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AEI-024January 6, 1996LATTICING QUANTUM GRAVITY 1R. LollMax-Planck-Institut f�ur GravitationsphysikSchlaatzweg 1D-14473 Potsdam, GermanyandErwin Schr�odinger InstitutBoltzmanngasse 9A-1090 Wien, AustriaAbstractI discuss some aspects of a lattice approach to canonical quantum gravity in a connectionformulation, discuss how it di�ers from the continuum construction, and compare the spectraof geometric operators { encoding information about components of the spatial metric { forsome simple lattice quantum states.1 To appear in the Proceedings of the 2nd Conference on Constrained Dynamics and Quantum Gravity,Santa Margherita, Italy, 17-21 September 1996.



1 Discretizing gravityMy contribution describes some aspects of an attempt to de�ne a quantum theory ofgravity in 3+1 dimensions, starting from a lattice discretization of spatial 3-manifolds. Thisapproach is complementary to other ones currently under study, most importantly, the Reggecalculus program and its variant, using so-called dynamical triangulations. It di�ers fromthem in at least two aspects. Firstly, its basic con�guration variables are not discretizedversions of the space- or space-time metric tensor, but of su(2)-valued connection one-forms.Secondly, in order to exploit the structural resemblance with lattice gauge �eld theory, onebest uses Hamiltonian, and not path integral methods.1.1 SettingThe classical starting point is a reformulation of Einstein gravity in terms of a phasespace variable pair (Aia(x); Eai (x)) de�ned on a continuum 3-manifold �, where a is a spatialand i = 1; 2; 3 an adjoint su(2)-index. This is a real version of the well-known su(2; C)-valuedAshtekar variables (but still describing Lorentzian, and not Euclidean gravity!). Using thereal variables, one avoids the di�culty of having to impose quantum reality conditions, butthe Hamiltonian constraint acquires a potential term which is not present in the complexformulation. This is functionally rather involved, but can probably still be handled [1].The (doubly densitized, inverse) metric tensor is a function of the momentum variables,gab = Eai Ebi.In terms of the (A;E)-variables, Einstein gravity assumes the form of a Dirac constrainedsystem, subject to a set of seven �rst-class constraints per space point, namely, three spatialdi�eomorphism, one Hamiltonian and three Gauss law constraints.In the lattice approach [2], one approximates � by a lattice �, consisting of one-dimensio-nal edges or links li meeting at vertices nj . For simplicity, � is chosen cubic, and all verticesare of valence six. The lattice analogues of the Hamiltonian variables (A;E) are a set oflink-based variables (V; p) which however are not canonical. This comes about because thelink analogue of the local algebra-valued connection A(x) is the group-valued exponentiatedintegral of A, the link holonomy VaB(l). Hence the con�guration space associated with asingle link is a copy of the compact group manifold SU(2).The wave functions of the quantum theory are the square-integrable functions on theproduct over all links of the group SU(2). The operators V̂aB(l) are represented by multipli-cation and the non-local link momenta p̂(l) can be identi�ed with the left- and right-invariant1



vector �elds on the l'th copy of the group.The kinematical structure described above is identical with the one used in Hamiltonianlattice gauge theory. This setting is also well-suited for gravity, since the part of the con-straints corresponding to internal gauge rotations is identical with those of Yang-Mills theory.One has two choices of dealing with the gauge constraints: one can either keep discretizedversions of the quantum Gauss law constraints and eventually use them to project out phys-ical, gauge-invariant wave functions, or go directly to a basis of gauge-invariant quantumstates. We will follow the latter path, but this choice is not substantial.The elementary functions spanning the gauge-invariant Hilbert subspace Hinv are thetraces of holonomies of closed lattice paths, obtained by multiplying together the correspond-ing link holonomies. An independent basis can be given in terms of so-called spin-networkstates, where one assigns unitary irreducible representations of SU(2) (i.e. half-integer spins)to links and gauge-invariant contractors to lattice vertices. However, the reader should bewarned that in explicit calculations one still has to worry about the presence of zero-normstates, that exist in the form of Mandelstam constraints. Equivalently, the choice of an in-dependent set of states involves { for �xed spin assignments { a selection of independentcontractors from the entire set at each vertex n. For each n, the spaces involved are �nite-dimensional, but their dimension grows fast for increasing spins.1.2 Lattice vs. continuum theoryThe lattice construction is in many aspects similar to the loop quantization program inthe continuum, that also uses SU(2)-valued holonomies U [A] := P exp H A or their tracesTrU [A] as the basic con�guration variables. However, in order to avoid confusion, let uspoint out the main di�erences between the two formalisms.Graph or lattice con�gurations also appear in the continuum theory as part of the spec-i�cation of a quantum state. However, to obtain the entire Hilbert space of the kinematicalquantum theory (i.e. before imposition of the Hamiltonian and di�eomorphism constraints),one has to consider states associated with all possible graphs. As a consequence, in order tospecify a quantum state completely, one needs a) a graph , b) consistent non-vanishing spinassignments to all of its edges, and c) matching gauge-invariant contractors at all non-trivialvertices of . Of course, linear combinations of such states are also possible. The Hilbertspace is, loosely speaking, the space L2(A=G) of all square-integrable functions on the spaceof gauge connections modulo gauge, which is an in�nite-dimensional space.2



By contrast, the con�guration space for lattice gravity (for a �nite lattice) is �nite-dimensional. Before considering gauge transformations, there are three degrees of freedomassociated with each lattice link (parametrizing an element of SU(2)) times the number oflinks of the lattice. Furthermore, the lattice is �xed, i.e. all states and operators are de�nedon the same lattice. (Eventually, one wants to make the lattice bigger, in order to obtain abetter approximation to the continuum theory. Still, the lattice operators never mix statesassociated with di�erent lattices.) In order to specify a quantum state on the lattice, oneneeds a) consistent spin assignments to all of its edges (vanishing spin is allowed, but doesnot imply that the underlying link \vanishes"), and b) matching gauge-invariant contractorsat all lattice vertices.A related important di�erence is that the continuum states depend on graphs imbeddedin �, whereas lattice states are based on a subset of lattice links, with the lattice � itself notthought of as imbedded in an underlying manifold, but as a discrete approximation to �. Asa result, in the continuum theory we can still de�ne an action of the group of di�eomorphismsDi�(�) on states in a straightforward way. The lattice theory does not possess enough degreesof freedom to support such an action, and the most one can hope for is to de�ne some kind of\discrete version of Di�(�)", that goes over to the usual continuum action in the limit as thelattice spacing a is taken to zero. This is a non-trivial issue also in other discrete approachesto quantum gravity.Note that the appearance of one-dimensional \loopy" excitations in the lattice theoryis a consequence of the type of discretization we have chosen, and should not necessarily beconsidered fundamental, in the sense that as the continuum limit is approached, one mayexpect only genuine three-dimensional properties of states and operators to be physicallyimportant. The central assumption of the lattice construction is of course the existence ofsuch a continuum limit.On the other hand, the fundamental assumption that leads to the continuum loop rep-resentation is that the Wilson loops TrU [A] become well-de�ned operators in the quantumtheory. Classically, the information contained in the TrU allows one to reconstruct thespace of smooth connections modulo gauge. Quantum-mechanically, the operators T̂rU canbe thought of as distributional excitations of the connection A along some loop or graph ,and are therefore rather singular objects from a three-dimensional point of view. Neverthe-less, well-behaved unitary representations of the classical algebra of the Wilson loops exist,and it is exactly those that have been used in the loop quantization approach. They dohave some peculiar properties, for example, operator actions tend to be sensitive to certaintopological characteristics of quantum loop states, such as their number of edges or vertices,3



and the way ux lines are arranged. However, this is certainly not the only way one mayset up a quantum theory. It has been argued that it is physically more realistic to quantizecon�guration variables associated with three-dimensionally smeared objects, like for instancetubes instead of loops. Quantization of such an algebra is not likely to share all of the featuresthat have made the loop representations so attractive.2 Geometric operatorsIn spite of the di�erences outlined in the previous section between the lattice and thecontinuum quantum theories, there obviously is a great structural resemblance between thetwo. This is in particular true for the action of certain geometric operators one may constructin both settings, measuring volumes, areas, and lengths of spatial regions. It is not my aimhere to discuss the construction and properties of these quantities in great detail, but ratherto focus attention on a point that has not yet been addressed much in the literature.The classical continuum expressions for volume, area and length are given purely asfunctions of the inverse dreibein variables E,V(R) = ZR d3xr 13!�abc �ijkEai EbjEck;A(S) = ZS d2xqE3iE3i ;L(C) = ZC dxsE2jE2jE3kE3k � (E2jE3j )2detE ;where R is a three-dimensional spatial region, S a surface with unit normal in 3-direction,and C a curve dual to the 2-3-plane. As usual, their discretizations are not unique. We choosethem as follows [3]: V(Rlatt) = Xn2Rlattr 13!D(n);A(S latt) = Xn2S lattr12(p+i (n; 3̂)p+i(n; 3̂) + p�i (n; 3̂)p�i(n; 3̂));4



L(C latt) = Xn2Clatts 3!D(n)(pi(n; 2̂)pi(n; 2̂)pj(n; 3̂)pj(n; 3̂)� (pi(n; 2̂)pi(n; 3̂))2);with D(n) = �abc �ijkpi(n; â)pj(n; b̂)pk(n; ĉ), and the symmetrized link momenta pi(n; â).A nice property of the geometric lattice functions is that the expressions under the squareroots can be represented by self-adjoint operators in the quantum theory, and thereforethe operator square roots be de�ned in terms of the spectral resolutions. The spectra andeigenfunctions can be computed explicitly, by virtue of the fact that the quantum operatorsare de�ned purely in terms of the link momenta p̂, which have a particularly simple action onspin-network states. A further consequence is that the diagonalization of geometric operatorscan be performed independently at each lattice vertex (operators associated with di�erentvertices commute), which vastly simpli�es their discussion.The complete spectrum of the area operator Â can be written down immediately, sinceÂ is a function of Laplacians only. The spectrum of the volume operator V̂ is only partiallyknown, although general formulas for its matrix elements can be given. The spectrum of thelength operator L̂ has not been studied yet.One reason for investigating the geometric operators is their simplicity, as compared tothat of the Hamiltonian constraint. In addition, knowledge of the spectrum of the volumeoperator is vital for constructing phase space functions depending in some way on densityfactors of the form pdet g � pdetE, for example, the length function or the Hamiltonian.We will compare the spectra of these operators for some simple, explicit spin-networkcon�gurations. Since unit cells of the lattice can be regarded as the smallest building blocks ofgeometry, one would certainly like to check whether the order of magnitude of the eigenvaluesis comparable. To simplify matters further, we will consider maximally symmetric local latticecon�gurations, where no lattice direction is preferred, and concentrate on the volume andarea operators.Recall that a local spin-network con�guration around a vertex n is determined by assign-ing half-integer spins si or ux line numbers ji = 2si to each of the six incoming lattice edges,and a gauge-invariant contractor at n. We take all six ji equal, ji = j, j = 1; 2; : : :. Fig.1shows the length scales extracted from the area and (the non-negative) volume eigenvalues,i.e. the square and third root respectively. For the volume eigenvalues, the degeneracy of theeigenspace is indicated. The area eigenspaces are maximally degenerate.5



Fig.1 Eigenvalues of geometric lattice operators at a given vertex n.Observe �rst that the length scales for given j are roughly the same. This is also true forthe single length eigenvalue calculated so far (it is that of the only positive-volume eigenstatefor j = 1). Beyond that, note that lengths obtained from the volume operator are system-atically smaller than those obtained from the areas. This indicates that one may encounterproblems when attempting to construct a macroscopic at, Euclidean geometry from thesemicrostates, even if one uses eigenstates maximizing the volume for given j. It is possible thatthis e�ect goes away for larger j. Alternatively, this \volume de�cit" may be an indicationthat generic local geometries have a small non-vanishing scalar curvature (I thank S. Carlipfor this suggestion).Note also that the volume spectrum becomes more spread out with increasing j and thatthere are many zero-volume states. An important issue in quantum gravity is whether or notthese states can or must be included in the Hilbert space.References[1] R. Loll, Phys. Rev. D54 (1996) 5381; T. Thiemann, Phys. Lett. B380 (1996) 257.[2] R. Loll, Nucl. Phys. B444 (1995) 619; Nucl. Phys. B460 (1996) 143.[3] R. Loll, AEI preprint, Dec 1996. 6


