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THE FRACTIONAL CLIFFORD-FOURIER KERNEL

M.J. CRADDOCK AND J.A. HOGAN

Abstract. The Clifford-Fourier transform was introduced by Brackx,
De Schepper and Sommen and its kernel was computed in dimension
d = 2 by the same authors. Here we compute the kernel of a fractional
version of the transform when d = 2 and 4. In doing so we solve ap-
propriate wave-type problems on spheres in two and four dimensions.
We also give formulae for the solutions of these problems in all even di-
mensions and hence a means of computing the kernels of the fractional
Clifford-Fourier kernels in even dimensions.

1. Introduction

Fourier analysis has become an indispensible tool in the sciences and many
engineering disciplines. Time series such as those which arise from speech
or music have been effectively treated by algorithms derived from Fourier
analysis – the (fast) Fourier transform and wavelet transform being among
the most celebrated. Complex analysis has also played an important role,
contributing tools such as the analytic signal, the Paley-Wiener theorem and
Hardy’s theorem. Tensor products of the one-dimensional Fourier transform
are often applied to higher-dimensional signals, such as grayscale images.

Fractional versions of the Fourier transform, in one- and higher dimen-
sions, are growing in importance in signal processing (where they provide
signal representations between the classical time and frequency representa-
tions) and physics (where they describe the evolution of images through lens
systems and also have applications in quantum mechanics) [13]. Fractional
kernels are in general more complicated than the Fourier kernel (which is
an end-point case of the fractional kernels), and are computed through the
Mehler formula which gives a closed form for a certain infinite weighted sum
of products of Hermite functions [7].

Colour images, however, pose a different set of problems. Such images
are composed of (at least) three channels rather than the one channel of
grayscale images. Natural images contain very significant cross-channel
correlations [12]. Any algorithm using the channel-by-channel paradigm is
likely to be sub-optimal (especially for purposes of compression, but also for
interpolation) for they do not see cross-channel correlations and are therefore
unable to reduce them.

Electrical engineers have responded to the challenges posed by multi-
channel signals by developing techniques through which such a signal can
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be treated as an algebraic whole rather than an ensemble of disparate, un-
related single-channel signals [6], [15], [16]. A colour image is now viewed as
a signal taking values in the quaternions, an associative, non-commutative
algebra. The algebra structure gives a meaning to the pointwise product of
such signals. Fourier-type transforms of quaternionic signals were consid-
ered in [15] and [16]. Their advantage over the classical Fourier transform
is that the kernels through which they act are quaternion-valued, and the
transforms therefore “mix the channels” rather than acting on each channel
separately. They fail, however, to have the kinds of covariance and con-
volution properties that are required for effective applications and do not
extend, in any obvious way, to higher dimensions.

Brackx, De Schepper and Sommen [1] introduced a “Clifford”-Fourier
transform for functions defined on Rd and taking values in the associated
Clifford algebra Rd. Like the classical Fourier transform, the Clifford-Fourier
transform is defined as the exponential of a Hermite operator and has
Hermite-type eigenfunctions. Through this operator-theoretic definition,
many attractive properties may be determined. These include simple inver-
sion and Plancherel theorems, as well as generalisations of classical results
which describe the action on Lp-spaces and the Schwarz space of rapidly
decreasing functions, and a Clifford generalisation of the classical result
which states that the classical Fourier kernel is an eigenfunction of the par-
tial differentiation operators ∂/∂xj [1]. Generalisations of classical results
which characterise translation-invariant bounded linear operators on L2 and
translation-invariant closed subspaces of L2 are also known [11].

Unfortunately, computing the integral kernel through which the Clifford-
Fourier transform acts is quite difficult since it is the exponential of a sum of
non-commuting operators. In [2], the explicit f orm of the kernel is given in
dimension d = 2 and in [4] a construction of the kernel in all even dimensions
was given. The odd-dimensional kernels are still unknown.

In this paper we find explicit formulae for solutions of wave-type initial
value problems on spheres in Rd and, as a special case, give a completely
different construction of the even-dimensional Clifford-Fourier kernels. Fur-
thermore, explicit formulae for the kernels of the fractionalisations of these
operators are computed. It is also shown that once the 4-dimensional kernel
is known, all even-dimensional kernels (d ≥ 6) may be determined through
a “method of ascent”. In the preprint [3], the fractional Clifford-Fourier
kernels are computed in even dimensions. The methods used there are very
different from those employed in this paper. In particular, DeBie and De
Schepper arrive at the fractional kernels without reference to the initial-
value problems which are the focus of this paper, the solutions of which give
the fractional kernels for particular initial values.

This paper is organised as follows. In section 2 we introduce those as-
pects of classical Fourier theory (Hermite functions and fractional Fourier
transforms) that we intend to generalise as well as a brief introduction to
Clifford algebra, the operator-theoretic construction of the Clifford-Fourier
transform of Brackx, De Schepper and Sommen, and some results of classical
harmonic analysis surrounding spherical harmonics. In section 3 we collect
some results on the action of the angular Dirac operator which forms part of
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the Clifford-Hermite operator. Section 4 outlines the initial value problems
satisfied by the fractional Clifford-Fourier kernels and describes how sepa-
ration of variables leads to spherical harmonic expansions for these kernels,
leading ultimately to expansions of the kernels in Legendre/Chebyshev poly-
nomials. In section 5 we give explicit solutions of the initial value problems
of section 4 (hence explicit expressions for the fractional Clifford-Fourier
kernel) in dimensions d = 2 and d = 4. Finally in section 7 we describe the
“method of ascent” through which solutions of the initial value problems
of section 4 may be determined in dimensions d ≥ 5 from the solution in
dimension d − 2. Hence, the kernel in even dimension d ≥ 6 may be calcu-
lated (iteratively) from the kernel in dimension d = 4. We also show why
the 2-dimensional kernel does not determine the 4-dimensional kernel.

2. Preliminaries

2.1. Fractional Fourier transforms and the Hermite functions. The
classical Fourier transform (FT) is the integral operator F = Fd : L1(Rd) →
L∞(Rd) with kernel Kd(x, y) = (2π)−d/2e−i〈x,y〉. Here 〈x, y〉 is the dot prod-
uct of the vectors x and y in Rd. The many applications of the FT and its dis-
crete variants are well-documented (see for example [14]). Among the many
reasons for the wide applicability of the FT, we include its attractive covari-
ance properties, its energy conservation property, and the simple closed form
of its kernel. By covariance we mean its simple interaction with the basic op-
erators of harmonic analysis – translations, dilations and rotations (although
its covariance under other actions such as “shears” is also becoming impor-
tant in applications). By energy conservation we mean that the Fourier
transform satisfies the Parseval identity, i.e., the Fourier transform extends
to a unitary mapping of L2(R):

∫
Rd Ff(y)Fg(y) dy =

∫
Rd f(x)g(x) dx for all

f, g ∈ L2(Rd).
The Hermite functions {hn}∞n=0 are defined on the real line by

hn(x) =
1√

2nn!
√
π
(−1)nex

2/2 dn

dxn
e−x2

,

form an orthonormal basis for L2(R), and are eigenfunctions of the FT,
i.e., Fhn = (−i)nhn. Consequently, given f ∈ L2(R), its FT admits the
expansion Ff =

∑∞
n=0〈f, hn〉(−i)nhn which suggests a fractionalisation Ft

of the FT, namely

(1) Ftf =

∞∑

n=0

〈f, hn〉e−inthn (t ∈ R).

The operator defined by equation (1) is known as the fractional Fourier
transform (frFT). It satisfies F0 = id, Fπ/2 = F and Fs ◦ Ft = Fs+t. Hence
the mapping t ∈ R → Ft is a periodic embedding of the line into a one-
parameter Lie group of unitary mappings of L2(R).

The Hermite operator H is defined by H =
1

2

(
− d2

dx2
+ x2 − 1

)
and has

the Hermite functions as eigenfunctions, i.e., Hhn = nhn. From this we see
that the FT may be written as the operator exponential

(2) F = exp(−i(π/2)H),
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and the frFT may similarly be written as Ft = exp(−itH) (t ∈ R). From
(1) we have an expression for the kernel Kt(x, y) through which the frFT
acts:

Kt(x, y) =
∞∑

n=0

e−inthn(x)hn(y).

This sum may be computed in closed form through the Mehler formula:

Kt(x, y) =

√
−ieit csc t

2π
exp(i(−(csc t)xy + (cot t)(x2 + y2)/2)) (x, y ∈ R),

an elegant proof of which may be found in [7]. Notice that when t = π/2

we recover the Fourier transform kernel (2π)−1/2e−i〈x,y〉.
In higher dimensions, the Hermite functions, Hermite operator and frFT

kernel have definitions based on tensor products of the one-dimensional
definitions, so that in dimension d the Hermite operator takes the form

Hd =
1

2
(−∆d + |x|2 − d) (where ∆d =

∑d
j=1

∂2

∂x2j
is the Laplacian on Rd,

x ∈ Rd) and for x, y ∈ Rd, the frFT kernel becomes

Kd,t(x, y) =

(−ieit csc t

2π

)d/2

exp(i(−(csc t)〈x, y〉+ (cot t)(|x|2 + |y|2)/2)).

2.2. Clifford Algebra. In this section we give a quick review of the basic
concepts of Clifford algebra. The interested reader is referred to [5] for more
details.

Let {e1, e2, . . . , ed} be an orthonormal basis for d-dimensional euclidean
space Rd. The associative Clifford algebra Rd is the 2d-dimensional algebra
spanned by the collection

d⋃

j=1

{eA : A = {i1, i2, . . . , ij} with 1 ≤ i1 < i2 < · · · < ij ≤ d}

with algebraic properties e∅ = 1 (the identity), e2j = −1, and if j < k then

e{j,k} = ejek = −ekej . Here ∅ is the null set and we often abuse notation
and write e∅ = e0 = 1. Notice that for convenience we write e{j} = ej .
In particular we have Rd = {∑A xAeA; xA ∈ R}. Similarly, we have the
complexified Clifford algebra Cd = {∑A zAeA; zA ∈ C}. The canonical

mapping of Rd into Rd maps the vector (x1, x2, . . . , xd) ∈ Rd to
∑d

j=1 xjej ∈
Rd. For this reason, elements of Rd of the form

∑d
j=1 xjej are also known

as vectors. Notice that Rd decomposes as Rd = Λ0 ⊕ Λ1 ⊕ . . .Λd, where
Λj = {∑|A|=j xAeA}. In particular, Λ0 is the collection of scalars while Λ1

is the collection of vectors. Given x ∈ Rd of the form x =
∑

A xAeA and
0 ≤ p ≤ d we write [x]p to mean the “Λp-part” of x, i.e, [x]p =

∑
|A|=p xAeA.

If x, y ∈ Rd are vectors, then x2 = −|x|2 (a scalar) and their Clifford
product xy may be expressed as xy = −〈x, y〉+x∧ y ∈ Λ0⊕Λ2. Here 〈x, y〉
is the usual dot product of x and y while x ∧ y is their wedge product. The
linear involution u of u ∈ Rd is determined by the rules x = −x if x ∈ Λ1

while uv = v u for all u, v ∈ Rd.
As examples, note that R1 is identified algebraically with the field of

complex numbers C while R2, which has basis {1, e1, e2, e1e2} and whose
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typical element has the form q = a + be1 + ce2 + de1e2 (with a, b, c, d ∈ R)
is identifiable with the associative algebra of quaternions H.

2.3. The Clifford-Fourier transform. In [1], Brackx, De Schepper and
Sommen introduced the Clifford-Fourier transform in a manner analogous to
that of equation (2). We now briefly outline the construction. The angular
momentum operators Lij (1 ≤ i, j ≤ d) are the differential operators defined

by Lij = xi
∂

∂xj
− xj

∂

∂xi
and the angular Dirac operator Γ by

(3) Γ =
∑

1≤i<j≤d

eiejLij

(with ei, ej Clifford units in Rd). The two Clifford-Hermite operators H±
d

are defined by
H±

d = Hd ∓ (Γ + d/2)

(where Hd is the classical d-dimensional Hermite operator) and correspond-
ing Clifford-Fourier transforms F±

d are defined by the operator exponentials

F±
d = exp(−i(π/2)H±

d ). Since Hd commutes with Γ, we have F+
d F−

d =
exp(−iπHd) = τ where τ is the inversion τf(x) = f(−x). Note also that

F±
d = exp(−i(π/2)H±

d )

= exp(−i(π/2)(Hd ∓ (Γ + d/2)))

= exp(±i(π/2)(Γ + d/2)) exp(−i(π/2)Hd) = exp(±i(π/2)(Γ + d/2))Fd

where Fd is the classical d-dimensional FT which acts by integration against
the scalar-valued kernel Kd(x, y) = (2π)−d/2e−i〈x,y〉. Consequently, given
f ∈ L2(Rd,Rd),

F±
d f(x) =

∫

Rd

exp(±i(π/2)(Γx + d/2))Kd(x, y)f(y) dy

from which we see that F±
d acts by integration against the Clifford-valued

kernel

C±
d (x, y) = exp(±i(π/2)(Γx + d/2))Kd(x, y).(4)

In writing Γx, we mean to emphasise that Γ is acting on the x-variable. We
define two fractional Clifford Fourier transforms (frCFT) by the operator
exponential F±

d,t = exp(−itH±
d ). Then F+

d,tF−
d,t = Fd,2t and the frCFTs act

by integration against the kernels

(5) C±
d,t(x, y) = exp(±it(Γx + d/2))Kd,t(x, y)

with Kd,t the classical d-dimensional frFT kernel.

2.4. Spherical harmonics and Legendre polynomials. A function f ∈
C2(Rd) is said to be harmonic if ∆df ≡ 0. Let Qd

ℓ be the space of all
harmonic polynomials of degree ℓ in d variables. A spherical harmonic of
dimension d is the restriction to Sd−1 of an harmonic polynomial in d vari-
ables. Let Hd

ℓ be the space of spherical harmonics of homogeneous degree ℓ

in d variables. Groemer [10] shows that the dimension of Hd
ℓ is

dim(Hd
ℓ ) = N(d, ℓ) =

2ℓ+ d− 2

ℓ+ d− 2

(
ℓ+ d− 2

d− 2

)
.
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Given a function f defined on Rd and r > 0, we denote by Rrf the restriction
of f to the sphere rSd−1 with centre 0 and radius r. The homogeneous

extension operator Xr : C
k(rSd−1) → Ck(Rd) is given by Xrg(x) = g

(
rx

|x|

)

(x ∈ Rd). The tangential Laplacian ∆T is now defined on C2(Rd) by

∆TF (x) = Rr∆XrF (x) =
d∑

j=1

∂2

∂x2j

(
F

(
rx

|x|

))∣∣∣∣
r=|x|

.

The tangential Laplacian may also be considered as operating on functions
defined on the unit sphere Sd−1, in which case it is known as the Laplace-
Beltrami operator. Spherical harmonics are eigenfunctions of the Laplace-
Beltrami operator. In fact, if F ∈ Hd

ℓ , then ∆TF = −ℓ(ℓ+d−2)F . If ℓ 6= ℓ′

then the spaces Hd
ℓ and Hd

ℓ′ are orthogonal with respect to the inner prod-

uct 〈F,G〉 =
∫
Sd−1 F (ω)G(ω) dσ(ω) where dσ is the surface area measure

on Sd−1. Further, we have L2(Sd−1) = ⊕∞
ℓ=0H

d
ℓ and each F ∈ L2(Sd−1)

has a unique orthogonal expansion of the form F =
∑∞

ℓ=0 Fℓ with each

Fℓ ∈ Hd
ℓ . By choosing an orthonormal basis {Yℓ,j}N(d,ℓ)

j=1 for each Hd
ℓ ,

we have an expansion of F ∈ L2(Sd−1) in spherical harmonics, namely

F =
∑∞

ℓ=0

∑N(d,ℓ)
j=1 〈F, Yℓ,j〉Yℓ,j .

The Legendre polynomial of dimension d and degree ℓ ≥ 0 is denoted P d
ℓ

and defined by P d
ℓ (t) =

(−1)ℓ

2ℓ(ϑ+ 1)(ϑ+ 2) . . . (ϑ+ ℓ)
(1− t2)−ϑ dℓ

dtℓ
(1− t2)ℓ+ϑ

where here and subsequently, ϑ = (d − 3)/2. Notice that when d = 3 we

have ϑ = 0 and P 3
ℓ (t) =

(−1)ℓ

2ℓℓ!

dℓ

dtℓ
(1 − t2)ℓ = Pℓ(t), the standard Legendre

polynomials of degree ℓ. The collection {P d
ℓ }∞ℓ=0 is orthogonal on the interval

[−1, 1] with respect to the weight function (1− t2)ϑ, i.e.,
∫ 1

−1
P d
ℓ (t)P

d
ℓ′(t)(1− t2)ϑ dt = δℓ,ℓ′

σd
σd−1N(d, ℓ)

with σd = 2πd/2/Γ(d/2) the surface area of the (d− 1)-sphere in Rd.
Let Ld denote the second order differential operator defined by

Ld = (1− t2)
d2

dt2
− (d− 1)t

d

dt
.

Ld is self-adjoint on [−1, 1] with respect to the weight function (1 − t2)ϑ.
Furthermore, each Legendre polynomial P d

ℓ is an eigenfunction of Ld with
eigenvalue −ℓ(ℓ+ d− 2).

The connection between spherical harmonics and Legendre polynomials
is made by the following result [10].

Theorem 1. Let d ≥ 2, ℓ ≥ 0 and {Yℓ,j}N(d,ℓ)
j=1 be an orthonormal basis for

Hd
ℓ . Then for all u, v ∈ Sd−1,

N(d,ℓ)∑

j=1

Yℓ,j(u)Yℓ,j(v) =
N(d, ℓ)

σd
P d
ℓ (〈u, v〉).



THE FRACTIONAL CLIFFORD-FOURIER KERNEL 7

Inner products of zonal functions on the sphere (those of the form f(v) =
F (〈u, v〉) for some fixed u ∈ Sd−1 and given F : [−1, 1] → C) with spherical
harmonics have the following simple form [10].

Theorem 2 (Funk-Hecke theorem). If G is a bounded, integrable function
on [−1, 1] and Y ∈ Hd

ℓ , then for any fixed u ∈ Sd−1, the function gu(v) =

G(〈u, v〉) (v ∈ Sd−1) is an integrable function on Sd−1 and

∫

Sd−1

gu(v)Y (v) dσ(v) = σd−1αd,ℓ(G)Y (u)

where αd,ℓ(G) =
∫ 1
−1G(t)P d

ℓ (t)(1− t2)ϑ dt.

3. The angular Dirac operator

In this section we collect a series of results which describe the action of the
angular Dirac operator Γ on the classes of functions of interest. Since the
CFT and frCFT kernels are formed from exponentials of operators involving
Γ, we are interested in the behaviour of powers of Γ. Given the obvious
observation that Γ maps scalar-valued functions f into Λ2-valued functions
Γf , we might expect that Γ2f would take values in Λ0⊕Λ2⊕Λ4. This turns
out to be false as the following result shows.

Proposition 3. Let Γd denote the angular Dirac operator acting in Rd as
defined in (3). Then, as an operator on C2(Rd,Rd), we have

(6) Γ2
d = −|x|2∆T + (2− d)Γd.

Remark 4. As an immediate consequence we see that the frCFT kernel,
being of the form Ct(x, y) = e−itΓxf(x, y) for a scalar-valued function f ,
takes values in Λ0 ⊕ Λ2.

The proof of Proposition 3 may be obtained by scaling equation (0.16) p.
140 of [5] so that it applies to spheres of arbitrary radius. We supply here a
different proof which avoids any mention of the Dirac operator and uses the
beautiful commutation properties of the angular momentum operators.

Proof. First note that F ∈ C2(Rd,Rd) may be decomposed as F =
∑

A FAeA
with each FA ∈ C2(Rd,R). Hence it is enough to prove the operator equation
(6) on scalar-valued functions F . Given such an F , Γ2

dF = [Γ2
dF ]0+[Γ2

dF ]2+
[Γ2

dF ]4, i.e., Γ
2
dF is the sum of a scalar-valued function, a 2-form and a 4-

form. A straightforward computation gives

(7) ∆TF = ∆F − (d− 1)

|x|2 EF − 1

|x|2
d∑

j,k=1

xjxk
∂2F

∂xjxk
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where E is the Euler operator EF (x) =
∑d

j=1 xj
∂F

∂xj
. Now

[Γ2
dF ]0 =

∑

1≤i<j≤d

eiejeiejL2
ijF

= −
∑

1≤i<j≤d

[
x2i

∂2F

∂x2j
− xi

∂F

∂xi
− 2xixj

∂2F

∂xi∂xj
− xj

∂F

∂xj
+ x2j

∂2F

∂x2i

]

= −1

2

( d∑

i=1

d∑

j=1

−
∑

1≤i≤d,i=j

)[
x2i

∂2F

∂x2j
− xi

∂F

∂xi

− 2xixj
∂2F

∂xi∂xj
− xj

∂F

∂xj
+ x2j

∂2F

∂x2i

]
= S1 + S2.

The sum S1 simplifies to S1 = −|x|2∆F + dEF +
∑d

j=1

∑d
k=1 xjxk

∂2F

∂xj∂xk
and S2 becomes S2 = −EF . From (7) we conclude that

(8) [Γ2
dF ]0 = −|x|2∆dF + (d− 1)EF +

d∑

i=1

d∑

j=1

xixj
∂2F

∂xi∂xj
= −|x|2∆TF.

Next we show that

(9) [Γ2
dF ]2 = (2− d)ΓdF

for scalar-valued functions F . The proof is by induction on the dimension
d. First, Γ2

2 = (e1e2L12)
2 = −L2

12 so that [Γ2
2F ]2 = 0 and (9) is verified for

d = 2. Suppose now that equation (9) holds for some d ≥ 2. Then since

Γd+1 = Γd +
∑d

i=1 eied+1Li,d+1, we have

Γ2
d+1 =

(
Γd +

d∑

i=1

eied+1Li,d+1

)2

= Γ2
d +

d∑

i=1

Γdeied+1Li,d+1

+
d∑

i=1

eied+1Li,d+1Γd +

(
d∑

i=1

eied+1Li,d+1

)2

.(10)

We deal with the terms in (10) separately. The first term on the right-hand
side of (10) is dealt with by the inductive hypothesis. Secondly, note that
Γdeied+1Li,d+1 =

∑
1≤j<k≤d ejekeied+1LjkLi,d+1 so that upon extracting the

2-form part of this operator we obtain

[Γdeied+1Li,d+1F ]2 =
∑

k>i

eiekeied+1LikLi,d+1F +
∑

j<i

ejeieied+1LjiLi,d+1F

=
∑

k>i

eked+1LikLi,d+1F −
∑

j<i

ejed+1LjiLi,d+1F

=
∑

k 6=i

eked+1LikLi,d+1F.(11)

Similarly, we have

(12) [eied+1Li,d+1ΓdF ]2 =
∑

k 6=i

ed+1ekLi,d+1LikF.
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Combining (11) and (12) gives

[Γdeied+1Li,d+1F + eied+1Li,d+1ΓdF ]2

=
∑

k 6=i

eked+1LikLi,d+1F +
∑

k 6=i

ed+1ekLi,d+1LikF

=
∑

k 6=i

eked+1[Lik,Li,d+1]F =
∑

k 6=i

eked+1Ld+1,kF(13)

where we have used the fact that if 1 ≤ i < j < k ≤ d + 1, then the
commutator [Lij ,Ljk] = LijLjk − LjkLij = Lik. Turning now to the fourth
term on the right hand side of (10)

( d∑

i=1

eied+1Li,d+1

)2

F =
d∑

i=1

d∑

j=1

eiejLi,d+1Lj,d+1F,

so that, upon extracting the 2-form part of this quantity, we have

[( d∑

i=1

eied+1Li,d+1

)2

F

]

2

=
∑

1≤i≤d,1≤j≤d,i 6=j

eiejLi,d+1Lj,d+1F

=
∑

1≤i<j≤d

(eiejLi,d+1Lj,d+1 + ejeiLj,d+1Li,d+1)F

=
∑

1≤i<j≤d

eiej [Li,d+1,Lj,d+1]F = −
∑

1≤i<j≤d

eiejLijF = −ΓdF.(14)

Combining equations (10), (13) and (14) gives

[Γ2
d+1F ]2 = (2− d)ΓdF −

d∑

i=1

∑

1≤k≤d,k 6=i

eked+1Lk,d+1F − ΓdF

= (1− d)ΓdF −
d∑

i=1

∑

1≤k≤d,k 6=i

eked+1Lk,d+1F.(15)

On the other hand, the second term on the right hand side of (15) may be
written as

d∑

i=1

∑

1≤k≤d,k 6=i

eked+1Lk,d+1

= (d− 1)
d∑

i=1

eied+1Li,d+1 = (d− 1)(Γd+1 − Γd).(16)

Combining equations (15) and (16) gives

[Γ2
d+1F ]2 = (1− d)(Γd +

d∑

i=1

eied+1Li,d+1)F

= (1− d)(Γd + Γd+1 − Γd)F = (1− d)Γd+1F.

Finally we must show that [Γ2
dF ]4 = 0. In dimensions d = 2 or 3, this is

clear since in these cases the Clifford algebra Rd contains no 4-forms. For
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d ≥ 4, [Γ2
dF ]4 may be written as

(17) [Γ2
dF ]4 =

∑

1≤i<j<k<ℓ≤d

eiejekeℓLijkℓF

with Lijkℓ a differential operator composed from the six angular momentum
operators Lij , Lik, Liℓ, Ljk, Ljℓ and Lkℓ. By a direct computation we find
that

LijLkℓ − LikLjℓ + LiℓLjk = 0.

Also, if i, j, k, ℓ are distinct, the commutator [Lij ,Lkℓ] = 0. Furthermore, in
the expansion of [Γ2

d]4 in (17), we have

eiejekeℓLijkℓ = eiejLijekeℓLkℓ + ekeℓLkℓeiejLij + eiekLikejeℓLjℓ

+ejeℓLjℓeiekLik + eieℓLiℓejekLjk + ejekLjkeieℓLiℓ

= 2eiejekeℓ(LijLkℓ − LikLjℓ + LiℓLjk) = 0.

The proof is complete. �

In order to compute exp(itΓd) we need to compute powers of Γd. Iterating
Proposition 3 allows us to compute the scalar and 2-form parts of exp(itΓd)f
(f real-valued) in terms of the action of powers of (−|x|2∆T ) on f .

Proposition 5. Let Γd and ∆T be as above. Then for all integers n ≥ 1,

(18) Γn
d = pn(−|x|2∆T ) + qn(−|x|2∆T )Γd

where pn, qn are polynomials satisfying the recurrence relation

(19)

(
pn+1(t)
qn+1(t)

)
=

(
0 t
1 2− d

)(
pn(t)
qn(t)

)
;

(
p0(t)
q0(t)

)
=

(
1
0

)
.

Proof. The proof is by induction on n. Since Γ2
d = −|x|2∆T + (2− d)Γd, we

are assured of the existence of polynomials pn, qn for which (18) is satisfied.
With pn, qn as in the statement of the proposition, the cases n = 0 and
n = 1 are immediate. Suppose then that (18) is valid for some value of
n ≥ 1. Then since Γ commutes with |x|2∆T , an application of Proposition
3 gives

Γn+1
d = pn(−|x|2∆T )Γd + qn(−|x|2∆T )Γ

2
d

= pn(−|x|2∆T )Γd + qn(−|x|2∆T )(−|x|2∆T + (2− d)Γd)

= (pn(−|x|2∆T ) + (2− d)qn(−|x|2∆T ))Γd − |x|2∆T qn(−|x|2∆T )

= pn+1(−|x|2∆T ) + qn+1(−|x|2∆T )Γd,

so that the matrix recurrence relation (19) is satisfied. The proof is complete.
�

We will be required to compute the action of the operator exponential
exp(itΓd) on real-valued functions of the form f(x) = F (|x|2, 〈x, y〉) for
some fixed y ∈ Rd and F ∈ C2(R2). To do this we need to understand the
action of Γd and ∆T on such functions.
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Proposition 6. Let F = F (t1, t2) ∈ C2(R2), y ∈ Rd be fixed and f(x) =
F (|x|2, 〈x, y〉). Then

∆T f(x) = |x|−2(|x|2|y|2 − 〈x, y〉2)∂
2F

∂t22
(|x|2, 〈x, y〉)

+ (1− d)〈x, y〉∂F
∂t2

(|x|2, 〈x, y〉), and

Γdf(x) = (x ∧ y)
∂F

∂t2
(|x|2, 〈x, y〉).

The proof of Proposition 6 is through direct computation. As a conse-
quence, we have that if F ∈ C∞(R) and f(x) = F (〈x, y〉) for some fixed
y ∈ Rd, then exp(itΓd)f(x) = u+ v with u taking values in Λ0 and v taking
values in Λ2. Furthermore, from Proposition 6 we see that u = u(|x|2, 〈x, y〉)
and v = (x ∧ y)w(|x|2, 〈x, y〉) with w taking values in Λ0.

From now on we simplify notation by writing Γ for Γd when the dimension
d is clear, but when appropriate we write Γx to emphasise that Γ is acting
on the x-variable. Computation of the frCFT kernels requires knowledge
of the action of Γ on several other types of functions. We now outline the
required results but suppress the proofs which are obtained through direct
computation.

Proposition 7. Let G ∈ C1([0,∞),C). Then if x, y ∈ Rd,

Γx(G(|x ∧ y|)) = −(x ∧ y)

|x ∧ y| 〈x, y〉G
′(|x ∧ y|).

Proposition 8. Let f ∈ C1([0,∞),C) and g ∈ C1(Rd,Cd). Then

Γx(f(|x|)g(x)) = f(|x|)Γxg(x).

Proposition 9. Let f ∈ C1(R,C), g ∈ C1(Rd,Cd) and y ∈ Rd be fixed.
Then

Γx(f(〈x, y〉)g(x)) = f ′(〈x, y〉)(x ∧ y)g(x) + f(〈x, y〉)Γxg(x).

4. Initial value problems

We are now in a position to write down wave equation-type initial value
problems for the scalar part and 2-form part of the frCFT kernel.

Proposition 10. Let f(x) = F (〈x, y〉) for some fixed y ∈ Rd and u =
u(x, t), w = w(x, t) be real-valued functions such that

exp(itΓ)f(x) = u(x, t) + Γw(x, t).

Then u satisfies the initial value problem

∂2u

∂t2
+ i(d− 2)

∂u

∂t
= |x|2∆Tu (x ∈ Rd, t > 0)

u(x, 0) = f(x) (x ∈ Rd)(20)

∂u

∂t

∣∣∣∣
t=0

= 0 (x ∈ Rd),
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and w satisfies the initial value problem

∂2w

∂t2
+ i(d− 2)

∂w

∂t
= |x|2∆Tw (x ∈ Rd, t > 0)

w(x, 0) = 0 (x ∈ Rd)(21)

∂w

∂t

∣∣∣∣
t=0

= if(x) (x ∈ Rd).

Proof. Since u = [exp(itΓ)f ]0 we have

(22)
∂u

∂t
= i[Γ exp(itΓ)f ]0

and, by Proposition 3 and equation (22),

∂2u

∂t2
= [−Γ2 exp(itΓ)f ]0

= [|x|2∆T exp(itΓ)f + (d− 2)Γ exp(itΓ)f ]0

= |x|2∆Tu+ (d− 2)[Γ exp(itΓ)f ]0 = |x|2∆Tu− i(d− 2)
∂u

∂t
.

Putting t = 0 in the definition of u gives u(x, 0) = f(x). Putting t = 0 in

(22) and recalling that Γf ∈ Λ2 gives
∂u

∂t

∣∣∣∣
t=0

= 0.

With v = [exp(itΓ)f ]2 we have, from Proposition 5

v =

∞∑

j=0

(it)j

j!
[Γjf ]2 =

∞∑

j=0

(it)j

j!
[pj(−|x|2∆T )f + qj(−|x|2∆T )Γf ]2

=
∞∑

j=0

(it)j

j!
[qj(−|x|2∆T )Γf ]2 = Γw

with w =
∑∞

j=0

(it)j

j!
qj(−|x|2∆T )f . Now, another application of Proposition

5 gives

∂w

∂t
= i

∞∑

j=0

(it)j

j!
qj+1(−|x|2∆T )f

= i
∞∑

j=0

(it)j

j!
[pj(−|x|2∆T )f + (2− d)qj(−|x|2∆T )f ]

= i
∞∑

j=0

(it)j

j!
pj(−|x|2∆T )f + i(2− d)w.(23)
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Yet another application of Proposition 5 to (23) gives

∂2w

∂t2
= i(2− d)

∂w

∂t
−

∞∑

j=0

(it)j

j!
pj+1(−|x|2∆T )f

= i(2− d)
∂w

∂t
−

∞∑

j=0

(it)j

j!
[−|x|2∆T qj(−|x|2∆T )f ]

= i(2− d)
∂w

∂t
+ |x|2∆Tw.

Putting t = 0 in the definition of w gives w(x, 0) = 0 since q0(t) ≡ 0. Also,

since q1(t) ≡ 1, we have
∂w

∂t

∣∣∣∣
t=0

= if . �

The initial value problems of Proposition 10 may be viewed as wave-type
problems on spheres centred at the origin in Rd. Solutions to problems of
this type may be found through a variety of methods. Gonzalez and Zhang
[8] show that solutions can be computed by taking mean values of the initial
data over the intersection of the sphere with hyperplanes. The integral
formulae they develop seem impossible to compute in closed form. It is also
worth noting that the formulae are different in even and odd dimension d.
Since we are only interested in the situation in which the data takes the form
f(x) = F (〈x, y〉), it is possible to use the classical method of separation of
variables to write down infinite sum expansions for the solution. In even
dimension we are able to compute these sums in closed form.

Proposition 11. Let f(x) = F (〈x, y〉) = F (z cos θ) with z = |x||y|, Fz(s) =
F (zs) (|s| ≤ 1), cos θ = 〈x, y〉/z, and u = ud(z, θ, t), w = wd(z, θ, t) be the
unique solutions of the initial problems of Proposition 10. Then, with αd,ℓ

as in Theorem 2, ud and wd admit the expansions

ud = cd

∞∑

ℓ=0

(
(ℓ+ d− 2)eiℓt + ℓei(2−d−ℓ)t

2ℓ+ d− 2

)
αd,ℓ(Fz)N(d, ℓ)P d

ℓ (cos θ)(24)

wd = cd

∞∑

ℓ=0

(
eiℓt − ei(2−d−ℓ)t

2ℓ+ d− 2

)
αd,ℓ(Fz)N(d, ℓ)P d

ℓ (cos θ)(25)

where cd = σd−1/σd = Γ(d/2)/(
√
πΓ((d− 1)/2)).

Proof. We seek solutions of the initial value problems of Proposition 10 via
the method of separation of variables. Note first that the collection

Y
(r)
ℓ,m(x) = r−(ℓ+(d−1)/2)Yℓ,m(x) (0 ≤ ℓ < ∞, 1 ≤ m ≤ N(d, ℓ), r = |x|)

is an orthonormal basis for L2(rSd−1), the space of square-integrable func-
tions on the sphere of radius r, centred at the origin, and equipped with
the surface measure. Here the collection Yℓ,m (1 ≤ m ≤ N(d, ℓ)) is an

orthonormal basis for the space Hd
ℓ of spherical harmonics in d-variables

of degree ℓ. Because of the orthogonality of the spaces {Hd
ℓ }∞ℓ=0, we have

∫
rSd−1 Y

(r)
ℓ,m(x)Y

(r)
ℓ′,m′(x) dσ(x) = δℓ,ℓ′δmm′ . We look then for solutions of (20)
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of the form

(26) u(x, t) =
∞∑

ℓ=0

N(d,ℓ)∑

m=0

aℓ,m(t)Y
(r)
ℓ,m(x).

Rewriting (7) as ∆T f(x) = ∆f(x) + (2 − d)|x|−2Ef(x) − |x|−2E2f(x) and
observing that if f is homogeneous of degree ℓ, then Ef(x) = ℓf(x), we find

|x|2∆TY
(r)
ℓ,m(x) = ℓ(2− d− ℓ)Y

(r)
ℓ,m(x).

With u as in (26) satisfying the differential equation of the initial value
problem (20), we have

∂2u

∂t2
+ i(d− 2)

∂u

∂t
=
∑

ℓ,m

(a′′ℓ,m(t) + i(d− 2)a′ℓ,m(t))Y
(r)
ℓ,m(x)

= |x|2∆Tu

=
∑

ℓ,m

aℓ,m(t)|x|2∆TY
(r)
ℓ,m(x)

=
∑

ℓ,m

aℓ,m(t)ℓ(2− d− ℓ)Y
(r)
ℓ,m(x)

from which we conclude that the functions aℓ,m(t) satisfy the differential
equation a′′ℓ,m(t)+i(d−2)a′ℓ,m(t)−ℓ(2−d−ℓ)aℓ,m(t) = 0, which has solutions

aℓ,m(t) = cℓ,meiℓt+ bℓ,mei(2−d−ℓ)t with cℓ,m and bℓ,m constants. The solution
u of the initial value problem (20) then takes the form

(27) u =
∑

ℓ,m

[cℓ,meiℓt + bℓ,mei(2−d−ℓ)t]Y
(r)
ℓ,m(x).

Differentiating both sides of (27) with respect to t gives

∂u

∂t
=
∑

ℓ,m

i[ℓcℓ,meiℓt + (2− d− ℓ)bℓ,mei(2−d−ℓ)t]Y
(r)
ℓ,m(x).

Setting t = 0 and applying the second of the initial conditions of (20) gives

bℓ,m =
−ℓcℓ,m
2− d− ℓ

. Substituting this into (27) gives

u =
∞∑

ℓ=0

N(d,ℓ)∑

m=0

cℓ,m

(
eiℓt − ℓ

2− d− ℓ
ei(2−d−ℓ)t

)
Y

(r)
ℓ,m(x).

Putting t = 0 into this last equation, evaluating both sides at t = 0 and
applying the first initial condition of (20) gives

∞∑

ℓ=0

N(d,ℓ)∑

m=0

cℓ,m

(
2− d− 2ℓ

2− d− ℓ

)
Y

(r)
ℓ,m(x) = f(x).

The orthonormality of the spherical harmonics Y
(r)
ℓ,m now gives the coefficients

cℓ.m as cℓ,m = ((ℓ + d − 2)/(2ℓ + d − 2))
∫
rSd−1 f(x)Y

(r)
ℓ,m(x) dσ(x) so that u
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takes the form

u =
∑

ℓ,m

(
(ℓ+ d− 2)eiℓt + ℓei(2−d−ℓ)t

2ℓ+ d− 2

)

×
(∫

rSd−1

f(ξ)Y
(r)
ℓ,m(ξ) dσ(ξ)

)
Y

(r)
ℓ,m(x).(28)

Now we specialise to the case where f(ξ) = F (〈ξ, y〉) for some fixed y ∈ Rd.
An application of the Hecke-Funk theorem (Theorem 2) gives

(29)

∫

rSd−1

f(ξ)Y
(r)
ℓ,m(ξ) dσ(ξ) = r(d−1)/2σd−1αd,ℓ(Fz)Yℓ,m(y/|y|)

where z = |x||y|. Substituting this into (28) and applying Theorem 1 now
gives equation (24).

The solution w of (21) has an expansion of the form (27), but the condition
w(x, 0) = 0 gives cℓ,m = −bℓ,m so that

(30) w =
∑

ℓ,m

cℓ,m[eiℓt − ei(2−d−ℓ)t]Y
(r)
ℓ,m(x).

Then
∂w

∂t

∣∣∣∣
t=0

= i
∑

ℓ,m cℓ,m(2ℓ + d − 2)Y
(r)
ℓ,m(x) = if(x) from which we find

that cℓ,m = (2ℓ + d − 2)−1
∫
rSd−1 f(ξ)Y

(r)
ℓ,m(ξ) dσ(ξ). Substituting this into

(30) and applying (29) and Theorem 1 gives equation (25). �

5. Closed form solutions of the initial value problems

Evaluating the sums (24) and (25) in closed form for general data f(x) =
F (〈x, y〉) is the subject of the next few results. When the dimension d is
even, this problem is tractable, but when d is odd, no such closed form is
known. The problem seems to be the nature of the Legendre polynomials
in even and odd dimension.

Theorem 12. Let u, w be as in (24) and (25) respectively, ν = (d −
2)/2, αd,ℓ be as in Theorem 2, cd be as in Proposition 11, and βd,ℓ(G) =∫ 1
−1 LdG(s)(1− s2)(d−3)/2P d

ℓ (s) ds. Then we have

∂

∂t

(
eiνt

∂u

∂t

)
= cd

∞∑

ℓ=0

cos((ℓ+ ν)t)βd,ℓ(Fz)N(d, ℓ)P d
ℓ (cos θ)(31)

∂

∂t
(eiνtw) = icd

∞∑

ℓ=0

cos((ℓ+ ν)t)αd,ℓ(Fz)N(d, ℓ)P d
ℓ (cos θ).(32)

Proof. Differentiating (24) with respect to t and multiplying the result by
eiνt gives

eiνt
∂u

∂t
= −cd

∞∑

ℓ=0

ℓ(ℓ+ 2ν)

ℓ+ ν
sin((ℓ+ ν)t)αd,ℓ(Fz)N(d, ℓ)P d

ℓ (cos θ).
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Differentiating again with respect to t and using the eigenvalue property
LdP

d
ℓ = −ℓ(ℓ+ d− 2)P d

ℓ and the self-adjointness of Ld gives

∂

∂t

(
eiνt

∂u

∂t

)
= cd

∞∑

ℓ=0

cos((ℓ+ ν)t)

(∫ 1

−1
F (zs)(1− s2)(d−3)/2LdP

d
ℓ (s) ds

)

×N(d, ℓ)P d
ℓ (cos θ)

= cd

∞∑

ℓ=0

cos((ℓ+ ν)t)

(∫ 1

−1
LdF (zs)(1− s2)(d−3)/2P d

ℓ (s) ds

)

×N(d, ℓ)P d
ℓ (cos θ)

which gives (31). Equation (32) is derived from (25) in a similar manner. �

For the moment we restrict attention to the cases d = 2 and d = 4. When
d = 2, the initial value problem (20) collapses to the wave problem on the
circle:

∂2u

∂t2
=

∂2u

∂θ2
(0 ≤ θ < 2π)

u(θ, 0) = f(θ) (0 ≤ θ < 2π)(33)

∂u

∂t

∣∣∣∣
t=0

= 0 (0 ≤ θ < 2π)

which has d’Alembert solution u =
1

2
[f(θ + t) + f(θ − t)]. Similarly, the

initial value problem (21) collapses to

∂2w

∂t2
=

∂2w

∂θ2
(0 ≤ θ < 2π)

w(θ, 0) = 0 (0 ≤ θ < 2π)(34)

∂w

∂t

∣∣∣∣
t=0

= if(θ) (0 ≤ θ < 2π)

which has d’Alembert solution w =
i

2

∫ θ+t
θ−t f(ϕ) dϕ.

When d = 4, summing the series solution (24) and (25) is significantly
more complicated. In this case, (24) becomes

u = c
∞∑

ℓ=0

(∫ π

0
F (z cosϕ)P 4

ℓ (cosϕ) sin
2 ϕdϕ

)

× (ℓ+ 1)[(ℓ+ 2)eiℓt + ℓe−i(ℓ+2)t]P 4
ℓ (cos θ).(35)

The Legendre polynomials P 4
ℓ satisfy P 4

ℓ (cos θ) =
α sin((ℓ+ 1)θ)

(ℓ+ 1) sin θ
with α a

constant – the value of which is, for the moment, unimportant. Equation
(35) then becomes

u = cα2
∞∑

ℓ=0

(∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

)

× [(ℓ+ 2)eiℓt + ℓe−i(ℓ+2)t]
sin((ℓ+ 1)θ)

(ℓ+ 1) sin θ
.(36)
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Putting t = 0 in (36) gives

u(θ, 0) =
2cα2

sin θ

∞∑

ℓ=0

(∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

)
sin((ℓ+ 1)θ)

= πcα2F (z cos θ)

where we have used the fact that {
√

2/π sin((ℓ+1)θ)}∞ℓ=0 is an orthonormal
basis for L2[0, π]. However u(θ, 0) = F (z cos θ), so we see that c = 1/(πα2).
After differentiating with respect to t and multiplying by eit, we have

eit
∂u

∂t
= − 2

π

∞∑

ℓ=0

(∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

)

× ℓ(ℓ+ 2)
sin((ℓ+ 1)t) sin((ℓ+ 1)θ)

(ℓ+ 1) sin θ

and, after another differentiation with respect to t,

∂

∂t

(
eit

∂u

∂t

)
= − 2

π

∞∑

ℓ=0

(∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

)
ℓ(ℓ+ 2)

× cos((ℓ+ 1)t) sin((ℓ+ 1)θ)

sin θ

= − 1

π

∞∑

ℓ=0

(∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

)
ℓ(ℓ+ 2)

× [sin((ℓ+ 1)(θ + t)) + sin((ℓ+ 1)(θ − t))]

sin θ
.(37)

The eigenfunction property of {P 4
ℓ }∞ℓ=0 may be written

−ℓ(ℓ+ 2)(1− s2)1/2P 4
ℓ (s) =

d

ds

[
(1− s2)3/2

d

ds
P 4
ℓ (s)

]

so that with G(s) =
d

ds

[
(1 − s2)3/2

d

ds
(F (zs))

]
, the integral on the right

hand side of (37) becomes

−ℓ(ℓ+ 2)

∫ π

0
F (z cosϕ) sinϕ sin((ℓ+ 1)ϕ) dϕ

= −ℓ(ℓ+ 2)(ℓ+ 1)

α

∫ π

0
F (z cosϕ) sin2 ϕP 4

ℓ (cosϕ) dϕ

= −ℓ(ℓ+ 2)(ℓ+ 1)

α

∫ 1

−1
F (zs)(1− s2)1/2P 4

ℓ (s) ds

=
(ℓ+ 1)

α

∫ 1

−1
F (zs)

d

ds

[
(1− s2)3/2

d

ds
P 4
ℓ (s)

]
ds

=
(ℓ+ 1)

α

∫ 1

−1
G(s)P 4

ℓ (s) ds

=

∫ π

0
G(cosϕ) sin((ℓ+ 1)ϕ) dϕ.
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Substituting this into (37) and using the orthogonality and completeness of

the functions {
√
2/π sin((ℓ+ 1)ϕ)}∞ℓ=1 on [0, π] gives

∂

∂t

(
eit

∂u

∂t

)
=

1

π sin θ

∞∑

ℓ=0

(∫ π

0
G(cosϕ) sin((ℓ+ 1)ϕ) dϕ

)

× [sin((ℓ+ 1)(θ + t)) + sin((ℓ+ 1)(θ − t))]

=
[g(θ + t) + g(θ − t)]

2 sin θ
(38)

where g(θ) = G(cos θ). Integrating both sides of (38) with respect to t gives

eit
∂u

∂t
=

1

2 sin θ

∫ θ+t

θ−t
g(u) du+H(θ)

withH an arbitrary function of the single variable θ, but the initial condition
∂u

∂t

∣∣∣∣
t=0

= 0 gives H ≡ 0. Hence

(39) u =
1

2 sin θ

∫ t

0
e−is

∫ θ+s

θ−s
g(u) du ds+ J(θ)

with J an arbitrary function of the single variable θ. Applying the initial
condition u(z, θ, 0) = F (z cos θ) gives J(θ) = F (z cos θ). Integrating the
outer integral on the right hand side of (39) by parts gives
(40)∫ t

0
e−is

∫ θ+s

θ−s
g(u) du ds = ie−it

∫ θ+t

θ−t
g(u) du−i

∫ t

0
e−is[g(θ+s)+g(θ−s)] ds.

But G(s) = (1− s2)3/2
d2

ds2
(F (zs))− 3s(1− s2)1/2

d

ds
(F (zs)), so

g(u) = G(cosu) = − z

sinu

d

du
[sin3 uF ′(z cosu)],

and therefore, with an integration by parts we have
∫ t

0
e−isg(θ + s) ds = −zeiθ

∫ θ+t

θ

e−iu

sinu

d

du

[
(sin3 u)F ′(z cosu)

]
du

= −zeiθ
[
(cotu− i) sin3 uF ′(z cosu)

∣∣∣∣
u=θ+t

u=θ

−
∫ θ+t

θ

d

du
(cotu− i) sin3 uF ′(z cosu) du

]

= −ze−it sin2(θ + t)F ′(z cos(θ + t)) + z sin2 θF ′(z cos θ)

+ eiθ(F (z cos(θ + t))− F (z cos θ)).(41)

A similar computation gives
∫ t

0
e−isg(θ − s) ds = −z sin2 θF ′(z cos θ) + ze−it sin2(θ − t)F ′(z cos(θ − t))

+ e−iθ(F (z cos θ)− F (z cos(θ − t))).(42)
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Also, yet another integration by parts yields

∫ θ+t

θ−t
g(u) du =

∫ θ+t

θ−t
G(cosu) du

=

∫ cos(θ−t)

cos(θ+t)

G(s)√
1− s2

ds

=

∫ cos(θ−t)

cos(θ+t)

1√
1− s2

d

ds
[(1− s2)3/2

d

ds
(F (zs))] ds

= z sin2(θ − t)F ′(z cos(θ − t))− z sin2(θ + t)F ′(z cos(θ + t))

− cos(θ − t)F (z cos(θ − t)) + cos(θ + t)F (z cos(θ + t))

+

∫ cos(θ−t)

cos(θ+t)
F (zs) ds.(43)

Combining equations (40)-(43) now gives

∫ t

0
e−is

∫ θ+s

θ−s
g(u) du ds = e−it sin(θ + t)F (z cos(θ + t))

+ e−it sin(θ − t)F (z cos(θ − t))

− 2 sin θF (z cos θ) + ie−it

∫ cos(θ−t)

cos(θ+t)
F (zs) ds.

Applying this to (39) now gives

u =
e−it

2 sin θ

[
sin(θ + t)F (z cos(θ + t)) + sin(θ − t)F (z cos(θ − t))

+ i

∫ cos(θ−t)

cos(θ+t)
F (zs) ds

]
.

This completes the computation of u = u4. The Λ2-part of e
itΓf is Γw with

w given by (25). When d = 4, this sum becomes

w =
e−itcα2

sin θ

∑

ℓ

sin(ℓ+ 1)t

ℓ+ 1

(∫ π

0
F (z cosϕ) sin((ℓ+ 1)ϕ) sinϕdϕ

)

× sin((ℓ+ 1)θ)

so that

∂

∂t
(eitw) =

cα2

sin θ

∑

ℓ

(∫ π

0
F (z cosϕ) sin((ℓ+ 1)ϕ) sinϕdϕ

)

× cos((ℓ+ 1)t) sin((ℓ+ 1)θ)

and by putting t = 0 in this equation and using the orthogonality and
completeness of {

√
2/π sin(ℓ+1)ϕ}∞ℓ=0 in L2[0, π], we find that the constant
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c is in fact c = −2i/(πα2). Hence

∂

∂t
(eitw) =

2i

π

∑

ℓ

(∫ π

0
F (z cosϕ) sin((ℓ+ 1)ϕ) sinϕdϕ

)

× cos((ℓ+ 1)t) sin((ℓ+ 1)θ)

sin θ

=
i

2

[
sin(θ + t)F (z cos(θ + t)) + sin(θ − t)F (z cos(θ − t))

sin θ

]
.

Integrating both sides of this equation with respect to t gives

eitw =
i

2 sin θ

∫ t

0
[sin(θ+s)F (z cos(θ+s))+sin(θ−s)F (z cos(θ−s)] ds+K(θ)

but putting t = 0 and applying the initial condition w(x, 0) = 0 gives K ≡ 0
so that

w =
ie−it

2 sin θ

∫ cos(θ−t)

cos(θ+t)
F (zs) ds.

We’ve shown the following.

Theorem 13. Let u = u(z, θ, t), w = w(z, θ, t) be the unique solutions of
the initial value problems (20) and (21) of Proposition 10 where d = 4,
f(x) = F (〈x, y〉) for some fixed y ∈ R4 and z = |x||y|. Then

u =
e−it

2 sin θ

[
sin(θ + t)F (z cos(θ + t)) + sin(θ − t)F (z cos(θ − t))

+ i

∫ cos(θ−t)

cos(θ+t)
F (zs) ds

]

and

w =
ie−it

2 sin θ

∫ cos(θ−t)

cos(θ+t)
F (zs) ds.

6. Closed forms for the fractional Clifford-Fourier

transform kernels

Recall from section 2 that in d dimensions, the fractional Clifford-Fourier
transform kernels C±

d,t(x, y) may be written as

C±
d,t(x, y) = e±itd/2 exp(±itΓx)Kd,t(x, y)

where Kd,t(x, y) is the classical (d-dimensional) fractional Fourier transform
kernel as defined in section 2. When d = 2, z = |x||y|, cos θ = 〈x, y〉/z and
f(θ) = K2,t(x, y) (y, |x| fixed), the d’Alembert solution of (33) gives the
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scalar part of the frCFT kernel C+
2,t(x, y) to be

u2(θ, t) = − ie2it

4π sin t
ei cot(t)(|x|

2+|y|2)/2[e−iz csc(t) cos(θ+t) + e−iz csc(t) cos(θ−t)]

= − ie2it

4π sin t
ei cot(t)(|x|

2+|y|2)/2e−iz csc(t) cos(θ) cos(t)

× [eiz csc(t) sin(θ) sin(t) + e−iz csc(t) sin(θ) sin(t)]

= − ie2it

4π sin t
ei cot(t)(|x|

2+|y|2−2〈x,y〉)/2[eiz sin(θ) + e−iz sin(θ)]

= − ie2it

2π sin t
ei cot(t)|x−y|2/2 cos(z sin(θ))

= − ie2it

sin t
ei cot t|x−y|2/2 cos(|x ∧ y|).

Similarly, with w as in (21) and d = 2 we have w(θ, t) = i
2

∫ θ+t
θ−t K2,t(ϕ, t) dϕ

so that the Λ2- part of the frCFT kernel takes the form

v = Γw = e1e2
∂w

∂θ
=

e1e2
4π sin t

e2itei cot(t)(|x|
2+|y|2)/2

× [e−iz csc(t) cos(θ+t) − e−iz csc(t) cos(θ−t)]

=
ie1e2
2π sin t

e2itei cot t|x−y|2/2 sin(|x ∧ y|).

Consequently the 2-dimensional frCFT kernel is

C2,t(x, y) = − ie2it

2π sin t
ei cot(t)|x−y|2/2[cos(|x ∧ y|)− e1e2 sin(|x ∧ y|)]

= − ie2it

2π sin t
ei cot(t)|x−y|2/2e−(x∧y)

and, putting t = π/2 we obtain the Clifford-Fourier kernel in 2 dimensions:

C2(x, y) = C2,π/2(x, y) = i
e−(x∧y)

2π
.

When d = 4, the scalar part u4(θ, t) of the frCFT kernel takes the form

u4 = u
(1)
4 + u

(2)
4 with

u
(1)
4 = − e3it

8π2 sin θ sin2 t
ei cot(t)(|x|

2+|y|2)/2

× [sin(θ + t)e−iz csc(t) cos(θ+t) + sin(θ − t)e−iz csc(t) cos(θ−t)]

= − e3it

4π2 sin θ sin2 t
ei cot(t)(|x|

2+|y|2)/2e−iz cot(t) cos(θ)

× [sin(θ) cos(t) cos(z sin θ) + i cos(θ) sin(t) sin(z sin θ)]

= − e3it

4π2 sin θ sin2 t
ei cot t|x−y|2/2

× [sin(θ) cos(t) cos(|x ∧ y|) + i cos(θ) sin(t) sin(|x ∧ y|)]

= − e3it

4π2 sin2 t
ei cot(t)|x−y|2/2

[
cos(t) cos(|x ∧ y|) + i〈x, y〉 sin(t)sin(|x ∧ y|)

|x ∧ y|

]
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and

u
(2)
4 = − ieit

8π2 sin θ

∫ cos(θ−t)

cos(θ+t)

e2it

sin2 t
ei cot(t)(|x|

2+|y|2)/2e−izs csc(t) ds

= − ie3it

4π2 sin t
ei cot(t)|x−y|2/2 sin(z sin θ)

z sin θ

= − ie3it

4π2 sin t
ei cot(t)|x−y|2/2 sin(|x ∧ y|)

|x ∧ y|
so that the scalar part of the four-dimensional frCFT kernel becomes

u4 = − e3it

4π2 sin t
ei cot t|x−y|2/2

[
cot(t) cos(|x∧y|)+i

( 〈x, y〉
|x ∧ y|+1

)
sin(|x ∧ y|)

|x ∧ y|

]
.

The 2-form part v4 of the frCFT kernel is given by v4 = Γw4 with

w4 = − ieit

8π2 sin θ sin2 t
e2itei cot(t)(|x|

2+|y|2)/2

∫ cos(θ−t)

cos(θ+t)
e−izs csc(t) ds

=
e3it

8π2z sin θ sin t
ei cot(t)(|x|

2+|y|2)/2[e−iz csc(t) cos(θ−t) − e−iz csc(t) cos(θ+t)]

=
−ie3it

4π2z sin θ sin t
ei cot(t)|x−y|2/2 sin(z sin θ)

=
−ieit

4π2 sin t
ei cot(t)|x−y|2/2 sin(|x ∧ y|)

|x ∧ y| .

Hence

v4 = Γxw4 = − ie3it

4π2 sin t
ei cot(t)(|x|

2+|y|2)/2Γx

[
e−i cot(t)〈x,y〉 sin(|x ∧ y|)

|x ∧ y|

]

where we have applied Proposition 8. Propositions 9 and 7 now give

v4 = − ie3it

4π2 sin t
ei cot(t)(|x|

2+|y|2)/2Γx

(
e−(i/2) cot(t)〈x,y〉 sin(|x ∧ y|)

|x ∧ y|

)

= − ie3it

4π2 sin t
ei cot(t)(|x|

2+|y|2)/2 x ∧ y

|x ∧ y|e
−i cot(t)〈x,y〉

×
[
− i cot(t) sin(|x ∧ y|)− 〈x, y〉

( |x ∧ y| cos(|x ∧ y|)− sin(|x ∧ y|)
|x ∧ y|2

)]

=
ie3it

4π2 sin t
ei cot(t)|x−y|2/2 x ∧ y

|x ∧ y|

×
[
i cot(t) sin(|x ∧ y|) + 〈x, y〉

( |x ∧ y| cos(|x ∧ y|)− sin(|x ∧ y|)
|x ∧ y|2

)]
.

The four-dimensional frCFT kernel is then

C4,t(x, y) = u4(x, y, t) + v4(x, y, t)

=
e3it

4π2 sin t
ei cot(t)|x−y|2/2

×
[
ex∧y

(
− cot t+ i

〈x, y〉x ∧ y

|x ∧ y|2
)
− i

x ∧ y

|x ∧ y|2 (x ∧ y + 〈x, y〉)sin(|x ∧ y|)
|x ∧ y|

]
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where we have used the fact that (x ∧ y)2 = −|x ∧ y|2 and hence ex∧y =

cos(|x∧ y|)+ x ∧ y

|x ∧ y| sin(|x∧ y|). Putting t = π/2 gives the four-dimensional

CFT kernel

C4(x, y) =
1

4π2

[
ex∧y

〈x, y〉(x ∧ y)

|x ∧ y|2 +
(x ∧ y)

|x ∧ y|2 (〈x, y〉+ (x ∧ y))
sin(|x ∧ y|)

|x ∧ y|

]
.

7. Method of Ascent

In section 5 it was shown how solutions of the “d-dimensional” initial
value problems (20) and (21) – which take place on spheres in Rd – may
be computed via expansions in Legendre polynomials P d

ℓ , and how closed
forms for these expansions may be determined from addition formulae satis-
fied by these polynomials, at least in dimensions 2 and 4. In this section we
give details of a “method of ascent” for computing solutions of the (d+ 2)-
dimensional versions of the initial value problems (20) and (21) in terms of
solutions of the d-dimensional versions of those same initial value problems,
with different initial data (d ≥ 3). Since we have closed forms the solu-
tions of the 4-dimensional initial-value problem (Theorem 13), we have as
an immediate consequence a means of computing closed forms for the solu-
tions of the even-dimensional problems. As a special case we can compute
(iteratively) all even-dimensional frCFT kernels.

We start with the expansion (24) of the solution ud(x, y.t) = ud(z, θ, t) of
the initial value problem (20). The solutions of the initial-value problems
(20) and (21) may of course be viewed as time-evolutions of the initial data
F . We therefore, when convenient, write ud(x, y, t) = ud(F )(x, y, t) and
wd(x, y, t) = wd(F )(x, y, t).

It is more convenient now to work with a different normalisation of the
Legendre polynomials P d

ℓ . We use instead the Gegenbauer polynomials Cν
ℓ

which are related to the Legendre polynomials by

(44) Cν
ℓ =

(
ℓ+ d− 3

d− 3

)
P d
ℓ (ν = (d− 2)/2),

and satisfy the differential recurrence relation [10]

(45)
d

dω
Cν
ℓ (ω) = 2νCν+1

ℓ−1 (ω) (ℓ ≥ 1) with
d

dω
Cν
0 (ω) = 0.

We’ll also use the Fourier transform relation

(46)

∫ 1

−1
(1− x2)µ−1/2eiaxCµ

n(x) dx =
π21−µinΓ(2µ+ n)

n!Γ(µ)
a−µJµ+n(a)

which is valid provided ℜµ > −1/2 [9]. Here Jµ+n is a Bessel function of
the first kind and we understand that the function Kn,µ(a) = a−µJn+µ(a)
is an odd function if n is odd and is an even function if n is even. The data
Fz(s) given by

Fz(s) =

{
F (zs) if |s| ≤ 1

0 else

has Fourier expansion

(47) Fz(s) =
1

2π

∫ ∞

−∞
F̂z(ξ)e

iξs dξ
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so that an application of (44) and (46) with µ = ν = (d− 2)/2 gives

(48) αd,ℓ(Fz) =
iℓ(d− 3)!

2νΓ(ν)

∫ ∞

−∞
F̂z(ξ)

Jℓ+ν(ξ)

ξν
dξ,

which will be valid provided d ≥ 3. We write to F ′
z to mean (Fz)

′. Note
that F ′

z = z(F ′)z.

Theorem 14. Let ud = ud(z, θ, t) and wd(z, θ, t) be the unique solutions
of the initial value problems (20) and (21) of Proposition 10 where f(x) =
F (〈x, y〉) for some fixed y ∈ Rd and z = |x||y|. Then ud = ued + uod where
eiνtued is the odd part (with respect to t) of eiνtud and eiνtuod is the odd part
(with respect to t) and if d ≥ 3,

(49) ued+2(F
′) =

e−it

z

∂ued(F )

∂ω
; uod+2(F

′) =
d

d− 2

e−it

z

∂uod(F )

∂ω

(50) wd+2(F
′) =

e−it

z

∂wd(F )

∂ω
.

Proof. From (24) and (48) we have

ud(z, θ, t) = cd
2ν−2Γ(ν + 1/2)

ν
√
π

∞∑

ℓ=0

((ℓ+ d− 2)eiℓt + ℓe−i(ℓ+d−2)t)

× iℓ
(∫ ∞

−∞
F̂z(ξ)ξ

−νJℓ+ν(ξ) dξ

)
Cν
ℓ (ω)

where we’ve used the fact that (d − 3)! = Γ(2ν) and the Gamma function
doubling formula [9] Γ(2x) = 22x−1Γ(x)Γ(x+ 1/2)/

√
π. This expansion for

ud(z, θ, t) may be rearranged to obtain ud = ued + uod where

(51) ued =
γd
ν
e−iνt

∞∑

ℓ=0

iℓ(ℓ+ ν) cos((ℓ+ ν)t)

(∫ ∞

−∞
F̂z(ξ)

Jℓ+ν(ξ)

ξν
dξ

)
Cν
ℓ (ω)

and

(52) uod = iγde
−iνt

∞∑

ℓ=0

iℓ sin((ℓ+ ν)t)

(∫ ∞

−∞
F̂z(ξ)

Jℓ+ν(ξ)

ξν
dξ

)
Cν
ℓ (ω)

with γd = cd2
ν−1Γ(ν + 1/2)/

√
π. Note that eiνtued is the odd part (with

respect to t) of eiνtud and eiνtuod is the odd part (with respect to t) of eiνtud.
We now apply (45) to obtain

∂ued(F )

∂ω
= 2γde

−iνt
∞∑

ℓ=1

iℓ(ℓ+ ν) cos((ℓ+ ν)t)

×
(∫ ∞

−∞
F̂z(ξ)ξ

−νJℓ+ν(ξ) dξ

)
Cν+1
ℓ−1 (ω)

= 2γde
−iνt

∞∑

ℓ=0

iℓ+1(ℓ+ ν + 1) cos((ℓ+ ν + 1)t)

×
(∫ ∞

−∞
F̂z(ξ)ξ

−νJℓ+ν+1(ξ) dξ

)
Cν+1
ℓ (ω).
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Integration by parts gives (̂F ′
z)(ξ) = F (z)e−iξ − F (−z)eiξ + iξF̂z(ξ) and

applying (46) with a = −1 yields
∫ ∞

−∞
e−iξξ−d/2Jℓ+d/2(ξ) dξ = (ξ−d/2Jℓ+d/2)̂ (1)

= cℓ,d(χ[−1,1](x)(1− x2)d/2−1/2C
d/2
ℓ (x))

∣∣
x=1

= 0.

Similarly,
∫∞
−∞ eiξξ−d/2Jℓ+d/2(ξ) dξ = 0. Hence,

∂ued(F )

∂ω
= 2γde

−iνtz
∞∑

ℓ=0

iℓ(ℓ+ ν + 1) cos((ℓ+ ν + 1)t)

×
(∫ ∞

−∞
−i(̂F ′)z(ξ)

Jℓ+ν+1(ξ)

ξν+1
dξ

)
Cν+1
ℓ (ω)

= z
d

d− 1

cd
cd+2

eitued+2(F
′)(53)

since F ′
z = z(F ′)z. However, σd = 2πd/2/Γ(d/2), so

cd
cd+2

=
d− 1

d
and

therefore, from (53) we conclude that ued satisfies the first equation of (49).
The odd part, uod(F ) of ud(F ) takes the form (52) so that an application

of (45) gives

∂uod(F )

∂ω
= 2iνγde

−iνt
∞∑

ℓ=1

iℓ sin((ℓ+ ν)t)

(∫ ∞

−∞
F̂z(ξ)

Jℓ+ν(ξ)

ξν
dξ

)
Cν+1
ℓ−1 (ω)

= 2iνzγde
−iνt

∞∑

ℓ=0

iℓ sin((ℓ+ ν + 1)t)

(∫ ∞

−∞
(̂F ′)z(ξ)

Jℓ+ν+1(ξ)

ξν+1
dξ

)
Cν+1
ℓ (ω)

= eitz
cd
cd+2

ν

ν + 1/2
uod+2(F

′) = eitz

(
d− 2

d

)
uod+2(F

′)

from which we conclude that uod satisfies the second equation of (49).
From (25) we have

wd(F ) =
iγd
ν

e−iνt
∞∑

ℓ=0

iℓ sin((ℓ+ ν)t)

(∫ ∞

−∞
F̂z(ξ)

Jℓ+ν(ξ)

ξν
dξ

)
Cν
ℓ (ω).

Differentiating this equation with respect to ω and applying (45) yields

∂wd(F )

∂ω
= 2iγdze

−iνt
∞∑

ℓ=0

iℓ sin((ℓ+ ν + 1)t)

×
(∫ ∞

−∞
(̂F ′)z(ξ)

Jℓ+ν+1(ξ)

ξν+1
dξ

)
Cν+1
ℓ (ω)

= zeit
cd
cd+2

ν + 1

ν + 1/2
wd+2(F

′) = zeitwd+2(F
′).

This gives (50). �

These results are valid only when d ≥ 3 – note for example that the
second of the equations in (49) is undefined when d = 2. Similarly, the
right hand side of (24) is undefined when d = 2. The two-dimensional case
is slightly different from those of higher dimensions and, as we will show,
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the solution of the initial-value problem (20) in dimension d = 4 cannot be
fully determined from the solution in dimension d = 2. The means that
to compute the higher even-dimensional solutions, it is not enough to start
with the 2-dimensional solution – one must start with the 4-dimensional
solution, which is given by Theorem 13. To explore this, we need first to
write down the two-dimensional version of (24).

In dimension d = 2, an application of separation of variables to the initial
value problem (33) with f(θ) = F (z cos θ) gives

u2(z,θ, t) =
1

π

∫ 2π

0
f(ϕ) dϕ+

2

π

∞∑

ℓ=1

(∫ 2π

0
f(ϕ) cos(ℓϕ) dϕ

)
cos(ℓθ) cos(ℓt)

=
1

π

∫ 1

−1

F (zs)√
1− s2

ds+
2

π

∞∑

ℓ=1

(∫ 1

−1
F (zs)

Tℓ(s)√
1− s2

ds

)
cos(ℓθ) cos(ℓt)(54)

where {Tℓ}∞ℓ=0 are the Chebyshev polynomials Tℓ(s) = cos(ℓ cos−1 s) (|s| ≤
1). As in the higher dimensional case we apply the Fourier expansion (47) to
the integrals on the right hand side of (54) and apply Fubini to the resulting

double integrals as well as the identity
∫ 1
−1

Tℓ(s)e
isξ

√
1− s2

ds = πiℓJℓ(ξ) (ℓ ≥ 0)

[9] to obtain (with ω = cos θ)

u2(z, ω, t) =
1

2

∫ ∞

−∞
F̂z(ξ)J0(ξ) dξ

+
∞∑

ℓ=1

iℓ
(∫ ∞

−∞
F̂z(ξ)Jℓ(ξ) dξ

)
Tℓ(ω) cos(ℓt).(55)

Observe from (55) that uo2(F ) ≡ 0. Consequently, the odd part uo4 of the
four-dimensional solution cannot be obtained from uo2.
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