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1 Introduction

Let π be an irreducible unitary cuspidal automorphic representation of GL2n(A),
where A is the ring of adeles associated to a number field k. The exterior
square L-function L(s, π,Λ2) has been studied extensively by the Langlands-
Shahidi method ([Sh88]) and by the Rankin-Selberg method (the work of
Jacquet-Shalika in [JS90]). The known properties involving π and L(s, π,Λ2)
are summarized in Theorem 2.2 in [Jng06]. The main result of [JS90] (see
also Part (5) of Theorem 2.2 in [Jng06]) says that the existence of the pole at
s = 1 of the (partial) exterior square L-function L(s, π,Λ2) is characterized
by the nonvanishing of the Shalika period attached to π.

In this paper, we show by a different method that the nonvanishing of
the Shalika period attached to π implies the existence of the pole at s = 1
of the exterior square L-function L(s, π,Λ2). This method was initiated by
Jacquet and Rallis in [JR92] and developed in [Jng98]. The more detailed
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account of this method as one useful approach to determine the existence of
poles of Eisenstein series or related automorphic L-functions can be found
in [GJR04a], [Jng-ecun], and [Jng-aim]. It is an interesting and important
problem to find suitable period conditions which yield the existence poles of
Eisenstein series or related automorphic L-functions in general. The relations
between periods of automorphic forms and the Langlands functoriality con-
jectures, and applications to number theory can be found in [J97], [Hd87],
[HLR86], [Hr94], [GP92], [GP94], [JMR99], [JLR99], [GJR01], [GJR04b],
[GJR05], [Od01], [JLZ06], for instance.

Following the idea of this approach, we find a generalized Shalika period
for automorphic forms on SO4n(A), which SO4n is the k-split even special
orthogonal group. The definition is given in §4 for the global generalized
Shalika periods for automorphic forms on SO4n(A), and in §2 for the local
generalized Shalika functionals for irreducible admissible representations of
p-adic group SO4n(kv), where kv is the localization of the number field k at
a finite local place v of k.

Some basic results have been established in §2 and §3 for the local general-
ized Shalika functionals, which classify the unitarily induced representation
I(s, τ ) of SO4n(kv) from the supercuspidal datum (M, τ ) attached to the
standard Siegel parabolic subgroup

P = MN = GL2nN

of SO4n. More precisely, it is proved in Theorem 1, §3, that I(s, τ ) admits
a non-zero local generalized Shalika functional if and only if the irreducible
supercuspidal representation τ of GL2n(kv) (GL2n is the Levi part of P )
admits a non-zero Shalika functional and s must be 1. Moreover, in this case,
the non-zero generalized Shalika functional on I(1, τ ) must factor through the
unique Langlands quotient of I(1, τ ).

The global version of Theorem 1 has been established in §4 for the gener-
alized Shalika periods, which is Theorem 3. It shows that the cuspidal datum
(M,π) has a non-zero Shalika period if and only if the residue at s = 1 of the
Eisenstein series on SO4n(A) associated to (M,π) has a nonzero generalized
Shalika period. As consequence, we obtain two applications. The first is
to determine the existence of the pole at s = 1 of the Eisenstein series in
terms of the nonvanishing of the Shalika period for the cuspidal datum, from
which the Eisenstein series is built. By Theorem 4.11 of [K05], the relevant
local intertwining operator can be normalized in terms of the Shahidi local
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factor. Hence we obtain as the second application that the nonvanishing of
the Shalika period for π implies the existence of the pole at s = 1 of the
exterior square L-function L(s, π,Λ2).

It is worthwhile to mention that the Fourier coeeficients attached to the
generalized Shalika model considered in this paper for SO4n is analogue of
the Fourier coefficients considered for symplectic groups Sp2n by Piatetski-
Shapiro and Rallis in [PSR88] in order to obtain a new way to study auto-
morphic L-functions and by J.-S. Li [Li89] to study the distinguished cuspidal
automorphic representations of Sp2n(A), and that for the quasi-split unitary
groups in the more recent work [Q]. We consider the generalized Bessel
models for a certain family of residual representations of SO4n(A). It is in-
teresting to consider the generalized Shalika models for cuspidal auotmorphic
representations of SO4n(A) as well.

The first named author is supported in part by NSF grant DMS-0400414.
The main part of the work was carried out during his visit in the Mathematics
Institute of the Chinese Academy of Science, Beijing. He would like to thank
the Institute for hospitality and support.

2 Generalized Shalika Models

Let k be a nonarchimedean local field of characteristic zero, ψ be a nontrivial
character of k. Denote by G = SO4n the k-split even special orthogonal group
of rank 2n, with respect to the non-degenerate symmetric form given by

(

12n

12n

)

.

We consider the Siegel parabolic subgroup P of G given by

P = GL2n · V. (2.1)

Let A2n be the set of skew-symmetric matrices of degree 2n. We may write
elements of V as

v =

(

12n z
12n

)

, with z ∈ A2n.

Let b ∈ A2n be a nonsingular skew-symmetric matrix, define a character ψb

of V by
ψb(v) = ψ(1

2
tr(bz)). (2.2)
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The stabilizer of the character ψb in GL2n is Spb2n, the symplectic group with
respect to b,

Spb2n = {g ∈ GL2n|
tgbg = b}. (2.3)

Form a group
Hb := Spb2n · V. (2.4)

It is clear ψb can be extended to be a character of Hb by

ψb(g, v) := ψb(v), (g, v) ∈ Hb. (2.5)

Let

εl =

(

1
·

·
1

)

l×l

, J2l =

(

εl
−εl

)

. (2.6)

Then J2n ∈ A2n is nonsingular skew-symmetric matrix. We will drop the
superscript “b” of ψb, Hb and Spb2n if b = J2n.

One of the main problems in this section is to decompose the flag variety
P\SO4n into H orbits. Firstly we have the following Bruhat decomposition.

Proposition 2.1. The group SO4n decompose into 2n+1 cosets with respect

to (P, P ), and their representative are given as follows:

ωj =









12n−j

1j
12n−j

1j









, j = 0, . . . , 2n.

It reduces to calculate decomposition

P\P ωj P/H

for j = 0, . . . , 2n. In the following, we will denote by Qn1,...,nk
the standard

parabolic subgroup of GL2n with Levi part

GLni
×GLn2

× · · · × GLnk
.

Let Vn1,...,nk
be the nilpotent radical of Qn1,...,nk

.
Consider the double coset decomposition

P\P ωj P/H = ω−1
j Pωj ∩ P\P /H (2.7)
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One can check that
ω−1
j Pωj ∩ P = Q2n−j, j · Vj (2.8)

where Vj is the subgroup of V consisting of elements of the following type:

(

1 z
1

)

, with z =

(

x y
−ty 0j

)

.

Since P normalize V , we obtain

P\PωjP/H ∼= Q2n−j, j\GL2n/Sp2n. (2.9)

If 0 ≤ j ≤ n, the set representatives of Q2n−j, j\GL2n/Sp2n can be chosen as
follows:

γi =













1i
0 12(n−j)+r/2 0
0 0 1r/2

1r/2 0 0
1i+r/2













(2.10)

with 0 ≤ i ≤ j such that r = j − i is even. We notice here γi is chosen such
that

ηi := γi J2n
tγi =









εi
J2(n−j)+r 0

0 Jr
−εi









(2.11)

Similarly, if n ≤ j ≤ 2n, the set of representatives of Q2n−j, j\GL2n/Sp2n can
be chosen as

γ′i =













1i+r/2
0 0 1r/2

1j−i 0 0
0 1r/2 0

1i













(2.12)

for 0 ≤ i ≤ 2n − j such that r = j − i is even. γ′i is chosen so that

ηi := γ′i J2n
tγ′i =









εi
J2(n−j)+r 0

0 Jr
−εi









(2.13)

In conclusion, our computation implies the following result
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Proposition 2.2. Notation as above.

P\SO4n/H =
⋃n

j=0

j
⋃

i=0
i≡j(mod 2)

PωjγiH ∪ Pω2n−jγ
′
iH. (2.14)

The character ψηi will be used in the computation of Fourier coefficients of
Eisenstein series. Before we study properties of double cosets of P\SO4n/H,
we give a formula of it. Let z ∈ A2n. Write z as

z =

(

S T
−tT V

)

(2.15)

with S ∈ M(2n−j)×(2n−j) and

S =

(

s1 s2

s3 s4

)

, T =

(

t1 t2
t3 t4

)

, V =

(

v1 v2

v3 v4

)

. (2.16)

It is clear that

zηi =









−t2εi ∗ ∗ ∗
∗ s4J2(n−j)+r ∗ ∗
∗ ∗ v1Jr ∗
∗ ∗ ∗ −t2εi









. (2.17)

Hence

ψηi(z) = ψ(1
2
tr(zηi)) = ψ(−tr(t2εi) + 1

2
s4J2(n−j)+r + 1

2
v1Jr). (2.18)

Let 0 ≤ j ≤ 2n, 0 ≤ i ≤ min(j, 2n − j) so that r = j − i is even. It
can be checked directly that Q2n−j, j ∩Spηi

2n has a Levi component consists of
elements of the following form









A
D

E
F









(2.19)

with A ∈ GL2n, D ∈ Sp2(n−j)+r, E ∈ Spr, and F = εi
tA−1εi. The unipotent

radical of Q ∩ Spηi

2n is a subgroup of Vi,2(n−j)+r,r,i consists of elements of the

6



following type








1 X S T
1 0 V

1 Y
1









(2.20)

satisfying X = εi
tV J2(n−j)+r, S = εi

tY Jr and

tTεi +
tV J2(n−j)+rV + tY JrY − εiT = 0. (2.21)

Note that
P ∩ ωjγiHγ

−1
i ω−1

j = ωj(P ∩Hηi)ω−1
j . (2.22)

Hence P ∩ ωjγiHγ
−1
i ω−1

j consists of elements of the following form









a at
q

ta−1

−tq−1 tt tq−1









·









1 0 v b
1 −tb 0

1 0
1









(2.23)

such that
(

a ab
tq−1

)

∈ Q2n−j, j ∩ Spηi

2n. (2.24)

since the effect of Ad(ω−1
j ) on P ∩ ωjγiHγ

−1
i ω−1

j is









a at
q

ta−1

−tq−1 tt tq−1









·









1 0 v b
1 −tb 0

1 0
1









Ad(ω−1
j )

−−−−−→









a ab
tq−1

ta−1

−q tb q

















1 0 v − t tb+ b tt t
1 −tt 0

1 0
1









.

(2.25)

Let Lηi be the subgroup of GL2n consists of elements of the following type

(a, q; t) =

(

a at
q

)

, with t ∈ M(2n−j)×j (2.26)
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and

a =

(

A AX
D

)

, q =

(

E
εiAεiY εiAεi

)

(2.27)

with A ∈ GLi, D ∈ Sp2(n−j)+r , E ∈ Spr, X ∈ Mi,2(n−j)+r , Y ∈ Mi, r. It is
clear from (2.23) and (2.24) that

Lηi = Q2n−j, j ∩ ωjγiHγ
−1
i ωj . (2.28)

Proposition 2.3. Let 0 ≤ j ≤ 2n. For 0 ≤ i ≤ min(j, 2n − j) such that

r = j − i is even, the dimension of the algebraic variety PωjγiH is

d(j) = n2 − (j − n)2. (2.29)

In particular, open double cosets are PωnγiH with 0 ≤ i ≤ n so that n− i is

even.

Proof. The mapping x 7→ xγ−1
i induced an homeomorphism

P\PωjγiH −→ P\PωjH
ηi. (2.30)

Since Hηi = γiHγ
−1
i , Adγi induce an homeomorphism

P\PωjH −→ P\PωjH
ηi. (2.31)

Hence the dimension of the algebraic variety P\PωjγiH is the same as that
of P\PωjH.

Assume i = j. Since

dimP\PωjγjH = dimH − dimP ∩ ωjH
ηjω−1

j . (2.32)

By the structure of Q2n−j ∩ ωjSp
ηj

2nω
−1
j in (2.23), (2.24), we see that

dimP ∩ ωjH
ηjω−1

j = (j − n)2 + 3n2. (2.33)

Since dimH = 4n2, the result follows.
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2.4 Admissible double cosets

Let 0 ≤ j ≤ 2n be an even number. If i = 0, then Lη0 (cf. (2.26), (2.27)) is
the subgroup of Q2n−j, j consists of elements of the following type:

(

A X
D

)

, with A ∈ Sp2n−j, D ∈ Spj , X ∈M2n−j, j . (2.34)

We will write L for Lη0 if no confusion is caused. Let θ be the trivial character
of L.

Let γ be a representative of a double coset in U\GL2n /L, where U is the
standard maximal unipotent subgroup of GL2n. We say that γ is admissible
if for all u ∈ U ∩ γLγ−1 we have

ψU(u) = 1 (2.35)

where ψU is a generic character of U .

Proposition 2.5. Let 0 ≤ j ≤ 2n be an even number. Then every double

coset in U\GL2n /L is not admissible.

Proof. We prove the proposition for 0 ≤ j ≤ n, the proof for j > n is similar
and we omit it.

Let ψU , ψ′
U be two generic characters of U . Then there is a diagonal

matrix h in GL2n such that

ψU(u) = ψ′
U(huh−1), u ∈ U.

Since h normalizes U , UγL is an admissible double coset for ψ′
U if and only

if UhγL is admissible double coset for ψU . Without loss of generality, we
assume that the generic character ψU is given by

ψU(u) = ψ(
2n−1
∑

i=1

ui,i+1) (2.36)

where ψ is a nontrivial character of k.
Let W be the Weyl group of GL2n, define

Wj = W ∩Q2n−j, j, (2.37)
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If we identify W with the symmetric group S2n, then Wj = S2n−j × Sj. It is
well known that

B\GL2n/Q2n−j,j = W/Wj . (2.38)

and
Q2n−j, j\GL2n/Q2n−j, j = Wj\W/Wj . (2.39)

Take a set of representatives of Q2n−j, j\GL2n/Q2n−j, j as follows:

wm =









12n−j−m 0 0 0
0 0 1m 0
0 1m 0 0
0 0 0 1j−m









, for 0 ≤ m ≤ j. (2.40)

Then representatives of B\GL2n/Q2n−j, j can be chosen to be of the following
form

wwm, for some w ∈Wj. (2.41)

Let γ be a representative of U\GL2n /L. Then γ can be chosen as

hwwmy (2.42)

where h is a diagonal element, y ∈ GL2n−j × GLj be a representative of
Q2n−j, j/L. We need to show that ψU is nontrivial on U ∩ γLγ−1.

If m = 0, then we take γ = hy with a diagonal matrix h and y ∈
GL2n−j × GLj/Sp2n−j × Spj. For z ∈ k, let

u(z) = (up,q) ∈ U (2.43)

be such that up,p = 1 for 1 ≤ p ≤ 2n and if p 6= q, up,q = 0 unless p = 2n −
j, q = 2n − j + 1, and u2n−j, 2n−j+1 = z. Assume that h = diag(h1, . . . , h2n),
then

h−1u(z)h = u(
h2n−j+1

h2n−j
z) ∈ L, (2.44)

and y−1h−1u(z)hy ∈ L. Hence u(z) ∈ U ∩ γ−1Lγ. Since we can take z
sufficiently large such that ψ(z) 6= 1, ψU is nontrivial on U ∩ γLγ−1.

Let m > 0, then Ad(w−1
m ) acts on Q2n−j, j by









A B S T
C D U V

E F
G H









Ad(w−1
m )

−−−−−→









A S B T
0 D 0 F
C U C V
0 G 0 H









. (2.45)
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Here matrices in Q2n−j,j is written in blocks of partition

(2n − j −m,m,m, j −m). (2.46)

If m 6= 2n− j, from (2.45), we see that the B part and V part of Q2n−j, j

is nonzero. Let w = αβ for some α ∈ S2n−j , β ∈ Sj. If α satisfies

α(1), . . . , α(m) ≥ 2n − j −m,

α(m+ 1), . . . , α(2n− j) ≤ 2n − j −m, (2.47)

and β satisfies similar condition:

β(1), . . . , β(m) ≥ j −m,

β(m+ 1), . . . , β(j) ≤ j −m, (2.48)

then Ad(w)−1 acts on Q2n−j, j by








A′ B ′ S ′ T ′

C ′ D′ U ′ V ′

E ′ F ′

G′ H ′









Adw−1

−−−−→









D∗ C∗ V ∗ U∗

B∗ A∗ T ∗ S∗

H∗ G∗

F ∗ E∗









. (2.49)

Here the matrix on the left side is written in blocks of partition

(m, 2n − j −m, j −m,m), (2.50)

while the matrix on the right is in blocks of partition

(2n − j −m,m,m, j −m). (2.51)

The U ′ part of the matrix on the left is moved to U∗ part of the matrix on
the right by performing column and row permutations to tU ′. Note that ψ
is nontrivial on the U ′ part on the left matrix of (2.49), which is move to U∗

part of matrix on the right, which is invariant under Ad(wm)−1 as indicated
in (2.45). Hence ψ is nontrivial on U ∩ γLγ−1.

If one of (2.47) and (2.48) is not satisfied, say, α does not satisfy (2.47),
we claim that there exists u ∈ U such that ψ(u) 6= 1 and

w−1uw =









1 b 0 0
1 0 0

1 0
1









(2.52)
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for some b ∈ M2n−j−m, m. Here the matrix is written in blocks of partition
(2n−j−m,m,m, j−m). Obviously, if this claim is true, then ψU is nontrivial
on U ∩ γLγ−1.

In fact, if such u doesn’t exist, then for 1 ≤ ℓ ≤ 2n − j − 1, either

α(ℓ) ≤ 2n − j −m, α(ℓ + 1) ≤ 2n − j −m, (2.53)

or
α(ℓ) > 2n− j −m. (2.54)

Then there is ℓ0 such that

α(1), . . . , α(ℓ0) > 2n− j −m

α(ℓ0 + 1), . . . , α(2n− j) ≤ 2n− j −m. (2.55)

Hence ℓ0 = m and α satisfies (2.47). This contradicts to our assumption.
Now let m = 2n− j, then j = m = n. Let

y =

(

a1

a2

)

, with a1, a2 ∈ GLn. (2.56)

Denote temporarily the symplectic group for aiJi
tai by Spj(ai), then

Spj(ai) = aiSpja
−1
i , for i = 1, 2. (2.57)

It is clear that

yLy−1 = {

(

A U
D

)

| A ∈ Spj(a1), D ∈ Spj(a2), U ∈ Mn×n } , (2.58)

and UtwwnyL is admissible if and only if Utwwn(yLy
−1) is admissible.

Recall the action of Ad(wn)
−1 on Qn,n is

(

A X
D

)

Ad(wn)−1

−−−−−−→

(

D
X A

)

, with A,D ∈ GLn. (2.59)

Decompose w = w1w2, with w1, w2 ∈ Sn. Let u be an element of U , then

u =

(

u1 u2

u4

)

(2.60)
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with u1, u4 in the maximal unipotent subgroups U0 of GLn. Then

[(wwn)
−1]u[wwn] =

(

w−1
2 u4w2

∗ w−1
1 u1w1

)

(2.61)

It is well known that there is no admissible double coset of U0\GLn/Spn,
equivalently, for every a ∈ GLn there exists u′ ∈ U0 such that

ψU0
(u) 6= 1, and a−1u′a ∈ Spn. (2.62)

Here ψU0
is the restriction of ψU to U0, which is a generic character of U0.

Now let a = w1a
−1
2 , u1 ∈ U0 such that ψU0

(u) 6= 1 and

a2w
−1
1 u1w1a

−1
2 ∈ Spn, (2.63)

which is equivalent to w−1
1 u1w1 ∈ Sp(a2). Choose above u1 sufficiently large,

we see that Utwwn(yLy
−1) is not admissible.

Corollary 2.6. Let τ be an irreducible admissible generic representation of

GL2n. Then we have

dimC HomL(τ, θ) = 0. (2.64)

In particular, any irreducible generic cuspidal automorphic representation of

GL2n(A) has no nonzero (L, θ)-periods.

Proof. The proof is similar to the proof of Corollary 3.3 in [GJR04a], we will
not give details here.

3 Local Functionals

Let k be a p-adic field, ψ be a nontrivial character of k.

Definition 3.1. Let (σ, V ) be an irreducible representation of SO4n. We say
that σ has a local generalized Shalika functional if HomHb(σ, ψb) is nonzero
for some nonsingular b in A2n, i.e. there is a nonzero linear functional lψb on
V such that

lψb(σ(h)v) = ψb(h)lψb(v), for h ∈ Hb, v ∈ V.

(see (2.5) for definition of Hb and ψb). It is clear if σ has a general Shalika
model for some b, so it has for all nonsingular b in A2n.
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Let S be the Shalika group of GL2n consisting of element of the following
type

(

g gu
g

)

, with g ∈ GLn, u ∈ Mn×n. (3.1)

Let ψS be the character of S defined by

ψS(

(

g gu
g

)

) = ψ(tr(u)). (3.2)

Let (τ, E) be an irreducible representation of GL2n. As in [JR96], we say that
τ has a Shalika functional if HomS(τ, ψS) is nonzero, i.e. there is a nonzero
linear functional l on E such that

l(τ (x)v) = ψS(x)l(v), for all x ∈ S, v ∈ E. (3.3)

Recall that P = GL2n · V is the Siegel parabolic subgroup of SO4n. Let
α : GL2n → C× be the character of defined by

α(g) = | det g|
1
2 , g ∈ GL2n. (3.4)

Let (τ, E) be an irreducible admissible unitary generic representation of GL2n.
For s ∈ C, consider the normalized induced representation

I(s, τ ) = IndSO4n

P (τ ⊗ αs). (3.5)

Theorem 3.1. Notations as above. The induced representation I(s, τ ) ad-

mits a local generalized Shalika functional if and only if τ has a Shalika

functional and s = 1. In this case, the nontrivial Shalika functional factors

through the unique Langlands quotient of I(s, τ ) at s = 1.

Proof. Let V be the space of smooth E-valued functions f : G→ E satisfying

f(pg) = τ (p)δ
1
2 (p)f(g), for p ∈ P, g ∈ SO4n. (3.6)

Here δ(p) is the modular function of P . Then I(s, τ ) acts on V by

[I(s, τ )(g)]f(x) = f(xg), for x, g ∈ SO4n (3.7)

For 0 ≤ j ≤ n, let Vj be the invariant P subspace of V , consisting of functions
compactly supported modulo P , and

supp f ⊂
⋃

k≤j
[PωkP ∪ Pω2n−kP ]. (3.8)
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Then V = Vn ⊃ · · · ⊃ V0 is a decreasing filtration of V as P -spaces. Let Jξ
be the subspace of V consisting of functions supported on double coset PξH
and compactly supported modulo P . Recall that double cosets P\SO4n/H
are computed at section 2, more explicitely, they are

PωjγiH, Pω2n−jγ
′
iH, (3.9)

for 0 ≤ j ≤ n and 0 ≤ i ≤ n so that j − i is even, where γi and γ′i are
matrices defined at (2.10) and (2.12).

Then the following sequence is exact

0 → Vj−1 → Vj →
⊕

i
Jωjγi

⊕ Jω2n−jγ′i
→ 0 (3.10)

where i runs through all 0 ≤ i ≤ j so that j − i is even.
Let l : I(s, τ ) → C be a linear linear functional on V satisfying

l([I(s, τ )(h)]f) = ψ(h)l(f), (3.11)

for all h ∈ H, f ∈ V . By the localization principle of Gelfand and Kazhdan,
l is generated by distributions supported on Jξ satisfying (3.11). So without
loss of generality, we assume that l is supported on PωjγiH for some 0 ≤
j ≤ n and 0 ≤ i ≤ j so that j − i is even.

As in the proof of Proposition 2.3, P ∩ ωjH
ηiω−1

j consists of elements of
the following form

x =

(

g
tg−1

) (

1 u
1

)

∈ P, (3.12)

here

g =

(

a at
q

)

∈ Q2n−j, j, u =

(

v b
−tb 0

)

(3.13)

such that
(

a ab
tq−1

)

∈ Q2n−j, j ∩ Spηi. (3.14)

Set
H0 = γ−1

i ω−1
j [P ∩ ωjH

ηiω−1
j ]ωjγi. (3.15)

Then H0 is a subgroup of H. Denote the restriction of the character ψ of H
(cf. (2.5)) on H0 by ψ again. Let C∞

ψ (H,H0) be the set of smooth function

15



on H compactly supported modular H0 and left ψ-invariant. Let Hc be the
unipotent group of H consists of elements of the following type
(

g gu
tg−1

)

, with g = γ−1
i ( 1 0

z 1 ) γi ∈ Sp2n, u = γ−1
i ( 0 0

0 z′ ) γi ∈ A2n. (3.16)

Here z ∈ Mj×(2n−j), z
′ ∈ Mj×j. Then H0 ∩ Hc = {1} and H = H0 · Hc. Let

C∞
c (Hc) be the space of smooth function on Hc with compact support. Then

restriction induced an homeomorphism

C∞
ψ (H,H0) ∼= C∞

c (Hc) (3.17)

Let dh be the Haar measure on Hc. Define a surjective mapping Pωjγi
:

Jωjγi
→ E by

Pωjγi
(f) =

∫

Hc

f(h)dh. (3.18)

Since l is supported on PωjγiH and satisfies (3.11), there is a linear functional
l′ : E → C such that the following diagram is commutative

Jωjγi

Pωj γi

−−−→ E

l





y l′





y

C
=

−−−→ C

and satisfies

l′(τ (x)αs(x)δ
1
2
P (x)v) = ψ(γ−1

i ω−1
j xωjγi)| detAd(γ−1

i ω−1
j xωjγi)|Hc|l

′(v),
(3.19)

for x ∈ Lηi, v ∈ E. We note here that

det(γ−1
i ω−1

j xωjγi)|Hc = det(a)2i, for x ∈ Lηi. (3.20)

If i 6= 0 and 2(n− j) + r 6= 0, for X ∈Mi×2(n−j)+r , Y ∈Mr×i, define

a =

(

1 X
1

)

, q =

(

1
Y 1

)

. (3.21)

We choose 0 6= X such that there is b ∈M(2n−j)×j such that
(

a ab
tq−1

)

∈ P ∩ ωjH
ηiω−1

j . (3.22)
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For t =
(

t1 t2
t3 t4

)

∈ M2n−j, j , define

x =









1 X t1 t2
1 t3 t4

1 0
Y 1









∈ Lηi. (3.23)

Then simple computation shows that

ψ(γ−1
i ω−1

j xωjγi) = ψ(−tr(t2εi)). (3.24)

Let

t′ =

(

t′1 t′2
t′3 t′4

)

∈ M2n−j, j

be such that ψ(−tr(Xt′4εi)) 6= 1. If we let

x′ =









1 0 t′1 t′2
1 t′3 t′4

1
0 1









(3.25)

then

ψ(γ−1
i ω−1

j xx′ωjγi) = ψ(−tr[(t2 + t′2)εi])ψ(−tr(Xt′4εi))

6= ψ(γ−1
i ω−1

j xωjγi) · ψ(γ−1
i ω−1

j x′ωjγi). (3.26)

This contradicts (3.19), which states that the function

ψ(γ−1
i ω−1

j xωjγi), x ∈ Lηi

is a character, hence in this case l′ = 0.

If i = 0, then (3.19) becomes

l′(τ (x)v) = l′(v), for x ∈ Lη0. (3.27)

This is impossible by Proposition 2.5. So in this case, l′ = 0.
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If 2(n − j) + r = 0, then r = 0 and n = j = i. Denote the group Lηn

defined at (2.28) simply by L. Then L is the subgroup of GL2n consisting of
elements of the following type

(

g gu
εngεn

)

, with g ∈ GLn, u ∈ Mn×n. (3.28)

Hence α(x) = | det(g)|. By (2.17),

ψ(γ−1
n ω−1

n xωnγn) = ψ(−uεn), (3.29)

The equation (3.19) of l′ is

l′(τ (x)αs−1) = ψ(−uεn)l
′(v), v ∈ E. (3.30)

Let

x0 =

(

1
−εn

)

. (3.31)

Then L ∼= Ad(x0)(S), where S is the Shalika subgroup of GL2n, and

ψ(γ−1
n ω−1

n xωnγn) = ψS(Ad(x−1
0 )(x)). (3.32)

Here ψS is the character of S defined at (3.2). Hence if l′ is nonzero and
supported on PωnγnH, then π · αs−1 has a Shalika functional. In [JR96],
Jacquet and Rallis shows that if an irreducible representation of GL2n has a
Shalika functional, then it is self-dual. So s = 1 and π is self-dual.

Conversely, if π is self-dual irreducible representation of GL2n having a
Shalika functional l′, we can construct a generalized Shalika functional l of
IndSO4n

P (πα) by define it be zero on

Vn−1

⊕ ⊕

0≤i<n
i≡nmod2

Jωnγi
. (3.33)

and on Jωnγn by

l(f) := l′(Pωnγn(f)), for f ∈ Jωnγn . (3.34)

From the argument above, we see that if l is a generalized Shalika func-
tional of IndSO4n

P (πα), then it factors through Vn−1 which is the maximal
P -invariant subspace of V . As the Jacquet functor is exact, l factors through
the langlands quotient of IndSO4n

P (πα).
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4 Global Periods

Let k be a number field and A be the ring of adeles of k. We shall consider
Eisenstein series on SO4n(A) associated to the maximal parabolic subgroup
P2n = M2nU2n and irreducible cuspidal automorphic representation π of the
Levi part M2n(A) ∼= GL2n(A). Here SO4n is the k-split even special orthogo-
nal group. The location of the pole of the Eisenstein series is expected to be
determined in terms of the location of poles of the exterior square L-function
L(s, π,Λ2) by the Langlands theory of the constant terms of Eisenstein se-
ries. We shall use (generalized) Shalika model to realize the residue of the
Eisenstein series, as a by-product, we determine the location of the poles of
the Eisenstein series by means of the Shalika model of the cuspidal data.

Let K =
∏

vKv be the maximal compact subgroup of SO4n(A) such that
SO4n(A) has the Iwasawa decomposition

SO4n(A) = P2n(A)K.

In particular, for each finite local place v, Kv = SO4n(Ov), where Ov is the
ring of integers in the local field kv. Then the Langlands decomposition of
SO4n(A) is

SO4n(A) = U2n(A)M1
2nA

+
2nK.

Let A2n be the (split) center of M2n, the unique reduced root in Φ+(P2n, A2n)
can be identified with simple root α2n. As normalized in [Sh88], we denote

α̃2n :=< ρ
P2n
, α2n >

−1 ρP2n
, (4.1)

where ρ
P2n

is half of the sum of all positive root in U2n and < ·, · > is the
usual Killing-Cartan form for the root system of SO4n. We let

aM2n
= HomR(X(M2n),R), a

∗
M2n

= X(M2n) ⊗ R, (4.2)

where X(M2n) denotes the group of all rational characters of M2n. Since P2n

is maximal, a
∗
2n is of one dimension. We identify C with a

∗
2n,C via s 7→ sα̃2n.

For simplicity, we use the notation without the indication 2n. Let HP :
M 7→ aM be the map defined as follows, for any χ ∈ a

∗
M ,

HP (m)(χ) =
∏

v

|χ(mv)|v (4.3)
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for m ∈ M(A). It follows that HP is trivial on M1. This map HP can be
extended as a function over SO4n(A) via the Iwasawa decomposition or the
Langlands decomposition above. By direct computation, we know that

HP (m)(s) = |det2na|
s
2 , HP (m)(ρ

P
) = |det2na|

2n−1
2 (4.4)

where s ∈ C and m = m(a) = diag(a, a′) ∈M with a ∈ GL2n.
Let π be an irreducible cuspidal automorphic representation of GL2n(A)

with trivial central character. Then (M,π) is a cuspidal datum attached
the Levi subgroup M . Let φ(g) be a complex-valued smooth function on
SO4n(A) which is left U(A)M(k)-invariant and right K-finite. Writing by
the Langlands decomposition

g = um1aκ ∈ U(A)M1A+
MK,

we assume that
φ(g) = φ(m1κ). (4.5)

If we fix a κ ∈ K, the map

m1 7→ φ(m1κ)

defines a K ∩M1-finite vector in the space of cuspidal representation π of
M(A). We set

F (g;φ, s) := HP (g)(s+ ρ
P
)φ(g).

Attached to such a function F (g;φ, s), we define an Eisenstein series

E(g;φ, s) :=
∑

γ∈P (k)\SO4n(k)

F (γg;φ, s) (4.6)

From the general theory of Eisenstein series [MW95], this Eisenstein series
converges absolutely for the real part Re(s) > 2n−1

2
and has a meromorphic

continuation to the whole s-plane with finitely many possible simple poles
for Re(s) > 0. By the Langlands theory of the constant terms of Eisenstein
series, the existence of the poles on the positive half plan of this Eisenstein
series should be detected in general by means of that of the constant terms
of the Eisenstein series.

In the case under consideration, the only nonzero constant term of the
Eisenstein series E(g;φ, s) is the one along the maximal parabolic subgroup
P , i.e.

EP (g;φ, s) :=

∫

U (k)\U (A)

E(ug;φ, s)du (4.7)
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where du is the Haar measure on U(k)\U(A), which is normalized so that
the total volume equals one. By assuming the real part of s large, we have

EP (g;φ, s) = F (g;φ, s) + F (g;M(s, w2n)(φ),−s) (4.8)

where M(s, w2n) is the standard (global) intertwining operator attached to
the maximal parabolic subgroup P and the Weyl element w2n, which has the
property that w2nMw−1

2n = M and w2nUw
−1
2n = U− (the opposite of U). This

equation holds for all s ∈ C by meromorphic continuation. The intertwining
operator M(s, w2n) can be expressed as

M(s, w2n) = ⊗vA(s, πv, w2n) (4.9)

by following the notations in [Sh90], where A(s, πv, w2n) is the local inter-
twining operator

Ind
SO4n(kv)
P (kv) (πv ⊗ |det2na|

s
2 ) → Ind

SO4n(kv)
P (kv) (w2n(πv) ⊗ |det2na|

− s
2 ).

Then, one can write

A(s, πv, w2n) =
L(s, πv,Λ

2)

L(1 + s, πv,Λ2)ǫ(s, πv,Λ2, ψv)
·N(s, πv, w2n).

Proposition 4.1 (Theorem 4.11 [K05]). Assume that πv is the local v-
component of an irreducible cuspidal automorphic representation π ofM(A) =
GL2n(A). Then the normalized local intertwining operator N(s, πv, w2n) is

holomorphic and nonzero for the real part Re(s) ≥ 1
2
.

By Proposition 4.1, we express the intertwining operator M(s, w2n) as

M(s, w2n) =
L(s, π,Λ2)

L(1 + s, π,Λ2)ǫ(s, τ,Λ2)
·N(s, π, w2n). (4.10)

The constant term in (4.8) can be expressed as

EP (g;φ, s) = F (g;φ, s) (4.11)

+
L(s, π,Λ2)

L(1 + s, π,Λ2)ǫ(s, τ,Λ2)
· F (g;N(s, π, w2n)(φ),−s).

The analytic properties of the exterior square L-functions L(s, π,Λ2) are
summerized in [Jng06], which in particular says that L(s, π,Λ2) has mero-
morphic continuation to the whole complex plane and has a possible simple

21



pole at s = 1. Hence the Eisenstein series E(g;φ, s) is holomorphic for the
real part of s greater than 1

2
, except possibly at s = 1 where it may have a

simple pole. E(g;φ, s) has a simple pole at s = 1 if and only if the exterior
square L-functions L(s, π,Λ2) has a simple pole at s = 1. This is the method
that one determines the location of poles of Eisenstein series in terms of the
location of the poles of the relevant L-functions.

4.1 Residues of Eisenstein Series

In this section, we want to show that the location of the possible simple
pole of the Eisenstein series may be determined by means of the generalized
Shalika model of the residue. Let s0 be a real number greater than 1

2
and

define
Es0(g;φ) := Ress=s0E(g;φ, s).

We want to calculate the following period integral

PH,ψ(Es0(·;φ)) =

∫

H(k)\H(A)

Es0(r;φ)ψ−1(r)dr. (4.12)

It is clear that one might write the period as

PH,ψ(Es0(·, φ)) =

∫

Sp2n(k)\Sp2n(A)

∫

V (k)\V (A)

Es0(vx;φ)ψV (v)dvdx (4.13)

=

∫

Sp2n(k)\Sp2n(A)

Ress=s0 [

∫

V (k)\V (A)

E(vx;φ, s)ψV (v)dv]dx.

The convergency of the integration along the variable x needs to be justified
via the Arthur’s truncation method. We are going to calculate the inner
integration first, which is the Fourier coeffient of the Eisenstein series.

4.2 Fourier Coefficients of Eisenstein Series

We shall study in this section the Fourier coefficient of the Eisenstein series
∫

V (k)\V (A)

E(vh;φ, s)ψV (v)dv, (4.14)

which occurs as an inner integration of (4.13). In the following we assume
the real part of s be large, so that the Eisenstein series converges absolutely
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and uniformly on every compact subset in SO4n(k)\SO4n(A). By Proposition
2.2, we have

(4.14) =

∫

V (k)\V (A)

∑

γ∈P (k)\SO4n(k)

F (γvh;φ, s)ψV (v)dv

=

2n
∑

j=0

∑

γ∈P
ωj\P/V

∫

V
ωj,γ

\V (A)

F (ωjγvh;φ, s)ψV (v)dv (4.15)

where Pωj = ω−1
j Pωj ∩ P and V ωj ,γ = (ωjγ)

−1Pωjγ ∩ V . In the discussion
in §2 and Proposition 2.2, we write Pωj\P/H as a disjoint union

Pωj\P/H = ∪iP
ωjγiSp2nV, (4.16)

where i runs through 0 ≤ i ≤ min(j, 2n− j) so that r = j − i be even. Here
for j > n, we write γi for γ′i there. For each given ωj, we set

Sp2n, γi
:= γ−1

i Pωjγi ∩ Sp2n. (4.17)

Then we obtain

(4.15) =
2n
∑

j=0

∑

γi

∑

ǫi∈Sp2n,γi
\Sp2n

∫

V γi,ǫi\V (A)

f(ωjγiǫivh;φ, s)ψV (v)dv. (4.18)

where V γi,ǫi = (γiǫi)
−1Pωj(γiǫi) ∩ V . Since Sp2n normalizes V and stabilizes

the character ψV , we have V γi,ǫi = V ωj ,γi and we can express (4.18) as

(4.18) =

2n
∑

j=0

∑

γi

∑

ǫi∈Sp2n,γi
\Sp2n

∫

V γi\V (A)

f(ωjγivǫih;φ, s)ψV (v)dv. (4.19)

In the following we will discuss (4.19) for each ωj case by case.
If j = 0, then ω0 = e, γi = ǫi = e. Hence

(4.19)j=0 =

∫

V (k)\V (A)

F (vh;φ, s)ψV (v)dv (4.20)

= F (h;φ, s)

∫

V (k)\V (A)

ψV (v)dv = 0, (4.21)
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since ψV is nontrivial on V (k)\V (A).
Let 0 ≤ j ≤ n. The double coset representatives γi of Pωj\P/H are

given in (2.10), for 0 ≤ i ≤ j such that r = j − i is even. Let V0 ⊂ V be the
subgroup consists of elements of the following form

u = γ−1
i









1 0 v 0
1 0 0

1 0
1









γi, with v ∈ M2n−j, j. (4.22)

It is clear that

ωjγiuγ
−1
i ωj =









1 0 v 0
1 0 0

1 0
1









∈ V (A), (4.23)

hence V0 ⊂ V ωj ,γi . We notice that

ψV (u) = ψηi









1 0 v 0
1 0 0

1 0
1









. (4.24)

By the formula of ψηi in (2.17), if 2(n− j) + r 6= 0, then ψV is nontrivial on
V0(A), we then obtain

∫

V0(k)\V0(A)

F (ωjγivǫih;φ, s)ψV (v)dv (4.25)

= F (ωjγiǫih;φ, s)

∫

V0(k)\V0(A)

ψV (v)dv = 0 (4.26)

This proves the integral in (4.19) vanishes when 0 ≤ j ≤ n, i 6= n, i.e.

(4.19)j<n =
∑

γi

∑

ǫi

∫

V ωj ,γi\V (A)

F (ωjγivǫih;φ, s)ψV (v)dv = 0 (4.27)

(4.19)j=n =
∑

γi 6=γn

∑

ǫi

∫

V ωn,γi\V (A)

F (ωjγivǫih;φ, s)ψV (v)dv

+
∑

ǫn∈Sp2n,γn
\Sp2n

∫

V ωn,γn\V (A)

F (ωnγnvǫnh;φ, s)ψV (v)dv

=
∑

ǫn

∫

V ωn,γn\V (A)

F (ωnγnvǫnh;φ, s)ψV (v)dv (4.28)
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Since γn = 12n, simple computation shows that V ωn,γn is the subgroup of V
consists of elements of V of the following type:









1 0 v b
1 −bt 0

1 0
1









(4.29)

and

Sp2n,γn
= {

(

g gu
0 εn

tg−1εn

)

∈ Sp2n | g ∈ GLn, u ∈Mn×n } (4.30)

is the Siegel parabolic of Sp2n, we change notation now and denote it by P0.
Hence

(4.19)j=n =
∑

ǫn∈P0(k)\Sp2n(k)

∫

V ωn,γn\V (A)

F (ωnvǫnh;φ, s)ψV (v)dv (4.31)

The proof of vanish of (4.19) for j > n is similar to that of j < n, hence,

(4.19)j>n =
∑

γi

∑

ǫi

∫

V ωj ,γi\V (A)

F (ωjγivǫih;φ, s)ψV (v)dv = 0 (4.32)

In other words, we have proved that

Proposition 4.3. The ψV -Fourier coefficient of the Eisenstein series

E(vh;φ, s) has the following expression:

∫

V (k)\V (A)

E(vh;φ, s)ψV (v)dv =
∑

ǫn∈P0(k)\Sp2n(k)

∫

V ωn,γn\V (A)

F (ωnvǫnh;φ, s)ψV (v)dv.

(4.33)

Since V is abelian,
V = V ωn,γn × Vγn (4.34)

where Vγn is the subgroup of V consists of elements of the following form









1 0 0 0
1 0 u

1 0
1









. (4.35)
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Define
Vn,n = ωnV

ωn,γnω−1
n ∩ P, (4.36)

which is the unipotent radical of the parabolic Pn,n of GL2n. The character
ψn,n of Vn,n defined by

ψn,n

(

1 x
1

)

= ψ(−xεn) (4.37)

is the character induced from ψV by means of conjugation by ωn. Hence the
integral in (4.33) can be expressed as

F(g;φ, s) : =

∫

V ωn,γn (k)\V (A)

F (ωnvg;φ, s)ψV (v)dv (4.38)

=

∫

Vγn(A)

∫

Vn,n(k)\Vn,n(A)

F (vωnv2g;φ, s)dvdv2.

It is clear the first integral over Vn,n(k)\Vn,n(A) is the ψn,n-Fourier coefficient
of the irreducible cuspidal automorphic representation π and the second in-
tegration over Vγn(A) is the intertwining operator associated to the Weyl
element ωn in this case.

For the given irreducible cuspidal representation π of GL2n(A), the ψn,n-
Fourier coefficient

Wψn,n(h, ϕπ) :=

∫

Vn,n(k)\Vn,n(A)

ϕπ(vh)ψn,n(v)dv (4.39)

generates an automorphic representation of the centralizer GLn of the char-
acter ψn,n, which is denoted by W(π, ψn,n).

It is easy to see that the function F(g;φ, s) is invariant under the left
translation by the unipotent radical N0 of P0. If m(h) denotes the element
of the Levi subgroup of P0, then the function

m(h) 7→ F(m(h)g;φ, s) (4.40)

belongs to the space of automorphic representation

| det(h)|s+nW(π, ψn,n) (4.41)

of GLn. In fact, assume h ∈ GLn, then

m(h) =









h
εn

th−1εn
th−1

εnhεn









∈ P0.
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Here elements in GL2n are identified as those in M . Note that the Jacobian
of m(h) on Vγn is | det h|−(n−1). Hence (4.38) becomes

F(m(h)g;φ, s) = | deth|−(n−1)

∫

Vγn(A)

∫

Vn,n(k)\Vn,n(A)

F (vωnm(h)v2g;φ, s)dvdv2

By (2.25),

ωnm(h)ω−1
n =









h
εnhεn

th−1

εn
th−1εn









,

which is a centralizer of ψn,n. Since its Jacobian on Vn,n is 1, if we define
φ′(x) = φ(m(h)x), then by (4.4)

F(m(h)g;φ, s) = | deth|−(n−1)HP (m(h))(s+ ρP )F(g;φ′, s)

= | deth|−(n−1)| deth2|
s
2 | deth2|

2n−1
2 F(g;φ′, s)

= | deth|s+nF(g;φ′, s).

It follows that the function in (4.33) is an Eisenstein series of Sp2n(A) of
form

∑

ǫ∈P0(k)\Sp2n(k)

F(ǫh;φ, s). (4.42)

where F(g;φ, s) is defined as in (4.38).

4.4 Period Identity

We continue here the explicit calculation of the period PH,φ(Es0(·;φ) of the
residue Es0(·;φ) defined in (4.12). By (4.13), (4.33) and (4.42), we have

PH,φ(Es0(·;φ) =

∫

Sp2n(k)\Sp2n(A)

Ress=s0
∑

ǫ∈P0(k)\Sp2n(k)

F(ǫh;φ, s)dh. (4.43)

It is clear that integral (4.43) may not be convergent , so we use the Arthur
truncation method to regularize the integral. By §I.2.13 of [MW95], we apply
the truncation method to the automorphic function

In,s(h) :=
∑

ǫ∈P0(k)\Sp2n(k)

F(ǫh;φ, s)
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and its residue at s = s0

In,s0(h) := Ress=s0
∑

ǫ∈P0(k)\Sp2n(k)

F(ǫh;φ, s)

Recall from §I.2.13 of [MW95], for any locally L1-function φ on the quo-
tient Sp2n(k)\Sp2n(A), the truncated function, which is also a locallly L1-
function, is given by

ΛTφ(g) :=
∑

B⊂P=MN⊂Sp2n

(−1)r(G)−r(M )
∑

γ∈P\Sp2n

φP (γg)τ̂P (logM(mP (γg)−TM)

(4.44)
where P = MN are standard parabolic subgroups of G, which may be equal
to G, and φP is the constant term of φ along N , and the other notations are
the same as in [MW95].

Applying (4.44) to the automorphic function In,s(h), we obtain the rapidly
decreasing function ΛTIn(h, s) on the fundamental domain for Sp2n(k)\Sp2n(A).
Hence we have

Ress=s0

∫

Sp2n(k)\Sp2n(A)

ΛT In,s(h)dh =

∫

Sp2n(k)\Sp2n(A)

ΛTIn,s0(h)dh. (4.45)

As in Page 353, [GJR04a], we write

Φs(h) := ΛTIn,s(h) − In,s(h). (4.46)

Then we have

PSp2n
(In,s) = Ress=s0

∫

Sp2n(k)\Sp2n(A)

ΛTIn,s(h)dh −

∫

Sp2n(k)\Sp2n(A)

Φs0(h)dh.

(4.47)
As in (6,14) of [GJR04a], we write

ΛTIn,s(h) = In,s(h)

−
∑

γ∈P0\Sp2n

F(γh;φ, s)τ̂P0
(logMP0

(mP0
(γh)) − TMP0

)

+
∑

γ∈P0\Sp2n

F(γh;φ, s)τ̂P0
(logMP0

(mP0
(γh)) − TMP0

)

+ Φs(h), (4.48)
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It follows that the period

∫

Sp2n(k)\Sp2n(A))

ΛTIn,s(h)dh (4.49)

=

∫

Sp2n(k)\Sp2n(A)

∑

γ∈P0\Sp2n

F(γh;φ, s)(1 − τ̂P0
(logMP0

(mP0
(γh)) − TMP0

))dh

+

∫

Sp2n(k)\Sp2n(A)

∑

γ∈P0\Sp2n

F(γh;φ, s)τ̂P0
(logMP0

(mP0
(γh)) − TMP0

)dh

+

∫

Sp2n(k)\Sp2n(A)

Φs(h)dh.

Following the same argument as in [JR92], [Jng98], [GJR01], and [GJR04a],
we expect that the residue at s = s0 of the following as a (meromorphic
function in s)

∫

Sp2n(k)\Sp2n(A)

∑

γ∈P0\Sp2n

F(γh;φ, s)τ̂P0
(logMP0

(mP0
(γh)) − TMP0

) + Φs(h)dh

is equal to
∫

Sp2n(k)\Sp2n(A)

Φs0(h))dh.

The justification of this expectation involves some detailed computations of
relevant intertwining operators and will be omitted here.The main idea of
such explicit calculation is the same as the one we are going to deal with,
which is the second integral in (4.49). It follows that

PSp2n
(In,s0) = Ress=s0

∫

Sp2n(k)\Sp2n(A)

∑

γ∈P0\Sp2n

F(γh;φ, s)(1 − τc(H(γh)))dh,

(4.50)
where τc(H(g)) = τ̂P0

(logMP0
(mP0

(γh)) − cMP0
) as defined in §4.1, [Jng98].

Since the function F(γh;φ, s)(1 − τc(H(γh))) is truncated, the summation
over γ ∈ P0\Sp2n is finite, which is absolutely convergent in particular. Hence
the integral in (4.50) is equal to

∫

P0(k)\Sp2n(A)

F(h;φ, s)(1 − τc(H(h)))dh (4.51)
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By the Iwasawa decomposition Sp2n(A) = P0(A)KSp2n
, where KSp2n

is the
standard maximal compact subgroup of Sp2n(A), the Haar measure on Spn(A)
at g = nmκ can be chosen as

| detm|−(n+1)dndmdκ.

By the Langlands decomposition

GLn(A) = GLn(A)1 · A+,

we deduce that the integral in (4.51) is equal to
∫

KSp2n
×GLn(k)\GLn(A)

F(mκ;φ, s)(1 − τc(H(m)))| detm|−(n+1)dmdκ. (4.52)

It is easy to calculate the following

| detm|−(n+1) = |a|
−nd(n+1)
R

F(mκ;φ, s) = |a|
nd(s+n)
R

F(m1κ;φ, s)

(1 − τc(H(mw2v1))) = (1 − τc(H(ta)))

where d is the number of the real archimedean places of the number field
k. The second equation comes from (4.41) by the assumption that φ is A+-
invariant. We deduce that the integral in (4.52) is equal to

λ(s) ·

∫

KSp2n
×Zn(A)GLn(k)\GLn(A)

F(mκ;φ, s)dmdκ. (4.53)

where Zn denotes the center of GLn and the function λ(s) is given by

λ(s) := vol(A1/k) ·

∫

R+

|a|nd(s−1)(1 − τc(H(ta)))da
×.

It is easy to check that

∫

R+

|a|nd(s−1)(1 − τc(H(ta)))da
× =

cnd(s−1)

s− 1
.

Since the integral
∫

KSp2n
×Zn(A)GLn(k)\GLn(A)

F(mκ;φ, s)dmdκ
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represents a holomorphic in s, the possible of (4.53) can only come from the
function λ(s), which has the only simple pole at s = 1. Hence from (4.50)
and (4.53) we obtain that s0 must be 1 and

PSp2n
(In,1) =

vol(A1/k)

nd

∫

KSp2n
×Zn(A)GLn(k)\GLn(A)

F(mκ;φ, s)dmdκ. (4.54)

By (4.38), it is easy to see that the integration in variable m in (4.54)
yields the following integral

∫

Vγn(A)

∫

Zn(A)GLn(k)\GLn(A)

∫

Vn,n(k)\Vn,n(A)

F (vmwnvγnκ;φ, s)ψVn,n(v)dvdmdvγn.

(4.55)
It follows that the integration over Sn = Vn,n ⋉ GLn is the Shalika period for
the cuspidal datum (GL2n, π). We set

PSn,ψ(F (·;φ))(g) :=

∫

Sn(k)\Sn(A)

F (vmg;φ, s)ψn,n(v)dvdm. (4.56)

Hence we obtain the main identity relating the ‘inner period’, the Shalika
period for the cuspidal datum on GL2n to the ‘outer’ period, the generalized
Shalika period for the residue of Eisenstein series on SO4n associated to the
given cuspidal datum.

Theorem 4.2. The period PH,ψ(Es0(·, φ)) is zero unless s0 = 1. If s0 = 1,
we have

PH,ψ(E1(·, φ)) =
vol(A1/k)

nd

∫

KSp2n
×Vγn(A)

PSn,ψ(F (·;φ))(wnvγnκ)dvγndκ.

It follows from Theorem 4 above and the argument in Page 179-180,
[JR92], in Theorems 5.2, 5.5, [Jng98], and in Theorem 3.2, [GJR01] that
the non-vanishing of the Shalika period PSn,ψ(F (·;φ)) is equivalent to the
nonvanishing of the generalized Shalika period PH,ψ(E1(·, φ)). By means of
Proposition 2 and the remarks afterwards, we obtain a sufficient condition
(in terms of period) for the existence of the pole at s = 1 of the (complete)
exterior square L-function L(s, π,Λ2), which is a theorem of Jacquet and Sha-
lika in [JS90] proved by a different method, i.e. the Rankin-Selberg integral
representation method. We record it here for completeness.
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Corollary 4.3. Let π be an irreducible cuspidal automorphic representation

of GL2n(A). If the Shalika period

PSn,ψ(ϕπ) =

∫

Sn(k)\Sn(A)

ϕπ(vh)ψn,n(v)dvdh

does not vanish for some ϕπ ∈ π, then

1. the Eisenstein series E(g;φπ, s) has a pole at s = 1, and

2. the exterior square L-function L(s, π,Λ2) has a pole at s = 1.
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