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Hua measures on the space of p-adic matrices

and inverse limits of Grassmannians

Yury Neretin
1

We construct p-adic counterparts of Hua measures, inverse limits of p-adic Grass-

mannians, and describe natural groups of symmetries of such inverse limits.

1 Results of the paper

1.1. Real archetype. For details, see [8], [10], Section II.2.10. Denote by U(k)
the group of unitary matrices of size k, by dχk the probability Haar measure on
U(k). By U(∞) we denote the inductive limit

. . . −→ U(n) −→ U(n+ 1) −→ . . .

of groups U(n).

Represent an element g ∈ U(n + 1) as a block matrix g =

(
a b
c d

)
of size

n+ 1. Consider the Livshits map Υ : U(n+ 1)→ U(n) given by

Υ

(
a b
c d

)
= a− b(1 + d)−1c. (1.1)

This map commutes with left and right actions of U(n),

Υ(h1gh2) = h1Υ(g)h2, where h1, h2 ∈ U(n).

Therefore, the pushforward of the Haar measure dχn+1 under the map Υ is the
Haar measure dχn. Therefore there exists the inverse limit U(∞) of the chain

. . .←− U(n)←− U(n+ 1)←− . . . (1.2)

equipped with a probability measure dχ∞. The space U(∞) is not a group, but
the unitary group U(∞) acts on U(∞) by left and right multiplication, thus we
get a measure preserving action of U(∞)×U(∞) on U(∞).

More generally, we fix λ ∈ C and consider the probability measure

χn
λ =

n∏

k=1

Γ(k + λ)Γ(k + λ)

Γ(k)Γ(k + λ+ λ)
det(1 + g)λ det(1 + g)λdχn(g)

on U(n). This system of measures also is projective and we get a family of
measures χ∞

λ on the inverse limit of the chain (1.2).
Applying the Cayley transform to matrices g ∈ U(n), we get the space of

n× n Hermitian matrices and the measures of the form

C(λ, n) det(1 + iX)−λ−n · det(1− iX)−λ−n dX.

1Supported by grant FWF, P22122.
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Total integrals for such measures (for real λ) were firstly evaluated by Hua Loo
Keng [2].

Now there is a substantial harmonic analysis on U(∞), see [15], [1]. Similar
inverse limits exists for all 10 series of compact semisimple symmetric spaces,

. . .←− G(n)/K(n)←− G(n+ 1)/K(n+ 1)←− . . . ,

the group G(∞) acts on the inverse limit, see [18], [8]. In [8] the group spaces
K ×K/K, where K = SO(n), U(n), Sp(n) were considered. The Livshits map
(1.1) sends symmetric matrices (g = gt) to symmetric, the space U(n)/O(n) of
unitary symmetric matrices can be identified with the real Lagrangian Grass-
mannian. Therefore we get a chain of Lagrangian Grassmannians

. . .←− U(n)/O(n)←− U(n+ 1)/O(n+ 1)←− . . . ,

see [10], Section 3.6. Other classical symmetric spaces can be reduced to the
group case by the same trick (we choose an appropriate involution in a group
manifold commuting with the map Υ).

There is also a similar construction for symmetric group (see [3]), the limit
object admits a substantial harmonic analysis. Our purpose is to obtain a p-adic
counterpart of these constructions.

1.2. Notation. Let
— Qp be the p-adic field;
— Op the ring of p-adic integers;
— vol(·) be the translation invariant σ-finite measure on a linear space Qm

p

normalized by the condition vol(Om
p ) = 1;

— | · | be the norm on Qp;
— GL(n,Qp) and GL(n,Op) be the groups of invertible n×n matrices over

Qp and Op;
— Mat(n,Qp), Mat(n,Op) be the spaces of all n× n matrices over Qp and

Op;
— Symm(n,Qp), ASymm(n,Qp) be spaces of symmetric (skew-symmetric

matrices) over Qp;
— gt be transposed matrix;
— Grn2n is the Grassmannian of n-dimensional subspaces in Q2n

p .

1.3. Measures µn
s . Any z ∈ Mat(n,Qp) can be represented in the form

z = A



p−k1 0 . . .
0 p−k2 . . .
...

...
. . .


B,

where A, B ∈ GL(n,Op) and

k1 > k2 > . . . > kn > −∞.

We say that pkj are singular numbers of the matrix z.
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We define the function γ(z) on Mat(n,Op) by

γ(z) =
∏

kj>0

pkj .

Theorem 1.1

∫

Mat(n,Qp)

γ(z)−α dvol(z) =

n∏

j=1

1− p−α+n−j

1− p−α+n+j−1
=: c(n, α). (1.3)

The integral converges if α > 2n− 1.

We define a measure dµn
s , where s > −1, on Mat(n,Qp) by

dµn
s (z) := c(n, s+ 2n)−1γ(z)−s−2ndvoln(z).

The group GL(2n,Op) acts on Mat(n,Qp) by linear-fractional transforma-
tions

z 7→ (a+ zc)−1(b+ zd), (1.4)

where

(
a b
c d

)
∈ GL(2n,Op) is a block (n+ n)× (n+ n) matrix. Notice, that

this formula corresponds to the action of GL(2n,Op) on the Grassmannian Grn2n.
Indeed, for an operator z : Qn

p → Qn
p consider its graph in Qn

p ⊕Qn
p , it consists

of vectors
v ⊕ vz, where v ∈ Qn

p is a row matrix.

The get a chart on Grassmannian, the complement of the chart has zero measure.
A verification of (1.4) is straightforward (see, e.g., [10], Theorem 2.3.1).

Theorem 1.2 a) For any

(
a b
c d

)
∈ GL(2n,Qp),

dµn
s

(
(a+ zc)−1(b+ zd)

)
= | det(a+ zc)|sdµn

s (z). (1.5)

b) The measure µn
s is a unique probability Borel measure on Mat(n,Qp)

satisfying the equation

dν
(
(a+ zc)−1(b+ zd)

)
= | det(a+ zc)|sdν(z) (1.6)

for any

(
a b
c d

)
∈ GL(2n,Op).

In particular, for s = 0 we get a unique GL(2n,Qp)-invariant measure on
the Grassmannian Grn2n.

1.4. Projective limits. Consider a (n+ 1)× (n+ 1) matrix

z =

(
z11 z12
z21 z22

)
.
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Consider the map Π : Mat(n+ 1,Qp)→ Mat(n,Qp) given by

Π :

(
z11 z12
z21 z22

)
7→ z11. (1.7)

Theorem 1.3 The pushforward of the measure µn+1
s under the map Π is µn

s

Thus we get a chain

. . .←−
(
Mat(n,Qp), dµ

n
s

)
←−

(
Mat(n+ 1,Qp), dµ

n+1
s

)
←− . . .

By the Kolmogorov theorem (see, e.g. [20], Section 2.3, Theorem 3) the inverse
limit in the category of measure spaces is well defined, denote by dµ∞

s the
inverse limit of measures µn

s , this measure can be regarded as a measure on
Mat(∞,Qp) ≃ Q∞×∞

p .

1.5. Symmetries of the measures µ∞

s . Consider the chain of groups

. . . −→ GL(2n,Op) −→ GL
(
2(n+ 1),Op

)
−→ . . .

and its inductive limit GL(2∞,Op). In other words, GL(2∞,Op) is the group
of (∞+∞)× (∞+∞) matrices g with integer elements such that g−1 also has
integer elements and g − 1 has only finite number of non-zero entries.

Proposition 1.4 a) The measure µs is quasiinvariant with respect to the action

z 7→ (a + zc)−1(b + zd) of GL(2∞,Op). The Radon–Nikodym derivative is

| det(a+ zc)|s.

b) In particular for s = 0 the measure µ∞

s is GL(2∞,Qp)-invariant.

c) The measure µ∞

s is invariant with respect to the subgroup P ⊂ GL(2∞,Qp)

consisting of matrices

(
a b
0 d

)
.

We must explain the meaning of the expression | det(a + zc)|s. Represent
g ∈ GL(2∞,Op) as a block matrix of size (k+∞+k+∞), where k is sufficiently
large,

g =

(
a b
c d

)
=




a11 0 b11 0
0 1 0 0
c11 0 d11 0
0 0 0 1


 .

Represent z ∈ Mat(∞,Qp) as a block matrix of size (k +∞):

z =

(
z11 z12
z21 z22

)
.

Then

| det(a+ zc)| =

∣∣∣∣det
(
a11 0
0 1

)
+

(
z11 z12
z21 z22

)(
c11 0
0 0

)∣∣∣∣ =

=

∣∣∣∣det
(
a11 + z11c11 0

z12c11 1

)∣∣∣∣ =
∣∣det(a11 + z11c11)

∣∣,
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and we get a determinant of a finite matrix.

Next, we define two completions

GL(2∞,Op) ⊃ GL(2∞,Op) ⊃ GL(2∞,Op)

of the group GL(2∞,Op).

First, consider the group T consisting of (∞+∞)× (∞+∞) matrices over
Op having the form

h =

(
a b
0 d

)
, (1.8)

where

a =




α11 0 0 . . .
α21 α22 0 . . .
α31 α32 α33 . . .
...

...
...

. . .


 , d =




δ11 δ12 δ13 . . .
0 δ22 δ23 . . .
0 0 δ33 . . .
...

...
...

. . .


 , (1.9)

and
|α11| = |α22| = · · · = 1 |δ11| = |δ22| = · · · = 1. (1.10)

As a set the group T is a direct product of countable number of copies of
Op \ pOp (corresponding to αjj and δkk) and countable number of copies of Op

(corresponding to remaining αij , δkl, and to βmn).

Also consider a smaller group T ⊂ T consisting of the matrices having the
form (1.8)–(1.9) but (1.10) is replaced by

α11 = α22 = · · · = 1 δ11 = δ22 = · · · = 1. (1.11)

Remark. Notice that the matrices h ∈ T can be made upper triangular
after a permutation of basis elements (the first ∞ of basis elements must be
written in the inverse order). �

Denote by GL(2∞,Op) the group of matrices generated by GL(2∞,Op) and

T . This group consists of invertible matrices g =

(
a b
c d

)
over Op such that

1◦. c has only finite number nonzero entries;
2◦. a has only finite number of nonzero entries upper the diagonal;
3◦. d has only finite number of nonzero entries lower the diagonal;
4◦. g−1 has integer elements.

Denote by GL(2∞,Op) ⊂ GL(2∞,Op) the group of matrices generated by
GL(2∞,Op) and T . We must replace 2◦ and 3◦ by:

2◦◦. a − 1 has only finite number of nonzero entries on the diagonal and
upper the diagonal;

3◦◦. d − 1 has only finite number of nonzero entries on the diagonal and
lower the diagonal.
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Theorem 1.5 The group GL(2∞,Op) acts on Mat(∞,Qp) by transformations

z 7→ (a + zc)−1(b + zd) leaving the measure µ∞

s quasiinvariant. The Radon–

Nikodym derivative is | det(a+ zc)|s.

The meaning of the expressions (a+ zc)−1(b+ zd) and | det(a+ zc)|s will be
explained in Subsection 4.3.

Proposition 1.6 For any g ∈ GL(2∞,Op) and z ∈ Mat(∞,Qp), the expres-

sion

det(a+ zc) ∈ Qp

is well defined.

Denote by Q×

p , C
× the multiplicative groups of Qp and C. Let χ be a homo-

morphism Q×

p → C×, |χ(z)| = 1. Then we can define a unitary representation

of GL(2∞,Op) in L2
(
Mat(∞,Qp), µ

∞

s

)
by the formula

ρs,χ

(
a b
c d

)
f(z) = f

(
(a+ zc)−1(b+ zd)

)
det(a+ zc)s/2χ(a+ zc). (1.12)

1.6. Some remarks on real-p-adic parallel. Analogs of noncompact
Riemannian symmetric spaces over p-adic numbers are Bruhat–Tits buildings
(here there is a well-known and deep parallel, see a discussion and further ref-
erences in [10]). Analogs of Hua integrals for buildings exist (see [9]) and they
are used below in Section 2. But it seems that they do not admit projective
limits (moreover, real-p-adic analogy does not requires this, for noncompact
Riemannian symmetric spaces there are no inverse limits, see [17]).

Apparently, there are no reasonable p-adic analogs of compact Riemannian
symmetric spaces.

On the other hand, the classical compact Riemannian symmetric spaces are
Grassmannians or isotropic Grassmannians (see, e.g., [10], Subsections D.1), our
construction is an emulation of Pickrell’s approach [18].

1.7. Other inverse limits of Grassmannians.

a) Symplectic Lagrangian Grassmannian. Consider the group Sp(2n,Op)

consisting of integer (n+n)×(n+n) matrices

(
a b
c d

)
preserving skew-symmetric

bilinear form

(
0 1
−1 0

)
in Qn

p ⊕ Qn
p . Consider the Grassmannian Ln of La-

grangian subspaces in Q2n
p . Almost all elements of Ln can be represented as

graphs of operators Qn
p ⊕ 0 → 0 ⊕ Qn

p , the corresponding matrices z are sym-
metric (see, e.g., [10], Theorem 3.1.4). The action of the group Sp(2n,Op) on
Symm(n,Qp) is given by the same formula (1.4).

We define measures

dµn
s (z) = γ(z)−s−n−1dvoln(z) (1.13)
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on Symm(n,Qp), we choose normalizing constants c(s, n) to obtain probability
measures. Their Radon–Nikodym derivatives with respect to transformations
in Sp(2n,Op) are

dµn
s

(
(a+ zc)−1(b+ zd)

)

dµn
s (z)

= | det(a+ zc)|s. (1.14)

Next, these measures form a projective system with respect to the map
Π : Symm(n+ 1,Qp)→ Symm(n,Qp), see (1.7).

Now we can consider the inverse limit of measure spaces

. . .←−
(
Symm(n,Qp), dµ

n
s

)
←−

(
Symm(n+ 1,Qp), dµ

n+1
s

)
←− . . .

b) Isotropic orthogonal Grassmannians. Consider the group O(2n,Op) con-

sisting of integer (n+n)×(n+n) matrices

(
a b
c d

)
preserving the symmetric bi-

linear form

(
0 1
1 0

)
in Qn

p⊕Q
n
p . Consider the subgroup SO(2n,Op) ⊂ O(2n,Op)

consisting of matrices with determinant = 1. Consider the Grassmasnnian Isn
of n-dimensional isotropic subspaces. The group SO(2n,Op) has two orbits on
Isn, we choose one. Namely, consider the set Is0n of n-dimensional isotropic
subspaces M such that M ∩ (0⊕Qn

p ) has even dimension, see, e.g., [7], Propo-

sition 2.2.2, Lemma 3.3.1. Almost all elements of Is0n are graph of operators
z : Qn

p ⊕ 0→ 0⊕Qn
p and matrices z are skew-symmetric (z = −zt). We define

probability measures

dµn
s (z) = a(s, n)γ(z)−s−n+1dvoln(z). (1.15)

on ASymm(n,Qp). Their Radon–Nikodym derivatives are given by the same
formula (1.14). Measures dµn

s form a projective system with respect to the maps
Π : ASymm(n+1,Qp)→ ASymm(n,Qp). Again, we can consider inverse limits
of measure spaces

. . .←−
(
ASymm(n,Qp), dµ

n
s

)
←−

(
ASymm(n+ 1,Qp, dµ

n+1
s

)
,←− . . .

c) In both cases (symplectic and orthogonal), the situation is parallel to the
picture described above.

But the author does not know the explicit analog of the formula (1.3) for
complete measure, because our prove is a reduction to the beta-function of
Bruhat–Tits buildings [9], which was evaluated only for GL(n,Qp)-case. Also,
we can normalize the measures (1.13), (1.15) only if they are finite. Evidently,
this holds for s = 0 since in this case we have measure on Grassmannians
invariant with respect to transitive actions compact groups (Sp(2n,Op) and
SO(2n,Op)). Since γ(z)−α decreases as a function α, we get that our measures
are well-defined at least for s > 0.

1.8. Remark. On representations of infinite-dimensional classical

p-adic groups. Basic representation theory of infinite-dimensional classical
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groups and infinite symmetric groups was developed in 70-80s, see [21], [22],
[13] for symmetric groups and [12], [14], [16], [19], [16], [7] for classical groups.
These works had various continuations, see, e.g., [7], [1], [15], [3], and further
references in [11].

Representations of infinite-dimensional classical p-adic groups remains to be
a non well-understood topic. Now two substantial constructions are known. The
first is the Weil representation of infinite-dimensional symplectic group and the
corresponding contractive semigroup (Nazarov2, [6], [5], and a partial exposition
in [10], Sections 10.7, 11.2). The second is the multiplication of double cosets
and a p-adic analog of characteristic operator-function, see [11].

For infinite-dimensional groups over finite fields, see [23].

1.9. Further structure of the paper. In Section 2 we evaluate the
integral (1.3). In Section 3 we prove Theorem 1.5 on transformations of measures
µn
s . In Section 4 we prove the statements about measures µ∞

s .

2 Proofs. Calculation of the integral

Here we prove Theorem 1.1. In this section,

G := GL(n,Qp), K := GL(n,Op).

Denote by Lat(n) the set of lattices (see, e.g., [10], Section 10.3) in Qn
p , we have

Lat(n) ≃ G/K.

2.1. Properties of the function γ. The following statement is obvious.

Lemma 2.1 Let z ∈ Mat(n,Qp), det(z) 6= 0. Then

γ(z)

γ(z−1)
= | det(z)|; (2.1)

γ(z) = vol(zOn
p +On

p ); (2.2)

γ(z−1)−1 = vol(zOn
p ∩On

p ). (2.3)

Also, note that
| det(z)| = vol(zOn

p ). (2.4)

2.2. Haar measure. According [4], Section V.2, the Haar measure on G
is given by

| det(z)|−n dvol(z). (2.5)

It is convenient to normalize this measure as

dχ(z) =
1

vol(K)
| det(z)|−n dvol(z),

then χ(K) = 1.

2A weaker version of construction is in [24].
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Lemma 2.2

vol(K) =

n∏

j=1

(
1− p−j

)
.

Proof. Consider the natural map Mat(n,Op) → Mat(n,Fp), where Fp =
Op/pOp is the field with p elements. The total number of points in Mat(n,Fp)

is pn
2

. The total number of points in GL(n,Fp) ⊂ Mat(n,Fp) is
∏n

j=1(p
n− pj).

�

2.3. Calculation of the integral. Keeping in the mind the expression for
Haar measure we transform our integral (1.3) as

∫

Mat(n,Qp)

γ(z)−t dvol(z) = vol(K)

∫

G

| det(z)|n γ(z)−t dχ(z) =

= vol(K)

∫

G

| det(z)|−t+nvol(zOn
p ∩On

p )
tdχ(z) =

= vol(K)

∫

G

vol(zOn
p )

−t+n vol(zOn
p ∩On

p )
t dχ(z).

The integrand is constant on each coset zK ⊂ G, by the invariance of Haar
measure, we have χ(zK) = 1. Therefore we come to a summation over G/K =
Lat(n):

vol(K)
∑

Q∈Lat(n)

vol(Q)−t+nvol(Q ∩On
p )

t.

This expression is a special case of the ’beta-function of Bruhat–Tits building’
evaluated in [9], Theorem 2.1. In notation of [9], we set

α1 = · · · = αn = t β1 = · · · = βn = −t+ n

and get

vol(K)

n∏

j=1

1− p−t+n−j

(1− p−t+n+j−1)(1− p−j)
=

n∏

j=1

1− p−t+n−j

(1− p−t+n+j−1)
.

3 Proofs. Transformation of measures

Here we prove Theorem 1.5.
3.1. Formula for Radon–Nikodym derivative. 1) Consider the sub-

group P ⊂ GL(2n,Op) consisting of matrices

(
a b
0 d

)
, it acts on Mat(n,Qp) by

the transformations

z 7→ a−1(b+ zd) = a−1b+ a−1zd.
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The measure dvol(z) is invariant with respect to such transformations. The
function γ(z)−s−2n also is invariant. Therefore the measure µn

s is P -invariant.

2) Consider the matrix

(
0 1
1 0

)
. The corresponding transformation is z 7→

z−1. We must show that

γ(z−1)−s−2ndvol(z−1) = | det(z)|sγ(z)−s−2ndvol(z). (3.1)

First
dvol(z−1) = | det(z)|−2ndvol(z),

this is equivalent to the formula (2.5) for the Haar measure. On the other hand,

γ(z−1)−s−2n = γ(z)−s−2n | det z|s+2n,

and we get (3.1).

3) It can be easily shown that GL(2n,Op) is generated by subgroup P and(
0 1
1 0

)
. Denote

z ∗ g := (a+ zc)−1(b+ zd). (3.2)

The Radon–Nikodym derivative

c(g, z) :=
dµn

s (z ∗ g)

dµn
s (z)

.

satisfies the chain rule

c(g1g2, z) = c(g1, z) c(g2, z ∗ g1). (3.3)

On the other hand, the expression

c̃(g, z) := | det(a+ zc)|s

also satisfies the chain rule. Since c(h, z) = c̃(h, z) for generators of G, they
coincide everywhere.

3.2. Uniqueness of the measure. Consider a measure ν satisfying equa-

tion (1.6). First, we consider matrices

(
1 b
0 1

)
and get that ν is invariant with

respect to translations

z 7→ z + b, b ∈ Mat(n,Op).

Therefore ν has the form

dν(z) = f(z) dµn
s (z),

where f(z) is a locally constant function. Evidently, f(z) is GL(2n,Op)-invariant.
Since the action of GL(2n,Op) on the Grassmannian is transitive, we get that
f(z) is constant.
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4 Proofs. Projective limits

4.1. Proof of Theorem 1.3. It is sufficient to show that the Π-pushforward
ν of µn+1

s satisfies the quasiinvariance property (1.6). It is sufficient to verify
this property for generators of GL(2n,On

p ):

g1 =

(
a 0
0 d

)
, g2 =

(
1 b
0 1

)
, g3 =

(
0 1
1 0

)
.

We consider the corresponding elements of GL(2(n+ 1),Op):

g̃1 =




a 0 0 0
0 1 0 0
0 0 d 0
0 0 0 1


 , g̃2 =




1 0 b 0
0 1 0 0
0 0 1 0
0 0 0 1


 , g̃3 =




0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1




(sizes of the matrices are n+ 1 + n+ 1). We have

g̃1 :

(
z11 z12
z21 z22

)
7→

(
a 0
0 1

)−1 (
z11 z12
z21 z22

)(
d 0
0 1

)
=

(
a−1z11d ∗
∗ ∗

)
; (4.1)

g̃2 :

(
z11 z12
z21 z22

)
7→

(
b 0
0 1

)
+

(
z11 z12
z21 z22

)
=

(
b+ z11 ∗
∗ ∗

)
; (4.2)

g̃3 :

(
z11 z12
z21 z22

)
7→

7→

[(
0 0
0 1

)
+

(
1 0
0 0

)(
z11 z12
z21 z22

)]−1 [(
1 0
0 0

)
+

(
0 0
0 1

)(
z11 z12
z21 z22

)]
=

=

(
z11 0
z21 1

)−1 (
1 0
z21 z22

)
=

(
z−1
11 ∗
∗ ∗

)
.

Thus we get
Π(z ∗ g̃j) = (Πz) ∗ gj .

In the first two cases the Radon–Nikodym derivative is 1, in the last case
| det z11|

s. Thus,
dµn+1

s (z ∗ g̃j)

dµn+1
s (z)

=
dµn

s ((Πz) ∗ gj)

dµn
s (Πz)

.

This implies desired property of the Π-pushforward of µn+1
s .

4.2. An abstract lemma. Let (Ωj , µj) be a sequence of Lebesgue measure

spaces with probability measures. Let Πj
k : Ωj → Ωk, where k < j, be maps

such that Πk
l Π

j
k = Πj

l and the Πj
k-pushforward of µj is µk. Denote by (Ω∞, µ∞)

the projective limit of the chain

. . .←− Ωk ←− Ωk+1 ←− . . .

11



Let G be a group. Let for any g ∈ G there exists j such that for all k > j
there is a transformation g[k] : Ωk → Ωk leaving the measure µj quasiinvariant
and for l > k > j we have (a.s.)

Πl
k

(
g[l](ω)

)
= g[k]

(
Πl

k(ω)
)
, ω ∈ Ωl, (4.3)

and (a.s.)
(g[k])

′(Πl
[k]ω) = (g[l])

′(ω), ω ∈ Ωl. (4.4)

Let also for any g, h ∈ G for sufficiently large m

(gh)[m] = g[m]h[m].

Lemma 4.1 Under these conditions there is action of G on Ω∞ by transfor-

mations g[∞] leaving the measure µ∞ quasiinvariant, they are determined by

Π∞

k

(
g[∞](ω)

)
= g[k]

(
Π∞

k (ω
)
, ω ∈ Ω∞,

and

(g[k])
′(Π∞

[k]ω) = (g[∞])
′(ω), ω ∈ Ω∞.

This is straightforward.
Proposition 1.4 is an immediate corollary of the lemma.

4.3. Action of GL(2∞,Op). We wish to reduce Theorem 1.5 to Lemma
4.1. Now Ωk := Mat(k,Qp), projections Ωl → Ωk are cutting of left upper k×k
corner. We must construct transformations g[k] : Mat(k,Qp)→ Mat(k,Qp).

Fix g ∈ GL(2∞,Op). Choose a sufficiently large k and represent g =

(
a b
c d

)

in the form

g =




a11 0 b11 b12
a21 a22 b21 b22
c11 0 d11 d12
0 0 0 d22


 =




a
(k)
11 0 b

(k)
11 b

(k)
12

a
(k)
21 a

(k)
22 b

(k)
21 b

(k)
22

c
(k)
11 0 d

(k)
11 d

(k)
12

0 0 0 d
(k)
22




(below we sometimes omit upper index (k)). We formally calculate

(a+ zc)−1(b+ zd) =
[(

a11 0
a21 a22

)
+

(
z11 z12
z21 z22

)(
c11 0
0 0

)]−1 [(
b11 b12
b21 b22

)
+

(
z11 z12
z21 z22

)(
d11 d12
0 d22

)]

=

(
(a11 + z11c11)

−1 0
∗ ∗

)(
b11 + z11d11 ∗

∗ ∗

)
=

=

(
(a

(k)
11 + z

(k)
11 c

(k)
11 )−1(b

(k)
11 + z

(k)
11 d

(k)
11 ) ∗

∗ ∗

)
.

12



We observe that for sufficiently large k the k × k left upper corner of (a +

zc)−1(b+ zd) depends only on the z
(k)
11 . Now we assign the transformation

g[k] : u 7→ (a
(k)
11 + uc

(k)
11 )−1(b

(k)
11 + ud

(k)
11 )

of Mat(k,Qp). The same calculation shows the compatibility (4.3).
Next, let us write formally the Radon–Nikodym derivative of our transfor-

mation is
∣∣∣∣det

(
a11 + z11c11 0
a21 + z21c11 a22

)∣∣∣∣
s

= | det(a11 + z11c11)|
s| det a22|

s. (4.5)

But a22 is lower triangular and we can set | det a22| = 1.
Note that the expression(4.5) coincides with the Radon–Nikodym deriva-

tive of g[k] and does not change under a pass k → k + 1. Therefore we have
compatibility (4.3).

4.4. Proof of Proposition 1.6. For fixed g =

(
a b
c d

)
∈ GL(2n,Qp), The

following expression

f(z) = det

(
a11 + z11c11 0
a21 + z21c11 a22

)
:= det(a11 + z11c11)

is a well-defined function on Mat(∞,Qp).
Also note that this function satisfies the chain rule (3.3). Therefore formula

(1.12) determines a representation of the group GL(2∞,O).
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Acad. Sci. Paris Sèr. I Math. 309 (1989), no. 7, 443–446.

[7] Neretin, Yu. A. Categories of symmetries and infinite-dimensional groups.

Oxford University Press, New York, 1996.

[8] Neretin, Yu. A. Hua-type integrals over unitary groups and over projective

limits of unitary groups. Duke Math. J. 114 (2002), no. 2, 239–266.

[9] Neretin, Yu. A. The beta function of the Bruhat-Tits building and the de-

formation of the space l2 on the set of p-adic lattices. Sb. Math. 194 (2003),
no. 11-12, 1775–1805

[10] Neretin, Yu. A. Lectures on Gaussian integral operators and classical

groups. European Mathematical Society (EMS), Zürich, 2011
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