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ABSTRACT. A generalization of the Hamiltonian formalism is studied and the sym-
metry of the Lyapunov spectrum established for the resulting systems. The formalism
is applied to the Gausssian isokinetic dynamics of interacting particles with hard core
collisions and other systems.

§0. Introduction.

We study the symmetry of the Lyapunov spectrum in systems more general than
Hamiltonian but closely related to the symplectic formalism. We call these systems
conformally Hamiltonian. They are determined by a non-degenerate 2-form © on
the phase space and a function H, called again a Hamiltonian. The form © is not
assumed to be closed but it satisfies the following basic condition d© = v A O, for
some closed 1-form ~. This condition guarantees that, at least locally, the form ©
can be multiplied by a nonzero function to give a bona fide symplectic structure.
The skew-orthogonality of tangent vectors is preserved under multiplication of the
form by any nonzero function, hence the name conformally symplectic structure.
These ideas were known to geometers for a long time, see for example the paper of
Vaisman [V].

The conformally Hamiltonian (with respect to the form ©) vector field Vg H is
defined by the usual relation

O (-, VoH) = dH(-).

The Hamiltonian function H is again a first integral of the system. In Section 2 we
prove that for any conformally Hamiltonian system restricted to a smooth level set
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of the Hamiltonian the Lyapunov spectrum is symmetric, with symmetric exponents
adding up to a constant. More precisely the direction of the flow has to be factored
out. In Section 3 we extend this formalism to flows with collisions.

In Section 1 we give an independent proof of the fact that for any conformally
symplectic cocycle we have the symmetry of the Lyapunov spectrum. The first
proof of this fact in the symplectic case goes back to Benettin et al. [B-G-G-S]. Our
proof is based on an alternative description of Lyapunov exponents and it borrows
an idea from [W1] (Lemma 1.2).

In Section 4 we present examples which were recently the subject of several pa-
pers. We show that the Gaussian isokinetic dynamics can be viewed as a conformally
Hamiltonian system, by which we immediately recover the results of Dettmann and
Morriss [D-M 1], [D-M 2], on the symmetry of the Lyapunov spectrum and the
Hamiltonian character of the dynamics. We extend these results to systems with
collisions, taking advantage of the fact that our formalism works equally well for
collisions as it does for flows. Such systems were studied in the paper by Del-
lago, Posch and Hoover, [D-P-H], and the symmetry of the Lyapunov spectra was
demonstrated numerically. Chernov et al, [Ch-E-L-S] studied rigorously the Lorentz
gas of periodic scatterers with an electric external field in dimension 2. Latz, van
Beijeren and Dorfman, [L-B-D], considered thermostated random Lorentz gas in 3-
dimensions and found the symmetry there. Let us note that we prove the symmetry
of the Lyapunov spectrum for any invariant (ergodic) measure and not only for the
SRB measure, which is the easiest to access numerically.

We also show that the Gaussian isokinetic dynamics on a Riemannian manifold
can be given the same treatment.

The last application is to Nosé-Hoover dynamics. We show that the Hoover
equations can be naturally viewed as a conformally Hamiltonian system, thus giving
another proof of the symmetry of Lyapunov spectra for this system. It was originally
proven by Dettmann and Morriss, [D-M 3].

Finally let us note that our approach is one of several possible. Recently Choquard,
[Ch], showed that the isokinetic and Nosé-Hoover dynamics can be considered as La-
grangian systems. Even in the conformally symplectic framework one can keep the
Hamiltonian unchanged and modify the form O, or keep the form unchanged and
modify the Hamiltonian, or keep both the form and the Hamiltonian unchanged,
but change time on a level set of the Hamiltonian. We elaborate on that in Remark
2.1. We believe that our approach sheds new light on these issues.

§1. Conformally symplectic group.

Let w =Y i, dp; A dg; be the standard linear symplectic form in R™ x R™.

Proposition 1.1. For an invertible linear mapping S acting on R?*™ = R" x R"
the following are equivalent

(a) w(Su,Sv) = pw(u,v) for some scalar [ and all wu,v € R*™
(b) w(Su,Sv)=0 if and only of  w(u,v) =0,

i.e., S preserves skew-orthogonality of vectors;
(¢) S takes Lagrangian subspaces of R?*™ into Lagrangian subspaces.
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Proof. 1t is apparent that (a) implies (b) and that (b) is equivalent to (¢). It remains
to prove that (¢) implies (a). By composing S with an appropriate linear symplectic
map we can assume without loss of generality that S preserves the Lagrangian
subspaces R™ x {0} and {0} x R™, i.e., S is block diagonal. Moreover, again by
multiplying by an appropriate linear symplectic map, we can assume that S is equal
to identity on R™ x {0}. By (b) we conclude that S is diagonal on {0} x R™. A
simple calculation shows that to satisfy (b) this diagonal matrix must be a multiple
of identity, which gives us (a). O

We will call a linear map from GL(R?") conformally symplectic if it satisfies one
of the properties in the Proposition 1.1. The group of all conformally symplectic

maps will be denoted by C'Sp(R*").

Let X be a measurable space with probabilistic measure ¢ and let 7' : X — X
be an ergodic map. Let further A : X — GL(R?") be a measurable map such that

(1.1) [ Tog 1A dute) < +ox.
We define the matrix valued cocycle
A™(z) = A(T™ ta). .. A().

By the Oseledets Multiplicative Ergodic Theorem, [O], which in this generality was
first proven by Ruelle, [R], there are numbers \; < .-+ < A, called the Lyapunov
exponents of the measurable cocycle A(x), @ € X, and for almost all « a flag of
subspaces

{0} =VoC Vi(z) C-+- CVyq(z) CV,=R™,
such that for all vectors v € V() \ Vi_1(x)

1
lim —log||[A™ (z)v]| := AMv) = M.

m—+oco m

In addition, denoting by dj the difference between the dimensions of Vi and Vi_1
(dg is called the multiplicity of the k-th Lyapunov exponent), the following holds:

(1.2) de/\k:/Xlog|det(A(:1;))|d/,L(:1;),

i.e., the sum of all Lyapunov exponents is equal to the average exponential rate of
volume growth.

Given a measurable cocycle A(x), @ € X, satisfying (1.1) and with values in the
conformally symplectic group C'Sp(R?") we obtain a measurable function 3 = 3(x)
such that

(L.3) w(Alw)u, Ala)o) = Bl )o(u,v),

for all vectors u,v € R?™. Let us define

(1.4) bim [ tog|3ta)lduo)
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Lemma 1.1. If a measurable cocycle A(x), © € X, satisfies (1.1) and it has values
in the conformally symplectic group CSp(R*"), then

28: dp A = nb.
k=1

Proof. Since w™ is the volume form it follows from (1.3) that the determinant of
A(x) is
det A(x) = B(x)".

The lemma follows by applying (1.2). O

Lemma 1.2. Given a measurable cocycle A(x), x € X, satisfying (1.1) and with
values in the conformally symplectic group CSp(R*"), for each two non skew-
orthogonal vectors u,v € R*", i.e., w(u,v) # 0, we have

Au) + Av) > b

Proof. For the standard Euclidean norm || - || we have |w(u,v)| < ||u|[||v]|.
From (1.3) we obtain

W(A™ (2)u, A™ (2)v) = w(u,v) H@(Tix).
Therefore,
log [w(A™ (2)u, A™ (2)v)| = log [w(u,v)[ + Y log|B(T )],

=0

and
mogw x)u, z)v mog z)u —I—mog z)vl|.

Putting these relations together and using the Birkhoff Ergodic Theorem we con-
clude that

b= [ tog|3la)ldu(a) < M) + )
O

The following Lemma is obvious. We formulate it to streamline the proof of
Theorem 1.4 where it is used twice.

For a linear subspace X C R?" we denote by X4 the skew-orthogonal complement
of X, i.e, X4 C R?" is the linear subspace containing all vectors v such that
w(u, v) =0 for all v € X. Since w is assumed to be nondegenerate we have

dimX +dimX“=2n and (X“)°=X.
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Lemma 1.3. Let U,V C R?*"™ be two linear subspaces. If w(u, v) =0 for allu € U
and v €'V, then

UcVs, VcU? and dimU+dimV <2n.

4

Theorem 1.4. If a measurable cocycle A(x), v € X, satisfies (1.1) and it has
values in the conformally symplectic group CSp(R*™) then we have the following
symmetry of the Lyapunov spectrum:

Ak + As—kg1 = b,

where b is given by (1.4), and the multiplicities of A\p and As_py1 are equal, for
kE=1,2,...,s. Moreover the subspace V,_y 1s the skew-orthogonal complement of

V.

Proof. Let 11 < pg < --- < g, be the Lyapunov exponents taken with repetitions
according to their multiplicities. By Lemma 1.1 pq 4+ po + - - - + o, = nb.
We can choose a flag of subspaces

{0} =Wy CW; (l‘) C-- CWop g (l‘) Wy, = Rzn,

such that dim W; = [ and for all vectors v € W;(x)\W;_; (z) the Lyapunov exponent
Av) = pyg, for 1 = 1,2,...,2n. (Note that except in the case of all multiplicities
equal to 1 there is a continuum of such flags.)

Since for any [ < n, dim W; + dim W3, ;41 = 2n + 1, by Lemma 1.3 there are
vectors u € W; and v € Way,, ;41 such that w(u,v) # 0. By continuity there must
be also vectors « € W; \ W;_; and © € Wy,,_y11 \ Wa,,—; such that w(a, 0) # 0. It

follows from Lemma 1.2 that

t + fon—i41 > b,

for { =1,2,...,n. Adding these inequalities together, we get

7

nb = Z(Ml + pton—i41) > nb,

=1

which shows that all the inequalities must be actually equalities. It follows imme-
diately that for any &k = 1,...,s, the multiplicities of A\ and A\s_g41 are equal and
A+ As—k41 =D.

To show that the subspace V,_j is the skew-orthogonal complement of the sub-
space V we observe that w(u, v) =0 for any u € Vi and v € V,_j. Indeed, if this
is not the case we could use Lemma 1.2 to claim that A\; + As_p > b, which leads
to the contradiction

b= A+ As—kg1 > A+ A5 > b

We can now apply Lemma 1.3 and we obtain V,_; C V{. Since the dimensions of
these subspaces are equal we must have V,_; =V;. O
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§2. Conformally symplectic manifolds and conformal Hamiltonian flows.

Let M be a smooth manifold of even dimension. A conformally symplectic struc-
ture on M 1is a differentiable 2-form © which is non-degenerate and has the following
basic property

(2.1) dO =~ A O,

for some closed 1-form . A manifold with such a form © is called conformally
symplectic. The origin of this name becomes clear when one observes that locally
~ = dU for some smooth function U and

de"0) =0,

i.e. e7Y0 defines a bona fide symplectic structure.
For a given function H : M — R, called a Hamiltonian, let us consider a vector

field Vg H defined by the usual relation
(2.2) O(-, VeH)=dH.

We will call it the conformally Hamiltonian vector field, or conformally symplectic,
or simply a Hamiltonian vector field when the conformally symplectic structure is
clearly chosen. Note that our definition does not coincide with the definition of a
Hamiltonian vector field from [V].

Let ®' denote the flow defined by the vector field F = VgH. The Hamiltonian

function H is a first integral of the system. Indeed we have

d
ZH=dH(VeH)=0(VoH, VoH) =0.

Let us consider the Lie derivative of the form © in the direction of vector field

F ie.,

d u u
Theorem 2.1. For a Hamiltonian vector field F = Vo H we have

(2.3) Lr® =~(F)O ++ A dH.

Proof. We will use the Cartan formula ([A-M-R])

Ly =ipd+dip,
where i is the interior and d the exterior derivative. (For a differential m-form (
the interior derivative i p( is the differential (m — 1)-form obtained by substituting

F' as the first vector argument of (.) We have ip© = —dH and we get immediately

Lp® =1pd0O —d*H = iF(’}/AG) = ’7(F)®—|—’7/\dH.
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O
Let us restrict the flow ®! to one smooth level set of the Hamiltonian, M¢ =
{z € M|H(z) = ¢}. In particular we assume that on M¢ the differential dH and
the vector field F' do not vanish. For two vectors £, n from the tangent space T, M€,
we introduce

w(t) = O(D.®'¢, D.®").

By (23) we get
4t = A(F@ =)t

since dH vanishes on the tangent space T, M°. We conclude that
(2:4) O(D.2'¢. D-2'n) = B(t)O(£. 1),

for every &, n, from T, M and

(2.5) B(t) = exp (/Oty(F(CD”z))du> .

Remark 2.1

Let us note that under a non-degenerate time change a conformally Hamiltonian
vector field is still conformally Hamiltonian with the same Hamiltonian function but
with respect to a modified conformally symplectic form. More precisely if F' = Vo H
is a Hamiltonian vector field, then if the new time 7 is related to the original time

t by
dr
E_fv

for some function f of the phase point, we get that the vector field %F is conformally
symplectic with respect to the form 0= fO. Indeed

- - -1
dO=(dlnf+~)AN0O and O(, ?F):dH.

Alternatively we can keep the same conformally symplectic form and modify the
Hamiltonian separately on each level set. Indeed we have

1 1

O, ~F) = ~dH = d (l

f

; H-0).

where the last equality is valid only on the level set {H = ¢}.
Finally, let us consider the symplectic form e~V @. On the level set {H = ¢} we
have

d(e_U(H —c)) = e YdH.

It follows that on this level set

e VO(, F)=d (e_U(H — c)) \
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and, as a result, the vector field F' coincides locally with the Hamiltonian vector
field given by the Hamiltonian e~V (H — ¢) (with respect to the symplectic form
¢~Y@). This observation provides an alternate way to derive (2.4) by using the
preservation of the symplectic form e~V @ by any Hamiltonian flow (with respect
to this symplectic form).

For a fixed level set M€ we introduce the quotient of the tangent bundle T M*
of M* by the vector field F' = VgH, i.e., by the one dimensional subspace spanned
by F. Let us denote the quotient bundle by TMe¢. The form O factors naturally
from TMF® to ch, in view of (2.2). The factor form defines in each of the quotient
tangent spaces TZMC, z € M°, a linear symplectic form.

The derivative of the flow preserves the vector field F, i.e.,

D.®'(F(2)) = F(3'z).

As a result the derivative can be also factored on the quotient bundle and we call
it the transversal derivative cocyle and denote it by

At(Z) : TZMC — Tq;tZMC.

It follows immediately from (2.4) that the transversal derivative cocycle is confor-
mally symplectic with respect to © (or more precisely the linear symplectic form it
defines in the quotient tangent spaces). We fix an invariant probability measure .
on M¢ and assume that

| 1D (o) < o,
Mc

Under this assumption the derivative cocycle has well defined Lyapunov exponents,
cf. [O],[R]. Then the transversal derivative cocycle has also well defined Lyapunov
exponents which coincide with the former except that one zero Lyapunov exponent
is skipped. We can immediately apply Theorem 1.4 to the transversal derivative
cocycle and we get the following.

Theorem 2.2. For a Hamiltonian flow ®!, defined by the vector field F = Vo H,
restricted to one level set M® we have the following symmetry of the Lyapunov
spectrum of the transversal derivative cocyle with respect to an invariant ergodic
probability measure p. Let

{0} CVo(z) CVi(2) - CV,q(z) CV,=T.M°

be the flag of subspaces at z associated with the Lyapunov spectrum Ay < Ay <
- < As—1 < As of the transversal derivative cocycle A'(z), = € M°. Then the
multiplicities of A\ and As_;4+1 are equal and

Me + As—pp1 =a, for k=1,2,...,s,

where a = ch Y(F(2))dpc(z). Moreover the subspace V_y is the skew-orthogonal
complement of the subspace V.

4
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Note that the invariant measure p,. can be supported on a single periodic orbit,
so that Theorem 2.2 applies as well to the real parts of the Floquet exponents.

To apply Theorem 1.4 it is enough to have linear symplectic forms in each of the
quotient tangent spaces (to the level set), not necessarily coming from a conformally
symplectic structure on the phase space. But then one needs to check directly how
the transversal derivative cocycle acts on these forms, because we do not have the
advantage of Theorem 2.1. This is essentially the line of argument in [D-M 1] and
[D-M 3].

63. Conformally symplectic flows with collisions.

Let M be a smooth manifold with piecewise smooth boundary OM. We as-
sume that the manifold M is equipped with a conformally symplectic structure
O, as defined in Section 2. Given a smooth function H on M with non vanish-
ing differential we obtain the non vanishing conformally Hamiltonian vector field
EF =VeoH on M. The vector field F' is tangent to the level sets of the Hamiltonian
Me={z€ M|H(z) = c}.

We distinguish in the boundary OM the regular part, OM,, consisting of the
points which do not belong to more than one smooth piece of the boundary and
where the vector field F' is transversal to the boundary. The regular part of the
boundary is further split into “outgoing” part, dM_, where the vector field F points
outside the manifold M and the “incoming” part, M, , where the vector field is
directed inside the manifold. Suppose that additionally we have a piecewise smooth
mapping I' : OM_ — OM,, called the collision map. We assume that the mapping
I' preserves the Hamiltonian, H o' = H, and so it can be restricted to each level
set of the Hamiltonian.

We assume that all the integral curves of the vector field F' that end (or begin)
in the singular part of the boundary lie in a codimension 1 submanifold of M.

We can now define a flow ¥ : M — M, called a flow with collisions, which is
a concatenation of the continuous time dynamics ®! given by the vector field F,
and the collision map I'. More precisely a trajectory of the flow with collisions,
Ul(z), * € M, coincides with the trajectory of the flow ®' until it gets to the
boundary of M at time t.(x), the collision time. If the point on the boundary lies
in the singular part then the flow is not defined for times t > t.(x) (the trajectory
“dies” there). Otherwise the trajectory is continued at the point I'(¥’ez) until the
next collision time, i.e., for 0 <t <t (T(\I/tc(x)xD

Pletty — ITTley,

We define a flow with collisions to be conformally symplectic, if for the collision
map I restricted to any level set M€ of the Hamiltonian we have

(3.1) I*0 = 30,

for some non vanishing function [ defined on the boundary. More explicitly we
assume that for every vectors ¢ and n from the tangent space T.0M € to the boundary
of the level set M*° we have

O(D.T¢, D.Ty) = BO(E, 7).
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We restrict the flow with collisions to one level set M€ of the Hamiltonian and we
denote the resulting flow by W!. This flow is very likely to be badly discontinuous
but we can expect that for a fixed time ¢ the mapping ¥% is piecewise smooth, so
that the derivative D! is well defined except for a finite union of codimension one
submanifolds of M. We will consider only such cases. We choose an invariant
measure in our system which satisfies the condition that all the trajectories that
begin (or end) in the singular part of the boundary have measure zero. Usually
there are many natural invariant measures satisfying this property. For instance we
get one by taking a Lebesgue measure v in M and averaging it over increasing time
intervals (% fOT \Iﬂé*l/dt as T — +00). Let us denote the chosen invariant measure
by pie. This measure . defines the measure . on the boundary M€, which is
an invariant measure for the section of the flow (Poincaré map of the flow). With
respect to the measure p, the flow ¥ is a measurable flow in the sense of the Ergodic
Theory and we obtain a measurable derivative cocycle DW! : T, M¢ — Tye Me.
We can define Lyapunov exponents of the flow W% with respect to the measure .,
if we assume that

/ log, || D, Ul||dpe(z) < +oo  and / log, ||DyT||dpes(y) < +o0
Me aMe

(£ [O],[R]).

The derivative of the flow with collisions can be also naturally factored onto the
quotient of the tangent bundle TM€ of M*¢ by the vector field F', which we denote
by TMe. Note that for a point z € OM¢ the tangent to the boundary at z can be
naturally identified with the quotient space.

We will again denote the factor of the derivative cocycle by

Al(x) - T.M¢ — Tq/gxMc.
We will call it the transversal derivative cocycle. If the derivative cocycle has well
defined Lyapunov exponents then the transversal derivative cocycle has also well
defined Lyapunov exponents which coincide with the former ones except that one
zero Lyapunov exponent is skipped.
For a conformally symplectic flow with collisions the factor A?(z) of the derivative

cocycle on one level set changes the form © by a scalar, (2.3) and (3.1), so that we
can immediately apply Theorem 1.4 and we get

Theorem 3.1. For a conformally symplectic flow with collisions V! we have the fol-
lowing symmetry of the Lyapunov exponents for a given ergodic invariant probability
measure p.. Let {0} C Vo CV, C...V,y CV,= TxMc be the flag of subspaces
at © associated with the Lyapunov spectrum Ai(x) < Az(x) < -+ < As—1(x) < As(x)
of the transversal derivative cocycle A'(z), x € M. Then the multiplicities of A\
and As—_py1 are equal and

Mo+ As—pp1=a+0b, for E=1,2,.... s,
where a = [y 4(F)dpe and =1 [0, 10g |8\ dnes(y)- 7= Jorse tely)dpa(y) is

the average collision time on the section of the flow. Moreover the subspace V4 _y
18 the skew-orthogonal complement to V.
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64. Applications.

A. Gaussian isokinetic dynamics.
The equations of the system are (cf. [D-M 1])

q=mn,
(4.1) (E,p)

(p,p)

p=FE —ap, where o=

In these equations ¢ describes a point in the multidimensional configuration space
RY, p is the momentum (velocity) also in RY and (-,-) is the arithmetic scalar
product in RY. The field of force E = E(q) is assumed to be irrotational, i.e., it
has locally a potential function U = U(q), E = —%.

Let us denote by x = Y pdq the 1-form which defines the standard symplectic
structure w = dk = > _ dp A dg. We introduce the following 2-form

(E,dq)
(p,p)

O=w-+ A K.

We choose the Hamiltonian to be H = %<p, p) and we denote the vector field defined
by (4.1) by F. We have

(4.2) o(-, F) = dH,

but the form © does not give us a conformally symplectic structure because the
relation (2.1) fails. To correct this setback we fix one level set of the Hamiltonian

Mc={H = %<p,p> = ¢} and define another 2-form

(E,dq)
2¢

N R.

®c =w+
Now we get a conformally symplectic structure. Indeed

dO., = — (E, dg) A O, and locally (E, dg) =d <i> .
2c 2c 2c

Moreover on M¢ we still have ©.(-, F') = dH so that the restriction of (4.1) to M*¢
coincides with a conformally Hamiltonian system with respect to the 2-form 0. and
with the Hamiltonian H = %<p,p>. We can immediately apply Theorem 2.1 and we
obtain that for any invariant ergodic probability measure p. on M€ the Lyapunov
exponents A\ < --- < A, satisfy

1
et i = —o [ (Eop)dn, = / ad.
C Jpafe c
Note that if the vector field of force has a global potential, E = —%, then by
the Birkhoff Ergodic Theorem the integral —5- [, .(E,p)dp. = 5= [1;. dU(F)dpc

is equal to the time average of % and so it must vanish. Another way to see it is
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that e~V 0, defines a global symplectic structure and on M, our flow is Hamiltonian
with respect to this symplectic structure and a modified Hamiltonian

H = e_U(§<p,p> —c).

Indeed as discussed in the Remark 2.1 on M°¢ we have
e V0,.(-,F) = dH.

For a Hamiltonian flow the symmetric Lyapunov exponents must add up to zero.

B. Gaussian isokinetic dynamics on a Riemannian manifold.

For a given Riemannian manifold N with the metric tensor ds* = 3 g;;dq;dg;
we can naturally generalize the form © to the cotangent bundle T*N. Indeed the
I-form k = ) pdq is independent of the coordinate system, cf. [A], and for a given
closed 1-form ~ we put

1
O, =drk — =y A K.
¢

We get dO, = —%’y/\@c. Taking v = dU for some potential function (single or multi-
valued) and the Hamiltonian H = %Eg”pipj we obtain the Gaussian isokinetic
dynamics, [Ch], on the level set H = ¢ by the relation (4.2). We can repeat the
discussion in part A and we conclude again that the Lyapunov exponents must be
symmetric and they add up to zero, if the potential U is single-valued.

C. The Gaussian isokinetic dynamics with collisions.

Let us consider n spherical particles in a finite box B contained in R¢ or the
torus T¢. We assume that the particles interact with each other by the poten-
tial Vi(q1,q2,...,qn) (qx € B, kE = 1,...,n denote the positions of the parti-
cles) and that they are subjected to the external fields given by the potentials
Vielar), B =1,...,n. Further we assume that the particles have the radii r1,..., 7y,
the masses my,...,my,, and that they collide elastically with each other and the
sides of the box, which can be flat or curved. The last element in the description
of the system is the Gaussian isokinetic thermostat. As described in part A and
B the Gaussian isokinetic thermostat gives rise to a conformally Hamiltonian flow

with the Hamiltonian H = ), _, 2]:3{ and an appropriate conformally symplectic
structure. We will check below that the collisions in this system preserve the form
O, giving rise to a conformally symplectic flow with collisions. Theorem 3.1 can be
thus applied to our system giving us the symmetry of the Lyapunov spectrum.
We introduce the canonical change of variables which bring the kinetic energy

into the standard form,
T = /Migg

Pk
/TR '

The advantage of these coordinates is that although the collision manifolds in the
configuration space become less natural, the collisions between particles (and the

Vr =
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walls of the box) are given by the billiard rule in the configuration space. The
equations of motions in the (x,v) coordinates are

T ="

(4.4) . oU

U= ——— + av,
T

where U = U(z) = V4. ;_, Vi is the total potential of the system and a = —
We introduce the differential 2-form

1
@c:Zdv/\d:p— 2—dU/\<v,d:1;>
c

As in part A we conclude that the form satisfies (2.1) and the system (4.4) restricted
to M€ coincides with the conformally Hamiltonian system defined by this form and
the Hamiltonian H = %<v, v).

Proposition 4.1. The collision maps preserve the form ©..

Proof. A collision manifold is locally given by an equation of the form ¢(z) = 0,
where ¢ is some differentiable R"? valued map. Note that the general form of the
collision map is the same for collisions of particles and the collisions with the sides
of the box. Let n(z), for € {x € R"¥g(x) = 0}, denote the unit normal vector to
the collision manifold in the configuration space. The collision map is defined as

(4.4)

where the index T corresponds to the values of # and v after the collision and the
index ~ to the values before the collision. As a result of these formulas we get
immediately that

(4.5) SaT = 6x".

It is well known, [W1],[W2], that in an elastic collision the symplectic form w is
preserved. It remains to show the preservation of the second term in O.. It follows
immediately from (4.4) and (4.5), because

(T, 62Ty = (v7,827) = 2(v ", n(x" )M n(x™),dx7),

and the last term is zero since we only take the variations (dz~,dv™) tangent to
the collision manifold, i.e., dx~ is orthogonal to n(x).
The Proposition is proven.

O
It follows from Proposition 4.1 that also the form e¢~Y©, is preserved under
collisions. Hence, as remarked in parts A and B, if the potential U is singlevalued
then the system restricted to one energy level coincides with a globally Hamiltonian
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system (with collisions) with respect to the symplectic form e~Y©. with the Hamil-
tonian function equal to H = e_U(%<p,p> — ¢). We conclude that the occurrence
of dissipation in such systems is related to the topology of the configuration space
(the multivaluedness of the potential U).

D. Nosé-Hoover dynamics
The Nosé Hamiltonian is, cf. [D-M 3]

H(qu;w,ps)zz : —I-Lp(q)—l—ES—I—Clns,

2m; 52

=1

with a non-physical time denoted by A and some constant C'. The symplectic form
is w= > dr ANdg+ dps N\ ds. Changing the variables as # = sp and ¢ = Ins the
Hamiltonian becomes

2 2
?

N
. _ p Py

and the symplectic form is w = €7 (>, dp; ANdg; + dps Ado +do A (>, pidg;)) -
Note that now in the Hamiltonian the thermostat (o, ps) is decoupled from the
system but the coupling is shifted to the symplectic form. We make finally the time
change % = €?. We choose not to change the Hamiltonian but rather to modify
the 2-form,

e "w(-, eV H)=dH.

We end up with the Hamiltonian (4.6) and the conformally symplectic structure

O=cw= Z dp; N dq; + dps AN do + do A (Z pidg; + psdo).

We have d© = do AO. Note the similarity of © with the form used in the discussion
of the isokinetic dynamics above. This form and the Hamiltonian give us the Hoover
equations

. DPi
4 =
mi
) Op
pi = _aqi — PsPi,
0 = Ps,

On any level set we can drop the equation for ¢ since o can be trivially obtained
from other variables using the constancy of the Hamiltonian.

By Theorem 2.1 we have the symmetry of the Lyapunov spectrum for this system
reduced to one level of the Hamiltonian. Moreover the Lyapunov exponents add up
to the time average ¢. This average must be zero, unless ps grows linearly, which
is unlikely. Note that the Nosé-Hoover system is open in the sense that arbitrarily
large fluctuations of ps cannot be ruled out.
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