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SPECIAL INVARIANT OPERATORS 1.

JAROLIM BURES

December 15, 1994

ABSTRACT. The aim of the first part of a series of papers is to give a description
of invariant differential operators on manifolds with an almost Hermitian symmetric
structure of the type G/B which are defined on bundles associated to the reducible
but undecomposable representation of the parabolic subgroup B of the Lie group G.
One example of an operator of this type is the Penrose’s local twistor transport. In
this part general theory is presented, and conformally invariant operators are studied
in more details.

1. INTRODUCTION.

There is a series of papers by R.Baston, M.Eastwood, T.Bailey and others de-
scribing invariant operators on manifolds with almost Hermitian symmetric struc-
ture (AHS - structure) (see [Baston I,11,1991]) of the type G/B acting on bundles
associated to a reducible, but indecomposable representation of B.

The class of these operators include local twistor transport, Thomas operator and
other interesting invariant operators. Let us call these operators special operators.
The aim of the paper is to give more explicit, purely geometrical description of
these special operators using the theory of G-structures of higher order, and to
extend some of results presented there.

I am grateful to Vladimir Soucek, Jan Slovadk and Andreas Cap for many useful
conversations.

2. DEFINITION AND BASIC PROPERTIES OF AHS-STRUCTURES.

Let g be a simple (complex, real) ||1||- graded Lie algebra with decomposition

g=9g_1Dg D@

It means
[9i,9;] = gi;
with g2 = g2 = 0.
It follows from the above properties that go is reductive and g_1, g, are abelian.

The complete classification of complex, simple, ||1||-graded Lie algebras is given in
([Bal]), to consider the real ones, the real forms of corresponding complex algebras

The author was supported by the GAUK, grant Nr. 46, grant ES PECCO and E. Schrodinger
Institute in Vienna
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2 JAROLIM BURES

must be considered. We shall restrict below to study of some real cases, the full
discussion of all possible cases will be published later.

Suppose in the following, that not only Lie algebras but Lie groups are given
i.e let G be a (real or complex) Lie group with Lie algebra g, let B be a parabolic
subgroup of G with Lie algebra gy & g1, and let By be a subgroup of B with Lie
algebra go. Then G/B is a Hermitian symmetric space. The group B can be
considered in a natural way as a subgroup of the second jet group G*(n), with
respect to the action of B on T,(G/B) = g_;.

2.1 Definition. An AHS-structure on a manifold M is a G-structure of the second
order B' which is a reduction of the first prolongation of a G-structureof the first
order By (reduction of the frame bundle) with the group By on M (see[Sternberg]).

2.2 Definition. An AHS-structure By on M s called 1-flat if By admaits a tor-
stonless connection (it means that the first structure function of the G-structure
vanishes).

2.3 Remarks.

A. All conformal and projective structures are 1-flat. For other AHS-structures
the condition of 1-flatness is a restrictive condition on structure.

B. If AHS-structure 1s 1-flat, we can consider also an AHS-structure as a holo-
nomic G-structure B of second order (reduction of frames of second order) with the
structural group B on M. The structure B of the second order defines G-structure
of first order By with the structural group By and projection

mo : B — By.
If AHS-structure 1s not 1-flat, then also a principal fibre bundle B with the same

properties as above can be constructed. The construction will be described in Sect.6.

The definitions used in this text are generalization of the definition of Baston in
([Baston]), where only complex holomorphic G-structures are considered.

2.5 Remark. We shall also use some covering spaces of the coresponding frame
bundles ( frames of first and also second order). It will be done especially for spin-
manafolds. It needs only simple modification of the presented theory which 1s quite
natural.

3. FLAT MODELS.
3.1. Any AHS-structure has a homogeneous model (called flat) which is 1-flat. The
homogeneous model is given by

7:G— G/B.

Here G is a principal fibre bundle on M = G/B with structural group B and the
bundle By is sitting inside it.

Let us denote by G — M the principal fibre bundle with the structural group G
associated to 7 : G — M by

#F:G=Gx,G—>M
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where the action ¢ of B on G 1is the left multiplication.

Let w : TG — g be the Maurer-Cartan form on G, it is also (normal) Cartan
connection on 7 : G — M.

Then there is a uniquely defined an (ordinary) connection @ on the principal
bundle # : G — M constructed from w, we shall call it the AHS-connection (as in
general situation).

The construction of @ can be described in the following way.

The principal fibre bundle G is embedded canonically into G by:

i(g) = [(g,e€)].

Let us identify G with its canonical image i(G) C G.
For any g € G C G we have a decomposition

Tg(é) =Ty(G) D g
with projection on the second factor given by
o1 : Ty(G) — g
Let us define @ by
w=w-+o_4
on G and let us extend it equivariantely to G.

3.2 Theorem. & is a connection on G called the AHS-connection .

Proof. The fact that @ is a connection follows from a simple direct computation.

Let p: G — Aut(E) be an irreducible representation of the group G, let

E:=Gx,E

be the corresponding associated bundle. Then the AHS-connection induces the
associated covariant derivative

V:T(E) - I[(E @ T*(M))
on E.
In the definition of the AHS-connection only the structure of flat AHS-manifold

is used and it is (the simplest case of) canonical invariant connection on AHS-
manifold.

3.3 Lemma. Let £ := G X, E and E := G X, E, then there is the canonical
wsomorphism of the fibre bundles ¢ : E — E .

Proof. The isomorphism ¢ is defined by the correspondence

veE - {((g,1),0)} €E = {(g,0)} € E



4 JAROLIM BURES

which is B-equivariant (resp. By- equivariant).

The bundles E and E will be identified by ¢, then on this bundle also the invariant
covariant differential

V:I(E) - [(E @ T*(M))

can be defined in the standard way.

Moreover in the flat case also the following construction is available and will be
used in some of the following papers.

Let s € I'(E) be a section of E; and let ®(s) : G — E be the corresponding
equivariant function.

For any X € g_1, let £x be the left invariant vector field on G induced by X. It
gives a uniquely defined horizontal vector field A(X) on G with respect to @. On
the subbundle G C G, it has the form

where X* is the canonical vertical field on G given by X.

Let p' be the restriction of the representation p to B (resp. to By) ( it is not
irreducible in general).

We have now simple and natural formula for V coming from the normal Cartan
connection w on G.

If the section s € T'(E) is represented by an equivariant function ®(s) : G — E,
then

CI)(V;F*(h(X))S) = h(X)CI)(S) = fX(I)(S) — ,OI(X)(S), X ¢ g_1.

4. CLASSICAL AHS-STRUCTURES.

Let K be or R or C. Then we have the following examples of AHS-structures
coming from classical simple Lie algebras. The list is complete for complex case,
but not all real cases are listed. The other real structures will be discussed in details
elsewhere. There are two cases for exceptional (nonclassical) simple algebras which
will not be presented here.

4.1 Conformal structures.
Let g = so(m +2,C), go = co(m,C) and g1 = g—1 = C™. A standard real form
isg=so(m+1,1),g0 = co(m,R)and g = g_1R™ .

Then G = SO(m+2,C) or Spin(m—+2,C) and the flat model G/B is the quadric
(complexified,compactified Minkowski space) in the complex case; G = SO(m+1,1)
or Spin(m+1,1) and the flat model is an m-dimensional conformal sphere in the
real case .

4.2 Almost Grassmanian structures.
Let g = sl(p+¢,C), go = s(sl(p, K) B sl(¢,K)), or unitary algebras . g1 = g_1 =
KP¢ . The flat model is the complex resp. the real Grassmanian Gr,(KP*?).

There are two special cases:

A. Projective structures.
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For p =1 (or q = 1) the flat model is the projective space KPP.
B. Almost quaternionic structures.

For p = 2 (or q¢ = 2) we have structures which (under additional conditions)
include quaternionic, quaternionic Kaehler and Hyperkaehler structures .

4.3 Almost Lagrangian structures.
Let g = sp(n, K) or u(n), go = gl(n,K) and g_; = gy = K with N = %n(n—l—l).

The flat models are the Lagrangian Grassmanians LGr(K*"), resp. Sp(n,R)/U(n).

4.4 Almost spinorial structures..
Let g = so(2n,K) and go = ¢gl(n,K), resp. u(n).

The flat models are the manifold of reduced pure spinors S,, = SO(2n,C)/GlI(n,C)
resp. SO*(2n,R)/U(n).
5. SPENCER COHOMOLOGY.

5.1. The Spencer cohomology is a cohomology theory of the Lie algebra g_; with
coefficients in a graded g-module F. Denote by o the action of g on F. So we have

F =@k, giolF; CFyyjy.
The bigraded chain complex C?4(F) is defined by
CPUF) =F, @ APg,
with the differential
9 : CPY(F) — CPTHI1(F)

given by

q ~

(0c)(Xo, ... Xg) = Y Xioc(Xo, .. Xi, . X,).

0

The cohomology of the complex (CP4(F),d) will be denoted by HP'4(F) and the

direct sum

Hp(g—l , [E‘) — @qHPaQ([E‘)

is the Lie algebra cohomology of g_; with coefficients in F.
Because 0 intertwines the action of gg, these cohomology groups are go-modules.
If <,> is the Killing form on g, and {¢;} basis of g_; and {5’} (dual) basis of
< &ip? >=10],

we can define the adjoint operator

0% : CPA(F) —s CP~LaHL(F)

by setting
(0% e)( X1y, Xyo1) = an oc(&, Xuyeo s Xygot)-
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We get a Hodge theory on cohomology ([K]), namely we define
A=00"+0%0

and we say that ¢ € CP4(F) is harmonic if Ac = 0.
There is a decomposition

CPAF) =im0 & ker A & im 0*

and a unique harmonic representative in each cohomology class. Because 0 and
0* intertwine the action of gg we have that A acts by scalars on each irreducible
go-submodule of CP4(F).

Moreover A is invertible on C?4(F) if and only if H?4(F) = 0.

All representations of gy constructed above F, F;, C?4(F), H?4(F) give represen-
tations of By and define associated bundles F, F;, CP4(F'), HP4(F) to By on M.

Moreover we have well-defined operators amond these bundles induced from the
operators 0,0%, A . We denote these operators with same letters.

5.2 Remark. The Spencer cohomology groups HPU(F) may be computed wusing
Borel-Bott-Weil theorem (see e.g [Kostant]). In almost all our case the condition
for invertibility of some operators (i.e vanishing of certain group HPY(F)) will be
satisfied. It will be discussed for any structure separately.

6. THE AHS-CONNECTION.

6.1 The canonical Cartan connection. There is certain amount of facts known
on Cartan connections on manifolds with AHS structure. These facts are well-
known in 1-flat cases, while the other cases where first treated in [Baston, 1991].
His description was based on covariant derivatives defined on certain vector bundles
on M, while it is more natural from our point of view to consider Cartan connections
as forms on pricipal fibre bundles. A systematic and detailed description of this
approach was recently given in [Cap, Slovak, Soucek, LII; 1994]. In this part,
corresponding facts will be shortly reviewed, all details can be found in the quoted
papers.

Let M be a manifold with an AHS-structure, i.e. suppose that we have a By-
structure By on M (a G-structure of the first order). Then it is possible to construct
a B-structure (B,60) on M which is, by definition, a principal fiber bundle B — M
with the group B equipped with the soldering form 6 = 6_; + 6, € Q'(B,g-1 ®go)
with the properties

(1) 6_1(¢) =0 if and only if £ is a vertical vector.

(2) GO(CY—l—Z) =Y forallY € gy, Z € g;.

(3) (Rp)*0 = Ad(b=1)0 for all b € B where Ad means the action on the vector
space g—1 D go ~ g/g1 induced by the adjoint action.

By construction, B is a principal fiber bundle over By with the group Bj.

We shall consider now Cartan connections on the bundle B. Let us recall that
a g-valued one form w on B is called a Cartan connection if it has the following
properties:

(1) wiCx)=X forall X € b
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(2) (Rp)*w=Ad(b ') owforall be B
(3) w|r,8: TuB — g is a bijection for all u € B
Any Cartan connection splits into three components w = w_1 + wy + w;.

There is a special class of Cartan connections called admissible Cartan connec-
tions. They are characterized by the property w_y + wy = 6. For all structures
considered (with exception of the simplest case gy = s[(2)), there is a canonical
Cartan connection. Its existence and uniqueness follows, in principle, from the fact
that the second prolongation of the structrure in question is trivial. The canonical
Cartan connection will be used below for the construction of invariant operators
between bundles corresponding to certain reducible, but indecomposable, represen-
tations of the group B. Even if these operators will be described in a simple way
using covariant derivatives associated to standard connections on a big principal
fibre bundle over M, it is important to express them with help of more standard
objects, namely to describe them using a distinguished class of affine connection
on the first order principal bundle By (in the case of the conformal structure, these
are just Levi-Civita connections given by a choice of a metric inside the conformal
class). To explain that below, we need to recall now a few more facts concerning
the relations between connections chosen in this special class of affine connections
and the canonical Cartan connection.

There 1s a well defined class of connections on By related to the given second
order structure (B,6). It consists of connections on By with a harmonic torsion.
They are parametrized by one-forms on M. Let us call these connections harmonic
connections.

In the context of Spencer cohomology, the class can be described in the following
way. The torsion 7 of any connection v on By is a By-invariant map

T: By — g1 @ Algt, =CPL
There is the gg-invariant decomposition
C* 1 =im 9 @ ker A.

Note that the boundary operator 8 is trivial on C'* ™!, hence ker A coincides with
ker 9*. The connection 7 is called harmonic, if its torsion belongs to ker A. The part
of the connection lying in KerA is invariant of the structure (it does not depend on
a choice of the connection) and is called Weyl torsion tensor of the AHS-structure.
It can be shown that the space of all harmonic connections is nonempty and that it
is in bijective correspondence with the space of all (global) By-equivariant sections
of the principal bundle B — Bj. Moreover, fixing one harmonic connections, the
space of all of them can be identified with the space of one-forms on M.

To describe the correspondence between equivariant sections and harmonic con-
nections more precisely, suppose that o be a Bg-equivariant section of By. Then
~ = 0*6y 1s a harmonic principal connection on By. Moreover, the section o defines
uniquely a Cartan connection w-. characterized by the properties w, = 6 @© w; and
w1(T5(TBy)) = 0. The connection w~ and the affine connection #_; & 4 are then
o-related.

Suppose now that we have two admissible Cartan connections w and w’. Their
difference vanishes on vertical vectors and has values in gy, hence there is a map I
from B to g*; @ gy such that w’ = w + I' 0 8. The equivariant map I' represents a
tensor field on M called the deformation tensor.
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6.2 The AHS connection.

Given the canonical Cartan connection w on B, we are going to construct its
canonical unique extension to the (standard) connection & called AHS-connection
on associated extended principal fibre bundle

B=Bx,G

given by the left multiplication of B on G. N
Moreover the principal fibre bundle B can be embedded canonically into B by

i(r) = ((r,e)).
The existence and uniqueness of the connection w follows from the theorem:

6.3 Theorem. Let w be a (non necessary canonical) Cartan connection on B, let
B be the associated eztended principal fibre bundle with group G and let @ be the

embedding of B into B as above. Then there exist the unique connection O on B
such that 1*(0) = w.

Proof. Let 7 be a point in B then there exist r € B and ¢ € G such that 7 = R,r.
Let X be an element of the tangent space T B then its translation I, (X) is an

element of T,B and can be uniquely expressed as

Ry, (X) =X, + A"

g

with X, € T,.(B) and where A¥ is the value at r of the canonical vertical field
corresponding to some A € g_;.
The value of the connection form w on X is defined by

S(X) = Ad(g™H)(w(X,) + A).

The proof of the fact that w is a connection form is technical and will be omitted.
The uniqueness of @ is clear from the definition.

We can use also the following alternative description of the AHS connection
which is more useful for the further use.
For any r € B we have a decomposition

T,(B) =T.(B) &g
with projection on the second factor
o1 :T(B) — g1
For X € T(B),X = X7 4+ 0_,(X), with X7 € T,(B), we define
(X)) =w(XT) +o_1(X)

on B and we extend & equivariantly to B.
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Then @ is then called the AHS-connection on ZSE .
The following description of the horizontal lift X of a vector field X will be used
below:

Take x € M, X € T,(M),r € By with 7(r) = x, we have the horizontal lift X
of X to 7= (z) C By with respect to the connection w, thus w_;(X) = ®(X) as
mapping

T ) . T
Define ) ) )
Xi(r) = X(r) — o1 (X(r))"

then we have cNu(Xl) = 0 and the field X is the horizontal lift of X restricted on
Bo.
Let (p,E) be a representation of G, and

E:=Bx,E

the associated vector bundle.

6.4 Remark. In general the tangent (and also cotangent) bundle is not associated

to the principal fibre bundle B. It 1s associated always to the principal fibre bundle
By with respect to the standard representation o of By on C", it can be associated
to the principal fibre bundle B with respect to the extension of the representation o

from By to B trivially on well defined part By of B (B = Bob By, the semidirect

product), but there is (in general) no extension of this action to G.

The connection & induces a covariant derivative V on the space of sections I'(E)
and differential operator

V:T(E) - I(E @ T*(M))

is an invariant operator on M of special type.

It is defined as follows: Let us recall that B is canonically and B-equivariantly
embedded into B. In any point r € B we have horizontal space H, C T (B)
equivariant with respect of the action of the group G. We can lift any vector

X € Tr()(M) horizontally to the field X on 7 Y7 (r)).
Let s € I'(E) be a section of the bundle E , and

O(s): B—-E

the corresponding equivariant function.
Then X@®(s) is a function on B with values in E which is B-equivariant and

define a section of E as associated bundle to B .

Fixing harmonic connection wy on By, we have an By invariant embeddings of
principal fiber bundles on M

By C B C widetildeB
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and F is also associated bundle to By. B
We shall use the following description of the operator V using the covariant
derivative V with respect to wy :

Decompose E into irreducible components with respect to the representation of
the subgroup By
E = ¢;E;.

Let us remark that these components are mixed with respect to the actions of
groups B and G.

Denote the associated vector bundles on M by

El‘ = Bo X p; Ei.

Then we have

F=0,F;.

The AHS-connection (covariant derivative) VonEis expressed in terms of back-
ground connection and ”"additional” terms coming from the forms o_1, o7 as follows
Let X € T,(M) be a tangent vector, denote F, = 7~ !(z) C By the fiber over .

Then we have a horizontal lift X of X as a vector field defined in any point of F},
and an equivariant mapping ®(X) : F, — g_; defined by X. Moreover the map

I':B— Hom(g—1,¢)

define the map
QX)=To®(X): F, — g.

Let s be a section of E given in a neighorhood U of z, let
®(s): 7 H(U) = E

be the equivariant function defined by s.

Then we get a formula for covariant derivative with respect to the AHS-connec-
tion:

B(Vxs)(r) = X(r)®(s) — p(2(X)(r)B(s)(r) + p(QX)(r))@(s)(r).
Denote Q_1(X), @1(X) the corresponding operators, so we have:
Vxs=Vxs—Q_1(X)s + Q1(X)s.

Any representation space of G is a graded g-module, we have for E also decompo-
sition with respect to the grading:

E=F ¢F ¢..oEF
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All spaces E' are gy modules (not necessary ireducible), they consist of sums of
some E;. ‘

If E* = By x,i E are corresponding bundles and if we decompose the space of
sections

I(E)=T(E°) @ ..o T(E")
then for each 7 € {0,...,k} and X € T, (M) we have
Vy :T(E') — T(EY)

and

Q_1(X):T(E") - T(E™), Qi(X):T(E") - I(E™).
7. CONFORMAL STRUCTURES.

The complex conformal geometry.

Take g = so(m + 2,C),g0 = co(m,C) = so(m,C) $ C and g; =g_1 = C".

The corresponding groups are: G = SO(m + 2,C) (or Spin(m + 2,C)), By =
CO(m,C) (or its corresponding universal covering), and the flat model G/B is
an m-dimensional quadric (the complexified,compactified Minkowski space) in the
complex projective space.

The real conformal geometry.
Take g = so(m + 1,1), go = co(m,R) = so(m,R)& R and g =g_; = R™.

The corresponding groups are G = SO(m +1,1,R) (or Spin(m+1,1,R)), By =
CO(m,R) (or its universal covering) and the flat model G/B is the m-dimensional
conformal sphere.

The special conformally invariant operators.

Let M be a manifold endowed with conformal structure, let g be a fixed metric
from the given conformal class and w the Levi-Civita connection of g. Let Ric be
the Ricei curvature tensor and R the scalar curvature of the metric g.

In the conformal case, it is possible to give an explicit description of I' in terms
of the Riemann curvature tensor. Let us define a symmetric 2-form P on M by

P = R.g)

— 2(Ric —

Then P defines an By-equivariant map
CI)(P) : BO — @291.

Using the duality between g; and g_; and the symmetry of P, we obtain desired
By-equivariant map

2(n—1)

I: Bo — ®g*_1 = Hom(g—lvgl)v

which is the deformation tensor for a couple given by the canonical Cartan connec-
tion w and any admissible Cartan connection w. induced by any harmonic affine
connection.

In the next part special invariant operators which correspond to all fundamental
representations of the group G = Spin(m + 2,C) (i.e to the representations of Lie
algebra g = so(m + 2,C)) will be described.
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7.4 Example 1 : Spinor representation..

The following description of spinors and spinor representation coming out from

Clifford algebra calculus (see [DSS]) will be used here.
A. Even dimensional case (m = 2n).

Let

{60,61, cee 5 €Enj 6n+1, .. ,62n,62n+1}

be the basis of R?"*2 with

Q(eo,e0) = Qleant1,e2n+1) = 0,Q(eo, cant1) = 1,Q(ei, ;) = =265

for 1,j = ,1,....2n.
There is the standard embedding R*"*? C CJ |, and the relations in the real
Clifford algebra Czp;ﬂ_z:

L2 2 _ _
€0.€2n41 + €anp1.€0 = —2j€5 = €5, = 0,¢j.¢ + ep.e; = —26;;

Moreover after complexification we get
R*"2 C C*" 2 C C5, s
Let us construct the canonical embeddings
so(2n 4+ 1,1) — so(2n 4+ 2,C) — 626;1_1_2.
as follows:

Consider first the natural isomorphism:
so(2n 4+ 2,C) = A*(C*"?)
given by
uAvi— ¢luo)(z) =2Qv,z)u — Qu,z)v);u, v,z € C?
and thus define an embedding
AT =

given by
uAv i uw — Qu,v)l;u,v € C*H2

After an easy computation the desired embedding of Lie algebra
ciso(2n4+1,1) — CS s

has the following form

1
(Vo) = 5 €0-Cas for V, € g_1;
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1
t(na) = §ezn+1-ea;f01" Na € @13

and . .
t(Ag) = §(ezn+1.eo +1); w(Ajr) = 2 €i-Ck; 1< <k<2n

for the elements from go.
Let us introduce the isotropical basis of C2" 12,

{fovflv"' 7fn;f07f17"' 7fn}

with
Q(fzafz) =1,9(fi, fi) = Q(ﬁ,ﬁ) =0; for :=0,1,...,n

The transformation relations are given by

1

P 1 . P .
fo =¢o, fo = e2nt1, fj = Z(e‘i +ientj), fj = Z(ej —1€ntj)

and for the inverse transformation by
o = foseany1 = fos €5 = i(fj + fi) enyj = i(f5 — fi)-

Putting together we get the following realization of g in Clifford algebra C%+2:

g1 ={Ej = ifo.(f; + i), Ensj=ifo(fi —fihij=1,....n}
g1 ={E =ifo.(fj + fj), E" =ifo(f; - fiii=1,....n}

g0 = {Ejx = (fj + ;).(fe + fi)} U{Ejmpn = (F5 + Fi)-(fs — f1)}
H Enjimtr = (Fi = Fi)-(fe = f)} U {fo-fo +1}.
Let us denote
NP ={(J1, s Jr)ig1 < J2.. < Jr;ji €4{1,..,n}k <n,k =pmod2)}; p=0,1

and

NP = {1 eoer ji)s g1 < oo < jiidi € {0, 1,cen}i b < nyk = p(mod 2)}; p = 0,1.

One of possible choice of the spinor space is

S={(>_ as.fr).I}

JENO

with grading

So={(fo- > arfn).I}; S1={(>_ asrfn.I}

JEN1T JENDO
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where I = fo.fo.fl flfnfn is an idempotent in the Clifford algebra CZC;H_Q.

The action of an element A € g on an element s € S is given by the left multi-
plication A.s in the Clifford algebra CS,,_ ,.
Let us describe the action of g_; and g; on S in more details:

For the elements

~

E; =ifo(fi+ fi), Boy; =ifo.(f; = f)
from g_; we have
Ej.so = Eptj.s0 = 0.

for any sg € Sg. Let
81 €Sy, 81 = ( Z aj.fj).i.

JENDO

It can be written in the form

81:( Z Clj/.fj/).I+( Z Clj//.fjll).I,

J/,jej/ J//’jEJ//
then
E]‘.Sl :Zfo( Z 2ajl.fjl_j).I—|—( Z aJ”-fjJ”)-I
er Rl
En_|_]‘.80 = Zfo( Z 2aJ/.fJ/_j).I — ( Z ajll.f]‘]//).f.
J/,jej/ J//’jEJ//

Let us provide a similar computation for g; . For the elements
BV = ifo.(f; + ;). B" = ifo.(f; — f)
from g, we have ‘ ‘
E].Sl == En+].81 =0.

for any s; € Sy. Let
Sp € Sq, 80 = (fo Z Clj.fj).[.

JEN1
It can be written in the form

SOZfO.( Z Cl]l.fjl).I—l—fo( Z Cljll.fjll).I,

J/]‘EJ/ J//’]‘EJ//

then
Elso=i( Y 2apfr ) I+( Y am.fim)

J/]‘EJ/ J//’]‘EJ//

EMtisg =i( Y 2ap.fr ) I—( > am.fim)l

J/]‘EJ/ J//’]‘EJ//
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Let M be a conformal spin manifold, S the vector bundle associated to the
representation S of G , then

S =585

is the total spinor bundle on M.
Let V! be the spin covariant derivative on (sections of ) S;, obtained from Levi-
Civita connection . B
The special operator V on spinor fields can be defined in the following way:
Let r = {r1,...,725, } be a (spin) frame in « € M, and

s =1(sg,81) € T'(Sp) BT(S1)

a section of S defined on a neighborhood of .
Then for «,1 < o < 2n we define

2n
S0 — Eq.s1; V,{asl + Z PagEﬁ.so),
=1

Vra (80, 81) = (VO

T

where

T(r)(Eo) =Y PapE”.
8=1

B. Odd case m = 2n-1.
Let

{p07p17 s 7p2n—17p2n}
be a basis of R?2**T! with

Q(po,po) = Q(pzn,pzn) = 0, Q(po,pzn) = 17

Q(pj,pr) = djkfory, k=1,....2n — 1.
We have the embedding R*" 1 C CQP;H_l and the relations in Clifford algebra:

there is a natural embedding
R R
Cont1 C Conyo

given by
pj = eg.eapfor 0 < g7 <2n —1,p2y, = eapt1.€2n

onto even part of C4% . ,. As in the even case we have the natural embeddings
2n+1 2n+1 c
Moreover we can also suppose

C C
CZn—I—l - CZn—I—Z‘
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Similarly as in the even dimensional case we can construct the map
so(2n +1,C) — Csiq
and finally we get the embedding
s0(2n,1) — CSrin
given on go by:
P = (pau-po +1) = E = (fo-fo + 1); Py = pjpx = —Eji = —(fi + i) (fi + fr)

Pj ik = PPtk = —Ejnix = —(f; + ) fx — fr)
Pt gtn = Dj-Pk = —Bngjmee = —(f; — F)(fe = fi)
and on g_y by

Pj = pan-p; = Ej = ifo(fj + f;); Pask = pon-Patk = Engr = ifo(fr — fr);
and finally on g; by
Pl = pynpj > BV =ifo(fi + f;)i P = ponpugr = E"TF =i fo(fr — fu);

with 1 < g,k <n,n+jn+k<2n—-1.

The spinor space is the same as in even-dimensional case (2n+2) and the action
of g is given by the restriction of the corresponding action for even-dimensional
case.

Using the notation and results coming out from the even case we get a description
of the special operator V for the odd case as follows.

Let M be a conformal spin manifold of dimension 2n-1 , S the bundle associated
to the representation S of G , then

S =585

is the whole spin bundle on M. Let V' be spin covariant derivative on S; constructed
from the Levi-Civita connection on M.

The special operator V on spinor fields is defined in the following way: Let
r=A{ry,...ran—1} be a (spin) frame in « € M, and

s =1(sg,81) € T'(Sp) BT(S1)

a section of S defined on a neighborhood of .
Then for o, 1 < a < 2n — 1, we have

2n—1
%,ﬂa (sg,81) = (Vgaso — Ea.sl;Viasl + Z PagEﬁ.so).
B=1
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7.5 Example 2 : The fundamental vector representation.

Let us denote

C'H?=V=V_19VaV,

with
V_l == C;Vo = Cn;Vl = C

Then V is a representation space of g, through left matrix multiplication on column
vector from C"*2,

Let Zo = (0,..,0,1,0,..,0),a = 0,1,...,n,n + 1, with 1 on a'-place be the
standard basis of V.

Then the action of g_; and g1 on V is given by:

EpZpi1 =0,E4.2i = —Zuir, Ex.Zo = Zi

E*Zy=0,E*Z; = —-Zy,E* Z 11 = 7.
Let V be the associated bundle to V, and

V=WwaeViaol

be the grading of V, dim Vy = dimV, = 1, dim Vi = n, and V' the covariant
derivative associated with Levi-Civita connection w on V;. Then for section

w = (wo; {wi};was1) € (Vo) & T(V1) & T(V2)

we get

Veiw = (Vgiwo — (Sijw]‘; {Viiw]‘ + Pijwo — (5ijwn_|_1}; Vﬁiwnﬂ + Pl‘jw]‘)

which is just the Penrose local twistor transport ([Bal]).
7.6 Example: The fundamental representations A*V.

The space A¥V as a representation space of gy with respect to the action induced
from the action on V from Ex.2. has the following grading:

AV = AVa AV ALy

with
AW = By AAF W APV = By A Engr A2V @ ARV
ASV = By A ARV,

We need to have the action of the elements of basis of g_; and g; on these spaces.
Let Zo = (0,..,0,1,0,..,0),a = 0,1,...,n,n + 1, with 1 on a'-place be the
standard basis of V. Then we have (see Ex.2.above)
EvZpwi1=0,FEp. 7 = —Zpy1,Ex.Zoy = Zy,

E*Zy=0,E*Z; = —-Zy,E* Z 11 = 7.
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And moreover we have:

Ek.(Zo NZiyy NZiy N oo A Zil) =2 NZiy NZiy N oo N Zi +

l
+Z0 AN Zngr N Y (1T 2 NN Zi NN 2,

J=1

l
EeZi, NZiy N o NZi) = —Zuga N> (1) Zi, AN Zig A N2,
j=1

Ek.(Zo A Zps1 N Zi1 A Zi2 AL A Zil) = —Zpt1 NZg A Zi1 A Zi2 AL A Zil
Ev(Zpnsy1i NZiy, NZiy N oo NZ;,) =0

and
E¥(ZoNZi NZiy N NZi,)) =0
l .
E*(Ziy NZig N N Zi)) = 2o N Y (1Y Ziy AN Ziy A N2,
j=1

E¥(ZoNZpsi NZig NZig N oo NZ3i)) = Zo NZu N Zi, N Ziy N ... N 2,

E¥(Zpysia NZi, NZig N NZi)) = Zu N Ziy N Ziy Ao N Zi +

l
~Zo N Znia AY (1Y Zi, NN Zig N N 2,

J=1

Let M be a conformal manifold, A¥V the bundle associated to the representation

A*V of G, then we have
AV = AV MV a ALY

its grading, denote V! covariant derivative on (sections of) A¥V induced by Levi-
Civita connection w .

The special operator V on sections of AV is defined in the following way: Let
r={ry,...,r2,} be a frame in @ € M, and

s = (s0,51,52) € D(AfV) @ T(AfV) & T(ASV)
a section of S defined on a neighborhood of x. Then for 7,1 < j7 < n we have

2n 2n
Vi (s0,81,82) = (Vﬁj so—E;j.s1; V,{j $1 —Ej.SQ—I—Z ijEk.so, V,%j 32—|—Z ijEk.sl).
k=1 k=1
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