
ESI The Erwin Schr�odinger International Pasteurgasse 6/7Institute for Mathematical Physics A-1090 Wien, Austria
Theory of the Anderson Impurity Model:The Schrie�er{Wol� Transformation Re{examinedStefan K. KehreinAndreas Mielke

Vienna, Preprint ESI 270 (1995) October 18, 1995Supported by Federal Ministry of Science and Research, AustriaAvailable via http://www.esi.ac.at



Theory of the Anderson impurity model:The Schrie�er{Wol� transformation re{examinedStefan K. Kehrein1 and Andreas Mielke2Institut f�ur Theoretische Physik,Ruprecht{Karls{Universit�at,D{69120 Heidelberg, F.R. GermanyOctober 5, 1995AbstractWe apply the method of in�nitesimal unitary transformations recently introduced by Wegner [1]to the Anderson single impurity model. It is demonstrated that this method provides a good ap-proximation scheme for all values of the on-site interaction U , it becomes exact for U = 0. We areable to treat an arbitrary density of states, the only restriction being that the hybridization shouldnot be the largest parameter in the system. Our approach constitutes a consistent framework toderive various results usually obtained by either perturbative renormalization in an expansion inthe hybridization �, Anderson's \poor man's" scaling approach or the Schrie�er{Wol� unitarytransformation. In contrast to the Schrie�er{Wol� result we �nd the correct high{energy cuto�and avoid singularities in the induced couplings. An important characteristic of our method ascompared to the \poor man's" scaling approach is that we continuously decouple modes fromthe impurity that have a large energy di�erence from the impurity orbital energies. In the usualscaling approach this criterion is provided by the energy di�erence from the Fermi surface.1E{mail: kehrein@marvin.tphys.uni-heidelberg.de2E{mail: mielke@hybrid.tphys.uni-heidelberg.de



1 IntroductionIn the past few years there has been renewed interest in the Anderson impurity model. Thismodel was originally proposed by Anderson [2], for a recent review see [3]. It has been introducedto study the well{known Kondo problem, the behaviour of a single magnetic impurity coupled toa conduction band of electrons. The Hamiltonian contains the electron band, the energy of theimpurity orbital together with a repulsive interaction on the impurity site, and a hybridizationbetween the band states and the impurity state,H =Xk;� �kcyk;�ck;� +X� �ddy�d� +Xk;� Vk(cyk;�d� + dy�ck;�) + Udy+dy�d�d+: (1.1)In the case of a linear dispersion relation for the band and Vk = V = const: the model was solvedusing a Bethe{ansatz [4]. But if one wants to study the Anderson impurity model in a moregeneral situation, one needs a di�erent approach. There are several methods available, most ofthem are reviewed in [3]. The most prominent method amongst them is probably the numericalrenormalization group developed by Wilson [5] for the original Kondo Hamiltonian and appliedto the Anderson impurity model by Krishna-murthy et al [6].Recently we applied a new technique to this model [7]. We used continuous unitary trans-formations in a form introduced by Wegner [1] to diagonalize the Hamiltonian approximately.A continuous unitary transformation yields ow equations for the Hamiltonian, or equivalentlyow equations for the coupling constants. The approximation we used neglected some additionalcouplings generated by the ow that were not present in the initial model. Unfortunately wewere not able to obtain quantitative results. The reason is that the continuous transformationsyields coupled, nonlinear di�erential equations for the di�erent parameters in the Hamiltonian,which we were not able to treat analytically.In a more recent work we applied continuous unitary transformation to the well known spin{boson model [8]. For this model a unitary transformation exists, the polaron transformation,which has been used to treat the Hamiltonian of the spin{boson model approximately. In Ref. [8]we used a simple modi�cation of the previous ansatz by Wegner [1] for the generator of thecontinuous unitary transformation. Thereby we were able to construct a continuous polarontransformation. This new transformation does not have the disadvantages of the usual polarontransformation as it treats the slow bosonic modes in a satisfactory way. In addition, we were ableto reduce the set of di�erential equations to a single, non{linear di�erential equation. This �nallyallowed us to obtain quantitative results which are in good agreement with results obtained byother methods.In the case of the Anderson impurity model, a unitary transformation similar to the polarontransformation is known, the Schrie�er{Wol� transformation [9]. It has been introduced toeliminate the hybridization between the electronic states in the band and in the impurity orbitalpresent in the Anderson model. Thereby it renormalizes the impurity energy and the repulsiveinteraction. Furthermore it generates a spin{spin interaction between the impurity electronand the conduction band electrons. This interaction is responsible for the Kondo e�ect. Inthis treatment one usually takes only the terms into account which are of second order in thehybridization. Other interactions are generated as well, but they are neglected.The Schrie�er-Wol� transformation has some disadvantages. First it is equivalent to a secondorder perturbational treatment of the hybridization term in the Hamiltonian. Therefore thegeneral validity of the result is unclear. In particular the Anderson impurity model in the Kondoregime is mapped onto a Kondo problem with an e�ective band width of order of the conductionband width. This is known to be wrong since the high{energy cuto� in the Anderson impurity1



model cannot be larger than of order the on-site interaction U [10]. The second problem withthe Schrie�er{Wol� transformation is that energy denominators occur, which become zero if theenergy of the impurity level lies in the conduction band. If this is the case, the Schrie�er{Wol�transformation is ill{de�ned. This problem is similar to the problem of the treatment of theslow bosonic modes in the polaron transformation. Therefore we expect that a modi�cation ofour old treatment of the Anderson impurity model should be useful. In the present paper weconstruct a continuous, or in�nitesimal Schrie�er{Wol� transformation in order to eliminate thehybridization terms in the Hamiltonian. We will show how such a continuous Schrie�er{Wol�transformation can be constructed systematically. Our old approach can be modi�ed so that thenumber of additional interactions generated by the unitary transformation is reduced.It is clear that applying in�nitesimal unitary transformations to a given Hamiltonian is anon{perturbative method. The advantage of our present approach is that our method treatsthe Anderson impurity model consistently within one framework independent of whether theon{site interaction U or the hybridization � is the larger parameter. We are able to reduce theproblem to two coupled non{linear di�erential equations for the impurity orbital energy andthe on{site interaction. These are solved approximately yielding self{consistency conditions forthese two quantities. Finally the antiferromagetic spin{spin interaction can be calculated. Itis demonstrated how standard results from e.g. renormalization theory can be obtained in thisconceptually new framework. Whereas other methods are not applicable in the whole parameterspace or need additional assumptions, continuous unitary transformations are conceptually sim-ple and no physically relevant restrictions or additional assumptions are needed. One can hopethat the ow equations approach will be useful too for other problems with less well{establishedresults. In so far it is important to study the method using a well{known problem.Independent of Wegner [1], Glazek and Wilson [11, 12] have recently also proposed to usecontinuous unitary transformations to construct renormalization group equations for e�ectiveHamiltonians in quantum �eld theory. Wilson et al. [13] applied this method to quantumchromodynamics. Although the general idea is similar, there are some di�erences between theapproach of Glazek and Wilson and ours. Their goal is to eliminate "far{o�{diagonal" matrixelements in a given Hamiltonian, which means o�{diagonal matrix elements connecting statesthat are energetically far from each other. This means that the �nal Hamiltonian has a bandedstructure. In contrast our goal is to eliminate matrix elements such that the �nal Hamiltonianis diagonalized approximately or block{diagonal.Although it is possible to construct ow equations such that the Hamiltonian becomes diag-onal, it is not possible to solve these equations and to calculate the eigenenergies. Therefore weuse the continuous unitary transformation in order to eliminate some of the matrix elements. Inour case the hybridization is eliminated and the �nal Hamiltonian is block{diagonal. The �nalHamiltonian does not contain matrix elements connecting states with a singly occupied impurityorbital to states for which the impurity orbital is either not occupied or doubly occupied. If nowthe impurity site is occupied with no or two electrons, the spin on the impurity site is zero andthe additional antiferromagnetic interaction vanishes. In these cases the problem is essentiallysolved with respect to static properties. In the regime where the impurity site is singly occupied,the problem is reduced to a usual Kondo problem, which may be solved by various methods.Our paper is organized as follows. In the following section we derive the general ow equationsfor the coupling constants of the Anderson impurity model. In section 3 we illustrate the methodin the case of a vanishing interaction of the electrons on the impurity. It is shown that in this casethe ow equations yield the exact solution. Furthermore we introduce an approximation whichstill gives the exact result for the case of vanishing interaction and which is applied in section 4to the case of a non{vanishing interaction. We calculate implicit equations for the renormalized2



interaction and the renormalized impurity energy. These equations can in principle be solvedfor any given density of states and hybridization. Our results are compared with the resultsobtained by Schrie�er and Wol� [9]. In section 5 the antiferromagnetic spin{spin interaction iscalculated. It can be used to determine e.g. the Kondo temperature. In section 6 we discuss themethod of continuous unitary transformations as compared to a single unitary transformationin the Schrie�er{Wol� paper. Section 7 contains a discussion of our method as compared to thewell{known \poor man's" scaling approach. The last section contains the conclusions and anoutlook on other problems.2 The ow equations for the Anderson impurity modelOur starting point is the Hamiltonian for the single impurity Anderson model (1.1), which wewrite in a normal ordered formH =Xk;� �k : cyk;�ck;� : +X� �ddy�d� +Xk;� Vk(cyk;�d� + dy�ck;�) + Udy+dy�d�d+ +E0: (2.1)We introduced a normal ordering for the band electron operators cyk;� and ck;�. It is de�ned by: cyk;�ck;� := cyk;�ck;� � nk where nk = (exp(��k) + 1)�1 is the occupation number of the bandstate with wave vector k. We lt the Fermi energy equal to zero. The reason for the normalordering is that additional interactions, which will be generated by our procedure and which weneglect, should be written down in a normal ordered form as well since otherwise the groundstate expectation value of such additional contributions does not vanish. A detailed discussionhas been given in [7]. In contrast to [7] we do not introduce a normal ordering for the impurityelectron operators dy� and d�. The reason is that in our approximation contributions containingsuch operators are not neglected if they have a non{vanishing expectation value in the groundstate. It is possible to introduce a normal ordering on the impurity site as well, but the resultsare not changed. Due to the normal ordering a constant E0 = 2Pk �knk has been introduced inthe Hamiltonian.We now want to apply a general continuous unitary transformation to the Hamiltonian. Sucha transformation is de�ned by a generator � that depends on a continuous variable, which wecall `. The continuous unitary transformation is de�ned by dHd` = [�(`); H(`)] with the initialcondition H(0) = H in (2.1). In order to simplify notation we will denote the initial values of �dand U by�Id def= �d(` = 0); U I def= U(` = 0) (2.2)and the asymptotic (\renormalized") values for `!1 by�Rd def= �d(` =1); UR def= U(` =1): (2.3)If these parameters appear without an argument this will imply that they are to be consideredas functions of `.We choose � to be of the form� = Xk;� �k(cyk;�d� � dy�ck;�) + Xk;q;� �k;q(cyk;�cq;� � cyq;�ck;�)+Xk;� �(2)k (cyk;�dy��d��d� � dy�dy��d��ck;�) (2.4)3



The commutator of � and H is easily calculated, we obtain[�;H ] = Xk;� �k(�d � �k)(cyk;�d� + dy�ck;�)+ Xk;q;� �kVq(: cyk;�cq;� : + : cyq;�ck;� :)� 2Xk;� �kVkdy�d� + 2Xk;� �kVknk+ UXk;� �k(dy�dy��d��ck;� + cyk;�dy��d��d�)� Xk;q;� �k;q(�k � �q)(: cyk;�cq;� : + : cyq;�ck;� :)+ 2 Xk;q;� �k;qVq(dy�ck;� + cyk;�d�)� Xk;� �(2)k (�k � �d)(dy�dy��d��ck;� + cyk;�dy��d��d�)� 2Xk;� �(2)k Vkdy�dy��d��d�+ Xk;q;� �(2)k Vq(: cyk;�dy��d��cq;� : + : cyq;�dy��d��ck;� : � : cyk;�dy��d�cq;�� :� : cyq;�dy��d�ck;�� : �cyk;�cyq;��d��d� � dy�dy��cq;��ck;�)+ 2Xk;� �(2)k Vknkdy��d��+ UXk;� �(2)k (dy�dy��d��ck;� + cyk;�dy��d��d�): (2.5)Many additional couplings are generated which did not occur in the original Hamiltonian in(2.1). But some of these terms can be eliminated by a suitable choice of �. Let us �rst considerterms containing : cyk;�cq;� + cyq;�ck;� :. Such terms do not occur if we choose�k;q(�k � �q) = 12(�kVq + �qVk): (2.6)Similarly, terms containing operators of the type dy�dy��d��ck;� + cyk;�dy��d��d� do not occur ifwe chooseU�k + (�d � �k)�(2)k + U�(2)k = 0 (2.7)These equations may be used to determine �k;q and �(2)k . The only contribution that does occuradditionally is the termXk;q;� �(2)k Vq(: cyk;�dy��d��cq;� : + : cyq;�dy��d��ck;� : � : cyk;�dy��d�cq;�� :� : cyq;�dy��d�ck;�� : �cyk;�cyq;��d��d� � dy�dy��cq;��ck;�): (2.8)Notice that the contributions containing : cyk;�cq;�+ cyq;�ck;� : or : dy�dy��d��ck;� + cyk;�dy��d��d� :have been classi�ed irrelevant in our former approach [7], whereas the term in (2.8) is marginalin some of the �xed points [7]. In principle it has to be included in the Hamilonian in (2.1).But the commutator of this term with � does not yield contributions to the other terms in the4



Hamiltonian. Therefore we do not take it into account in our �rst analysis of the problem.But it is clear that this additional term is important. A part of it yields the antiferromagneticinteraction between the impurity spin and the spins of the band electrons that is responsible forthe Kondo e�ect. We will come back to this interaction later. Our �rst goal is to calculate theow equations for the parameters in the Hamiltonian (2.1). From (2.5) we obtaindVkd` = �k(�d � �k) + 2Xp �k;pVp (2.9)d�kd` = 2�kVk (2.10)d�dd` = �2Xk �kVk + 2Xk �(2)k Vknk (2.11)dUd` = �4Xk �(2)k Vk (2.12)dE0d` = 4Xk �kVknk (2.13)The last equation yields directly E0 = 2Pk �knk, which is the energy of the �lled Fermi sea. Inthe following we are interested in the thermodynamic limit. For large N , the number of states inthe band, one has Vk / N�1=2. Thus, �k must as well be of the order N�1=2, and the derivativeof �k with respect to ` is of order N�1. For large values of N the band energies do not dependon `. This should have been expected. The thermodynamic bath of electrons is not a�ected bythe single impurity. This means that the global density of states in the band is �xed. But thisdoes not mean that the local density of states is �xed as well. In contrary, one should expectthat the local density of states near the impurity site is a�ected by the impurity. We will comeback to this point in the discussion.3 Vanishing interaction U = 0To illustrate the advantages of our method, let us �rst study the case U = 0. Then we have aquadratic Hamiltonian that can be solved exactly, see for example Ref. [14]. We will show thatour method yields the exact solution in this case. For U = 0 the ow equations simplify todVkd` = �k(�d � �k) + 2Xp �k;pVp (3.1)d�dd` = �2Xk �kVk (3.2)The ow equations are exact in the case U = 0 since the neglected terms in (2.5) vanish in thislimit. We let�k = Vkf(�k ; `) (3.3)and introduceJ(�; `) =Xk V 2k �(�� �k): (3.4)5



In the literature one often introduces the parameter� = � �(�F ) VkF (0)2 = � J(�F ; 0); (3.5)where �(�F ) is the density of states at the Fermi surface. The ow equations for �d and J(�; `)ared�dd` = �2 Z d�f(�; `)J(�; `) (3.6)@J(�; `)@` = 2J(�; `)f(�; `)(�d � �) + 2 Z d�0J(�; `)J(�0; `)(f(�; `)+ f(�0; `))� � �0 : (3.7)For the integral in the last equation one has to take its principal value. The set of ow equationsmay be solved if one introduces a functionG(�; `) = Z d�0 J(�0; `)� � �0 + G(�; `): (3.8)Taking the derivative with respect to `, we obtain an implicit equation for this derivative, whichcan be solved. The �nal result is@G(�; `)@` = 2 �1 + Z d�0 J(�0; `)(�� �0 + G(�; `))2��1 Z d�0f(�0; `)J(�0; `)�d � �0 + G(�; `)� � �0 + G(�; `) (3.9)Calculating the derivative of G(�; `) with respect to � we obtain similarly1 + @G(�; `)@� = �1 + Z d�0 J(�0; `)(�� �0 + G(�; `))2��1 : (3.10)This yields@G(�;`)@`1 + @G(�;`)@� = 2 Z d�0f(�0; `)J(�0; `)�d � �0 + G(�; `)�� �0 + G(�; `) (3.11)Comparing the right hand side with the derivative of �d with respect to `, we obtaind�dd` = � @G(�;`)@`1 + @G(�;`)@� ������=�d(`) : (3.12)This equation can be integrated and the �nal result is�d(`) + G(�d(`); `) = �Rd : (3.13)In the last step we used G(�;1) = 0, which follows directly from J(�;1) = 0 and holds for anappropriate choice of f(�; `). Solving for �d(`), we obtain�d(`) = �Rd � Z d�J(�; `)�Rd � � (3.14)Again, for the integral on the right hand side we have to take its principal value. This meansthat we have to choose J(�; `) and therefore f(�; `) such that the principal value exists for all `.We obtain the value of �Rd , if we let ` = 0 and solve for �Rd .As a simple example we take a semi-circleJ(�; 0) = 2V 2�D2pD2 � �2 (3.15)6



where 2D is the band width and V = qPk V 2k . Here we have � = 2V 2=D. The main reason forthis choice of the hybridization is that all the integrals can be worked out in closed form in thesequel. But it should be noted that it is a main advantage of our approach that it can be usedfor arbitrary functions J(�; 0), in particular for any distribution of the density of states in theconduction band. However, if one chooses a linear dispersion relation and constant hybridizationVk , that is J(�; 0) = V 22D�(D � j�j) as usually done in renormalization group treatment of theAnderson impurity model, one must be careful due to the discontinuous behaviour close to theband edge. The self{consistency equations in the ow equations approach will then generallyhave more than one solution, however, the actual solution of the di�erential equations choosesthe correct one. Close to the band edge one expects unphysical behaviour anyway due to theunphysical choice of J(�; 0) and neither approach should be trusted. Therefore it is natural in ourapproach to choose a function J(�; 0) that is continuous at the band edge as should be expectedon physical grounds anyway.Let us come back to our example introduced in Eq. (3.15). We have to distinguish betweenthe case where �Rd lies in the band and the case where it lies outside the band. We �rst considerthe latter case. The integral can be calculated and we obtain�Rd � �Id + �D �sign(�Rd )q(�Rd )2 �D2 � �Rd � = 0 (3.16)if ����Rd ��� > D. This equation yields a simple quadratic equation for �Rd , which has always twosolutions. If � < D at most one of these solutions lies outside the band. If � > D and����Id��� > � � D, there is a single solution for �Rd outside the band, but if ����Id��� < � � D we obtaintwo solutions outside the conduction band.The situation is much simpler when �Rd lies inside the band. The integral in (3.14) has to beinterpreted as its principal value and we obtain�Rd � �Id � �D�Rd = 0: (3.17)The only solution is�Rd = �Id1� �D : (3.18)�Rd lies inside the band if � < D � ����Id���. The various cases are shown in Fig. 1.The fact that for a su�ciently large value of V (� > D in our example) two solutions for �Rdexist, is generic. It holds for any J(�; 0) with a connected support of length 2D. It is clear thatwith the present approach of ow equations only a single solution can be obtained. Nevertheless,the second solution is of physical importance. It is possible that a localized state develops fromthe original band states that has an energy which lies outside the band. Such a state cannotbe obtained within the present formulation of the ow equations. In the case U = 0 one canintroduce a di�erent representation of the Hamiltonian and of � that includes a localized bandstate explicitly. Since we are at present not able to deal with similar problems in the case U > 0,we restrict ourselves to the parameter regime � < D (in fact later we will need � < D=2). Thisis reasonable from a physical point of view since we do not expect that the hybridization is thelargest parameter in the system.Eq. (3.14) is obtained as well if one uses two simple approximations to the ow equation.The �rst approximation neglects the terms proportional to cyk;�cq;� in the Hamiltonian that aregenerated by the transformation and consequently one neglects such terms in � as well. This7



is an approximation that can be justi�ed from a physical point of view, since these terms areirrelevant in all �xed points [7]. Then the second term in (2.9) vanishes and the equation for Vkis linear in Vk . Similarly, the second term in (3.7) vanishes, whereas (3.6) remains unchanged.Both equations together yieldd�dd` = � Z d� @J(�;`)@`�d � � : (3.19)Furthermore we assume that �d(`) converges rapidly to �Rd , so that we can replace �d(`) with �Rdon the right hand side (3.19). This yields (3.14). We will use similar approximations for U > 0as well. Although it is possible to choose � in such a way that only very few new terms aregenerated, the ow equations become very complicated. In order to be able to analyse the owequations, one has to neglect higher interactions. This is often possible due to physical reasons.One would like to understand why the self{consistency condition obtained by replacing �d by�Rd on the right hand side of (3.19) yields a good approximation to the exact solution of (3.19).To discuss this point let us introduce a special choice of f(�; `). Since we want J(�; `) to vanishin the limit ` ! 1, a natural choice would be f(�; `) = �(�d � �). But for �nite U we willhave to make a di�erent choice for f(�; `) in the next section. For consistency we therefore takef(�; `) = �(�d � �)3=(4�2d). This obviously works as well and it is easy to see that in the presentcase both choices are essentially equivalent.The following argument holds in both cases. Unless � = �d, J(�; `) decays exponentially ona scale set by ` / �2d=(�d � �)4. If �d lies outside the band it will tend to �Rd exponentially andthe approximation �d � �Rd on the right hand side of (3.19) is justi�ed. On the other hand, if �dlies inside the band, we can estimate the relevant `{scale on which �d changes by calculating theratio of the total change of �d to its derivative with respect to ` for small `. This shows that �dchanges on a scale set by ` / �2d=D4, i.e. much faster than J(�; `) for values of � near the Fermienergy. Therefore �d can be replaced by its renormalized value on the right hand side of (3.19).We will use the same approximation in the next section to discuss the case U > 0, it can bejusti�ed in the same manner.4 Non{vanishing interaction U > 0With the approximations introduced at the end of the last section, the ow equations for U > 0may be written in the formdVkd` = �k(�d � �k); (4.1)d�dd` = �2Xk �kVk + 2Xk �(2)k Vknk ; (4.2)dUd` = �4Xk �(2)k Vk : (4.3)According to (2.7) we take �(2)k = �U�k(�d� �k +U)�1 and as above �k = Vkf(�k ; `). We assumethat Pk V 2k < D2 so that the renormalized �Rd is unique for U = 0. We expect that it is uniquefor U > 0 as well. With these assumptions we proceed as in the previous section. We introduceJ(�; `) as in (3.4) and obtain the ow equations@J(�; `)@` = 2f(�; `)J(�; `)(�d � �); (4.4)8



d�dd` = � Z d�@J(�; `)@` �d � � + (1 + n(�))U(�d � �)(�d � �+ U) ; (4.5)dUd` = 2 Z d�@J(�; `)@` U(�d � �)(�d � �+ U) : (4.6)n(�) is the Fermi distribution. The �rst equation may be used to parametrize J(�; `). A suitableparametrization isJ(�; `) = J(�; 0) exp � Z `0 (�d � �)2(�d � � + U)2�2d + (�d + U)2 d`0! : (4.7)We will see that with this choice the hybridization ows to zero for all �, in particular also for� = �Rd or � = �Rd +UR. The reason is that �d� �Rd decays like `�1=2 as we will see below. J(�Rd ; `)decays algebraically to zero. Furthermore, Eq. (4.7) corresponds to the following function f(�; `)f(�; `) = �(�d � �)(�d � � + U)22�2d + 2(�d + U)2 : (4.8)The reason for this choice of f(�; `) or J(�; `) is that now no pole terms appear in the integrals onthe right hand sides of (4.5) and (4.6). The denominator in (4.8) is just introduced for convenienceso that limits like limU!1 can be performed in all the equations without di�culties. Later wewill come back to the question of other parametrizations f(�; `). In fact Eq. (4.8) belongs to aclass of parametrizations that all give the same physical results, whereas other parametrizationslead to divergencies or J(�; `) does not ow to zero everywhere.Let us consider for a moment the simpli�ed case limU!1. The equation for �d takes the formd�dd` = Z d�J(�; 0)(1 + n(�))(�d � �) exp � Z `0 (�d � �)2d`0! : (4.9)This equation is very similar to the ow equation for the renormalized tunneling frequency inthe spin-boson problem [8]. The asymptotic behaviour can be obtained as in [8], one �nds�Rd � �d(`) / `� 12 for large ` if �d lies inside the band. Otherwise it decays exponentially. (4.9)shows that 1=p` plays the role of an e�ective band width if 1=p` becomes smaller than theoriginal band width of J(�; 0). The e�ective band width is reduced with increasing `. This issimilar to a renormalization group procedure, where modes with high energies are integrated out.In our case, these modes are decoupled from the system. The analogies with renormalizationtheory will be worked out in more detail in section 7.For �nite U the situation is somewhat more complicated, but the results are similar. Thee�ective band width is 1=p` and leads to an asymptotic behaviour UR � U(`) = C1`� 12 and�Rd � �d(`) = �C2`� 12 for large ` with some constants C1 and C2. This again holds if �d and�d + U lie inside the band. C1 and C2 are positive if �d lies below and �d + U lies above theFermi energy. One possibility to obtain these results is to make the ansatz U(`) = UR + C1`�and �d(`) = �Rd � C2`�. Inserting these expressions in the ow equations one shows easily that� = � = 12 is the only possible solution. We now replace U and �d by their asymptotic values onthe right hand side of (4.5) and (4.6). Both equations can be integrated and we obtain�d(`) = �Rd � Z d�J(�; `)�Rd � � + (1 + n(�))UR(�Rd � �)(�Rd � �+ UR) ; (4.10)U(`) = UR + 2 Z d�J(�; `) UR(�Rd � �)(�Rd � � + UR) : (4.11)9



These equations are good approximations to the solution of the ow equations (4.5) and (4.6).They give the correct asymptotic behaviour and a numerical integration of the ow equationsshows that the true solution di�ers only slightly from the approximate value. It should benoted that this is a di�erent level of approximation than the previous restriction to a certainset of interactions included in the ow equations. This restriction was a physical approximationwhereas the approximate solutions (4.10) and (4.11) can be controlled by solving the originaldi�erential equations numerically. We have done that too and always found very good agreement.For U = 0 we showed that (4.10) yields the exact result. For U = 1, (4.10) is correct upto terms quadratic in J(�; `). This can be seen if one notices that (4.10) is the exact solution ofa set of equations similar to (3.6) and (3.7) but with J(�; `) replaced by J(�; `)(1 + n(�)). Anadditional argument to justify this approach is similar to the one given at the end of the previoussection. The relevant `{scale for changes of �d and U is smaller than the scale on which J(�; `)varies. The crossover to the asymptotic behaviour occurs for ` > D�2, whereas J(�; `) doesnot change too much on this scale. Taking ` = 0, (4.10) and (4.11) yield the self{consistencyconditions for �Rd and UR. Let us mention that the results for �Rd and UR obtained from (4.10)and (4.11) do not depend on the special choice of f(�; `) in (4.8). Nevertheless (4.10) and (4.11)are only good approximations to the ow equations (4.5) and (4.6) for special choices of f(�; `)like the one in (4.8). The important point is that J(�; `) has to be chosen so that the principalvalue of the integrals in (4.10) and (4.11) is well{de�ned for all values of `. This is clearlytrue for J(�; `) given in (4.7). Our results here do not depend on the details of the continuousunitary transformation. But the transformation has to be chosen such that the ow for all theparameters in the Hamiltonian is well{de�ned. In section 7 we will see an example of a di�erentparametrization of J(�; `) where this is not the case.Let us again consider the case J(�; 0) = 2V 2�D2pD2 � �2. The equation for UR does not containa factor n(�) and the integral is easily evaluated. The result isU I = UR � 2�D �UR � �(����Rd + UR����D)sign(�Rd + UR)q(�Rd + UR)2 �D2+�(����Rd ����D)sign(�Rd )q(�Rd )2 �D2�: (4.12)This equation shows that if �Rd lies below the Fermi energy and �Rd + UR lies above the Fermienergy, then UR is larger than the initial value U I . This is also true if both, �Rd and �Rd +UR liein the band. It this case we simply obtainUR = U I1� 2�D : (4.13)On the other hand, if �Rd and �Rd + UR lie above the energy band, UR is smaller than U I .Symmetric Anderson modelIn the symmetric case U I = �2�Id, the ow equations yield U(`) = �2�d(`) and the aboveconditions give UR = �2�Rd as it should be. Therefore we have�Id = �Rd + 2�D ��(����Rd ����D)sign(�Rd )q(�Rd )2 �D2 � �Rd � : (4.14)This equation is very similar to the one obtained for U = 0. If ����Id��� < D � 2� the renormalizedvalue is �Rd = �Id=(1� 2�=D) and lies inside the band. If ����Id��� > D � 2� we obtain a quadratic10



equation for �Rd . For 2� < D this equation has a single solution outside the band, whereas for2� > D we can obtain two solutions of the self{consistency equations outside the conductionband similar to the case U = 0.Asymmetric Anderson modelIn the general case (U 6= �2�d), we have to calculate the integral in (4.10). It contains a factorn(�) due to the normal ordering we introduced in the Hamiltonian. Therefore the renormalizedimpurity energy �Rd depends on the temperature and the chemical potential. We let T = 0 and�F = 0, so that n(�) = 1� �(�). In this case the integrals can easily be evaluated explicitly. Wehave to distinguish various cases of whether the impurity orbital energies lie inside the conductionband or outside.� ����Rd ��� ; ����Rd + UR��� > D:We obtain�Id = �Rd � �2D�2�Rd � UR + sign(�Rd + UR)q(�Rd + UR)2 �D2  1� 2� arcsin D�Rd + UR!�sign(�Rd )q(�Rd )2 �D2 3� 2� arcsin D�Rd !�: (4.15)In the limit U I = 0 we have UR = 0 and the condition for �Rd is the same as in the previoussection. In the limit U =1, we obtain a single equation for �Rd ,�Id = �Rd + �2D�sign(�Rd )q(�Rd )2 �D2 3� 2� arcsin D�Rd !+ 2�D � 3�Rd �: (4.16)In both expressions, ����Rd ��� > ����Id���. The impurity orbital energy is pushed away from the bandas it should have been expected.� ����Rd ��� < D; ����Rd + UR��� > D:We obtain�Id = �Rd � �2D�2�Rd � UR + 2�qD2 � (�Rd )2 ln0@qD2 � (�Rd )2 +D���Rd �� 1A+sign(�Rd + UR)q(�Rd + UR)2 �D2  1� 2� arcsin D�Rd + UR!�: (4.17)If we let U =1 in this case, this expression simpli�es to�Id = �Rd � �2D�3�Rd � 2�D + 2�qD2 � (�Rd )2 ln0@qD2 � (�Rd )2 +D���Rd �� 1A �: (4.18)Finally for ����Rd ���� D� U�Rd = �Id + �� ln ����� 2De �Rd �����+ �O( DUR ): (4.19)11



This is shown in Fig. 2. Eq. (4.19) contains a logarithmic singularity on the right handside for �Rd ! 0. If �Id is negative and su�ciently far away from the Fermi energy, �Rd isnegative as well and increases with increasing �Id. At some (still negative) value of �Id therenormalized impurity energy jumps discontinuously from a given value below the Fermienergy to a value above the Fermi energy and then increases further with increasing �Id.This behaviour can be deduced from the numerical solution of the di�erential equationsand is depicted by the full line in Fig. 2. However, it is di�cult to obtain reliable numericalresults in this regime. �Rd never reaches the Fermi level except for the trivial case whereV = 0 and �Id = 0.� ����Rd ��� ; ����Rd + UR��� < D:We obtain�Id = �Rd � �2D�2�Rd � UR + 2�qD2 � (�Rd )2 ln0@qD2 � (�Rd )2 +D���Rd �� 1A� 2�qD2 � (�Rd + UR)2 ln0@qD2 � (�Rd + UR)2 +D���Rd + UR�� 1A �: (4.20)This expression contains two logarithmic singularities, it diverges if either �Rd ! 0 or�Rd + UR ! 0. As a consequence, both �Rd and �Rd + UR cannot approach the Fermi energyas long as V 6= 0. For ����Rd ���� UR � D one �nds in particular�Rd = �Id + �� ln �����UR�Rd �����+ �O(URD ): (4.21)Again the solution of Eq. (4.21) is non{unique for some range of the initial parameter �Id.In fact Eq. (4.21) is well{known from renormalization theory [6, 10, 16]: In the valenceuctuation regime of the asymmetric Anderson model one has to replace �Id by an e�ectiveimpurity orbital energy E�d (we use the notation from [6]). E�d can be obtained as thesolution of the following equationT �2 = �Ed(T �2 ) def= �E�d (4.22)with�Ed(T ) = ��Id � �� ln �UT � : (4.23)One easily checks E�d = �Rd with �Rd from the ow equations approach. This result for �Rdwill play an important role for the calculation of the Kondo temperature in this regime inSect. 5. It will then become apparent why it is important to �nd the e�ective impurityorbital energy from renormalization theory to be identical to our asymptotic value �Rd .Finally it should be emphasized that the ow equations immediately give the correct high{energy cuto� in Eqs. (4.19) and (4.21). The smaller of the two parameters U and D appearsin the logarithm and this comes about here very naturally.12



These results, especially the self{consistency conditions in the general form�Rd = �Id + Z d�J(�; 0)�Rd � � + (1 + n(�))UR(�Rd � �)(�Rd � � + UR) (4.24)UR = U I � 2 Z d�J(�; 0) UR(�Rd � �)(�Rd � � + UR) (4.25)can be compared with the result of the Schrie�er{Wol� transformation. If one applies a usualSchrie�er{Wol� transformation to the Hamiltonian, the impurity energy �d and the interactionU are renormalized as well. But the result is a simple result of a second order perturbationaltreatment. It may be obtained from our self{consistency conditions if they are solved recursivelyto �rst order in J(�; 0). This simply means that on the right hand sides of (4.24) and (4.25)the renormalized values are approximated by the initial values. As already mentioned our resultis exact if U = 0. In this case the self{consistency condition for �Rd can be solved iteratively.This corresponds to summing up the whole perturbational series. Similarly, the self{consistencyconditions (4.24) and (4.25) can be solved recursively though this will in general not give theexact result. But it is seems that a large part of the perturbational series is summed up whenone solves these equations due to the same reasons that were already mentioned at the end ofsection 3.One of the main results that we have obtained for J(�; 0) = 2V 2�D2pD2 � �2 was that therenormalized values �Rd and �Rd + UR behave discontinuously at the Fermi energy as a functionof the initial values �Id and �Id + U I . This is a consequence of the fact that due to the normalordering a factor n(�) appears in (4.24). This result is generic and holds for a general functionJ(�; 0). A similar e�ect occurs at the band edge if J(�; 0) is not a continuous function at theband edge. Then we obtain singularities in the integral in (4.24) if �Rd or �Rd + UR approach theband edge. Consequently these quantities behave discontinuously at the band edge as a functionof the initial values.There is another interesting point that we would like to mention. In the symmetric caseU = �2�d the renormalized value of U does not depend on the temperature. If the systemdeviates only a bit from the symmetric case, (4.24) and (4.25) show that the system is pushed inthe direction of the symmetric case. This can be seen if one takes �d = �U=2+� and expands theright hand side of (4.24). The renormalized value of � is smaller than the initial value of �. In thissense the symmetric situation is stable. Near the symmetric point the temperature dependenceof the renormalized values will be weak. But in the general case the renormalized values ofthe impurity energy and the interaction will depend on the temperature. For small enoughtemperature the integral in (4.24) can be evaluated using the usual Sommerfeld expansion. Thisyields�Rd = �Id+Z d�J(�; 0)�Rd � � + (1 + �(��))UR(�Rd � �)(�Rd � � + UR) +�6 �(kB T )2 �(�Rd )�2 � (�Rd + UR)�2�+O(T 4)(4.26)This shows that for ����Rd + UR��� > ����Rd ��� we obtain �Rd (T ) > �Rd (T = 0), whereas for ����Rd + UR��� < ����Rd ���we obtain �Rd (T ) < �Rd (T = 0). Generally Eq. (4.26) is a good approximation only for T < ����Rd ���:When T becomes larger one can show that �Rd (T ) will decrease as a function of T for ����Rd + UR��� >����Rd ���. The temperature dependence of �Rd leads to a weak temperature dependence of UR. Inthe special case J(�; 0) / pD2 � �2 we obtain a temperature dependence of UR only if �Rd or�Rd + UR lie outside the band. If ����Rd ��� ; ����Rd + UR��� < D, (4.12) shows that UR does not depend onthe temperature. 13



5 The induced spin-spin interactionSo far the contribution (2.8), which is generated by the unitary transformation, and whichtherefore has to be included in the Hamiltonian, was not taken into account. This interactiongives rise to a spin{spin coupling term� 2Xk;q V (2)k;q ( yk 12~�  q) � ( yd 12~�  d) (5.1)with k =  ck;+ck;� ! ;  d =  d+d� ! ; (5.2)the so called potential scattering term12Xk;q V (2)k;q ( yk q) ( yd d); (5.3)and a term12Xk;q V (2)k;q (cyk;�cyq;��d��d� + dy�dy��cq;��ck;�) : (5.4)The �nal Hamiltonian contains no couplings between states that have a singly occupied impurityorbital and states for which the impurity orbital is either empty or doubly occupied. Whereas thespin{spin coupling (5.1) acts only on the part of the Hilbert space of states with a singly occupiedimpurity orbital, the term (5.4) vanishes on this part of the Hilbert space. It is important ifthe impurity orbital is either empty or doubly occupied. In this sense, these two terms areconjugate to each other. In fact one has a simple interpretation for these couplings in thesymmetric Anderson model. Whereas the asymmetric Anderson model has only the usual SU(2){spin symmetry, the symmetric Anderson model has an additional SU(2){pseudo{spin symmetry.Introducing the wave vector �, which has all components equal to �, the symmetric energy bandhas the symmetry �k = ����k , Vk = V��k . For �d = �U=2 the Hamiltonian also commutes withthe operatorsŜz = 12  1� dy+d+ � dy�d� +Xk (1� cyk;+ck;+ � cyk;�ck;�)!Ŝ+ = d+d� +Xk c��k;+ck;� (5.5)Ŝ� = dy+dy� +Xk cyk;�cy��k;+ :These operators form the second SU(2) symmetry mentioned above. The potential scatteringterm (5.3) and the term (5.4) together can be written as a pseudo{spin interaction. It is clearthat if the original Hamiltonian has these symmetries, the transformed Hamiltonian has thesesymmetries too. Therefore the term (5.4) is present if the corresponding spin{spin interactionis present. Although in the asymmetric case the Hamiltonian does not have the additionalsymmetry, the two terms (5.3) and (5.4) have the same interpretation. The only di�erence isthat now the coupling constant V (2)k;q is not symmetric with respect to a transformation k ! ��k.In the remaining part of this section we want to discuss the regime where the impurityorbital is singly occupied. Since  yd d = 1 in this regime, the pseudo{spin interaction reduces14



to a scattering of band electrons. Such a term has already been neglected and therefore thiscontribution is not taken into account.In spite of the fact that the additional couplings V (2)k;q are small compared to the other para-meters of the Anderson model, they cannot be ignored. In the regime where the impurity orbitalis singly occupied, �Rd < �F and �Rd +UR > �F , even a small antiferromagnetic spin{spin couplingat the Fermi surface V (2)kF ;kF < 0 gives rise to the Kondo e�ect for low temperatures. In the Kondomodel the Kondo temperature can be de�ned as TK = (2��imp(T = 0))�1 [4] where �imp(T = 0)is the impurity contribution to the susceptibility at zero temperature. Let us remark that otherde�nitions of the Kondo temperature can be found in the literature, the de�nition by Wilson [5]is somewhat di�erent. For a detailed discussion see e.g. [4]. Based on a Bethe-ansatz solution,Tsvelick and Wiegmann argue that the Kondo temperature TK is given bykBTK = 2�D exp h��(2�(�F )V (2)kF ;kF )i (5.6)with the universal function [5]�(y) = 1jyj � 12 ln jyj+ O(y): (5.7)For the Kondo problem D is the conduction band width. In the Anderson impurity model oneknows that D in (5.6) has to be replaced by an e�ective band width De� that cannot be largerthan UR [10]. If one follows the perturbative calculation of e.g. the susceptibility in the Kondoproblem, one notices that the breakdown of the perturbation expansion is due to the matrixelements V (2)kF ;q: These describe the scattering of an electron from the Fermi surface with theimpurity to some wave vector q and then back to the Fermi surface. For this reason one is notonly interested in the coupling at the Fermi surface V (2)kF ;kF , but also in V (2)kF ;q since this determinesthe e�ective band width of the associated Kondo problem.Let us now calculate the matrix elements V (2)k;q in the ow equations approach. We alreadymentioned that the additional couplings (2.8) do not lead to a contribution in the equations for�d and U . Therefore we calculate the coupling constant simply by integrating the coe�cient infront of the interaction term in (5.1). To be consistent with the notation in our previous paperwe symmetrize this coe�cient. We have to calculateV (2)k;q = Z 10 d`(�(2)k Vq + �(2)q Vk): (5.8)Using (2.7) and (3.3) to replace �(2)k and furthermore (4.4), we obtainV (2)k;q = �12 Z 10 d`VkVqU 0@ @ ln J(�k ;`)@`(�d � �k)(�d � �k + U) + @ lnJ(�q ;`)@`(�d � �q)(�d � �q + U)1A : (5.9)The `-dependence of Vk is obtained from (4.1). Using again (3.3) and (4.4) we obtainVk(`) = Vk(0)sJ(�k ; `)J(�k ; 0) : (5.10)This yieldsV (2)k;q = �12Vk(0)Vq(0) Z 10 d`U(J(�k; `)J(�k; 0)J(�q; `)J(�q; 0))� 12�0@ @J(�k ;`)@` J(�q; `)(�d � �k)(�d � �k + U) + @J(�q ;`)@` J(�k ; `)(�d � �q)(�d � �q + U)1A : (5.11)15



Using the parametrization for J(�; `) introduced in (4.7), this expression simpli�es toV (2)k;q = 12Vk(0)Vq(0) Z 10 d` U (�d � �k)(�d � �k + U) + (�d � �q)(�d � �q + U)�2d + (�d + U)2� exp �12 Z `0  (�d � �k)2(�d � �k + U)2�2d + (�d + U)2 + (�d � �q)2(�d � �q + U)2�2d + (�d + U)2 ! d`0! : (5.12)Let us replace �d and U on the right hand side by their renormalized values. The same reasoningapplies with respect to this approximation as at the end of section 3, in particular for theimportant matrix elements at the Fermi surface. One �ndsV (2)k;q = Vk(0)Vq(0)UR� (�Rd � �k)(�Rd � �k + UR) + (�Rd � �q)(�Rd � �q + UR)(�Rd � �k)2(�Rd � �k + UR)2 + (�Rd � �q)2(�Rd � �q + UR)2 : (5.13)This formula is a very good approximation to (5.12) if �k or �q are not too close to �Rd or �Rd +UR.If both band energies become equal to �Rd or �Rd + UR, the approximate result diverges. In thisspecial case the asymptotic behaviour of �d and U becomes important. One can show that theintegral in (5.12) has a logarithmic divergence, which yields a logarithmic divergence of V (2)k;q if�k and �q approach �Rd or �Rd + UR. Such a divergence causes no problems since it is integrableas a function of the energy �k ; also higher powers of V (2)k;q remain integrable.When calculating the Kondo temperature, we only need V (2)k;q for the case where at least oneof the band energies is equal (or at least very close) to the Fermi energy. Since �Rd or �Rd + URcan only be equal to the Fermi energy if the hybridization vanishes, we can use (5.13) in thefollowing. At the Fermi surface this yieldsV (2)kF ;kF = VkF (0)2 UR�Rd (�Rd + UR) ; (5.14)and with only one wave vector at the Fermi surfaceV (2)kF ;q = VkF (0) Vq(0)UR �Rd (�Rd + UR) + (�Rd � �q)(�Rd � �q + UR)(�Rd )2(�Rd + UR)2 + (�Rd � �q)2(�Rd � �q + UR)2 : (5.15)Before proceeding with the calculation of the Kondo temperature in various cases, it is interestingto compare this result with the coupling obtained by the Schrie�er{Wol� unitary transformationin Ref. [9]. There one �ndsV (2)k;q = 12 Vk(0) Vq(0)U I  1(�Id � �k)(�Id � �k + U I) + 1(�Id � �q)(�Id � �q + U I)! ; (5.16)in particular at the Fermi surfaceV (2)kF ;kF = VkF (0)2 U I�Id(�Id + U I) : (5.17)As a �rst remark we mention that for �k = �q both results are identical if one replaces the initialvalues of �Id and U I in the result by Schrie�er and Wol� with the renormalized values �Rd andUR. For �k 6= �q our result di�ers from the Schrie�er{Wol� result.16



The �rst problem with the induced spin{spin interaction in the formalism of Schrie�er andWol� are the pole terms in V (2)kF ;q if �Id or �Id + U I lie in the conduction band. A second problemis apparent in the following limitV (2)kF ;q j�q j!1�! 12 VkF (0) Vq(0) U I�Id(�Id + U I) 6= 0: (5.18)This immediately implies that the e�ective band width in the corresponding Kondo problem isof order the conduction band widthDe� / D; (5.19)which is known to be wrong. It is quite obvious from Eq. (5.15) that both these problems donot show up in the ow equations approach.In order to obtain some more quantitative results, let us now discuss two particular regimesof the Anderson model.Symmetric Anderson model with ����Rd ��� < DIn the symmetric case one has �Rd = �UR=2 and the relevant matrix elements of the spin{spincoupling areV (2)kF ;q = VkF (0) Vq(0)UR �2q � (UR)22��2q � (UR)24 �2 + � (UR)24 �2 : (5.20)This is depicted in Fig. 3 where it can be compared with the Schrie�er{Wol� result. For simplicitywe have assumed Vq(0) = VkF (0) for all wave vectors q in the diagram. Furthermore, we havereplaced U I by UR in the Schrie�er{Wol� result, see also our discussion in section 6 for thispoint. The Kondo temperature depends mainly on the coupling at the Fermi surface (compareEq. (5.6))2�(�F ) V (2)kF ;kF = � 8��U I �1� 2�D � : (5.21)This is consistent with the Schrie�er{Wol� result except that we �nd an additional (usuallysmall) correction term 2�=D.The main di�erence to the Schrie�er{Wol� result shows up in the e�ective band width of theassociated Kondo problem. In the ow equations approach the e�ective band width is obviouslyproportional to the on{site interactionDe� / UR (5.22)since the spin{spin coupling becomes ferromagnetic for j�qj > UR=p2 and decays to zero evenfurther away from the Fermi surface. Since the spin{spin coupling induced by our unitarytransformation is not constant (there is no physical reason why it should be), it is di�cult to sayquantitatively what the proportionality factor in Eq. (5.22) is: The Kondo problem is usuallyonly treated for a constant spin{spin coupling with the conduction band electrons. Nevertheless,we would like to estimate the proportionality constant in (5.22) for the special case of a constantdensity of states and constant Vq(0). This value can be compared with known results. To getsome rather approximate estimate one can e.g. replace V (2)kF ;q regarded as a function of �q by its17



value at the Fermi surface in an interval around the Fermi surface that has the same area as theoriginal curve. This should give a lower bound on De�. We obtainDe� >� 0:36UR: (5.23)This result can be compared with the result from the Bethe-ansatz solution. There one obtainskBTK = Up4� exp(��(2�(�F )V (2)kF ;kF )): (5.24)We identify the prefactor with the one in (5.6) and obtainDe� = p�4 U = 0:443U: (5.25)This is in good agreement with (5.23). Estimates similar to (5.23) can be obtained for anarbitrary density of states and arbitrary Vq(0).Valence uctuation regime 0 < ��Rd � UR � DThis regime shows characteristic new features of the asymmetric Anderson model. The spin{spin coupling is given byV (2)kF ;q = VkF (0) Vq(0) 2�Rd � �q(�Rd � �q)2 + (�Rd )2 (5.26)with the value at the Fermi surface2�(�F ) V (2)kF ;kF = 2���Rd : (5.27)Essentially the same remarks apply as in the previous section. The coupling is depicted in Fig. 4where it can be compared with the Schrie�er{Wol� result (again with Vq(0) = VkF (0) and with�Id, U I replaced by �Rd , UR). As before the ow equations approach yields the correct scalingbehaviour of the e�ective band widthDe� / ����Rd ��� : (5.28)It is important that the \renormalized" value of the impurity orbital energy enters in Eqs. (5.26)and (5.27). This behaviour is known from perturbative renormalization [10, 16] or numericalrenormalization [6] which give the same value of the renormalized impurity orbital energy thatwe have calculated in Eq. (4.21). In this regime the Schrie�er{Wol� unitary transformation notonly gives the wrong scaling behaviour of the e�ective band width De� / D, but also the wrongcoupling at the Fermi surface since the initial value of the impurity orbital energy enters.At this point one can wonder about the temperature dependence of �Rd that has been foundin Eq. (4.26). This e�ect seems to be unobserved in renormalization treatments. However,the maximum e�ect of non{zero temperature is to increase �Rd (T = 0) by a value of order �.According to Fig. 2 the smallest value of ����Rd ��� with �Rd < 0 is �Rd = ��=�, that is of order �. Thusone might expect to see some inuence of the temperature dependence of �Rd in this regime with����Rd ��� <� �. But this is just the mixed valence regime (for kB T <� �) where scaling breaks downanyway [16]. For this reason there is no contradiction.18



6 Comparison with other methods I (Schrie�er{Wol� unitarytransformation)At this point we would like to explain in more detail why the Schrie�er{Wol� transformationand our continuous unitary transformation yield di�erent results. At a �rst glance these twotransformations are very similar. Our � has the same general structure as the generator S in theSchrie�er{Wol� transformation H ! eSHe�S [9] withS =Xk;� Vk(0) U I(�Id � �k)(�Id � �k + U I) dy��d��cyk;�d� + 1�k � �Id cyk;�d�!� h:c: (6.1)In both approaches the same more complicated interactions generated due to higher commutatorsare neglected. But as we have seen the two transformations still show important di�erences thathave to be explained.First of all, let us mention that it is possible to construct a continuous unitary transformationthat reproduces the Schrie�er{Wol� result (5.16) for the coupling V (2)k;q with the initial values of�d and U replaced by their renormalized values. In fact one can achieve this by choosing theparametrizationf(�; `) = �12 1�d � � (6.2)instead of Eq. (4.8). Then the hybridization J(�; `) shows a very simple owJ(�; `) = J(�; 0) exp(�l): (6.3)This is depicted in Fig. 5 where it can be compared with the behaviour for our choice of f(�; `)from Eq. (4.8). As compared to the original Schrie�er{Wol� transformation this is an improve-ment since now the renormalized parameters enter into the expressions for the induced spin{spininteraction at the Fermi surface V (2)kF ;kF . In the valence uctuation regime this is of importanceas discussed in the previous section.Still the main di�erences between the Schrie�er{Wol� result and the ow equations are notresolved so easily. That is the couplings V (2)k;q show the wrong high{energy cuto� and containpole terms. Obviously our result for the spin{spin coupling di�ers from the result by Schrie�erand Wol� already in second order in the hybridization Vk . This is due to the fact that ourtransformation di�ers in this order from the Schrie�er{Wol� transformation. In principle it isof course possible to write our transformation in the form exp(S) too. S can be calculated fromthe expansionS = Z 10 d` �(`) + 12 Z 10 d` Z `0 d`0[�(`); �(`0)] + : : : : (6.4)In second order in Vk the term containing the commutator of � at two di�erent values of the owparameter becomes important. It is of the formXk;q;� S(2)k;q(: cyk;�dy��d��cq;� : � : cyq;�dy��d��ck;� : � : cyk;�dy��d�cq;�� :+ : cyq;�dy��d�ck;�� : +cyk;�cyq;��d��d� � dy�dy��cq;��ck;�): (6.5)Our choice of f(�; `) leads to a controlled expansion without any pole terms here: The worstdivergencies occuring in the generated couplings are only logarithmic pole terms and are therefore19



themselves integrable (compare the discussion in section 5). In contrast the parametrization (6.2)leads to non{integrable pole terms in (6.4) that cannot be interpreted as principal value integrals.Of course terms in order V 2k curing the divergencies could be introduced by hand into theoriginal Schrie�er{Wol� generator S in Eq. (6.1). However, these would be divergent too, di�cultto construct, and di�cult to control in higher orders. In the ow equations formalism such termsappear naturally since � does not commute with itself for di�erent values of `. Also the problemswith pole terms are (as far as we have seen) resolved due to the introduction of a ow parameterthat generates an asymptotic behaviour of the parameters and thereby \smears out" the poleterms.7 Comparison with other methods II (Anderson's \poor man's"scaling)Let us compare our method to perturbative renormalization in the spirit of Anderson's \poorman's" scaling approach [15]. We will briey review the main features of this approach as appliedto the Anderson impurity model by Haldane [16]. For simplicity we assume U � D� j�dj. Theband width D is reduced to D � dD by perturbatively integrating out states with energiesD � dD < j�j < D. This results in the following scaling equations [16]d�dd lnD = � Z 10 d�  2� @@�JI (��)� + �d + � @@�JI(�)�� �d ! (7.1)d�d lnD = O(� JI (D)=D): (7.2)In order to avoid confusion with the ow equations approach we have introduced the notationJI (�) def= J(�; ` = 0). The second equation leads to no nontrivial scaling behaviour. In the �rstequation the main contributions come from j�j � D and Haldane �ndsd�dd lnD = ��� +O(�d JI(D)=D): (7.3)By scaling down to D � kB T one obtains the e�ective impurity orbital energy E�d that is equalto our �Rd in (4.19). In the limit D � U � ����Rd ��� one argues that non-trivial scaling occurs onlywhen D has been reduced to order U . In this case one obtains (4.22) for the e�ective impurityenergy that enters into the induced spin{spin interaction.Now the scaling equation (7.1) can also be obtained in the ow equations formalism. Onehas to chooseJ(�; `) def= JI  � DID(`)! ; (7.4)where DI is the initial band width. D(`) is a parameter (e�ective band width) that approacheszero monotonously as ` ! 1. Instead of using the unfamiliar parameter ` we can then try towork with the more familiar parameter D. Obviously (7.4) amounts to decoupling the high{energy modes by means of a unitary transformation as depicted in Fig. 5. It should come asno surprise that this yields ow equations in D reminiscent of the familiar scaling equations.Eq. (7.4) corresponds to a certain choice of f(�; `) but this will be of no importance for ourdiscussion. 20



The ow equation (4.5) for �d in the limit U !1 expressed as a function of D = D(`) takesthe following form after a short calculationd�dd lnD = Z d�(1 + n(�)) ��d � � @@� JI(�DID ) (7.5)to be integrated from D = DI to D = 0. For T = 0 this obviously just reproduces Haldane'sscaling equation (7.1).Now �rst of all this might make some approximations more plausible that we have used in theow equations approach. In particular the restriction to a certain set of interactions is standardin a renormalization framework. It is well{known that the procedure of integrating out high{energy modes leads to additional interactions in the \poor man's" approach [16]. This will alsoinclude e.g. the induced spin{spin interaction. However, even these terms are not taken intoaccount in the scaling approach.1 Instead one argues that on a low{energy scale the physicalbehaviour is determined by the scaling invariants like E�d .Though intuitively quite appealing, the parametrization (7.4) leads to immediate problemsin the ow equations formalism since we do not use similar approximations. The �rst problemis already apparent from (7.2): Why should the in�nitesimal unitary transformations stop whenD is of order kB T? Such a cuto� is necessary, otherwise Eq. (7.2) leads to divergent behaviouras D! 0.An even worse problem shows up when comparing the self{consistency equations (4.24) and(4.25) with the actual solution of the di�erential equations in D. Let us for simplicity considerthe symmetric Anderson model with (compare Eq. (4.13))UR = U I1� 2�D < D2 : (7.6)However, the solution of the di�erential equation in D leads to U(` = 1) = 0 as can be shownrigorously for the semi{circle case. Intuitively what happens is that the modes with energieslarger than U=2 that are being integrated out push U closer to the Fermi surface. Before thelow{lying modes can push U away again, one has reached U = 0. Just this behaviour is avoidedby the parametrization (4.7), compare also Fig. 5. This is the reason why the decoupling in ourcase can be performed all the way down to ` =1 without introducing a condition like D � kB T .The self{consistency conditions (4.24) and (4.25) have been obtained from (4.10) and (4.11) bytaking ` = 0. Thus the self{consistency conditions fail if the principal value integrals in (4.10)and (4.11) are not well{de�ned for some value of `. This happens with the parametrization(7.4). For ` such that D(`) = �Rd or D(`) = �Rd + UR the integrals diverge, a familiar band{edgeproblem.The reason why this phenomenon is unobserved in the scaling approach is that it is dueto neglected terms like on the right hand side of Eq. (7.2). But if one attempts to study thebehaviour when U becomes of order D, these terms cannot be neglected. Another way of sayingthis is that the scaling equations do not reproduce a standard perturbational expansion like e.g.Eq. (7.6) and a behaviour like Eq. (4.19) within one framework. The ow equations manage this,but not with a parametrization like (7.4). One might hope that they can provide a tool to studycrossover phenomena.1In this sense our approximations are clearly better though less familiar.21



8 ConclusionsWe have shown that using a continuous unitary transformation it is possible to eliminate thehybridization term in the single impurity Anderson model. Similar to the well{known Schrie�er{Wol� transformation, an additional spin{spin interaction and pseudo{spin interaction are gener-ated. Furthermore the impurity energy and the on{site interaction are renormalized. The mainapproximation was to neglect additional interactions generated by the transformation if the spin{spin interaction is included in the Hamiltonian. Instead we simply integrated the coe�cient ofthis interaction to obtain the new coupling constants. Some justi�cation for this procedure isthat by introducing the spin{spin interaction in the Hamiltonian right from the beginning, wedo not obtain additional contributions to the impurity energy and the interaction U . Such con-tributions occur only if even more complicated additional interactions are taken into account. Inthis manner we have restricted ourselves to some minimal but \consistent" set of interactions.This procedure yields coupled non-linear ow equations for the impurity energy and the in-teraction. It turns out that these equations can be approximately solved by self{consistencyconditions for the renormalized values of the impurity energy and the interaction. This ap-proximation can be controlled by comparing the result with a numerical integration of the owequations and it turns out that the approximation is very good. It becomes exact in the limitof vanishing interaction U . We discussed several regimes in the parameter space for a specialcoupling J(�; 0) = ��DpD2 � �2. We do not expect that the general features depend on thedetails of J(�; 0), but only on � and D. The method works in the whole parameter space as longas the hybridization is not the largest energy scale in the system. Although we mainly discussedthe case where J(�; 0) is a semi{circle, the method can be applied to any other J(�; 0) as well.The Kondo regime of the Anderson impurity model has been investigated by mapping itonto the Kondo Hamiltonian with a unitary transformation. In contrast to the Schrie�er{Wol�unitary transformation our approach of in�nitesimal unitary transformations generates all thecorrect parameters of this Kondo Hamiltonian. In particular no pole terms appear in the spin{spin coupling. An important point is also that the correct high{energy cuto� enters in all theexpressions for the renormalized or induced interactions. One should expect that such a unitarytransformation exists since after all the Anderson impurity model has been introduced to studydilute magnetic alloys which exhibit the Kondo e�ect.Quite generally the ow equations seem to provide a good framework to investigate suchinduced interactions like the spin{spin interaction here. Another interesting problem of thistype is the problem of electrons interacting with phonons in a solid. In this case the well{known Fr�ohlich transformation decouples the electrons from the phonons [17]. It generates anadditional e�ective interaction between the electrons. In some region of the parameter spacethis interaction is attractive and is responsible for the formation of Cooper pairs. But againthe Fr�ohlich transformation is ill{de�ned near resonances. Divergencies as in the case of theSchrie�er{Wol� transformation occur. This problem has recently been studied by Lenz [18]using continuous unitary transformations. As in our case his transformation is well{de�ned andthe attractive interaction between the electrons does not show the usual divergencies.The examples discussed so far show that the method of continuous unitary transformation hasa wide range of applications. They provide a useful tool to simplify a given Hamiltonian. In theexamples discussed so far [1, 7, 8, 18] a given Hamiltonian was transformed into a block{diagonalform by eliminating some of the coupling constants. This generates additional couplings and theoriginal problem is mapped thereby to a di�erent problem which can be investigated further.The main problem is that one has to neglect some of the additional couplings to obtain a closedset of equations. Up to now we are not able to present a general method that allows to estimate22



the e�ect of this approximation. The reasoning should probably be similar to the discussion ofirrelevant terms in renormalization theory. But the comparison of our results with well knownresults obtained by other methods show that our approximation works well. In particular we cantreat a strongly correlated system like the Anderson impurity model, where the natural smallparameter is the hybridization � and the rest of the Hamiltonian is not of simple quadratic formbut contains the large interaction U .A partially open problem is to calculate expectation values. To do this one has to apply thecontinuous unitary transformation to the observable as well. If one is only interested in staticproperties, this seems to be no problem. One has to solve the ow equations for the observable,which needs additional approximations for the observable similar to the approximations madefor the Hamiltonian itself. Since we neglect only normal ordered terms, which do not contributeto the expectation value, this should be possible [1]. But if one wants to calculate dynami-cal properties like time{dependent correlation functions, it is yet not clear whether the sameapproximations can be applied. This problem has been discussed to some extent in Ref. [8].One situation where one needs to calculate dynamical properties is the Hubbard model inthe limit of in�nite space dimensions [19]. It can be mapped onto a single impurity Andersonmodel with an additional self{consistency condition for the local density of states [20]. To applyour method to this problem, we have to calculate the single{particle Green's function, which isa dynamical problem. Also it would be important to attempt to study the crossover behaviourin the Kondo problem for low temperatures using our approach. Work in these directions is inprogress. Other interesting problems are for example the single impurity Anderson models withtwo or more channels.AcknowledgementThe authors would like to thank Prof. F. Wegner for many helpful discussions and suggestions.Furthermore we thank P. Lenz for discussions on related subjects. This work was supported inpart by the Erwin Schr�odinger Institute and by the Deutsche Forschungsgemeinschaft.
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Figure captionsFig. 1. Various regimes for the solution of the U = 0 Anderson impurity model.Fig. 2. The behaviour of the renormalized impurity orbital energy close to the Fermi surface as ob-tained from Eq. (4.19). The dashed line corresponds to the solution of the self{consistencycondition, the full line is deduced from the numerical solution of the di�erential equations.Fig. 3. Induced spin{spin interaction in the symmetric case.Fig. 4. Induced spin{spin interaction in the U !1 limit.Fig. 5. Sketch of J(�; `) for the symmetric Anderson impurity model for di�erent values of `,`2 > `1 > `0 = 0 or D2 < D1 < D0 = DI . J(�; 0) is the semi{circle.In a) J(�; `) is shown for the improved Schrie�er{Wol� transformation introduced in (6.3).b) corresponds to the poor man's scaling approach in the context of the ow equations,compare sect. 7.In c) the parametrization of J(�; `) as chosen in this paper is depicted. The ow of U(`)has been neglected in the diagram, in fact this would lead to an algebraic decay of J(�; `)also for � = �UR=2.
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