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Notes on the Wigner Representation Theory ofthe Poincar�e Group, Localization andStatisticsBert SchroerFreie Universit�at BerlinInstitut f�ur theoretische PhysikArnimalle 14 14195 Berline-mail schroer@physik.fu-berlin.deJune 1996AbstractIt has been known that the Wigner representation theory for pos-itive energy orbits permits a useful localization concept in terms ofcertain lattices of real subspaces of the complex Hilbert -space. Thisframework was recently used by Brunetti, Guido and Longo in or-der to construct interaction-free nets of local algebras without usingnon-unique "free �eld coordinates". Here it is shown that this struc-ture preempts among other things properties of localization and braid-group statistics in low-dimensional QFT. It also sheds some light onstring-like localization properties of Wigner's "continuous spin" rep-resentations.We formulate a constructive nonperturbative program tointroduce interactions into such an approach based on the Tomita-Takesaki modular theory. The new aspect is the deep relation of thelatter with the scattering operator.1



1 Introduction.The main aim of this paper is the exploration and extension of Wigner'srepresentation - theoretic approach to relativistic quantum theory [1] for theconstruction of particles and free �elds in the context of d=2+1 abelian braid-group statistics (the particles are often referred to as "anyons "or abelian"plektons "). In this way one may hope to obtain a more direct understandingof the origin and the physical consequences of plektonic statistics than thatby the somewhat vague (and often indirect and complicated) method viaimposing Chern-Simons perturbation on standard fermionic matter, usingthe formalism of functional integrals (in a region where the necessary andsu�cient conditions for Feynman-Kac representability of quantum physics isstrictly speaking violated!).The main issue in the adaptation of Wigner's theory to this questionis the problem of "localization". The sharp and covariant concept used inthese notes is not that of Newton and Wigner [2], but the more recent ideaof localization via suitably de�ned real subspaces [3] of the complex Wignerrepresentation space. This concept relates to the rather universal and deepmathematical Tomita-Takesaki modular theory for von Neumann algebras[4] which has been known to connect to such diverse looking physical is-sues as the existence of antiparticles (TCP), the stability of temperaturestates, the Unruh-Hawking e�ect [5] and many other structures of "LocalQuantum Physics "[6]. The underlying "modular" wedge-localization has nocounterpart in classical �eld theory or in nonrelativistic quantum theory (asthe various quantization approaches and the interaction picture formalism).Among all concepts in QFT it is the most intrinsic one, and it achieves some-thing which in e.g.in coordinate- free di�erential geometry was accomplishedalready a long time ago, namely the separation of intrinsic properties frommainly accidental "coordinatizations".In section 2 entitled "ancient history " we review those aspects of Wigner'stheory which are relevant for our purpose. This theory was the �rst successfulattempt to formulate a framework of relativistic quantum theory which wasnot based on quantization parallelism to classical theories. Mainly through al-gebraic QFT, its spirit has been kept alive in present day �eld theory. To mostphysicists of the younger generation who are familiar with the more popularLagrangian quantization approach, the Wigner theory remained unknownbecause modern texts often identify QFT with the Lagrangian approach.2



A notable exception besides the (perhaps too brief on this issue) reference[6] is S.Weinberg's recent book [8]. There the Wigner approach is largelyused in order to support the Lagrangian formulation of QFT and the path-integral approach (but the possibility of other non-Lagrangian approachesto interactions is not ruled out, as emphasized by the author), whereas hereour aim is quite di�erent, namely to understand areas which are not covered(and probably never will be) by the Lagrangian framework. It is worthwhileto mention that all the pertinent results on chiral conformal QFT as wellas a large part of results on massive d=1+1 theories have been obtainedby nonperturbative non-Lagrangian methods such as representation theory,S-matrix bootstrap, formfactor program etc. A Lagrangian name, where itappears, usually only served for "baptizing" the model in the traditionalway. Sometimes, as in the case of the renaming of the current algebrasassociated to the generalized Thirring model (with its scale invariant �xedpoints in multicoupling space) of the 60's and 70's into the Wess-Zumino-Witten-Novikov models of the 80's , even this was unnessecary since thelatter is a special case of the former at the scale-invariant subset in terms of"di�erent �eld coordinates").In fact the �elds which appeared in the 1974 work on conformal �eldtheory [7] were so far away from Lagrangian-and Euclidean- (and even fromWightman-)�elds , that the problem of model construction was not pursuedas a result of Zeitgeist prejudices. Nowadays it is very natural to considercharged �elds which have nontrivial source and range projectors onto super-selection sectors but at that time this appeared as going against Wightmanas well as Euclidean �eld theory.In fact one would be very surprised if plektonic d=2+1 �elds or d=3+1"continuous spin" �elds are not of this new non-Lagrangian kind. An edu-cated guess is that all �elds in d�2+1 with weaker than compact localizationproperties are of this new kind. This is in agreement with an old result ofYngvason about the obstructions posed by the d=3+1, m=0 Wigner "con-tinuous spin" representation within a Wightman framework [12].In section 3 entitled "recent history ", we briey present those aspectsof the Tomita Takesaki modular theory which are relevant in the presentcontext. In particular we explain, how by introducing real subspaces ofthe Wigner representation space via a Tomita involution, one may imple-ment a localization concept which is more useful for our purpose than theNewton-Wigner localization. These ideas, although known to some experts,3



unfortunately had never been published in an accessible way. [3]. Section 3also contains a brief sketch of a direct construction of local nets from the socalled "wedge localization"[9] which, in the case of free bosonic theories, willbe contained in forthcoming work of Brunetti, Guido and Longo [10]The fourth section explains why the adaptation of Wigner's theory ford=2+1 anyonic spin is not compactly localizable, but still falls into theweaker spacelike cone (or semi-in�nite string)-localizable category and presentsthe corresponding "anyonic" statistics in terms of a "twist "which is neces-sary in order to balance the dual of the wedge-localized real subspace (i.e.its symplectic complement) with the geometric (causal) dual in the sense ofcommutation relations of �elds. A useful covariantization is that given byGaberdiel and Fredenhagen. [11]In section 5, we comment on a an interesting topological obstructionagainst Haag duality for non -simply connected regions which occurs in cer-tain zero mass theories including the free Maxwell theory. These topologicalobstructions are absent in massive theories, but they are typical of local gaugetheories i. e. those Lagrangian theories for which long range interaction canpresently only be described by an inde�nite metric vector potential and a for-mal return to quantum physics is not possible without invoking local gaugeinvariance. Algebraic QFT was not able (for good reasons in my opinion) toincorporate such classical ideas which have their natural formulation in �brebundle theory. But through such duality obstructions as discussed in section5, the algebraic approach at least perceives that there is a deep problem onthe level of local quantum physics. In my view an adequate treatment of thisproblem can only be given in a framework of interaction which uses conceptswhich are characteristic of relativistic QFT as e.g. the modular propertiesused in this work.In section 6 we show that Wigner's zero mass "continuous spin" repre-sentation falls into this weaker space-like cone localization category. In factthe natural covariant description [12] is in terms of semi-in�nite light-likestrings, very similar to the Gaberdiel-Fredenhagen covariantization of thed=2+1 Wigner anyons mentioned in section 4.The last section contains some speculative attempts of incorporating anintrinsic notion of interaction via an ansatz for an "interacting" Tomita in-volution J within the Fock-space de�ned by scattering theory. This ansatzgeneralizes the J0 obtained from the Wigner theory and does not involve theinteraction picture and time-ordering but uses only concepts of general quan-4



tum �eld theory. In this last section I also speculate on several presently in-su�ciently understood problems which have connections with modular ideas.2 Ancient History.In 1939 Wigner [1] classi�ed the irreducible ray-representations of the Poincar�e-group (or what amounts to the same in this case, the irreducible vector-representations of its covering). His main motivation was to understand inintrinsic physical terms the ever increasing \zoo" of linear relativistic (higherspin) �eld equations of those days, which were proposed in the aftermathof the Dirac equation. For this purpose he had to extend the Frobeniusmethod of induced representations from �nite groups to the non-compactPoincar�e-group, a mathematical novelty which gave rise to new mathemati-cal developments in group representations, [13]. He �rst determined all tran-sitive momentum-space orbits under the Lorentz-group and then classi�edthe (isomorphic for di�erent momenta on the same orbit) the �xpoint-groupof a conveniently chosen reference vector pR on the orbit. The \induction"was done with the help of this \little group" and a suitably de�ned family of\boosts" served to identify the �xpoint-groups at di�erent orbit points.For the positive energy orbits p2 = m2; p0 > 0 and p2 = 0; p0 > 0 (the onlyorbits of relevance for our purpose) in d=3+1, the (coverings of the) littlegroups are SU(2) resp. eE(2)(2) (the two-fold covering of the two-dimensionalEuclidean group).The massive [m; s]-representations are most conveniently described interms of 2s+1 component wave-function spaces:H = n (p)���Xs3 Z j s3(p)j2 d3p2! <1g (1)on which the Lorentz transformation acts as:(U(�) )(p) = D(s)(RW (�; p)) (��1p) (2)with RW being the �� and p-dependent (nonlocal) Wigner rotation.In the m2 = 0 case one has a greater wealth for the representation theoryof the little group.In case the "translations "of eE(2) are mapped to zero, oneobtains the family of one-component semi-integers-helicity representations:5



(U(�) )(p) = eis�W (�;p) (��1p) (3)The conversion of the one-component Wigner wave functions into e.g.the standard local helicity description in terms of �eld strength F�� is well-known .Explicit formulas for the Wigner phase �W as well as the previous Wignerrotation RW are to be found already in the original paper as well as in S.Weinberg's recent book.[8] Also the extensions to the full group includingspace and time reections may be found in the literature. In the followingwe will need the formula for the TCP=� acting on the (doubled, if particlesare not self-conjugate) [m; s]-representation as:�   + � ! = D(s)(i�2)  �� �+ ! ; �=(anti)particle doubling (4)Before we relate this TCP-transformation of the Wigner theory to a newlocalization concept, some more historical remarks are in order.Wigner's work, although little noticed at the time (at least by the com-munity of producers of new relativistic �eld equations), showed in one strokethat the problem of inventing more general looking �eld equations was ofa somewhat academic nature; what really mattered was their irreducible p-space content and not their covariant appearance in x-space.Wigner was aware that Poincar�e-invariance was not the only physical re-quirement for relativistic particles, but there were also the important issues ofcausality and localization. In 1949 he wrote a paper together with R.Newton[2] in which they proposed, what became later known as the Newton-Wignerlocalization .This localization was not covariant and e�ectively violated Ein-stein causality at distances shorter than a Compton-wavelength, but it seemedto be the best one could do if one adapts the wave-packet localization of theSchroedinger theory to the relativistic domain .As a result of these unsatisfactory aspects of this localization, Wignerbecame increasingly suspicious about the internal consistency of QFT (pri-vate remark obtained from R.Haag). However a short time later Wight-man and other QFT theorist showed that there was no contradiction be-tween the Heisenberg-Pauli canonical quantization approach and the Wignertheory[14]. In fact the latter can be used in order to obtain a more intrinsicaccess to the former [8]. 6



With one [m; s]-representation one connects a whole family of free �elds 	, which all share the same canonical momentum space creation and annihila-tion operators a�liated (transforming) with the [m; s] Wigner representation:	(x) = 1(2�) 32 Z  e�ipx sXs3=�s u(p; s3)a(p; s3) + eipx sXs3=�s v(p; s3)b�(p; s3)! d3p2!(5)Here u and v are explicitly known column-vectors in a space of � 2s + 1dimensions. They represent intertwiners between the Wigner representationand the covariant description of its content:Xs03 u(p; s03)D(s)s3 ;s30 (RW (�; p)) = D[n;m]cov (�)u(��1p; s3) (6)The indexing of the entries of u is given by a pair (n,m) of n un-dottedand m dotted symmetrised spinorial indices (�1�2 ....�n; �1�2:::::�m). Theonly restrictions are that n+m2 be semi-integer if s is semi-integer as well asthe validity of the inequality ���n2 � m2 ��� � s � n2 + m2 : Hence the matrix Dcovdescribes a �nite-dimensional tensorial (and therefore non-unitary) represen-tation of the Lorentz-group.A systematic determination of these intertwinersis not contained in the original work, but was carried out later by Joos[15]and Weinberg. In Weinberg's recent book [8] the reader �nds an exhaustivetreatment of this family of local �elds. There one also �nds a careful discus-sion of some peculiarities of the [0; s] photon-neutrino class. In that case thecovariantization of these nonfaithfull Wigner representation is much morerestrictive than for massive theories. Whereas for the latter case one has theabove inequality , the helicity for the former obeys the equality s=���n2 � m2 ���.For the much more elusive in�nite component "continuous spin" faithful zeromass representation, the covariantization was carried out in the 70's wherealso the lack of the standard localization property was noticed [12]In all cases whether massive or zero mass, the local covariant �elds live inthe same Fock-space i.e they share the same momentum space creation andannihilation operators and in addition are local relative to each other in thesense of space-like (anti)commutation relations. Using the very appropriateconcept of Borchers[16], one obtains a more concise description of this notionof relative locality. These �elds are members of an equivalence class of rela-tively local �elds. More speci�cally, they form a linear subset of the free �eld7



[m; s] " Borchers class ", an object which has been explicitly computed inthe 60's by H.Epstein and the present author[17]. Borchers showed in com-plete generality that �elds, which are local with respect to a given local �eld,with the latter acting cyclically on a Hilbertspace, are automatically local(with respect to themselves) and he proved that this entails the followingconsequences:(1) The cyclically acting members generate the same local von Neumann-algebras, i.e. if A(x) and B(x) are two such �elds and A (A,O) denotes thelocal von Neumann-algebra generated by the �eld A(x) smeared with test-functions having support in O (a natural family of regions O are the so calleddouble cones on which Poincare-transformations act stably) one has:A(A;O) = A(B;O) (7)(2) The di�erent members of the Borchers class do not only lead to thesame local observables, but also entail the same S-matrix i.e. the S-matrixis a class invariant.This suggests a viewpoint of QFT ( "algebraic QFT ") which is quitedi�erent from the standard one most of the textbooks. By analogy withdi�erential geometry, the pointlike covariant �elds are like coordinates andthe algebraic net, i.e.the assignment: O ! A(O) contains all the intrinsicphysical information [6].The terminology "�eld coordinates",which is usedfreely in the present work, is meant in this sense. The Borchers theory alsogave a prominent role as a net invariant to the S-matrix. In the last sectionwe will use the S-matrix as an invariant of the wedge- based modular theory.Progress obtained from this net point of view has been slow, but steadyand very solid indeed. Its mathematical pillars are the Tomita-Takesakimodular theory[4] and the V.Jones subfactor theory[18], both dealing withstructural properties of von Neumann-algebras. It is not an accident, thatboth mathematical theories had their physical (less general) predecessors:the Haag-Hugenholtz-Winnink [6] description of KMS-states in the �rst caseand the Doplicher-Haag-Roberts superselection theory [6] in the second (afact which was not known at the time of the mathematical discoveries).Here we want to show that the seeds for this intrinsic mode of physicalthinking are already contained in the Wigner theory. More concretely ,theWigner theory preempts some special aspects of both mathematical theo-ries: localization properties are related to modular properties (explained in8



detail in the sequel) and duality obstructions related to properties of inclu-sions (only briey mentioned in section 5). It is interesting to note thatthis progress occurs precisely at that structure which Wigner considered asquestionable (namely localization)Needless to add the remark that the [m; s] �elds are in general not "La-grangian �elds " i. e. the above local free �elds are in generally not solutionsof an Euler-Lagrange equation . To give an example, for s=32 the Rarita-Schwinger �eld is "Lagrangian ", but the e.g. minimal 4-component �eld inthe same Borchers-class is not "Eulerian", i.e. its Lorentz transformationproperties are not incorporated into the structure of �eld equations neitherare those �elds in the range of the canonical formalism which is an impor-tant property of the (classical) Lagrangian �eld theory and the Cauchy initialvalue problem. With the modular structures we will even move further awayfrom classical structures and quantization as with the previous equivalenceclass structure.In Weinbergs book one �nds a formal argument that invariant (Wick-ordered)polynomial coupling terms lead to perturbations which are indepen-dent of the [m; s] �eld- coordinates which one uses for the speci�cation ofthe interaction density. With other words a given polynomial interactionmay be rewritten in terms of any kind of �eld- coordinates one likes (and itstays polynomial in terms of the new �elds).This suggests that one should tryto avoid these "�eld-coordinates" altogether and aim for a description whichrestores Wigner's representation uniqueness on the level of the associated op-erator algebras, thus avoiding the confusing multitude of �eld coordinates(and hopefully eventually also arriving at a more intrinsic understanding ofinteractions).The next section takes a step towards this goal.3 Recent HistoryFor the sake of simplicity let us assume that we are using the Wigner formal-ism in order to describe a self-conjugate particle situation.Then,apart froma possible sign factor ,the previous action of � = TCP on the momentumspace wave-function simpli�es as follows:(� )(p) = D(s)(i�2) �(p) (8)9



whereD(s)(i�2) represents the conjugation matrix in the [m; s] Wigner space.Introduce now another conjugation j which di�ers from � by a rotation with� around the x-axis : j = R(ex; �) � � (9)An elementary calculation shows that this j commutes with the L-boost�(01; �) in the 0-1 -plane :U(�(01; �)j = jU(�(01; �) (10)Whereas the boosts de�ne a unitary subgroup, the continuation to imag-inary � yields an unbounded closable operator:� := U(�(01; � = 2�i)) (11)In particular the unbounded operator:sW =j� 12 (12)turns out to be a closed densely de�ned involution. This is as a result of thecommutation relation : j� 12 = �� 12 j (13)which follows from the one before.In fact the above de�nition of s agrees with its polar decomposition. Wenow use this involution s in order to de�ne a closed real subspace :HRW = fh 2 H j sWh = hgThe properties of the positive operator � entail the density of HRW+iHRW inthe Wigner representation space : This decomposition also allows to introducea real inner product on H :( 0 + i�0;  + i�)R = ( 0;  ) + (�0; �) (14)where the primed wave-functions belong to the (-1) eigenspace HR0W of theadjoint s�. Both summands on the right hand side are real since:( 0;  ) = �( 0; s ) = �(s� 0;  ) = � � ; s� 0� = ( ; 0) (15)10



The real structure is the same as the one obtained by using the realpart of the complex inner product and then restricting to the subspace HRW .Conversely one can obtain HW by introducing a complex structure on HRW :By applying Poincar�e-transformations to those spaces one obtains a wholefamily of real subspaces which are eigenspaces of densely de�ned involutionsswedge corresponding to the family of wedges obtained from the t-x wedge byPoincare-transformations. One then �nds the following surprising theorem :Theorem(Brunetti,Guido and Longo[10]): The family of real wedge sub-spaces form a covariant net of wedge-localized subspaces.This means in particular that one has isotony i.e.HRW 0 � HRW for W 0 � Wand it is interesting to note that this property is equivalent to the positivityof the energy [10]It is well known that in case of integer Wigner spin there exists the socalled Weyl functor [3] converts these localized real subspaces into local vonNeumann algebras. The generators of these algebras in physicists notationare: W (h) = ei(	(h)+	(h)�) ; h 2 HRW (16)In other words the algebras for the wedge regions can be directly de�nedin terms of the Wigner theory without reference to "local �eld coordinates".Algebras of e.g.double cones can be formed by intersections and their associ-ated real subspaces lead to complexi�cations which are dense in the Wignerspace (apart from the "continuous spin" representation). This can be seenby using localization properties of the u,v intertwiners of the previous sec-tion. A more elegant way, which presently has not been worked out, wouldbe to isolate a property of the wedge subspaces which guarantees this densitywithout using any intertwiners.Physicists familiar with another "miracle " from the quantum physicsin curved space-time [19] namely the Unruh-Hawking e�ect for the Rindlerwedge (i.e. the quantum physics of a uniformly accelerated observer) shouldtake notice that this e�ect and the above theorem are two sides of the samecoin.Behind both miracles lies a very basic and universal theory [5] which,as already mentioned in the introduction, mathematicians refer to as theTomita-Takesaki modular theory. We will here only limit ourselves to somesalient features. This theory deals with von Neumann-algebras in "standardposition " e. g. weakly closed operator algebras in a Hilbertspace possessing11



a cyclic and separating vector 
. In local quantum physics the vacuum is avector which has this property with respect to all local subalgebras with anontrivial causal complement of their localization region [6] . In order to con-struct the basic objects of this theory,one starts from the star-structure of thevon Neumann-algebra A and de�nes an unbounded but closable involutiveoperator S : SA
 = A+
 ; A 2 A (17)Its polar decomposition: S = J� 12 (18)de�nes the Tomita conjugation J and the modular operator � . The lattergives rise to the modular automorphism �t: The nontrivial part of the T.T.theorem is the behaviour of these operators with respect to the von Neumann-algebra A: J(A) := JAJ = A0; A0 = commutant of A: (19)�t(A) = �itA��it = A;modular automorphism of A (20)For a physicist, the K in �it = eitK is like a generalized Hamiltonian and Jis like a generalized TCP-operator of the pair A;
: The only miracle as faras the application of this theory to the local algebras of QFT is concerned, is that these modular quantities for the pair A(wedge) ;
 vvacuum-vectorbecomes geometric: �it = U(�(01; � = 2�t) (21)J = ( R(ex; �)�; s= integerKR(ex; �)�; for s= semi-integer (22)Here K is the well-known Klein-twist ( not to be confused with theclosely related Jordan-Wigner transformation) for fermions: K=1+iV1+i withV= exp i�Nfermi: In the integer spin case the Wigner theory preempts thismodular structure through the existence of the previously introduced familyof real subspaces HRwedge which are converted into bosonic net algebras via theWeyl functor. In the semi-integer spin case we expect the CAR-functor toplay the analogous role.In the Wigner theory the Fermi-statistics manifestsitself through: 12



jHRwedge 6= HRoppositewedge for s=semi-integer (23)This mismatch is repaired on the level of the algebras by the above Klein-twist K: KF(jHRwedge) = F(HRopp:wedge) (24)Here F is the CAR functor. K restricted to the Wigner-space of fermionsis just a numerical factor i, which is precisely the obstruction factor betweenj and the ��rotation. So the Klein factor just permits to express the TomitaJ in terms of geometrical objects. The rest consists in applying the CCRresp. CAR functor which maps the net of Hilbertspaces into the net of vonNeumann algebras.Note that all recent contributions of modular theory to the understandingand construction of Borchers classes (including the present one) could havebeen given two decades ago ever after the prominent role of wedge algebraswas discovered by Bisognano and Wichmann. [9]4 Fractional Wigner-Spin and Statistics of Anyons.In d=2+1, the little group of a point on the forward mass shell is the abelianU(1) and therefore the Wigner theory allows (at least a priori) for any valueof s, i.e.one expects "anyons " (the more restrictive non-abelian plektonswill only be mentioned at the end of this section ). Using the methods ofthe previous section, and checking the prerequisites for the existence of aTCP operation on the direct sum of particle-antiparticle Wigner spaces, oneagain establishes the properties of a family of real subspaces which can beassociated with localization and statistics properties of �eld theoretic twopoint functions. However the di�erence between the modular complementjHRW = HR0W and the geometric complement HRW 0 = Rot(�)HRW is bigger thanin the previous fermionic theory i.e.the Klein transformation which accountsfor this di�erence is more complicated.In order to keep the Klein-twist simple, let us imagine that we are dealingwith a ZN�spin i.e. we assume that s = 1N .Then the Klein factor whichcorrects the mismatch between localization via commutativity and the geo-metric localization turns out to be a suitable "square root"[20] of the action13



of the 2��rotation in Fock spaceK =Xn e�i�sn2Pn (25)The physically relevant question is: what is the a priory best possiblelocalization of the anyonic algebras. It turns out that a compact localizationas in the previous section is not possible, i. e. in HRW there are no compactlylocalized wave functions. If such a wave function would exist, one couldperform a 2��rotation such that the support remains inside one wedge forall angles, however the nontrivial phase created by such a rotation contradictsits a�liation to the real subspace HRW .From the general structure of algebraic QFT we expect that the spectralgap leads to a (arbitrarily thin) space like cone localization. In d=2+1 onlygenuine braid group statistics is able to exhaust this possibility, whereaspermutation group statistics resulting from semi-integer spin leads back tothe compact localization. Since the core line of a semi-in�nite spacelike coneis characterized by an initial point x and a spacelike unit direction e, weexpect a string like localized wave function depending on x and e.Starting from the Wigner wave function which transforms according to( is one-component) :(U(g) )(p) = eis�W (g;p) (��1(g)p); g 2 gSO(2; 1) (26)with �W being the (nonlocal) Wigner phase. One looks for a factorizationinto covariant factors in analogy with the u-v intertwiners of the previoussection. This is achieved by [11] de�ning: cov(p; g) = F (L�1(p)g) (p) (27)where any function F on gSO(2; 1) is acceptable as long as it ful�lls the equiv-ariance law:F (! � g) = eis!F (g) ! 2 R � gSO(2; 1) g 2 gSO(2; 1) (28)As a consequence we �nd the covariance law:(U(g0) cov)(p; g) =  cov(��1(g0)p; gg0) (29)14



With this covariant wave function we now a�liate a Dirac state vector which,as usual, is created from the vacuum:jp; gi = a�(p; g)
 (30)It obeys the contragradient transformation law:U(g)a�(p; g0)U(g)�1 = a�(�(g); g0g�1) (31)Transforming to x-space �elds (the subscript cov will be omitted in the se-quel):  (x; g) = Z d2p2! (eipxa(p; g) + e�ipxa�(p; g)) (32)one obtains the desired transformation law:U(g0) (x; g)U(g0)�1 =  (�(g0)x; g0g) (33)The two-point function is a quadratic expression in the function F:(
;  (x1;g1) (x2; g2)
) = Z d2p2! eip(x1�x2)F (L�1(p)g1) � F (L�1(p)g2) (34)Choosing x2 and g2"opposite" to x1and g2 i.e. such that:x2 = Rot(�)x1 g2 = Rot(�)g1 (35)the covariant transformation law gives:(
;  (x1; g1) (x2; g2)
) = e2�is(
;  (x2; g2) (x1; g1)
) (36)which is in agreement with the expected anyonic statistics of the non-compactlocalization .In order to obtain �elds which are localized on semi-in�nite strings, onehas to chose a model for F. The choice :F (g) = eisg(0) (37)with g =(; !) acting fractionally on the line u2 R = fS1 � gSO(2; 1) as:(; !)(u) = ! + arg eiu + 1 + eiu (38)15



The two-point function specializes to :h (x1; u1) (x2; u2)i = Z d2p2! eip(x1�x2)e�is(L(p)�1(u1)�L�1(p)(u2)) (39)and the di�erence between the left and right hand side in (37 ) replaces thebosonic commutator function for our anyonic case:�(�; u1; u2) = (40)R d2p2! �eip�e�is(L(p)�1(u1)�L(p)�1(u2)) � e�ip�e�is(L(p)�1(u2)�L(p)�1(u1))e4�is([u1�u22� ]+ 12 )�where � is the di�erence of the x's and the square bracket indicates thenearest larger integer.� has the property of L-covariance:�(g�; gu1; gu2) = �(�; u1; u2) (41)The vectors u1 and u2 on the unit circle correspond to a wedge W andits spacelike complement W'. The simultaneous stability group of ui leavesthis wedges invariant. For each � 2 W [ W 0 there exists a transformationK2 gSO(2; 1) which is in the conjugacy class of the ��rotation which reects� and ips the u0is :K� = �� Ku1 = u2 K2 = 2� � rotation (42)Under the action of this "square root" of the 2�-rotation the � behaves as:�(K�;Ku1;Ku2) = �(��; u2; u1 + 2�) = e�2�is�(�; u1; u2) (43)Consistency between the two transformation formulas yields:�(�; u1; u2) = 0; for � 2 W [W 0 (44)i.e. as long as u1is di�erent from u2 any separation � of the string startingpoints x and y, such that a string crossing is avoided, will lead to a vanishing� function. A representation in terms of known functions is presumably eas-ier than for the analog problem of the d=3+1 continuous spin representation(presented below). 16



This situation corresponds to light-like strings and the covariantizationjust presented is due to Gaberdiel and Fredenhagen[11]. The G-F descrip-tion does not reveal in a manifest way that these anyons permit a spacelikecone localization. Only the formation of wave packets in the light-like stringdirection e or a covariantization based directly on space-like strings (using ade Sitter space representation of the gSO(2; 1)) could reveal sharper localiza-tions inside wedges. We presented these rather explicit calculations becausethe covariantization of the d=3+1 m=0 continuous spin representations insection 6 is completely analogous albeit analytically more complicated.Our argument in favour of space-like cone localization for anyons is basedon the observation of non-triviality of intersections[23] of wedge spaces HRW .Let W1and W2 be two wedges and form the dense set of states obtained byaveraging with smooth functions of compactly localized Fourier transform:Z dsdtf(t; s)�itW1�isW2� ; � 2 H (45)This set of vectors is certainly in the domain of � 12W1: In order to see thatalso � 12W2can be applied, we need a commutation relation of � 12W2 with �itW1: Fororthogonal wedges such a commutation relation is well-known from SO(2,1)group theory: � 12W2�itW1�� 12W2 = ��itW1 (46)and the case of W's in a more general position may be reduced to this or-thogonal situation and in this way one proves the existence of a simultaneousdense domain for the �0s associated to di�erent L-boostsAt this point one may be tempted to think that our one-particle analysis,which relates to the �eld theoretic two-point function, may be generalized tothe standard commutation relation between creation and annihilation oper-ators:a(p; u)a�(q; v) = e4�is([u�v2� ]+ 12 )a�(q; v)a(p; u)+2!�(p�q)e�is(L�1(p)(u)�L�1(p)(v))(47)This is however inconsistent (except for bosonic and fermionic phases) be-cause it can be shown to lead to a contradiction with the associativity ofmultiplication for three space-like cone localized anyon operators [22]. Thecorrect multiparticle space from scattering theory has a di�erent structure.17



The anyonic momentum space creation and annihilation operators associ-ated with scattering states have source and range projections which haveto match the superselection charges of the state vectors. In this case no"anyonic functor" which transforms localized subspaces into von Neumannsubalgebras is known. We intend to return to this interesting problem in aseparate publication.As a consequence of the appearance of the directional degrees of freedomfor elementary strings (i.e. strings which cannot be represented in terms ofline integrals of other �elds as in Mandelstam type exponential line integrals)the Wigner anyons are more analogous to in�nite component L-covariantwave functions. Their relation to "Chern-Simons anyons" is presently notclear. Note that the geometric pictures about anyons from the days ofLeinaas-Myrheim to the Chern-Simons inspired path integral proposals su�erfrom one serious defect: they did not lead to a concrete operator descriptionof "free anyons". QFT with its intrinsic concepts is expected to be a muchmore suitable place for their understanding than quantum mechanics.[24]Even if further studies of our construction reveal that the fourier-transformedanyonic two-point function have additional spectrum above the one parti-cle hyperboloid (similar to particle number conserving integrable models ind=1+1), our modular methods should explain the necessity for such an ex-tension of the Wigner spectrum.Before closing, a brief comment about the d=1+1 situation is in order.Inthis case the localization properties of free �elds depend on the "Lorentz-spin" i.e. on the value of s in the one-dimensional L-representation factorexp s� with � being the rapidity. All s> 0 representations may be obtainedin the s=12 Fockspace of fermions by using appropriate intertwiners u andv. But only for (half)integer s does one obtain pointlike localized covariant�elds. At generic values one does not get beyond wedge localization. The badlocalization property does not improve in the zero mass limit. The localizable�elds of chiral conformal �eld theory have a di�erent origin which is furtherremoved from the Wigner representation theory. They owe their existence tothe peculiar structure of current operators which lead to Weyl algebras witha nontrivial center. It seems that also the structurally rich plektonic theories(nonabelian braid group statistics) can be traced back to this property [24].18



5 Haag Duality and E.M.Duality.Massive free �elds obey Haag duality not only for double cones, but alsofor topologically more complicated localization regions e. g.toroidal regions.Algebras associated to massless �elds for helicity s�1 however cause a topo-logical obstruction resulting in a breakdown of toroidal Haag duality [3]. LetT be a space-like torus i.e.a spatial circle fattened by double cones whichis the space-like complement of a region T0 which consists of a double coneof diameter r and a "double cone at in�nity": j~xj � R + jtj separated by adistance R-r �0 with T being the toroidal corona [24] region in between .Then one obtains the following proper inclusion:HR(T ) �HR(T 0)0 (48)where HR(::)0 denotes the previously de�ned symplectic complement. Theinclusion is genuine and[3] the defect is �nite dimensional. This obstructioncan be traced back to the appearance of �0 the E-H commutation relation.Itentails the violation of Haag duality for the corresponding algebras. The in-troduction of vector potentials removes this obstruction formally (principlesof locality, Einstein causality etc. loose their physical meaning in the pres-ence of inde�nite metric) at the prize of inde�nite metric without e�ecting itscontinued presence in the physical factor space von Neumann algebra gener-ated by the �eld strength. The vector potential description is avoidable in thestructural analysis of Maxwell-like interacting theories but it is essential inthe present day perturbative approach in QED. From an intrinsic QFT pointof view the "local gauge principle" is not a principle at all ,but a (conception-ally questionable) compromise between the covariantized Wigner theory andthe necessity to formulate the correct longrange interaction within the stan-dard interaction picture which is the starting point of the perturbative ap-proach . Only if one believes in the quantization philosophy , one may speakof a" gauge principle" as the quantum substitute of classical �bre bundles.The Wigner space can be described in terms of a semide�nite metric vector-valued wave functions. The trouble of inde�nite metric �elds only appearson the level of second quantization. Therefore it should be very interestingto compute the real subspaces directly by intersecting a family of wedge al-gebras instead of using the canonical structure of suitably chosen covariant�elds (as the afore mentioned Leyland, Roberts Testard method). In that19



case one can avoid inde�nite metric and the Gupta-Bleuler method in favourof a positive semide�nite real Fock-subspace: HRW (semidef:) � H(semidef:).Since the F�� intertwiners are obtained from the semi-de�niteA�intertwinersby forming derivatives, one expects that this defect is related to one whichoccurs in chiral conformal �eld theory.[25] where the defect turns out to be�nite dimensional in terms of Hilbertspaces.This phenomenon of a defect of topological nontrivial Haag duality iswell- known from the charge-neutral observable algebras associated withmassive charged free �elds. In that case this de�ciency has a natural ex-planation in terms of the existence of nontrivial charged sectors [6].It is alsowell-understood for maximally extended current algebras in chiral conformalQFT.The imperfection of photon like m=0 representations with respect to du-ality for topologically nontrivial regions however is more serious. It is tempt-ing to interpret this obstruction as indicating the necessity of an interactioni.e.the presence of non-vanishing electric or magnetic (or both) currents.@�F��(x) = j�(x); @� ~F��(x) = ~j�(x) (49)i.e. the interaction is necessary to maintain perfect duality which is violatedin the free theory. Such a point of view would attribute a very distinguishedrole to electromagnetic duality i.e. those superselection rules which originatefrom the quantum version of the Maxwell structure. This issue of problema-tizing the notion of "magnetic �eld" on the same level of depth as the notionof "charge" in the DHR superselection theory is presently ill-understood inQFT. In low dimensional QFT the analogous issue of order-disorder dualityand the connection with Haag duality is in a much better shape. There,even in free theories, it is not possible to have no charge sectors with bothorder and disorder the realization of both charges being related in d=1+1to the zero mass limit. This analogy is another reason to believe that thefree Maxwell situation is peculiar. The remaining three non-peculiar casesnamely the appearance of objects with e.-, m.- or e.m.-charges have a severeinfrared structure whose implications for localization properties are outsidethe present scope of understanding. A better understanding of the connec-tion between these properties and the modular theory (in the vein of theremarks about interactions in the last section) seems to be essential.20



6 The Localization Properties of the PositiveEnergy Continuous Spin Representations.Already in the late 60's the question of how to covariantize and incorporateWigner's zero mass continuous spin representation into existing frameworksof QFT arose some interest notably with physicists who were familiar withthe spirit of algebraic QFT [12]. Whereas in standard QFT based on quanti-zation and Lagrangians these representations were usually dismissed as unin-teresting because "nature apparently does not make use of them", the spiritin which algebraic �eld theorists approached this problem was more "Wigne-rian". They asked whether these representations ful�ll the localization prop-erties which are inexorable attributes (in addition to their indecomposabilityexpressed in the irreducibility requirement)of particles. It was found thatthey do not permit a compact localization as the standard Wightman �eldsdo. Looking again at the old computations with the hindsight of the non-compact space-like cone localization of section 4, one easily realizes that theirnatural covariantization leads to the same wedge-localized light-like stringswith an in�nite component unitary representation on light-like directionsand complex variables �1; �2 taking over the role of the u in the case of theanyonic representation of section 4. The identi�cation of complex 2-vectorswith light-like directions is done with the help of the Pauli matrices:l� = �+��� (50)the intertwiners for this light-like covariantization are:u(p; �) = f��� (�Bp); f��� (�) = j�2j2c�2 e�i��1Jl0��(�� jzj)eil0�2 (51)z = �1�2 ; �1;2 = �� + arg �1 � arg �2The f��� (�) corresponds precisely to the equivariant function F in section 4.The step from wedge-localization to space-like cone localization is alsoanalogous to section 4. Instead of two orthogonal wedges one now considersthree. The smoothening with testfunctions of compact Fourier-transform:Z dtdsduf(t; s; u)�it1�is2 �iu3 �; � 2 H (52)21



together with commutation relations between the three boosts analogousto the ones used in section 4 will give a simultaneous dense domain for � 12:ii=1,2,3 . However it is not clear if the case of three wedges in general positioncan be reduced to the orthogonal case.It is interesting to compare this space-like cone localization with thatestablished by Buchholz and Fredenhagen on the basis of the spectral gapassumption[6]. In their massive case it is not possible to realize this in atheory with a on mass-shell supported two-point function.7 Intrinsic Understanding of Interactions? Pro-grammatic Remarks.Since the wedge regions have a preferential status with respect to the con-struction of interaction-free algebras, it is tempting to think that this maybe helpful in obtaining some intrinsic insight into interactions. Let us take ahelping hand from scattering theory. There it is shown that out- and ingoing-�elds share the same Poincar�e transformations with the interacting �elds i.e.they both possess the same modular transformations �it for the wedge re-gion. Only the TCP conjugation is sensitive with respect to interactions. Inorder to see this we will derive the following representation for S which isvalid in an asymptotically complete theory :S = � � �0 = J � J0 (53)J= modular conjugation for interacting wedge algebraJ0 = modular conjugation for the interaction- free incoming wedge alge-bras.The formula follows from the � =TCP transformation of Heisenberg�elds.Taking the LSZ limit on this transformation formula and noticing thatboth sides approach di�erent (in and out) limits ( and remembering that thespatial rotation factors between � and J are independent of interactions) oneobtains the above representation.The interacting and incoming wedge algebras are of the same type, in factthey are expected to be type III1factors .Since both are living in the sameHilbertspace, their isomorphism amounts to a unitary equivalence. Unfortu-nately this kind of argument does not lead to a "natural" unitary operator22



which we expect to be some kind of natural "square root" of S i.e. some kindof "algebraic" M�oller operator. On a very formal level the method of Bogoli-ubov leads to such unitaries, but this would bring us back to the interactionpicture and the formal time ordered operator expressions.Let us therefore be more modest and just ask for a modular net of realHilbert-subspaces of the incoming Fock-space. If we pose this problem in twospace-time dimensions, we could take a j operator which is di�erent from j0by one of those rather simple rapidity dependent factorizing S-matrices of the"bootstrap construction"which are the long-distant limits of the class of the-ories with the same superselection rules [24]. Here our modular proposal isexpected to give a more �eld theoretic understanding of the so-called formfac-tor bootstrap program and the Bethe-ansatz approach. Both the formfactorprogram and the present "modular program" point into the same direction:the construction of local �elds resp. of local nets from a given S-matrix.Whereas the formfactor program has only been formulated for factorizableS-matrices, the modular idea in principle does not su�er from such a restric-tion. Presently I do not know if the latter leads to a unique wedge algebra;the above argument only yields unique real local subspaces of the Fock spaceof scattering states. For the uniqueness of the algebras one would need a�ner split into so called positivity cones.Note that in higher dimensions such a starting point with a model S isnot available since these long distance limits in d=3+1 would be trivial i.ea free �eld realization of the superselection rules a�liated with S=1 (it mayhowever lead to a solid proof of the "folklore" statement that S=1 leadsnecessarily to the free �eld Borchers class.).In the d=3+1 S 6= 1 case one could start with a unitary Poincar�e-invariantoperator Saux which only ful�lls the weaker requirement which a modular re-ection J has to obey in order to yield a net of real subspaces of the Fockspace:HRW;F � HF . The requirement that these wedge spaces contain space-likecone localized Fock-space vectors, may already lead to a nontrivial restric-tion on the auxiliary Saux. One would hope that such restrictions resultingfrom localizations which are sharper than the original wedge localization maygive rise to an inductive procedure (a kind of algebraic perturbation theoryin which the unitarity relations are ful�lled in every order). Hence the start-ing auxiliary Saux could be a unitary operator as in Heisenberg's ill-fatedS-matrix theory [26] since the wedge localization of states requires much lessthen the locality properties of local interpolating �elds leading to severe an-23



alyticity restrictions for the scattering amplitudes. So the issue of the trueS-operator would then appear in a later step: how to go (presumably by aseries of iterative steps) from a net of wedge-localized state vectors to a netof space-like(or double-) cone localized von Neumann algebras. Therefore atthe end ,unlike in Heisenberg`s proposal, the physical S-matrix would carryall those subtle properties resulting from localization of �elds.The wedge localization theory may also provide some new concepts andtechniques for external �eld problems.In the past the causality "diseases"in the presence of external electromagnetic �elds of certain higher spin �eldequations were used in order to point out some problems with the "elemen-tarity" (versus compositeness) of higher spin equations (supersymmetry isof no help here!)[27][28]. The physical argument (in favour of taking thecausality structure of external �eld problems that serious) is a consequenceof Weinberg's interpretation [8] of the external �eld approximation as result-ing from in�nitely heavy dynamical objects. The causality properties of light�elds are not expected to depend on the size of the masses of heavy �elds.A closely related problem is the question of what state should play the roleof the vacuum reference state for such external interactions, in particular ifthe interaction is stationary. Traditionally one has used adiabatic arguments,either overtly or, as in Schwinger's ��pair production calculation, buriedinside an elegant looking formalism. For QFT in curved space- time thedeviation of causality from its standard Minkowski-space form has a naturalphysical interpretation, but the problem of a vacuum-like reference statebecomes even more dramatic, since such global concepts as "vacuum" andWigner "particles" (and as a consequence normalization conditions for curvedspacetime anomalous magnetic moment and Lamb-shift)are meaningless.Very recently some marvelous progress on this problem was obtainedthrough the discovery of the "microlocal spectrum condition" which also per-mits to take into account interactions between the matter �elds[29]. Althoughthe perturbation theory is not based on quantization (it rather uses the Bo-goliubov Weinberg dispersion theoretic framework re�ned by the Epstein-Glaser theory), it is not as intrinsic as a modular-based approach proposed(but unfortunately not carried out) here. The time-ordering used in that for-malism originates from Dirac's formalism for time dependent Hamiltonianperturbations. Although being a natural part of quantum mechanics andhence independent of (canonical, functional)quantization , such concepts us-ing the 4thcomponent of a vector and distinguishing hyperplanes are not a24



good starting point for an intrinsic approach to interactions. The modularwedge theory however is a necessary consequence of covariant nets. It is notonly characteristic for the latter, but also explains and underlines the bigdistance which QFT maintains to classical �eld theory as well as to quantummechanics .The modular approach to interactions advocated here may also be usefulfor a more intrinsic understanding of renormalization. The usual presenta-tion of renormalization is intimately related to quantization and actions. Itonly repairs a very formal and slightly illegitimate starting point[21]. Look-ing only at the renormalized correlation functions, it is not so easy to isolatean intrinsic aspect of renormalization [21]. Even in Wilson's renormaliza-tion group approach the intrinsic characterization of �x points outside ofGaussians remains unclear.In the problem of d=2 critical indices an intrinsic understanding has �-nally be achieved in terms of very subtle properties of their attached noncom-mutative real time chiral theories[21]. It turned out that the critical indicesare classi�ed by certain numerical values of superselected charges (related tothe so called "statistical dimensions" of algebraic QFT) which are in turnrelated to such (at �rst sight) remote looking issues as the classi�cation ofphysically admissible braid-group statistics and modular theory. An intu-itive understanding in terms of values of charges appears �rst in Kadano�"swork[30].Recently a framework was proposed which allows to understand an in-trinsic association of a scale invariant theory to a massive theory (with thepossibility of new superselection rules emerging in the short distance limiti.e. short-distance quark decon�nement)[31]. I believe that this frameworktogether with ideas from modular theory may also cast some light on a possi-ble distinction between "renormalizable and unrenormalizable nets". In ad-dition there is the interesting issue of "semirenormalizable" theories i.e. thequestion of how to deal with theories like massive (non Higgs) vectormesonscoupled to charged matter �elds via conserved currents. In that case the neu-tral �elds stay renormalizable. To have (observable) renormalizable subsetsof �elds could very well (as the causality issue) be a general phenomenon ofhigher spin interactions.Finally we want to emphasize that our modular proposal based on the S-matrix does not cover zero mass theories. Whereas for those massless theorieswhich can be viewed as scaling limits of massive theories ( e.g. chiral confor-25



mal QFT ) this poses no serious problem (since the conceptual complicationis compensated for by an analytic simpli�cation), the physically interestingcases in which the dual e.and m. charges are of Maxwellian origin remainpresently outside the modular approach. In this case neither the conceptualnor the analytic aspects are simple.If in these notes I created the impression that QFT, despite its more than60 years of existence, is a very young and fresh branch of intellectual endeav-our (looking at the many basic but insu�ciently understood problems), thenthis was not without intentions.A large part of this work ( the main exception being the section on "con-tinuous spin") was carried out during a visit of the UFES Brazil. I am deeplyindebted to some of my colleagues at the UFES, in particular to proof. JulioCesar Fabris for their kind hospitality.8 ReferencesReferences[1] E.P. Wigner, Ann. Math.40, 149 (1939)[2] R. Newton and E.P. Wigner, Rev. Mod. Phys.21,400 (1949)[3] P.Leyland, J. Roberts and D. Testard, "Duality for Quantum FreeFields" CNRS,Marseille preprint July 1978, unpublished[4] M. Takesaki "Tomita's theory of modular Hilbert algebras and its ap-plication." Lecture Notes in Mathematics, Berlin:Springer 1970[5] G.L. Sewell, Phys. Rev. Lett.79A,23 (1980)[6] R.Haag, "Local Quantum Physics, Fields, Particles, Algebras", SpringerVerlag 1992[7] B. Schroer and J.A. Swieca, Phys. Rev. D10, 480 (1974),B.Schroer, J.A. Swieca and A.H. V�olkel Phys.Rev. D11, 1509 (1975)[8] S.Weinberg, "The Quantum Theory of Fields" Cambridge UniversityPress 1995 26
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