1 Let u = hv. Then p is a T-invariant Gibbs measure satisfying

w =1 [ Tgdn = (gl < Y (el

Lemma 3.1 Suppose that (C-2,4) are satisfied. Then f is a potential of summable
variation and {Ef logpl} 1s uniformly bounded. Further we have for a bounded
funetion g satisfying (C-2)

oQ

|‘C’T—logpg(1/)bl...bkx) - ‘CT—Iogpg(,l/)blmbkyH S exp(z varl(f))O(Lf Z 0(1)9))

i=0



Proof of Lemma 3.1 The first assertion is immediate from the definition
of var;(f). Note that

m—1 oo
! XD (e a) »
I s S T PR

( The property is just the Renyi condition when f = —log |det DT|). Then the
second assertion easily follows from the conformality of v. Similarly the last
assertion is obtained by (1) and the following inequalities.

|‘Crfn—logpg(1/)bl...bk $) - ‘Crfn—]ogpg(’l/)bl...bky”

m

—1 m—1
Z P exp(Y | f(Waiambr 5 ) 1=exp(D (F(Yas anbr 6x8) = f(Yas anbr. x9))]
=0 1=0
m

-1
+ Z p~ " exp( F(Way ambr 0.¥)Lgd(ay apbr. bx @ Car. ambr. by ¥).0.
=0
PI‘OOf of Theorem 3.1. We can prove the theorem along the line of the
Proof in [11]. Tt follows from Lemma 3.1 that 30 < K; < oo satisfying K ' <
L ogpyg < K1(Vm > 0). Then for Vk > 1,Vm > 0, we have that

[(fzﬁT—logpg( ) [’m logpg( ) < [(fﬁT—logpg(x)'

We put K7 = rg, K} = Ry, and C' = exp(Y ;e vari(f)). Since (2):

[’l;‘-l—logpg( ) ro[’?l—logpg(x) C_l Z /X ([’lj‘—logpg(y) —rog(y))dy(y)

ay...0m ap..-am
m—1 )
Z ‘Cl;—logpg(1/)a1~~~amx) exp( Z fTZ (1/)a1~~amx))p_m
a1...0m =0

m—1

—To Z exp Z fTZ 1/)(11~~~amx))p_mg(1/)a1...am$)

(X [ Ea) = i,

Xay.am

the conformality of v allows us to have a lower bound of (2):

Sy / (€ t0gp9 (Yar..can ) = L] 10gp9 () dv(8)

Ly ¥ /X (9(ar.—a ) — 9(1))dv ().



Then 1t follows from Lemma 3.1 that

[’l;‘-l—logpg( ) ro[’?l—logpg(x) C_l Z /X ([’lj‘—logpg(y) —rog(y))dy(y)

> 0_1(—0(2 o(i)") = Lyo(m)”)

Consequently, we have the lower bound C~'O(> ;2 o(i)?) and that

LM g(x) = (L7 g(x) — roLFg(x)) + roLTg(x)

ZO’ —|—C'_ Z / z)—rog(x))dv(z) + ro L g(x)

a1...Gm Xay.am

=L"g(x)(=C KTO( Z o())?) + CT'KT Z / (y)dv(y)

a1...Gm Xay.am

+ro(l = CT R Z/ v(y))).

a1...am Xay.am

Then we see that Ja(m) < 1 and g(m, k) >0 (for sufficiently large m)
[’T logpg( ) > ‘CT—logpg(x)(a(m)ro + B(ma k))

Replacing £L™*g(z) — ro L™ (2) by RoL™g(z) — LM% g(x) a similar argument
allows us to have d(m, k) > 0 such that

[’m logpg( ) < ‘CT—logpg(x)(a(m)RO + 6(777,, k))
Put 1 = a(m)re + 8(m, k), By = a(m)Ro + d(m, k). Then we have

rl[’?l—logpg( ) [’m logpg( ) < Rl[’?l—logpg(x)'

Inductively we have two sequences:
rn = a(m)rp_1 + B(m, k), Ry = a(m)Rp_1 + 6(m, k)

and we can show that

, _ Bmk) -
where .
( ]{7) Zal...am fXal...am ‘Cf—logpg(y)dy(y)
y\m, R) =
Yaran Ix0, o, IOV (Y)

aj...am



. _ Blm.k) s 6
nl;n;oRn—m y(m, k’)-l'O(ZU())

and
( lim r”)ﬁf logpg( ) < [’?H—ligpg( ) (nlggo R”)ﬁT—logpg($)'

n—od

Integrating the inequality
£ g(2) = 3(m )7 g (0)] < O(Y (1))
gives |[y(m, k) — 1| < O(> ;2 o(i)?). Finally we have
LT e p0() = L7105 ()]

<L HEg(x) = y(m, k)L™ g ()| + [y(m, k) = 1[€7g()] < O(Y_ o(i)")D.

Mg

i

Proof of Corollary 3.1. Since we have C' = exp(}_ ;- var;(f)) > 1 such
that

1l
3

AT xa,a)
Ty (@)

T T xe, o)
T3 W)

< C,

we can easily see the Gibbs property of pO.

Theorem 3.2 Suppose that all conditions in Theorem 3.1 are satisfied. Assume

further that
—5)> k Z o
k: 1 :

Then the central limit theorem holds for a bounded function g satisfying (C-2).

Proof. We can apply Proposition 5.2 in [19]. O

4 Examples— Maps admitting indifferent peri-
odic points

Example 1 (A one-parameter family of maps on the interval [0,1])

For 0 < f < 1, define Ts(z) = W on [0, (1/2)"/#) and Tj(z) =

(1/2)f/ﬂ_1 + 1_(1/12)1/ﬂ on [(1/2)*7 1]. T5 admits an indifferent fixed point
0. Since o'(i) = i~'/?  for a potential f satisfying (C-2) with § > 3, we can
apply Theorem 3.1 and Corollary 3.1. If ¢ > 33 CLT holds. (Cf.[13-20].)




The next two examples satisfy o(i) = i~!. For a potential f satisfying (C-2)
with # > 1, we can apply Theorem 3.1 and Corollary 3.1. If § > 3, then CLT
holds.

Example 2 (Brun’s map) Let X = {(z1,22) € R? : 0 < 25 < 21 < 1} and
for i = 0,1,2,X; = {(x1,22) € X :2;+ 21 > 1 > xi41 + 21}, where
we put g = 1 and #3 = 0. T is defined by T'(z1,22) = (72 £2_) on

l—zy’ 1—2,

Xo, T(z1,22) = (L —1,22) on X, T(21,22) = (22, L — 1) on X5. T

z1 P @y 1) @

admits an indifferent fixed point (0, 0). (Cf. [10,14,20].)

Example 3 (A skew product map which is related to Diophantine
approximation in inhomogeneous linear class) Let X be {(z1,z2) €
R?:0<2y<1,—23 <2y < —x9+1}. T is defined by T(z,y) = (1/x1 —
[(1 = z2)/e1] + [ (22/x1)], = [~ (x2/21)] — (z2/21)). T admits indifferent
periodic points (1,0) and (—1,1) with period 2.(Cf.[13-20]).
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