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ASYMPTOTIC BEHAVIOR OF EIGENVALUES OF

SCHRÖDINGER TYPE OPERATORS WITH DEGENERATE

KINETIC ENERGY

CHRISTIAN HAINZL AND ROBERT SEIRINGER

Abstract. We study the eigenvalues of Schrödinger type operators T + λV

and their asymptotic behavior in the small coupling limit λ → 0, in the case

where the symbol of the kinetic energy, T (p), strongly degenerates on a non-
trivial manifold of codimension one.

1. Introduction

In several recent papers attention has been drawn to Schrödinger type operators
on L2(Rn) of the form

Hλ = T (i∇) + λV (x) , (1.1)

where the non-negative symbol T (p) degenerates on a manifold S of codimension
one, V (x) is a real-valued potential, and λ > 0 denoting the coupling parameter.
The degeneracy of T causes a high instability of the lower edge of the spectrum
of Hλ and gives rise to spectral properties which are comparable to the case of
Schrödinger operators in one dimension. Operators of the type (1.1) have appeared
in the study of the roton spectrum of liquid helium II [13], matrix Hamiltonians in
spintronics [4, 5, 6], as well in the elasticity theory [7, 8].

Typically, we think of T (p) as originating from a smooth symbol, P (p), which
vanishes on S and has no critical points in the neighborhood of S, with

T (p) = |P (p)|r (1.2)

for some parameter 1 ≤ r < ∞. As pointed out by Laptev, Safronov and Weidl in
[15], due to the singularity of the resolvent of T on S the spectrum of T + λV is
mainly determined by the behavior of the potential V close to S. More precisely, an
important role is played by an operator acting on functions on S, i.e., VS : L2(S) →
L2(S), given by

(VSu)(p) =
1

√

|∇P (p)|(2π)n/2

∫

S

V̂ (p− q)
u(q)

√

|∇P (q)|
dq , (1.3)

with dq being the Lebesgue measure on S and V̂ (p) = (2π)−n/2
∫

Rn e
−ix·pV (x)dx

denoting the Fourier transform of V (x). In particular, it was shown in [15] that
T + λV has infinitely many negative eigenvalues if V is negative.

Operators of the type (1.3) appeared already earlier in [3] in the study of scat-
tering phases. They play a crucial role in the study of the non-linear Bardeen-
Cooper-Schrieffer (BCS) gap equation of superfluidity [2, 16]. In fact, it was shown
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in [9, 11, 12] that the lowest eigenvalue of VS is related to the critical temperature
for the existence of solutions of the BCS gap equation. In this case, T (p) is roughly
of the form |p2 − µ| for µ > 0, p ∈ R

3, and hence S is the two dimensional sphere
of radius

√
µ.

The goal of the present paper is to generalize the results and techniques of
[9, 11] to a large class of manifolds S and kinetic symbols T (p). We shall show that
corresponding to any negative eigenvalue, ai

S , of the compact operator VS there
exists a negative eigenvalue, −ei(λ), of T + λV . Moreover, in Theorem 1 we study
the asymptotic behavior of ei(λ) as λ→ 0 and show that

lim
λ→0

λf(ei(λ)) = −1/ai
S , (1.4)

where the function f depends on the value of r in (1.2) as

f(e) =







2π

r sin(π/r)

1

e(r−1)/r
if r > 1

2 ln[1 + 1/e] if r = 1.
(1.5)

We shall also relate the eigenvector ψi
λ ofHλ corresponding to the eigenvalue −ei(λ)

to the eigenvector ui of VS with eigenvalue ai
S . We shall find that after appropriate

normalization ψi
λ converges to

∫

S

eix·p ui(p)
√

(2π)n|∇P (p)|
dp (1.6)

in the limit λ→ 0 in a suitable sense.
If 1 ≤ r < 2 our methods enable us to find the next to leading order term of

λf(ei(λ)) as λ→ 0. This is the content of Theorem 2.

2. Main results

We consider operators on L2(Rn), n ≥ 2, of the form

Hλ = T (i∇) + λV (x) . (2.1)

The symbol of the kinetic operator, T (p), attains its minimum on a manifold of
codimension one. For convenience let us assume that the minimum value is zero,
and let

S = {p ∈ R
n |T (p) = 0} . (2.2)

It is not being assumed that S is connected, but it should consist of only finitely
many connected components. We shall further assume that there exists a σ > 0
and a compact neighborhood Ω ⊂ R

n of S containing S, with the property that
the distance of any point in S to the complement of Ω is at least σ. Moreover, we
assume that

(i) T (p) = |P (p)|r for some locally bounded, measurable function P , with
1 ≤ r <∞, and P ∈ C2(Ω),

(ii) |∇P | does not vanish in Ω,
(iii) for some constants C1 > 0, C2 > 0 and s > 0, T ≥ C1|p|s + C2 for p 6∈ Ω.

These assumptions appear naturally in all recent applications mentioned in the
introduction. They could be relaxed in various ways, but we shall not try to do so
in order to avoid unilluminating complications in the proofs.

Since S in (2.2) is the zero set of the function P ∈ C2(Ω), and ∇P 6= 0 in Ω
by assumption, we conclude that S is a nice submanifold of codimension one. In
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particular, if V ∈ L1(Rn) then V̂ (p) is a bounded, continuous function and hence
(1.3) defines a compact (in fact, trace-class) operator VS on L2(S).

In the following, it will be useful to introduce the operator FS : L1(Rn) → L2(S),
which is obtained by restricting the Fourier transform to S and multiplying by
|∇P |−1/2, i.e.,

(FSϕ) (p) =
1

√

(2π)n
√

|∇P (p)|

∫

Rn

e−ix·pϕ(x)dx
∣

∣

∣

p∈S
. (2.3)

Its adjoint, F ∗
S : L2(S) → L∞(Rn), is given by

(F ∗
Su) (x) =

1
√

(2π)n

∫

S

eix·p

√

|∇P (p)|
u(p)dp . (2.4)

Then VS is (1.3) equals FSV F
∗
S . Note that V 1/2F ∗

S is a bounded operator if V ∈
L1(Rn).

For i = 1, 2, . . . , let ai
S < 0 be the negative eigenvalues, counting multiplicity, of

VS , and let ui be its eigenvectors, i.e.,

VSui = ai
Sui , ui ∈ L2(S) . (2.5)

The following theorem shows that it is possible to associate to any such ai
S a negative

eigenvalue −ei(λ) for Hλ. Moreover, we will recover the asymptotic behavior of
ei(λ) in the limit λ→ 0. A similar statement can be made about the corresponding
eigenvectors. The theorem is a generalization of [9, Theorem 1].

Theorem 1. Let T (p) satisfy the assumptions above, and let V ∈ L1(Rn) ∩
Ln/s(Rn) if n > s, V ∈ L1(Rn)∩L1+ε(Rn) for some ε > 0 if n = s, and V ∈ L1(Rn)
if n < s. Additionally we assume that

∫∫

|V (x)||x−y|κ|V (y)|dxdy <∞, with κ = 2
if T is not a radial function, and κ = 1 if T is radial and n = 2. Then

(i) for every negative eigenvalue ai
S < 0 of VS, counting multiplicity, and every

λ > 0, there is a negative eigenvalue −ei(λ) < 0 of Hλ = T +λV such that

lim
λ→0

λf(ei(λ)) = −1/ai
S . (2.6)

The function f is defined in (1.5).
(ii) for every eigenvector ψi

λ ∈ L2(Rn) of Hλ, corresponding to the eigenvalue
−ei(λ), there is an eigenvector ui ∈ L2(S) of VS corresponding to ai

S such
that after appropriate normalization

V 1/2ψi
λ → V 1/2F ∗

Sui as λ→ 0, strongly in L2(Rn) . (2.7)

(iii) if r < 2 all other possible eigenvalues −ej(λ) of Hλ satisfy f(ej(λ)) ≥ cλ−2

for some constant c > 0.
(iv) if r < 2 and VS ≥ 0, and there exists an δ such that also FS(V −δ|V |)F ∗

S ≥ 0
then Hλ ≥ 0 for λ small enough.

Equation (2.6) implies, in particular, that

ei(λ) =



















(

2π

r sin(π/r)
λ|ai

S |
)r/(r−1)

(1 + o(1)) if r > 1

exp

(

− 1

2λ|ai
S |

(1 + o(1))

)

if r = 1

(2.8)
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as λ → 0. On the other hand (iii) guarantees that all possible eigenvalues of Hλ

not corresponding to a negative eigenvalue of VS satisfy

ej(λ) ≤
{

constλ2r/(r−1) if 1 < r < 2

exp
(

− constλ−2
)

if r = 1 .
(2.9)

The following immediate corollary of Theorem 1 generalizes results in [15, 18].

Corollary 1. Let the assumptions be as in Theorem 1.

(i) Then, for all λ > 0, the operator Hλ has at least as many negative eigen-
values as VS does.

(ii) If V (x) ≤ 0 and does not vanish a.e., then VS (and consequently Hλ) has
infinitely many negative eigenvalues.

Proof. The negative eigenvalues, −ei(λ)/λ, of the operator Hλ/λ = T/λ + V are
monotonically decreasing in λ since T ≥ 0. Consequently if −ei(λ̄) < 0 then −ei(λ)
is necessarily negative for all λ ≥ λ̄. Thus (i) follows immediately from Theorem 1
(i).

If V ≤ 0, then VS ≤ 0 and all eigenvalues of VS are necessarily non-positive. We
shall argue that 0 cannot be an eigenvalue of VS since for any non-zero function
ϕ ∈ L2(S), F ∗

Sϕ can vanish at most on a subset of R
n of codimension one. This

follows from the fact that (F ∗
Sϕ)(x1, . . . , xn) is analytic in each component xi, and

therefore can only have isolated zeros in each component. Consequently (ϕ,VSϕ) =
∫

Rn |(F ∗
Su)(x)|2V (x)dx < 0 for any u. This implies (ii). �

Remark 1. In the BCS gap equation of superfluidity at zero temperature [10, 9,
11, 12] the kinetic energy operator T (p) = |p2 − µ| appears, with µ > 0 being the
chemical potential. In this case r = 1 and hence f(e) = 2 ln(1/e). Therefore, the

eigenvalues of T + λV are exponentially small and satisfy ei(λ) ∼ e
− 1

2λ|ai
S

| .

Remark 2. In the study of the roton spectrum in liquid helium [14] a kinetic

energy of the type T (p) = (|p|−p0)
2

2µ + ∆ arises, with p0, µ,∆ > 0. In this case

Theorem 1 implies that the eigenvalues depend quadratically on λ for small λ, i.e.,
ei(λ)−∆ ∼ (λ|ai

S |)2, similar to the case of Schrödinger operators in one dimension
[19].

Remark 3. The convergence property (2.7) can be particularly useful in the case
where the manifold S is a sphere and the potential V is radial, since the eigen-
functions of VS are known explicitly. In the case n = 3, for instance, they are the
spherical harmonics. If additionally V̂ ≤ 0 then the constant function on S is the
ground state of VS . This property was important in [11] where a precise charac-
terization of the asymptotic behavior of the solution of the BCS gap equation of
superfluidity was given.

Remark 4. In the case of trapped modes for an elastic plate in [7] a small coupling
asymptotics was derived in the case where S is a circle in R

2.

In the following let r < 2. In this case, we shall now state a more precise
characterization of the asymptotic behavior of the eigenvalues of Hλ as λ → 0.
More precisely, we will recover the next order in λ.

It will be shown in Lemma 2 that the quadratic form

(u,WSu) = lim
e→0

(

u, FSV

(

1

T + e
− f(e)F ∗

SFS

)

V F ∗
Su

)

(2.10)
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defines a bounded operator on L2(S). For λ > 0 let further

BS = VS − λWS (2.11)

and let biS(λ) < 0 denote the negative eigenvalues of BS . The following theorem is
a generalization of [11, Theorem 1].

Theorem 2. Let T and V be as in Theorem 1 and assume that r < 2. Then

(i) If limλ→0 b
i
S(λ) < 0 then Hλ = T + λV has, for small λ, a corresponding

negative eigenvalue −ei(λ) < 0, with

lim
λ→0

[

f(ei(λ)) +
1

λbiS(λ)

]

= 0. (2.12)

(ii) If the kernel of VS is not empty then there exists at least one corresponding
negative eigenvalue of Hλ.

Remark 5. If ai
S < 0 is a non-degenerate eigenvalue of VS and ui is the correspond-

ing eigenvector, then first order perturbation theory implies that the corresponding
eigenvalue of BS satisfies

biS(λ) = ai
S − λ(ui,WSui) + o(λ) . (2.13)

Hence (2.12) can be rewritten in the form

lim
λ→0

[

f(ei(λ)) +
1

λai
S

+
(ui,WSui)

(ai
S)2

]

= 0.

A similar expression holds in case ai < 0 is k-fold degenerate, with (ui,WSui)

replaced by the eigenvalues of the k × k matrix (u
(j)
i ,WSu

(l)
i ), where u

(j)
i denotes

the eigenvectors of VS corresponding to the eigenvalue ai
S .

3. Proofs

According to the Birman-Schwinger principle, the operator Hλ has a negative
eigenvalue −e < 0 if and only if the compact operator

λV 1/2 1

T + e
|V |1/2 (3.1)

has an eigenvalue −1. Here, we use the usual convention V 1/2 = sgn(V )|V |1/2.
Note that V 1/2(T + e)−1|V |1/2 is actually a Hilbert-Schmidt operator for e > 0.
This follows from the Hardy-Littlewood-Sobolev inequality [17, Theorem 4.3] and
our assumptions on T and V .

More precisely, if

Hλψλ = −eψλ (3.2)

for ψλ ∈ L2(Rn) and e > 0, then

λV 1/2 1

T + e
|V |1/2φλ = −φλ , (3.3)

where φλ = V 1/2ψλ. It is, in fact, not difficult to see φλ ∈ L2, since |V | is
infinitesimally form-bounded with respect to T under our assumptions on T and
V . On the other hand (3.3) implies (3.2) by choosing

ψλ =
1

T + e
|V |1/2φλ (3.4)
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which is in L2(R3) since T ≥ 0, e > 0 and the operator |V |1/2(T + e)−1|V |1/2 is
bounded.

Our results will rely on the fact that the singular part of the (3.1) as e → 0 is
governed by the operator V 1/2F ∗

SFS |V |1/2, which is isospectral to VS = FSV F
∗
S .

In the following, let Me denote the bounded operator

Me = V 1/2

(

1

T + e
− f(e)F ∗

SFS

)

|V |1/2 . (3.5)

Proposition 1. Assume that 1 + λMe is invertible. Then Hλ has an eigenvalue
−e < 0 if and only if the selfadjoint operator

FS |V |1/2 λf(e)

1 + λMe
V 1/2F ∗

S : L2(S) → L2(S) (3.6)

has an eigenvalue −1. Furthermore, if u ∈ L2(S) is an eigenvector of (3.6) with
eigenvalue −1, then

ψλ =
1

T + e
|V |1/2 1

1 + λMe
V 1/2F ∗

Su (3.7)

is an eigenvector of Hλ in L2(Rn) with eigenvalue −e < 0.

Proof. According to the Birman-Schwinger principle discussed above, Hλ having
an eigenvalue −e < 0 is equivalent to the fact that λV 1/2 1

T+e |V |1/2 + 1 has a zero

eigenvalue. Using the definition of Me in (3.5) this implies that

λV 1/2 1

T + e
|V |1/2 + 1 = λf(e)V 1/2F ∗

SFS |V |1/2 + λMe + 1

= (1 + λMe)

(

λf(e)

1 + λMe
V 1/2F ∗

SFS |V |1/2 + 1

)

(3.8)

has an eigenvalue 0. Under the assumption that 1 + λMe is invertible we conclude
that

λf(e)

1 + λMe
V 1/2F ∗

SFS |V |1/2 (3.9)

must have −1 as an eigenvalue. The fact that (3.9) is isospectral to (3.6), together
with the observation that all the arguments work in either direction, implies the
first part of the theorem. The second part of the theorem is an easy consequence
of (3.4). �

In order to apply Proposition 1 we need a bound on the operator Me in (3.5).
The bound we derive will be expressed in terms of the function

g(e) =











1 if 1 ≤ r < 2

1 + ln[1 + 1/e] if r = 2

1 + e2−r if r > 2 .

(3.10)

The following lemma is the basis for our analysis.

Lemma 1. Let

A(V ) =











‖V ‖n/s if n > s

‖V ‖1+ε if n = s

‖V ‖1 if n < s .

(3.11)
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Then

‖Me‖ ≤ const

(

g(e)

[

‖V ‖1 +

(
∫∫

dxdy|V (x)||x− y|κ|V (y)|
)1/2

]

+ A(V )

)

(3.12)
with κ = 2. If T (p) is radial, then (3.12) holds with κ = 0 for n ≥ 3 and κ = 1 for
n = 2.

Let us postpone the proof of this lemma until the end of the section. The
lemma says, in particular, that when r < 2 the family of operators Me is uniformly
bounded. The limit of Me as e → 0 actually exist in the operator norm topology.
This is the content of the next lemma, whose proof will also be given at the end
this section.

Lemma 2. Assume that r < 2. Then the limit

M0 = lim
e→0

Me (3.13)

exists in the operator norm topology.

An explicit expression of M0 will be given in the proof of Lemma 2. We note
that the operator WS in (2.10) equals WS = FS |V |1/2M0V

1/2F ∗
S .

We have now all tools in hand to prove our main theorems.

Proof of Theorem 1. By assumption, the operator VS has negative eigenvalues ai
S

with corresponding eigenfunctions ui ∈ L2(S). We shall show that for every ai
S < 0

and λ small enough there exists a function ei(λ) > 0, with limλ→0 λf(ei(λ)) =
−1/ai

S , such that the selfadjoint operator (3.6) has an eigenvalue −1 for e = ei(λ).
Because of Proposition 1 this implies (i).

For this purpose consider the selfadjoint operator

G(λ, e) = |V |1/2

(

1

1 + λMe
− 1

)

V 1/2 . (3.14)

In terms of G(λ, e), the operator (3.6) can be expressed as

λf(e)(VS + FSG(λ, e)F ∗
S) . (3.15)

Let us first consider first the case r < 2, where g(e) = 1. According to Lemma 1,
Me is uniformly bounded and hence 1 + λMe is invertible for small λ. Therefore,

‖FSG(λ, e)F ∗
S‖ ≤ const ‖V ‖1

λ‖Me‖
1 − λ‖Me‖

, (3.16)

where we used that ‖FS |V |F ∗
S‖ ≤ const ‖V ‖1.

Simple first order perturbation theory implies that for small λ, the operator
(3.15) has negative eigenvalues λf(e)(ai

S +O(λ)). Moreover, the O(λ) term depends
continuously on e. Thus, for every ai

S < 0 and λ > 0 small enough, there exists an
ei(λ) such that λf(ei(λ))(ai

S +O(λ)) = −1. This implies the statement.
A similar argument can be applied in the case r ≥ 2. Although Me is not

uniformly bounded in this case, we see that for values of λ and e such that λf(e)
is bounded, λg(e) goes to zero as λ and e go to zero. Because of Lemma 1 this
implies that λ‖Me‖ → 0 as λ → 0 for such e. Hence we can again find a function
ei(λ), with limλ→0 λf(ei(λ)) = −1/ai

S , such that (3.15) has an eigenvalue −1 and
for e = ei(λ). This concludes the proof of (i) in the general case.
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In order to prove (ii) we shall again apply simple perturbation theory, which
implies that for e = ei(λ) the eigenvector ui

λ ∈ L2(S) of (3.15) corresponding to
the eigenvalue −1 satisfies

ui
λ = ui + ηλ, lim

λ→0
‖ηλ‖2 = 0 , (3.17)

with ui in the eigenspace of VS corresponding to the eigenvalue ai
S . Applying the

second part of Proposition 1, the eigenvector of Hλ corresponding to the eigenvalue
−ei(λ) equals

ψi
λ =

1

T + ei(λ)
|V |1/2 1

1 + λMei(λ)
V 1/2F ∗

S (ui + ηλ) . (3.18)

Using the eigenvalue equation for ψλ, (T+ei(λ))ψi
λ = −λV ψi

λ, this can be rewritten
as

−λV 1/2ψi
λ =

1

1 + λMei(λ)
V 1/2F ∗

S (ui + ηλ) . (3.19)

Now λ‖Mei(λ)‖ → 0 as λ→ 0, and FS |V |F ∗
S is bounded. After appropriate normal-

ization, V 1/2ψi
λ therefore converges to V 1/2F ∗

Sui strongly in L2(Rn), as claimed.
A simple perturbation argument leads to (iii). In fact, any negative eigenvalue

of (3.15) which does not correspond to a negative eigenvalue of VS for λ = 0 can be
at most as negative as −λf(e)‖FSG(λ, e)F ∗

S‖ ≥ − constλ2f(e) for some constant
depending only on V . This can be easily seen using (3.16) and Lemma 1. Hence
λ2f(e) ≥ const for such eigenvalues.

To see (iv) we use the operator inequality G(λ, e) ≥ − constλ|V | for small λ,
which follows easily from (3.14) and Lemma 1. The operator in (3.15) is therefore
bounded from below by

λf(e) (VS − constλFS |V |F ∗
S) = λf(e)FS (V − constλ|V |)F ∗

S , (3.20)

which is non-negative for λ small enough according to our assumption. �

Proof of Theorem 2. Since r < 2 by assumption, Lemma 2 implies that Me con-
verges to M0 in operator norm. Since V 1/2F ∗

S is a bounded operator, we conclude

that also FS |V |1/2MeV
1/2F ∗

S converges in operator norm to FS |V |1/2M0V
1/2F ∗

S ,
which we shall denote by WS as in (2.10).

With BS = VS − λWS as in (2.11), the operator (3.6) can thus be rewritten as

λf(e)(BS + λFS |V |1/2W (λ, e)V 1/2F ∗
S) , (3.21)

where

W (λ, e) =
λM2

e

1 + λMe
−Me +M0 (3.22)

has the property that ‖W (λ, e)‖ → 0 as λ → 0 and e → 0. If biS(λ) is a negative
eigenvalue of BS , with limλ→0 b

i
S(λ) < 0, then a similar perturbation argument as

in the proof of Theorem 1 implies that BS + λFSW (λ, e)F ∗
S has an eigenvalue with

the asymptotic behavior biS(λ)+ o(λ)+λo(1), the last term going to zero as e→ 0.
Given such a biS(λ), we can thus find an ei(λ), going to zero as λ → 0, such that
(3.21) has an eigenvalue 1 for e = ei(λ). In the limit λ→ 0, we conclude that

λf(ei(λ)) = −1/(biS(λ) + o(λ)) . (3.23)

Using again Proposition 1 we obtain (i).
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If VS has 0 as an eigenvalue, with corresponding eigenvector u0, then by the
definition (2.11) of BS and the fact that VSu0 = FSV F

∗
Su0 = 0 we obtain that

(u0,BSu0) = −λ(u0,WSu0) = −λ lim
e→0

(u0, FSV
1

T + e
V F ∗

Su0) . (3.24)

The latter quantity is strictly negative, as can be seen by an analyticity argument
similar to the proof of Corollary 1. In particular, if the kernel of VS is not empty
then there is at least one corresponding negative eigenvalue of BS for small enough
λ and e. Together with Proposition 1 this implies the existence of a corresponding
negative eigenvalue of Hλ. �

We are left with proving Lemmas 1 and 2.

Proof of Lemma 1. We note that M̃e = sgn(V )Me is selfadjoint, and ‖Me‖ =

‖M̃e‖. For ψ ∈ L2(Rn), let ϕ = |V |1/2ψ. By the definition of Me in (3.5), we
have

(ψ, M̃eψ) =

∫

Rn

|ϕ̂(p)|2
T (p) + e

dp− f(e)

∫

S

|ϕ̂(p)|2
|∇P (p)|dp . (3.25)

By our assumptions on T , there exists a τ > 0 such that

Ωτ = {p ∈ R
3 | |P (p)| < τ} (3.26)

is a subset of Ω. Recall that P is assumed to be twice differentiable on Ω, and
hence also on Ωτ . If S is not connected, we choose τ small enough such that Ωτ has
the same number of connected components as S. On Ωτ , we will use the co-area
formula to split the volume integral in the first term on the right side of (3.25) into
integrals over the level sets

St = {p ∈ Ωτ | |P (p)| = T 1/r(p) = t} (3.27)

for 0 ≤ t ≤ τ . Note that S0 = S. In fact, using the co-area formula we have

∫

Ωτ

|ϕ̂(p)|2
T (p) + e

dp =

∫ τ

0

dt
1

tr + e

∫

St

|ϕ̂(p)|2
|∇P (p)|dp , (3.28)

where dp in the latter integral denotes the Lebesgue measure on St.
Recall that T (p) = |P (p)|r = 0 on S, and |∇P | 6= 0 on Ωτ . Hence every

connected component of St consists of two disjoint surfaces, one lying outside S
and one lying inside S. In order to bound (3.28) we make use of the following
lemma.

Lemma 3. Let h : Ωτ → R, with h ∈ C1(Ωτ ), and let 0 < t < τ . Then

∣

∣

∣

∣

∫

St

h(p)dp− 2

∫

S

h(p)dp

∣

∣

∣

∣

≤
∫ t

0

dσ

∫

Sσ

1

|∇P (p)|

∣

∣

∣

∣

∇ ·
(

h(p)
∇P (p)

|∇P (p)|

)
∣

∣

∣

∣

dp . (3.29)

Proof. Without loss of generality we can assume that S is connected. We shall
write St = So

t ∪ Si
t , with Si,o

t lying inside and outside S, respectively. Let Ωo,i
t =

⋃

0≤σ≤t S
o,i
t denote the union of the sets So,i

σ for 0 ≤ σ ≤ t. By definition ∇P
|∇P | is

a unit vector field which is orthogonal to the hypersurfaces So
t and Si

t and points
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either inward or outward, depending on P . Depending on the direction, we have
∫

So
t

h(p)dp−
∫

S

h(p)dp = ±
∫

∂Ωo
t

h(p)
∇P (p)

|∇P (p)| · dS (3.30)

∫

Si
t

h(p)dp−
∫

S

h(p)dp = ∓
∫

∂Ωi
t

h(p)
∇P (p)

|∇P (p)| · dS . (3.31)

Using Gauss’ theorem we infer, for q = o, i,
∫

∂Ωq
t

h(p)
∇P (p)

|∇P (p)| · dS = ±
∫

Ωq
t

∇ ·
(

h(p)
∇P (p)

|∇P (p)|

)

dp

= ±
∫ t

0

dτ

∫

Sq
τ

1

|∇P (p)|∇ ·
(

h(p)
∇P (p)

|∇P (p)|

)

dp , (3.32)

where the last equation follows again from the co-area formula. The rest is obvious.
�

We shall now apply Lemma 3 to the function h(p) = |ϕ̂(p)|2|∇P (p)|−1. Note
that

|ϕ̂(p)|2 = (2π)−n

∫∫

|V (x)|1/2|V (y)|1/2ψ(x)∗ψ(y)eip·(x−y)dxdy

≤ (2π)−n‖V ‖1‖ψ‖2
2 (3.33)

uniformly in p by Schwarz’s inequality. Similarly

∣

∣∇|ϕ̂(p)|2
∣

∣ ≤ (2π)−n‖ψ‖2
2

(
∫∫

|V (x)||V (y)||x− y|2dxdy
)1/2

. (3.34)

By assumption, there are constants c, C > 0 such that |∇P | ≥ c and |∂i∂jP | ≤ C
for 1 ≤ i, j ≤ n on Ωτ . Moreover, the measure of the sets St is uniformly bounded
for 0 ≤ t ≤ τ . We conclude that
∣

∣

∣

∣

∫

St

|ϕ̂(p)|2
|∇P (p)|dp− 2

∫

S

|ϕ̂(p)|2
|∇P (p)|dp

∣

∣

∣

∣

≤ const t‖ψ‖2
2

[

‖V ‖1 +

(
∫∫

|V (x)||V (y)||x− y|2dxdy
)1/2

]

. (3.35)

By combining (3.35) with (3.28) and (3.25), we obtain the bound

∣

∣

∣
(ψ, M̃eψ)

∣

∣

∣
≤ const

∫ τ

0

t dt

tr + e
‖ψ‖2

2

[

‖V ‖1 +

(
∫∫

|V (x)||V (y)||x− y|2dxdy
)1/2

]

+

∣

∣

∣

∣

∫ τ

0

2 dt

tr + e
− f(e)

∣

∣

∣

∣

∫

S

|ϕ̂(p)|2
|∇P (p)|dp+

∫

Ωc
τ

|ϕ̂(p)|2
T (p) + e

dp . (3.36)

It is easy to see that
∫ τ

0
t(t2 + e)−1dt ≤ const g(e) for any fixed τ . Similarly,

|f(e) − 2
∫ τ

0
(tr + e)−1dt| ≤ const g(e). The integral in the second term in (3.36) is

bounded by ‖ψ‖2
2‖V ‖1 using (3.33). Moreover, since T (p) ≥ const(1 + |p|s) on Ωc

τ ,
the last term in (3.36) can bounded with the aid of the Hardy-Littlewood-Sobolev
inequality [17, Theorem. 4.3] and Hölder’s inequality as

∫

Ωc
τ

|ϕ̂(p)|2
T (p) + e

dp ≤ const ‖ψ‖2
2A(V ) (3.37)
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with A(V ) defined in (3.11). This proves (3.12) with κ = 2.
In the case when T is radial, the surfaces St are n − 1 dimensional spheres. In

this case, we can obtain a better bound on ‖Me‖ in the following way. It is not
necessary to obtain a pointwise bound on ∇|ϕ̂(p)|2 but only on its spherical average.
Using the fact that for n ≥ 2

1

|Sn−1|

∫

Sn−1

eik·ωdω =
|Sn−2|
|Sn−1|

∫ π

0

ei|k| cos θ(sin θ)n−2dθ

= π
Γ((n− 1)/2)2

Γ(n/2)

(

2

|k|

)(n−2)/2

J(n−2)/2(|k|) , (3.38)

where J(n−2)/2 is a Bessel function, as well as the bounds J(n−2)/2(|k|) ≤ 1,

J(n−2)/2(|k|) ≤ (|k|/2)(n−2)/2Γ((n − 1)/2) and the asymptotics J(n−2)/2(|k|) ∼
|k|−1/2 for |k| → ∞ [1], it is easy to see that
∣

∣

∣

∣

∫

Sn−1

∇|ϕ̂(|p|ω)|2dω
∣

∣

∣

∣

≤ const ‖ψ‖2
2

(
∫∫

|V (x)||V (y)||x− y|κdxdy
)1/2

(3.39)

with κ = 0 for n ≥ 3 and κ = 1 for n = 2. Using this bound instead of (3.34) and
proceeding as above, we arrive at (3.12) with κ as stated. �

Proof of Lemma 2. Let M̃0 be defined via the quadratic form

(ψ, M̃0ψ) =

∫ τ

0

1

tr

(
∫

St

|ϕ̂(p)|2
|∇P (p)|dp− 2

∫

S

|ϕ̂(p)|2
|∇P (p)|dp

)

+

∫

Ωc
τ

|ϕ̂(p)|2
T (p)

dp

+ Cτ

∫

S

|ϕ̂(p)|2
|∇P (p)|dp , (3.40)

where ϕ = |V |1/2ψ and

Cτ = lim
e→0

Cτ (e) , Cτ (e) =

∫ τ

0

2

tr + e
dt− f(e) , (3.41)

which is finite for 1 ≤ r < 2. The notation is the same as in the proof of Lemma 1.
With M̃e = sgn(V )Me as before, we have
(

ψ,
(

M̃e − M̃0

)

ψ
)

=

∫ τ

0

dt

(

1

tr + e
− 1

tr

)(
∫

St

|ϕ̂(p)|2
|∇P (p)|dp− 2

∫

S

|ϕ̂(p)|2
|∇P (p)|dp

)

+

∫

Ωc
τ

|ϕ̂(p)|2
(

1

T (p) + e
− 1

T (p)

)

dp

+ (Cτ (e) − Cτ )

∫

S

|ϕ̂(p)|2
|∇P (p)|dp . (3.42)

From this representation and the various bounds derived in the proof of Lemma 1,
it is easy to see that the right side goes to zero as e → 0, and the convergence is
uniform in ψ for fixed ‖ψ‖2. This implies that lime→0 ‖M̃e − M̃0‖ = 0, and hence

also lime→0 ‖Me −M0‖ = 0 with M0 = sgn(V )M̃0. �
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