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Abstract

We present an extension of the Gilbert-Pearson theory of subordinacy, which
relates dimensional Hausdorff spectral properties of one-dimensional Schrodinger
operators to the behavior of solutions of the corresponding Schrédinger equation.
We use this theory to analyze the dimensional Hausdorff properties for several ex-
amples having singular-continuous spectrum, including sparse barrier potentials,

the almost Mathieu operator and the Fibonacci Hamiltonian.
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Singular continuous spectra have been extensively studied recently within spectral theory.
While their importance in Physics is still far from clear, they seem to occur for some one-
body Hamiltonians associated with quasicrystals. Our interest here is in the classification and
decomposition of such spectra with respect to dimensional Hausdorff measures. The measure-
theoretical aspect of this point of view goes back to Rogers-Taylor [1], and it has been studied
recently within spectral theory by Last [2] and by del-Rio et al. [3] who have shown that
the singular-continuous spectrum which is produced by localized rank-one perturbations of
Anderson-model Hamiltonians in the localized regime [4] must be purely zero-dimensional —
in the sense that the associated spectral measures are supported on a set of zero Hausdorff
dimension.

The main purpose of this paper is to report a general method for spectral analysis of
one-dimensional Schrodinger operators from this point of view. It is a natural extension of
the Gilbert-Pearson theory of subordinacy [5, 6], and it allows us to analyze the dimensional
Hausdorff properties for a number of examples with singular-continuous spectrum. Below we
describe the main ideas of our study and some of the main results. Mathematically complete
proofs of these results will be given elsewhere [7].

Most of our discussion will be restricted to one-dimensional discrete (tight-binding)

Schrodinger operators of the form

(H)(n) =d(n+1) +(n—1) + V(n)y(n) . (1)

We shall consider two kinds of such operators: “line” operators acting on (*(Z) (—oo < n <
), and “half-line” operators acting on ¢*(Z*) (n > 0), which are considered with a phase

boundary condition of the form:
¥(0)cos @ + p(1)sinf = 0, (2)

where —7 /2 < 6 < /2.

Before formulating our main results, which would require a number of definitions, we
would like to describe some of their applications. We stress at this point that the dimen-
sional Hausdorff properties which we study are those which are associated with the spectral
measures of the corresponding operators. The spectra themselves, as sets, are closed sets,
and their dimensions may be larger than those which are associated with the spectral mea-
sures. A description of the precise spectral-theoretic scheme which underlies our study is
given below.

We start with a somewhat artificial example of “half-line” operators with sparse barrier

potentials. More specifically, we consider potentials which vanish for all n’s outside a sparse



(fastly growing) sequence of points {L,}>2, where |V(L,)| — oo as n — oo. Simon-Spencer
[8] have shown that the Schrodinger operators corresponding to such potentials have no
absolutely-continuous spectrum, and Gordon [9] has shown that if the |V(L,)|’s grow suffi-
ciently fast (compared to the growth of the L,’s) then for (Lebesgue) a.e. boundary phase
6 the corresponding operators have pure-point spectrum with exponentially decaying eigen-
functions. It is easy to see [10], however, that if the L,’s grow sufficiently fast (compared
to the growth of the |V(L,)|’s) then, for every boundary phase 6, the spectrum in (—2,2)
is purely singular-continuous, and Simon [11] has recently shown that if the growth is even
faster then the spectrum in (—2,2) is purely one-dimensional, in the sense that the spectral
measure does not give weight to sets of Hausdorff dimension less than 1. By applying the

subordinacy theory described below we have shown:

Theorem 2. Lel o € (0,1). Let L, = 20"") and define a potential V (k) for k > 0 by
V(L,) = LU=2)/C) - V(k)y =0 if k ¢ {L,}°2,. Then:

n

(i) For every boundary phase 8, the spectrum of the corresponding “half-line” discrete
Schrédinger operator consists of of the interval [—2,2] (which is the essential spectrum)

along with some discrete point spectrum outside this interval.

(i1) For every 0, the Hausdor{f dimensionality of the spectrum in (—2,2) is bounded between
dimensions « and = 2a/(1 + «), in the sense that the restriction of the spectral
measure to (—2,2) is supported on a set of Hausdorff dimension 3 and does not give

weight to sets of Hausdorff dimension less than a.

(iii) For Lebesque a.e. 0, the spectrum in [—2,2] is of exact dimension o, namely, the re-
striction of the spectral measure to [—2,2] is supported on a set of Hausdorff dimension

a and does not give weight to sets of Hausdorff dimension less than «.

Remark.  The result only requires the L,’s to be sufficiently sparse (namely, to grow
sufficiently fast). L, = 2(7") is a particular choice for which the sufficient sparseness is

easy to show. The result holds equally well for any sequence of L,’s which is sparser (e.g.,

L, =20")"),

Next we consider two examples of “line” operators with quasiperiodic potentials. The
first is the almost Mathieu (also called Harper) operator Hp y g, which is the operator of the
form (1) on (*(Z) with potential V(n) = Vs, 4(n) = Acos(2n8n + ), where \,6 are any

real numbers, and 3 is an irrational. Aubry and Andre [12] have conjectured that Hg ) g has



purely absolutely-continuous spectrum whenever |A| < 2, and purely point spectrum (with
exponentially localized eigenfunctions) whenever |A| > 2. While the |A| < 2 part of this
conjecture may be correct (so far, the existence of absolutely-continuous spectrum [13] and
absence of point spectrum [14] have been established rigorously), the |A| > 2 case turned out
to be more delicate: Absolutely-continuous spectrum is absent [15], but both pure-point and
singular-continuous spectra occur, depending on arithmetical properties of both 3 and 6 [16].
It turns out, though, that if we concentrate on the dimensional Hausdorff properties of the
spectral measures, rather than distinguishing between pure-point and singular-continuous

spectra, the situation becomes simpler:

Theorem 3. For |X| > 2, every irrational 3, and every 0, Hg o has purely zero-
dimensional spectrum, in the sense that its spectral measures are all supported on a set

of zero Hausdorff dimension.

Remarks.

(i) The spectrum of Hgs g, as a set, is known in this case (|A| > 2) to have positive

Lebesgue measure [17].

(ii) The special case of Theorem 2 where (3 is a Liouville number has already been estab-

lished by Last [2].

(ili) The result extends to potentials of the form V(n) = f(276n + 0), where f(z) =
SN Ag cos(kx), in which case we prove that the spectrum is purely zero-dimensional
whenever|Ay| > 2. This is precisely the regime for which Herman’s theorem [18] gives

positivity of the Lyapunov exponent.

Our second “line” example is the Fibonacci Hamiltonian H,, which is the operator of the
form (1) on (%(Z) with potential V(n) = A([(n + 1)w] — [nw]), where w = (v/5 — 1)/2 is the
golden mean, and [¢] = max{m € Z|m < z}. H) is the most studied of all one-dimensional
quasicrystal models. It is known [19] that, for every A # 0, it has purely singular-continuous
spectrum, and, moreover, its spectrum (as a set) is a Cantor set of zero Lebesgue measure.

By applying the subordinacy theory described below, we have shown:

Theorem 4.  For every X\ there exvists an o > 0 such that Hy has purely a-continuous
spectrum, namely, its spectral measures do not give weight to sets of Hausdorff dimension

less than «.



Remark. There exists strong numerical evidence [20] that the spectrum of H) (as a set)
has Hausdorff dimension strictly less than 1 (for every A # 0), and this would imply that its
spectrum must also be -singular (see below) for some 3 < 1. So far, we have not succeeded

in proving this conjecture, and we consider it as an interesting open problem.

Let us now describe the spectral-theoretic scheme in the context of which the above
results should be understood.

Consider a separable Hilbert space H, and a self adjoint operator H. Recall [21] that for
each ¢ € H, the spectral measure y,; (also known to physicists as the local spectral density) is
the unique Borel measure obeying (¢, f(H)y) = [ f(x) duy(x) for any measurable function
f. By Lebesgue’s decomposition theorem, every Borel measure p1 decomposes uniquely as:
[ = pac + fse + fpp. The absolutely-continuous part, p,., gives zero weight to sets of zero
Lebesgue measure. The pure-point part, i, is a countable sum of atomic (Dirac) measures.
The singular-continuous part, pg., gives zero weight to countable sets and is supported on
some set of zero Lebesgue measure (we say that a measure u is supported on a set S if
(RN S) =0). ps = pise + 1y is called the singular part of . e = flae + pse is called
the continuous part of u. Letting H,. = {¢ |y is purely absolutely-continuous}, H,. =
{% | py is purely singular-continuous}, and H,, = {¢ | py is purely pure-point}, one obtains
a decomposition: H = Hae & Hse B Hpp. Hae, Hse, and H,, are closed (in norm), mutually
orthogonal subspaces, which are invariant under H. The absolutely-continuous spectrum
(04c), singular-continuous spectrum (o), and pure-point spectrum (o,,) are defined as the
spectra of the restrictions of H to the corresponding subspaces, and Spec(H) =0 = 0,. U
Osc U Opp.

The above standard scheme of spectral theory can be extended, to further decompose
the singular-continuous subspace, by using Hausdorff measures. Recall that for any subset

S of R and « € [0, 1], the a-dimensional Hausdorff measure, h?, is given by

h*(S)

fimy inf 2017 3)
where a & — cover is a cover of S by a countable collection of intervals, S C 2, b,, such
that for each v the length of b, is at most §. h' coincides with Lebesgue measure, and h°
is the counting measure (assigning to each set the number of points in it). If o < 3, then
for any S, h%(S) > h?(S). Given any ) # S C R, there exists a unique «(5) € [0, 1] such
that h*(S) = 0 for any a > «a(S), and h*(S) = oo for any o < a(S). h*)(S) may be
zero, finite, or infinite. This unique «(S5) is called the Hausdorff dimension of S. A rich

theory of decomposing measures with respect to Hausdorff measures has been developed by



Rogers and Taylor [1]. Below we shall only employ a small part of it. A much more detailed
description has been given by Last [2].

Given a € [0, 1], a measure p is called a-continuous («e) if ©(S) = 0 for every set S with
h*(S) = 0. It is called a-singular («s) if it is supported on some set S with ~A%(S) = 0. We
say that u is one-dimensional (od) if it is a-continuous for every a < 1. We say that it is
zero-dimensional (zd) if it is a-singular for every a > 0. y is said to have exact dimension «
(for a € (0,1)) if, for every € > 0, it is both (o — €)-continuous and (o + €)-singular.

Absolutely-continuous measures are the same as 1-continuous measures, and, in particu-
lar, they are one-dimensional. Pure-point measures are zero-dimensional. A measure which
is both a-singular and #-continuous for some 0 < 8 < a < 1 must be singular-continuous.
But, there are also singular-continuous measures which are one-dimensional and which are
therefore close to absolutely-continuous measures. Similarly, there are singular-continuous
measures which are zero-dimensional and which are therefore close to pure-point measures.

Given a (positive, finite) measure  and o € [0, 1], we define

Dji(z) = limsup (e _(22)2; ) (4)

and T, = {«| Dj(:z;) = o0}. To must have h* (T, ) = 0 and thus, the restriction u(To.N-) =

fas is a-singular. Moreover, u((R\ Tw) N - ) = fiae is a-continuous. Thus, each measure

decomposes uniquely into an a-continuous part and an a-singular part: g = pae + fos-
Moreover, an a-singular measure must have D7 (x) = oo a.e. (with respect to it) and an
a-continuous measure must have Dj(:li) < 0o a.e.. It is important to note that Dj(:z;) is
defined with a lim sup. The corresponding limit need not exist.

We let Hye = {9 | piy is a-continuous} and Has = {0 | gy is a-singular}. H,. and Has
are mutually orthogonal closed subspaces which are invariant under H, and ‘H decomposes as
H = Hae® Has. The a-continuous spectrum (o) and a-singular spectrum (o,) are defined
as the spectra of the restrictions of H to the corresponding subspaces, and o = 0,. U 04s.
Note, in particular, that when we classify spectra as being a-singular, zero-dimensional, of
exact dimension « etc., we always relate to the corresponding properties of the spectral
measures.

The above scheme for spectral classification can be related to the dynamics of the un-
derlying quantum systems. A detailed account of such relations has been given by Last
[2].

It should be pointed out that certain fractal and multifractal studies of some operators
with singular-continuous spectrum (including some of the examples we discussed above) have

been carried out by several authors [20, 22]. While such studies are related to the above



decomposition theory, the relations are generally far from trivial, and we believe that they
are only partial. One should exercise extreme care when attempting to interpert the results
of such studies within the framework of the scheme discussed above.

¢ From here on we shall restrict our discussion to one-dimensional tight-binding Schrodinger
operators of the form (1). While we discuss discrete operators, the subordinacy results we
describe are equally valid for continuous Schrédinger operators of the form —% + V.

Consider first “half-line” operators, defined with a phase boundary condition of the form
(2). for such operators, it is well known that the spectral measures for lattice-point vectors
0, where 6,(m) = ., are all mutually equivalent (namely, they have the same sets of
zero measure). Thus, the spectral problem reduces to analyzing a single spectral measure,
which we choose to be © = ps,. The Gilbert-Pearson theory of subordinacy [5] relates the
pointwise behavior of the spectral measure p at some energy F to the behavior of solutions

of the corresponding Schrodinger equation

Pn+ 1)+ ¢ —1)+V(n)p(n) = Epn). ()

Given a solution of (5), we let |[¢||; denote the norm of the solution ¢ over length L. While
the solution is only defined for integer points, it is useful to consider the length L as a

continuous variable (allowed to take any positive real value), and so we define:

1/2

L)
[l = | 2 1)l + (L= [LDI (L] + D] (6)

where [L] denotes the integer part of L. A (non-trivial) solution ¢ of (5) is called a sub-
ordinate solution if for any other solution ¢ of (5), which is not a constant multiple of ¢,
limy_ H%Hf = 0. Note that a subordinate solution must be unique (up to constant multi-
ples). The Gilbert-Pearson theory relates the decomposition of the spectral measure u to
subordinacy of solutions as follows: The absolutely-continuous part of y is supported on the
set of energies for which (5) has no subordinate solutions. (In fact, this set of energies is, up to
a set of both Lebesgue and spectral measure zero, the set where p has a finite non-vanishing
derivative.) The singular part of x is supported on the set of energies for which the solutions
which obey the appropriate boundary condition (2) are subordinate. (In fact, this is precisely
the set of energies for which p has an infinite derivative: lim._o u((E — €, E + €))/(2¢) = o0.)

Let us now denote by ¢ the solution of (5) which obeys the boundary condition (2) and
has normalization |;(0)]* + [¢1(1)|* = 1. Let us denote by w5 the solution of (5) which
obeys the orthogonal boundary condition to (2), namely, t2(0)sin 6 — ¢5(1) cos§ = 0, and
has normalization [t2(0)]* + |12(1)]? = 1. Our main result is the following:

7



Theorem 1. For any o € (0,1] and every I/ € R, D5, (FE) = oo if and only if

lim inf =0,

where = a/(2 — ).

Remark. Theorem 1 is proven with the same ideas used by Gilbert-Pearson, but it
requires some optimization of their analysis. As a by-product, we also get a simplified proof
of their original results, as well as a strengthened version of some explicit bounds of the form
obtained by Simon [23]. A key observation is to assign to each € > 0 a length L(¢) via the
equality ||¥1]|r(oll%2||n) = 1/(2¢), for which we prove the explicit inequality

5= VI lsg _ 5+
m(E+ 0]~ |elleg ~ Tm(E+i0)]

where m(z) is the Weyl-Titchmarsh function obeying m(z) = (¢y, (H —z)7'6;) = [ %“_%l (so

m(z) is the Borel transform of the spectral measure p).

For spectral analysis, Theorem 1 can be combined with two further basic facts. The first

is the existence of generalized eigenfunctions [24], from which one can show that for a.e. £

[lnlle
L12InL

and liminfr_ . “ip—ll/LLi < 00. The second is the constancy of the Wronskian ¢ (n 4 1)12(n) —
a1 1)t (n). which implies [l [o][vallc > (L — 1)/2.

Recall that the upper Lyapunov exponent F(F) is defined by:
F(E) = limsup;_(1/L)In||®L(E)||, where the ®,(FE)’s are the 2 x 2 transfer matrices

defined by ®(FE) = Tr(E)T-1(F) --- Ti(F), and

I.(B) = (E—V(n) —1) |

with respect to the spectral measure i, the solution ¥y must obey limsup;_, < 0

1 0

A rather soft application of Theorem 1 is given by the following:

Corollary 1.1. Suppose that F(F) > 0 for every E (outside, possibly, a set of E’s of zero
Hausdorff dimension), then for every boundary phase 8 the corresponding spectral measure

[ is zero-dimensional.

Corollary 1.1 is essentially a special case of:



Corollary 1.2.  Suppose that for some 3 > 1 and every FE in some Borel set A (5) has

2
a solution p obeying lim sup HigL

(o + €)-singular, where o = 2/(1 4+ 3).

> 0. Then for every e > 0, the restriction (AN -) is

Another general application of Theorem 1 relates averaged decay of generalized eigenfunc-

tions (if it happens to occur) to dimensional Hausdorff properties:

[l
Loz

Corollary 1.3. Suppose that lij{ninf = 0 for every E in some Borel set A. Then

the restriction p(AN -) is a-singular.

Remark. Note, in particular, that if the generalized eigenfunctions are averagely decaying,

then g must be singular.

It is well known that energies for which (5) has only bounded solutions must be asso-
ciated with the absolutely-continuous part of the spectral measure p (this is an immediate
consequence of the Gilbert-Pearson theory, although it can also be shown by different means

[23]). A certain extension of this principle is provided by the following:

Corollary 1.4. Suppose that for some 1 < 3 < 2 and every E in some Borel set A, every

2
solution ¢ of (5) obeys lim sup ez

L—oo Lﬁ
where a = 2 — 3.

< o00. Then the restriction u(AN -) is a-continuous,

Remark. While Theorem 1 is also valid for continuous Schrédinger operators on L*(R),
Corollaries 1.3 and 1.4 are not. Their proofs use the fact that the Wronskian in the dis-
crete case involves only solutions, as opposed to the continuous case where the Wronskian
also involves derivatives. Continuous Schrodinger operators may have absolutely-continuous
spectrum along with decaying eigenfunctions (e.g., the potential V(x) = —x, for which the

eigenfunctions are decaying Airy functions).

While Corollaries 1.1-1.4 can be applied to a variety of concrete examples, one can often
obtain more detailed information by making a careful study of the ratio "¢1"L/"¢2"€7 and
applying Theorem 1 directly. Theorem 2 is obtained by such an analysis.

We now discuss briefly “line” operators. The spectral measures of a “line” operator can
be constructed from those of corresponding two “half-line” operators (a left and a right), and
while the relations are not completely trivial, they do allow an extension of the subordinacy
theory to this case. Gilbert [6] has shown that the absolutely-continuous part of the spectral

measures of a “line” operator is supported on the set of energies for which at least one of



the “half-line” problems has no subordinate solution. The singular part is supported on the
set of energies for which (5) has a solution which is subordinate both to the right and to the
left. The probing of dimensional Hausdorff properties is somewhat more delicate in this case
since it involves a liminf rather than a limit. For example, in order for a “line” operator
to have purely zero-dimensional spectrum, it is not sufficient that the right and left upper
Lyapunov exponents are both positive. It is also needed that the length-scales, on the two
sides, for which the norms of the transter matrices are large will be correlated. Nevertheless,
in concrete settings, such as ones discussed in Theorems 3 and 4, the required control can
be obtained.

In conclusion we would like to remark the following: The classification of spectra with
respect to dimensional Hausdorff measures extends the usual spectral classification in a
natural way, and provides a useful way of distinguishing between different kinds of singular-
continuous spectra. The subordinacy theory extends to this point of view in a natural
way, and allows to answer the relevant spectral questions whenever the nature of the solu-
tions of the corresponding Schrodinger equation is sufficiently well understood. We note,
in particular, that singular-continuous spectrum which occurs in “close neighborhood” to
Anderson localization (as in the case of the strongly coupled almost Mathieu operator or
the rank-one perturbed Anderson model) tends to be purely zero-dimensional; while the
singular-continuous spectrum of the Fibonacci Hamiltonian, which has been identified as
having “critical states” in physics literature [20], is a-continuous for some positive a.

As we were completing this paper we learned of a preprint by Remlin [25] which obtains

a restricted version of Theorem 1.
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