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SPECIAL INVARIANT OPERATORS I.Jarolim Bure�sDecember 15, 1994Abstract. The aim of the �rst part of a series of papers is to give a descriptionof invariant di�erential operators on manifolds with an almost Hermitian symmetricstructure of the type G/B which are de�ned on bundles associated to the reduciblebut undecomposable representation of the parabolic subgroup B of the Lie group G.One example of an operator of this type is the Penrose's local twistor transport. Inthis part general theory is presented, and conformally invariant operators are studiedin more details. 1. Introduction.There is a series of papers by R.Baston, M.Eastwood, T.Bailey and others de-scribing invariant operators on manifolds with almost Hermitian symmetric struc-ture (AHS - structure) (see [Baston I,II,1991]) of the type G/B acting on bundlesassociated to a reducible, but indecomposable representation of B.The class of these operators include local twistor transport, Thomas operator andother interesting invariant operators. Let us call these operators special operators.The aim of the paper is to give more explicit, purely geometrical description ofthese special operators using the theory of G-structures of higher order, and toextend some of results presented there.I am grateful to Vladimir Sou�cek, Jan Slov�ak and Andreas �Cap for many usefulconversations.2. Definition and basic properties of AHS-structures.Let g be a simple (complex, real) k1k- graded Lie algebra with decompositiong = g�1 � g0 � g1:It means [gi; gj ] = gi+jwith g2 = g�2 = 0.It follows from the above properties that g0 is reductive and g�1; g1 are abelian.The complete classi�cation of complex, simple, k1k-graded Lie algebras is given in([Ba1]), to consider the real ones, the real forms of corresponding complex algebrasThe author was supported by the GAUK, grant Nr. 46, grant ES PECCO and E. Schr�odingerInstitute in Vienna Typeset by AMS-TEX1



2 JAROLIM BURE�Smust be considered. We shall restrict below to study of some real cases, the fulldiscussion of all possible cases will be published later.Suppose in the following, that not only Lie algebras but Lie groups are giveni.e let G be a (real or complex) Lie group with Lie algebra g; let B be a parabolicsubgroup of G with Lie algebra g0 � g1, and let B0 be a subgroup of B with Liealgebra g0. Then G=B is a Hermitian symmetric space. The group B can beconsidered in a natural way as a subgroup of the second jet group G2(n), withrespect to the action of B on To(G=B) � g�1.2.1 De�nition. An AHS-structure on a manifold M is a G-structure of the secondorder B0 which is a reduction of the �rst prolongation of a G-structureof the �rstorder B0 (reduction of the frame bundle) with the group B0 on M (see[Sternberg]).2.2 De�nition. An AHS-structure B0 on M is called 1-at if B0 admits a tor-sionless connection (it means that the �rst structure function of the G-structurevanishes).2.3 Remarks.A. All conformal and projective structures are 1-at. For other AHS-structuresthe condition of 1-atness is a restrictive condition on structure.B. If AHS-structure is 1-at, we can consider also an AHS-structure as a holo-nomic G-structure B of second order (reduction of frames of second order) with thestructural group B on M. The structure B of the second order de�nes G-structureof �rst order B0 with the structural group B0 and projection�0 : B �! B0:If AHS-structure is not 1-at, then also a principal �bre bundle B with the sameproperties as above can be constructed. The construction will be described in Sect.6.The de�nitions used in this text are generalization of the de�nition of Baston in([Baston]), where only complex holomorphic G-structures are considered.2.5 Remark. We shall also use some covering spaces of the coresponding framebundles ( frames of �rst and also second order). It will be done especially for spin-manifolds. It needs only simple modi�cation of the presented theory which is quitenatural. 3. Flat models.3.1. Any AHS-structure has a homogeneous model (called at) which is 1-at. Thehomogeneous model is given by � : G! G=B:Here G is a principal �bre bundle on M = G/B with structural group B and thebundle B0 is sitting inside it.Let us denote by ~G!M the principal �bre bundle with the structural group Gassociated to � : G!M by ~� : ~G = G �� G!M



SPECIAL INVARIANT OPERATORS I. 3where the action � of B on G is the left multiplication.Let ! : TG ! g be the Maurer-Cartan form on G, it is also (normal) Cartanconnection on � : G!M .Then there is a uniquely de�ned an (ordinary) connection ~! on the principalbundle ~� : ~G ! M constructed from !, we shall call it the AHS-connection (as ingeneral situation).The construction of ~! can be described in the following way.The principal �bre bundle G is embedded canonically into ~G by:i(g) = [(g; e)]:Let us identify G with its canonical image i(G) � ~G.For any g 2 G � ~G we have a decompositionTg( ~G) = Tg(G) � g�1with projection on the second factor given by��1 : Tg( ~G) �! g�1Let us de�ne ~! by ~! = ! + ��1on G and let us extend it equivariantely to ~G.3.2 Theorem. ~! is a connection on ~G called the AHS-connection .Proof. The fact that ~! is a connection follows from a simple direct computation.Let � : G! Aut(E) be an irreducible representation of the group G, let~E := ~G �� Ebe the corresponding associated bundle. Then the AHS-connection induces theassociated covariant derivative~r : �( ~E)! �( ~E 
 T �(M))on ~E.In the de�nition of the AHS-connection only the structure of at AHS-manifoldis used and it is (the simplest case of) canonical invariant connection on AHS-manifold.3.3 Lemma. Let ~E := ~G �� E and E := G ��0 E, then there is the canonicalisomorphism of the �bre bundles � : ~E ! E .Proof. The isomorphism � is de�ned by the correspondencev 2 E ! f((g; 1); v)g 2 ~E $ f(g; v)g 2 E



4 JAROLIM BURE�Swhich is B-equivariant (resp. B0- equivariant).The bundles E and ~E will be identi�ed by �, then on this bundle also the invariantcovariant di�erential ~r : �(E)! �(E 
 T �(M))can be de�ned in the standard way.Moreover in the at case also the following construction is available and will beused in some of the following papers.Let s 2 �(E) be a section of E, and let �(s) : ~G ! E be the correspondingequivariant function.For any X 2 g�1, let �X be the left invariant vector �eld on G induced by X. Itgives a uniquely de�ned horizontal vector �eld h(X) on ~G with respect to ~!. Onthe subbundle G � ~G, it has the formh(X) = �X �X�;where X� is the canonical vertical �eld on ~G given by X.Let �0 be the restriction of the representation � to B (resp. to B0) ( it is notirreducible in general).We have now simple and natural formula for ~r coming from the normal Cartanconnection ! on G.If the section s 2 �(E) is represented by an equivariant function �(s) : G! E,then �( ~r~��(h(X))s) = h(X)�(s) = �X�(s) � �0(X)(s); X 2 g�1:4. Classical AHS-structures.Let K be or R or C . Then we have the following examples of AHS-structurescoming from classical simple Lie algebras. The list is complete for complex case,but not all real cases are listed. The other real structures will be discussed in detailselsewhere. There are two cases for exceptional (nonclassical) simple algebras whichwill not be presented here.4.1 Conformal structures.Let g = so(m+ 2; C ), g0 = co(m; C ) and g1 = g�1 = Cm . A standard real formis g = so(m+ 1; 1); g0 = co(m;R) and g1 = g�1Rm .Then G = SO(m+2; C ) or Spin(m+2; C ) and the at model G/B is the quadric(complexi�ed,compacti�ed Minkowski space) in the complex case; G = SO(m+1,1)or Spin(m+1,1) and the at model is an m-dimensional conformal sphere in thereal case .4.2 Almost Grassmanian structures.Let g = sl(p+ q; C ), g0 = s(sl(p;K )� sl(q;K )), or unitary algebras . g1 = g�1 =Kpq . The at model is the complex resp. the real Grassmanian Grp(Kp+q ).There are two special cases:A. Projective structures.



SPECIAL INVARIANT OPERATORS I. 5For p = 1 (or q = 1) the at model is the projective space KP p .B. Almost quaternionic structures.For p = 2 (or q = 2) we have structures which (under additional conditions)include quaternionic, quaternionic Kaehler and Hyperkaehler structures .4.3 Almost Lagrangian structures.Let g = sp(n;K) or u(n), g0 = gl(n;K) and g�1 = g1 = KN with N = 12n(n+1).The at models are the Lagrangian Grassmanians LGr(K2n), resp. Sp(n;R)=U(n).4.4 Almost spinorial structures..Let g = so(2n;K) and g0 = gl(n;K), resp. u(n).The at models are the manifold of reduced pure spinors Sn = SO(2n; C )=Gl(n; C )resp. SO�(2n;R)=U(n). 5. Spencer cohomology.5.1. The Spencer cohomology is a cohomology theory of the Lie algebra g�1 withcoe�cients in a graded g-module F. Denote by � the action of g on F. So we haveF = �iFi ; gi � Fj � Fi+j :The bigraded chain complex Cp;q(F) is de�ned byCp;q(F) = Fq 
 �pg��1with the di�erential @ : Cp;q(F) �! Cp+1;q�1(F)given by (@c)(X0; :::;Xq) = qX0 Xi � c(X0; :::X̂i; :::Xq):The cohomology of the complex (Cp;q(F); @) will be denoted by Hp;q(F) and thedirect sum Hp(g�1;F) = �qHp;q(F)is the Lie algebra cohomology of g�1 with coe�cients in F:Because @ intertwines the action of g0, these cohomology groups are g0-modules.If <;> is the Killing form on g, and f�ig basis of g�1 and f�jg (dual) basis ofg1 with < �i; �j >= �ji ;we can de�ne the adjoint operator@� : Cp;q(F) �! Cp�1;q+1(F)by setting (@�c)(X1; : : : ;Xq�1) =Xi �i � c(�i;X1; : : : ;Xq�1):



6 JAROLIM BURE�SWe get a Hodge theory on cohomology ([K]), namely we de�ne� = @@� + @�@and we say that c 2 Cp;q(F) is harmonic if �c = 0.There is a decompositionCp;q(F) = im@ � ker�� im@�and a unique harmonic representative in each cohomology class. Because @ and@� intertwine the action of g0 we have that � acts by scalars on each irreducibleg0-submodule of Cp;q(F).Moreover � is invertible on Cp;q(F) if and only if Hp;q(F) = 0.All representations of g0 constructed above F;Fi ; Cp;q(F);Hp;q (F) give represen-tations of B0 and de�ne associated bundles F;Fi; Cp;q(F );Hp;q(F ) to B0 on M.Moreover we have well-de�ned operators amond these bundles induced from theoperators @; @�;� . We denote these operators with same letters.5.2 Remark. The Spencer cohomology groups Hp;q(F) may be computed usingBorel-Bott-Weil theorem (see e.g [Kostant]). In almost all our case the conditionfor invertibility of some operators (i.e vanishing of certain group Hp;q(F)) will besatis�ed. It will be discussed for any structure separately.6. The AHS-connection.6.1 The canonical Cartan connection. There is certain amount of facts knownon Cartan connections on manifolds with AHS structure. These facts are well-known in 1-at cases, while the other cases where �rst treated in [Baston, 1991].His description was based on covariant derivatives de�ned on certain vector bundlesonM , while it is more natural from our point of view to consider Cartan connectionsas forms on pricipal �bre bundles. A systematic and detailed description of thisapproach was recently given in [�Cap, Slovak, Sou�cek, I,II; 1994]. In this part,corresponding facts will be shortly reviewed, all details can be found in the quotedpapers.Let M be a manifold with an AHS-structure, i.e. suppose that we have a B0-structure B0 on M (a G-structure of the �rst order). Then it is possible to constructa B-structure (B; �) on M which is, by de�nition, a principal �ber bundle B ! Mwith the group B equipped with the soldering form � = ��1 + �0 2 
1(B; g�1� g0)with the properties(1) ��1(�) = 0 if and only if � is a vertical vector.(2) �0(�Y+Z) = Y for all Y 2 g0, Z 2 g1.(3) (Rb)�� = Ad(b�1)� for all b 2 B where Ad means the action on the vectorspace g�1 � g0 ' g=g1 induced by the adjoint action.By construction, B is a principal �ber bundle over B0 with the group B1.We shall consider now Cartan connections on the bundle B: Let us recall thata g-valued one form ! on B is called a Cartan connection if it has the followingproperties:(1) !(�X) = X for all X 2 b



SPECIAL INVARIANT OPERATORS I. 7(2) (Rb)�! = Ad(b�1) � ! for all b 2 B(3) !jTuB : TuB ! g is a bijection for all u 2 BAny Cartan connection splits into three components ! = !�1 + !0 + !1:There is a special class of Cartan connections called admissible Cartan connec-tions. They are characterized by the property !�1 + !0 = �: For all structuresconsidered (with exception of the simplest case g0 = sl(2)), there is a canonicalCartan connection. Its existence and uniqueness follows, in principle, from the factthat the second prolongation of the structrure in question is trivial. The canonicalCartan connection will be used below for the construction of invariant operatorsbetween bundles corresponding to certain reducible, but indecomposable, represen-tations of the group B. Even if these operators will be described in a simple wayusing covariant derivatives associated to standard connections on a big principal�bre bundle over M; it is important to express them with help of more standardobjects, namely to describe them using a distinguished class of a�ne connectionon the �rst order principal bundle B0 (in the case of the conformal structure, theseare just Levi-Civita connections given by a choice of a metric inside the conformalclass). To explain that below, we need to recall now a few more facts concerningthe relations between connections chosen in this special class of a�ne connectionsand the canonical Cartan connection.There is a well de�ned class of connections on B0 related to the given secondorder structure (B; �). It consists of connections on B0 with a harmonic torsion.They are parametrized by one-forms on M. Let us call these connections harmonicconnections.In the context of Spencer cohomology, the class can be described in the followingway. The torsion � of any connection  on B0 is a B0-invariant map�� : B0 ! g�1 
 �2g��1 = C2;�1:There is the g0-invariant decompositionC2;�1 = im @ � ker�:Note that the boundary operator @ is trivial on C2;�1; hence ker� coincides withker @�: The connection  is called harmonic, if its torsion belongs to ker�: The partof the connection lying in Ker� is invariant of the structure (it does not depend ona choice of the connection) and is called Weyl torsion tensor of the AHS-structure.It can be shown that the space of all harmonic connections is nonempty and that itis in bijective correspondence with the space of all (global) B0-equivariant sectionsof the principal bundle B ! B0: Moreover, �xing one harmonic connections, thespace of all of them can be identi�ed with the space of one-forms on M:To describe the correspondence between equivariant sections and harmonic con-nections more precisely, suppose that � be a B0-equivariant section of B0: Then = ���0 is a harmonic principal connection on B0: Moreover, the section � de�nesuniquely a Cartan connection ! characterized by the properties ! = � � !1 and!1(T�(TB0)) = 0: The connection ! and the a�ne connection ��1 �  are then�-related.Suppose now that we have two admissible Cartan connections ! and !0: Theirdi�erence vanishes on vertical vectors and has values in g1; hence there is a map �from B to g��1 
 g1 such that !0 = ! + � � �1: The equivariant map � represents atensor �eld on M called the deformation tensor.



8 JAROLIM BURE�S6.2 The AHS connection.Given the canonical Cartan connection ! on B, we are going to construct itscanonical unique extension to the (standard) connection e! called AHS-connectionon associated extended principal �bre bundleeB = B �� Ggiven by the left multiplication of B on G.Moreover the principal �bre bundle B can be embedded canonically into eB byi(r) = ((r; e)):The existence and uniqueness of the connection e! follows from the theorem:6.3 Theorem. Let ! be a (non necessary canonical) Cartan connection on B , leteB be the associated extended principal �bre bundle with group G and let i be theembedding of B into eB as above. Then there exist the unique connection e! on eBsuch that i�(e!) = !.Proof. Let ~r be a point in eB, then there exist r 2 B and g 2 G such that er = Rgr.Let ~X be an element of the tangent space T~r eB, then its translation Rg�1�( ~X) is anelement of Tr eB and can be uniquely expressed asRg�1�( ~X) = Xr +A�rwith Xr 2 Tr(B) and where A�r is the value at r of the canonical vertical �eldcorresponding to some A 2 g�1.The value of the connection form e! on ~X is de�ned bye!( ~X) = Ad(g�1)(!(Xr) +A):The proof of the fact that e! is a connection form is technical and will be omitted.The uniqueness of e! is clear from the de�nition.We can use also the following alternative description of the AHS connectionwhich is more useful for the further use.For any r 2 B we have a decompositionTr( ~B) = Tr(B)� g�1with projection on the second factor��1 : Tr( ~B) �! g�1For X 2 Tr( ~B);X = XT + ��1(X); with XT 2 Tr(B); we de�ne~!(X) = !(XT ) + ��1(X)on B and we extend ~! equivariantly to ~B.



SPECIAL INVARIANT OPERATORS I. 9Then ~! is then called the AHS-connection on ~B .The following description of the horizontal lift ~X1 of a vector �eld X will be usedbelow:Take x 2 M;X 2 Tx(M); r 2 B0 with �(r) = x, we have the horizontal lift ~Xof X to ��1(x) � B0 with respect to the connection !, thus !�1( ~X) = �(X) asmapping ��1(x)! g�1:De�ne ~X1(r) = ~X(r) � ��1( ~X(r))�then we have e!( ~X1) = 0 and the �eld ~X1 is the horizontal lift of X restricted onB0.Let (�; E) be a representation of G, andE := eB �� Ethe associated vector bundle.6.4 Remark. In general the tangent (and also cotangent) bundle is not associatedto the principal �bre bundle eB. It is associated always to the principal �bre bundleB0 with respect to the standard representation � of B0 on C n , it can be associatedto the principal �bre bundle B with respect to the extension of the representation �from B0 to B trivially on well de�ned part B1 of B (B = B0�̂B1, the semidirectproduct), but there is (in general) no extension of this action to G.The connection e! induces a covariant derivative er on the space of sections �(E)and di�erential operator er : �(E)! �(E 
 T �(M))is an invariant operator on M of special type.It is de�ned as follows: Let us recall that B is canonically and B-equivariantlyembedded into eB. In any point ~r 2 eB we have horizontal space �Hr � T~r( eB)equivariant with respect of the action of the group G. We can lift any vectorX 2 T�(r)(M) horizontally to the �eld ~X on ~��1(~�(r)).Let s 2 �(E) be a section of the bundle E , and�(s) : eB ! Ethe corresponding equivariant function.Then ~X�(s) is a function on eB with values in E which is ~B-equivariant andde�ne a section of E as associated bundle to eB .Fixing harmonic connection !0 on B0, we have an B0 invariant embeddings ofprincipal �ber bundles on M B0 � B � widetildeB



10 JAROLIM BURE�Sand E is also associated bundle to B0.We shall use the following description of the operator er using the covariantderivative r with respect to !0 :Decompose E into irreducible components with respect to the representation ofthe subgroup B0 E = �iE i :Let us remark that these components are mixed with respect to the actions ofgroups B and G.Denote the associated vector bundles on M byEi := B0 ��i Ei :Then we have E = �iEi:The AHS-connection (covariant derivative) er on E is expressed in terms of back-ground connection and "additional" terms coming from the forms ��1; �1 as followsLet X 2 Tx(M) be a tangent vector, denote Fx = ��1(x) � B0 the �ber over x.Then we have a horizontal lift eX of X as a vector �eld de�ned in any point of Fxand an equivariant mapping �(X) : Fx ! g�1 de�ned by X. Moreover the map� : B ! Hom(g�1; g1)de�ne the map Q(X) = � � �(X) : Fx ! g1:Let s be a section of E given in a neigborhood U of x, let�(s) : ��1(U)! Ebe the equivariant function de�ned by s.Then we get a formula for covariant derivative with respect to the AHS-connec-tion: �(erXs)(r) = eX(r)�(s) � �(�(X)(r))�(s)(r) + �(Q(X)(r))�(s)(r):Denote Q�1(X); Q1(X) the corresponding operators, so we have:erXs = rXs�Q�1(X)s +Q1(X)s:Any representation space of G is a graded g-module, we have for E also decompo-sition with respect to the grading:E = E0 � E1 � :::� Ek



SPECIAL INVARIANT OPERATORS I. 11All spaces Ei are g0 modules (not necessary ireducible), they consist of sums ofsome Ei .If Ei = B0 ��i Ei are corresponding bundles and if we decompose the space ofsections �(E) = �(E0)� :::� �(Ek)then for each i 2 f0; :::; kg and X 2 Tx(M) we haverX : �(Ei)! �(Ei)and Q�1(X) : �(Ei)! �(Ei�1); Q1(X) : �(Ei)! �(Ei+1):7. Conformal structures.The complex conformal geometry.Take g = so(m+ 2; C ),g0 = co(m; C ) = so(m; C ) � C and g1 = g�1 = Cm .The corresponding groups are: G = SO(m + 2; C ) (or Spin(m + 2; C )), B0 =CO(m; C ) (or its corresponding universal covering), and the at model G/B isan m-dimensional quadric (the complexi�ed,compacti�ed Minkowski space) in thecomplex projective space.The real conformal geometry.Take g = so(m+ 1; 1), g0 = co(m;R) = so(m;R)�R and g1 = g�1 = Rm.The corresponding groups are G = SO(m+1; 1;R) (or Spin(m+1; 1;R)), B0 =CO(m;R) (or its universal covering) and the at model G/B is the m-dimensionalconformal sphere.The special conformally invariant operators.Let M be a manifold endowed with conformal structure, let g be a �xed metricfrom the given conformal class and ! the Levi-Civita connection of g. Let Ric bethe Ricci curvature tensor and R the scalar curvature of the metric g.In the conformal case, it is possible to give an explicit description of � in termsof the Riemann curvature tensor. Let us de�ne a symmetric 2-form P on M byP = 1n� 2(Ric � 12(n� 1)R:g)Then P de�nes an B0-equivariant map�(P ) : B0 !�2g1:Using the duality between g1 and g�1 and the symmetry of P, we obtain desiredB0-equivariant map � : B0 ! g1 
 g��1 = Hom(g�1; g1);which is the deformation tensor for a couple given by the canonical Cartan connec-tion ! and any admissible Cartan connection ! induced by any harmonic a�neconnection.In the next part special invariant operators which correspond to all fundamentalrepresentations of the group G = Spin(m+ 2; C ) (i.e to the representations of Liealgebra g = so(m + 2; C )) will be described.



12 JAROLIM BURE�S7.4 Example 1 : Spinor representation..The following description of spinors and spinor representation coming out fromCli�ord algebra calculus (see [DSS]) will be used here.A. Even dimensional case (m = 2n).Let fe0; e1; : : : ; en; en+1; : : : ; e2n; e2n+1gbe the basis of R2n+2 withQ(e0; e0) = Q(e2n+1; e2n+1) = 0;Q(e0; e2n+1) = 1;Q(ei; ej ) = �2�ijfor i,j = ,1,...,2n.There is the standard embedding R2n+2 � CR2n+2 and the relations in the realCli�ord algebra CR2n+2:e0:e2n+1 + e2n+1:e0 = �2; e20 = e22n+1 = 0; ej :ek + ek:ej = �2�ijMoreover after complexi�cation we getR2n+2 � C 2n+2 � CC2n+2:Let us construct the canonical embeddingsso(2n+ 1; 1) �! so(2n + 2; C ) �! CC2n+2:as follows:Consider �rst the natural isomorphism:so(2n + 2; C ) � �2(C 2n+2)given by u ^ v 7! �(u ^ v)(x) = 2(Q(v; x)u�Q(u; x)v);u; v; x 2 C 2n+2and thus de�ne an embedding�2(C 2n+2)! CC2n+2given by u ^ v 7! u:v �Q(u; v)1;u; v 2 C 2n+2After an easy computation the desired embedding of Lie algebra� : so(2n+ 1; 1)! CC2n+2has the following form �(V�) = 12e0:e�; for V� 2 g�1;



SPECIAL INVARIANT OPERATORS I. 13�(��) = 12e2n+1:e�; for �� 2 g1;and �(A0) = 12(e2n+1:e0 + 1); i(Ajk) = 12ej :ek; 1 � j < k � 2nfor the elements from g0.Let us introduce the isotropical basis of C 2n+2 ,ff0; f1; : : : ; fn; f̂0; f̂1; : : : ; f̂ngwith Q(fi; f̂i) = 1;Q(fi; fi) = Q(f̂i; f̂i) = 0; for i = 0; 1; :::; nThe transformation relations are given byf0 = e0; f̂0 = e2n+1; fj = 12i (ej + ien+j); f̂j = 12i (ej � ien+j)and for the inverse transformation bye0 = f0; e2n+1 = f̂0; ej = i(fj + f̂j); en+j = i(fj � f̂j ):Putting together we get the following realization of g in Cli�ord algebra CC2n+2:g�1 = fEj = if̂0:(fj + f̂j); En+j = if̂0:(fj � f̂j ); j = 1; : : : ; ngg1 = fEj = if0:(fj + f̂j ); En+j = if0:(fj � f̂j); j = 1; : : : ; ngg0 = fEj;k = (fj + f̂j ):(fk + f̂k)g [ fEj;n+k = (fj + f̂j ):(fk � f̂k)g[fEn+j;n+k = (fj � f̂j ):(fk � f̂k)g [ ff̂0:f0 + 1g:Let us denoteNp = f(j1; :::; jk); j1 < j2::: < jk; ji 2 f1; :::; ng; k � n; k � p(mod 2)g; p = 0; 1and�Np = f(j1; :::; jk); j1 < j2::: < jk; ji 2 f0; 1; :::; ng; k � n; k � p(mod 2)g; p = 0; 1:One of possible choice of the spinor space isS= f(XJ2 �N0 aJ :f̂J ):Igwith grading S0 = f(f̂0: XJ2N1 aJ :f̂J ):Ig; S1 = f(XJ2N0 aJ :f̂J ):Ig



14 JAROLIM BURE�Swhere I = f0:f̂0:f1f̂1:::fnf̂n is an idempotent in the Cli�ord algebra CC2n+2.The action of an element A 2 g on an element s 2 S is given by the left multi-plication A:s in the Cli�ord algebra CC2n+2.Let us describe the action of g�1 and g1 on Sin more details:For the elements Ej = if̂0:(fj + f̂j ); En+j = if̂0:(fj � f̂j)from g�1 we have Ej :s0 = En+j:s0 = 0:for any s0 2 S0. Let s1 2 S1; s1 = (XJ2N0 aJ :f̂J ):i:It can be written in the forms1 = ( XJ0;j2J0 aJ0 :f̂J0):I + ( XJ00;j2J00 aJ00 :f̂J00):I;then Ej :s1 = if̂0:( XJ0;j2J0 2aJ0 :f̂J0�j):I + ( XJ00;j2J00 aJ00 :f̂jJ00):IEn+j:s0 = if̂0:( XJ0;j2J0 2aJ0 :f̂J0�j):I � ( XJ00;j2J00 aJ00 :f̂jJ00):I:Let us provide a similar computation for g1 . For the elementsEj = if0:(fj + f̂j ); En+j = if0:(fj � f̂j)from g1, we have Ej :s1 = En+j:s1 = 0:for any s1 2 S1. Let s0 2 S0; s0 = (f̂0: XJ2N1 aJ :f̂J ):I:It can be written in the forms0 = f̂0:( XJ0j2J0 aJ0 :f̂J0):I + f̂0( XJ00;j2J00 aJ00 :f̂J00):I;then Ej :s0 = i( XJ0j2J0 2aJ0 :f̂J0�j):I + ( XJ00;j2J00 aJ00 :f̂jJ00):IEn+j:s0 = i( XJ0j2J0 2aJ0 :f̂J0�j):I � ( XJ00;j2J00 aJ00 :f̂jJ00):I:



SPECIAL INVARIANT OPERATORS I. 15Let M be a conformal spin manifold, S the vector bundle associated to therepresentation Sof G , then S = S0 � S1is the total spinor bundle on M.Let ri be the spin covariant derivative on (sections of ) Si, obtained from Levi-Civita connection .The special operator er on spinor �elds can be de�ned in the following way:Let r = fr1; :::; r2ng be a (spin) frame in x 2M , ands = (s0; s1) 2 �(S0) � �(S1)a section of S de�ned on a neighborhood of x.Then for �; 1 � � � 2n we de�neerr�(s0; s1) = (r0r�s0 �E�:s1;r1r�s1 + 2nX�=1P��E�:s0);where �(r)(E�) = 2nX�=1P��E�:B. Odd case m = 2n-1.Let fp0; p1; : : : ; p2n�1; p2ngbe a basis of R2n+1 withQ(p0; p0) = Q(p2n; p2n) = 0;Q(p0; p2n) = 1;Q(pj ; pk) = �jkforj; k = 1; :::; 2n� 1:We have the embedding R2n+1 � CR2n+1 and the relations in Cli�ord algebra:p0:p2n + p2n:p0 = �2; p20 = p22n = 0; pj :pk + pk:pj = �ij ;there is a natural embedding CR2n+1 � CR2n+2given by pj � e0:e2nfor 0 � j � 2n� 1; p2n � e2n+1:e2nonto even part of CR2n+2. As in the even case we have the natural embeddingsR2n+1 � C 2n+1 � CC2n+1:Moreover we can also suppose CC2n+1 � CC2n+2:



16 JAROLIM BURE�SSimilarly as in the even dimensional case we can construct the mapso(2n + 1; C) �! CC2n+1and �nally we get the embeddingso(2n; 1) �! CC2n+2given on g0 by:P = (p2n:p0 + 1) 7! E = (f̂0:f0 + 1);Pj;k = pj :pk 7! �Ejk = �(fj + f̂j)(fk + f̂k)Pj;n+k = pj :pn+k 7! �Ej;n+k = �(fj + f̂j)(fk � f̂k)Pj+n;k+n = pj :pk 7! �En+j;n+k = �(fj � f̂j)(fk � f̂k)and on g�1 byPj = p2n:pj 7! Ej = if̂0(fj + f̂j );Pn+k = p2n:pn+k 7! En+k = if̂0(fk � f̂k);and �nally on g1 byP j = p2n:pj 7! Ej = if0(fj + f̂j );Pn+k = p2n:pn+k 7! En+k = if0(fk � f̂k);with 1 � j; k � n; n+ j; n+ k � 2n� 1 .The spinor space is the same as in even-dimensional case (2n+2) and the actionof g is given by the restriction of the corresponding action for even-dimensionalcase.Using the notation and results coming out from the even case we get a descriptionof the special operator er for the odd case as follows.Let M be a conformal spin manifold of dimension 2n-1 , S the bundle associatedto the representation Sof G , thenS = S0 � S1is the whole spin bundle on M. Let ri be spin covariant derivative on Si constructedfrom the Levi-Civita connection on M.The special operator er on spinor �elds is de�ned in the following way: Letr = fr1; :::; r2n�1g be a (spin) frame in x 2M , ands = (s0; s1) 2 �(S0) � �(S1)a section of S de�ned on a neighborhood of x.Then for �, 1 � � � 2n� 1, we haveerr�(s0; s1) = (r0r�s0 �E�:s1;r1r�s1 + 2n�1X�=1 P��E�:s0):



SPECIAL INVARIANT OPERATORS I. 177.5 Example 2 : The fundamental vector representation.Let us denote C n+2 = V= V�1�V0�V1with V�1 = C ;V0 = C n ;V1 = C :Then V is a representation space of g, through left matrix multiplication on columnvector from C n+2 .Let Z� = (0; ::; 0; 1; 0; ::; 0); � = 0; 1; :::; n; n + 1, with 1 on �th-place be thestandard basis of V.Then the action of g�1 and g1 on V is given by:Ek:Zn+1 = 0; Ek:Zi = �Zn+1; Ek:Z0 = ZkEk:Z0 = 0; Ek:Zi = �Z0; Ek:Zn+1 = Zk:Let V be the associated bundle to V, andV = V0 � V1 � V2be the grading of V, dim V0 = dimV2 = 1, dim V1 = n, and ri the covariantderivative associated with Levi-Civita connection ! on Vi. Then for sectionw = (w0; fwig;wn+1) 2 �(V0)� �(V1) � �(V2)we getereiw = (r0eiw0 � �ijwj ; fr1eiwj + Pijw0 � �ijwn+1g;r2eiwn+1 + Pijwj)which is just the Penrose local twistor transport ([Ba1]).7.6 Example: The fundamental representations �kV.The space �kVas a representation space of g0 with respect to the action inducedfrom the action on V from Ex.2. has the following grading:�kV= �k0V� �k1V� �k2Vwith �k0V= E0 ^ �k�1V0; �k1V= E0 ^ En+1 ^ �k�2V0� �kV0;�k2V= E0 ^ �k�1V0:We need to have the action of the elements of basis of g�1 and g1 on these spaces.Let Z� = (0; ::; 0; 1; 0; ::; 0); � = 0; 1; :::; n; n + 1, with 1 on �th-place be thestandard basis of V. Then we have (see Ex.2.above)Ek:Zn+1 = 0; Ek:Zi = �Zn+1; Ek:Z0 = ZkEk:Z0 = 0; Ek:Zi = �Z0; Ek:Zn+1 = Zk:



18 JAROLIM BURE�SAnd moreover we have:Ek:(Z0 ^ Zi1 ^ Zi2 ^ ::: ^ Zil ) = Zk ^ Zi1 ^ Zi2 ^ ::: ^ Zil++Z0 ^ Zn+1 ^ lXj=1(�1)j+1Zi1 ^ :: ^ Ẑij ^ ::: ^ ZilEk:(Zi1 ^ Zi2 ^ ::: ^ Zil) = �Zn+1 ^ lXj=1(�1)jZi1 ^ :: ^ Ẑij ^ ::: ^ ZilEk:(Z0 ^ Zn+1 ^ Zi1 ^ Zi2 ^ ::: ^ Zil ) = �Zn+1 ^ Zk ^ Zi1 ^ Zi2 ^ ::: ^ ZilEk:(Zn+1 ^ Zi1 ^ Zi2 ^ ::: ^ Zil) = 0and Ek:(Z0 ^ Zi1 ^ Zi2 ^ ::: ^ Zil) = 0Ek:(Zi1 ^ Zi2 ^ ::: ^ Zil) = Z0 ^ lXj=1(�1)jZi1 ^ :: ^ Ẑij ^ ::: ^ ZilEk:(Z0 ^ Zn+1 ^ Zi1 ^ Zi2 ^ ::: ^ Zil) = Z0 ^ Zk ^ Zi1 ^ Zi2 ^ ::: ^ ZilEk:(Zn+1 ^ Zi1 ^ Zi2 ^ ::: ^ Zil) = Zk ^ Zi1 ^ Zi2 ^ ::: ^ Zil+�Z0 ^ Zn+1 ^ lXj=1(�1)jZi1 ^ :: ^ Ẑij ^ ::: ^ ZilLet M be a conformal manifold, �kV the bundle associated to the representation�kV of G , then we have �kV = �k0V � �k1V � �k2Vits grading, denote ri covariant derivative on (sections of) �ki V induced by Levi-Civita connection ! .The special operator er on sections of �kV is de�ned in the following way: Letr = fr1; :::; r2ng be a frame in x 2M , ands = (s0; s1; s2) 2 �(�k0V ) � �(�k1V ) � �(�k2V )a section of S de�ned on a neighborhood of x. Then for j; 1 � j � n we haveerrj (s0; s1; s2) = (r0rjs0�Ej:s1;r1rjs1�Ej:s2+ 2nXk=1PjkEk:s0;r2rjs2+ 2nXk=1PjkEk:s1):
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