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TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIESANDREAS �CAPAbstra
t. This is an expanded version of a series of le
tures delivered at the 25thWinter S
hool \Geometry and Physi
s" in Srni.After a short introdu
tion to Cartan geometries and paraboli
 geometries, we givea detailed des
ription of the equivalen
e between paraboli
 geometries and underlyinggeometri
 stru
tures.The se
ond part of the paper is devoted to 
onstru
tions whi
h relate paraboli
geometries of di�erent type. First we dis
uss the 
onstru
tion of 
orresponden
espa
es and twistor spa
es, whi
h is related to nested paraboli
 subgroups in thesame semisimple Lie group. An example related to twistor theory for Grassmannianstru
tures and the geometry of se
ond order ODE's is dis
ussed in detail.In the last part, we dis
uss analogs of the Fe�erman 
onstru
tion, whi
h relategeometries 
orresponding di�erent semisimple Lie groups.1. Introdu
tionThis is an expanded version of a series of plenary le
tures at the 25th Winter S
hool\Geometry and Physi
s" in Srni. I would like to thank the organizers for giving methe opportunity to present this series.The 
on
ept whi
h is nowadays known as a Cartan geometry was introdu
ed byE. Cartan under the name \generalized spa
e" in order to build a bridge betweengeometry in the sense of F. Klein's Erlangen program and di�erential geometry. This
on
ept asso
iates to an arbitrary homogeneous spa
e G=H the notion of a Cartangeometry of type (G;H), whi
h is a di�erential geometri
 stru
ture on smooth mani-folds whose dimension equals the dimension of G=H. A manifold endowed with su
ha geometry 
an be 
onsidered as a \
urved analog" of the homogeneous spa
es G=H.Although Cartan geometries are an extremely general 
on
ept, there are several re-markable results whi
h hold for all of them, see 2.2.The most interesting examples of Cartan geometries are those, in whi
h the Cartangeometry is equivalent to some simpler underlying stru
ture. Obtaining the Cartangeometry from the underlying stru
ture usually is a highly nontrivial pro
ess whi
hoften involves prolongation. Cartan himself found many examples of this situation,ranging from 
onformal and proje
tive stru
tures via 3{dimensional CR stru
tures togeneri
 rank two distributions in manifolds of dimension �ve.Paraboli
 geometries are Cartan geometries of type (G;P ), where G is a semisimpleLie group and P � G is a paraboli
 subgroup. The 
orresponding homogeneous spa
esDate: April 19, 2005.2000 Mathemati
s Subje
t Classi�
ation. primary: 53B15, 53C15, 53C28, 32V05; se
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hung"(FWF). 1



2 ANDREAS �CAPG=P are the so{
alled generalized 
ag manifolds whi
h are among the most importantexamples of homogeneous spa
es. Under the 
onditions of regularity and normality,paraboli
 geometries always are equivalent to underlying stru
tures. This basi
allygoes ba
k to the pioneering works of N. Tanaka, see e.g. [29℄.In se
tion 2 of this arti
le we give a pre
ise des
ription of the underlying stru
-tures whi
h are equivalent to regular normal paraboli
 geometries. In this underlyingpi
ture, the stru
tures are very diverse, in
luding in parti
ular the four examples ofstru
tures listed above. From that point of view, paraboli
 geometries o�er a uni�edapproa
h to a broad variety of geometri
 stru
tures.Some of the advantages of this uni�ed approa
h will be dis
ussed in the remainingtwo se
tions. They are devoted to 
onstru
tions whi
h relate paraboli
 geometriesof di�erent types. The 
ommon feature of these 
onstru
tions is that they are quitetransparent in the pi
ture of Cartan geometries, while from the point of view of theunderlying stru
tures they are often surprising.Se
tion 3 is devoted to the 
onstru
tion of 
orresponden
e spa
es, whi
h is asso
iatedto nested paraboli
 subgroups in one semisimple Lie group. Trying to 
hara
terize thegeometries obtained in that way, one is lead to the notion of a twistor spa
e and obtainsseveral 
lassi
al examples of twistor theory. In the end one arrives at a 
omplete lo
al
hara
terization of 
orresponden
e spa
es in terms of the harmoni
 
urvature. Wegive a detailed dis
ussion of one example of this situation related to the geometry ofsystems of se
ond order ODE's.The last se
tion is devoted to Fe�erman's 
onstru
tion of a 
onformal stru
ture onthe total spa
e of a 
ir
le bundle over a CR manifold and analogs of this 
onstru
tion.From the point of view of Cartan geometries, the basi
 input for these 
onstru
tions isan in
lusion i : G! ~G between semisimple groups together with appropriately 
hosenparaboli
 subgroups P � G and ~P � ~G. Then the 
onstru
tion relates geometries oftype (G;P ) to geometries of type ( ~G; ~P ).2. Cartan geometries and paraboli
 geometriesWe start with some general ba
kground on Cartan geometries.2.1. Homogeneous spa
es and the Maurer Cartan form. Let G be any Liegroup and let H � G be a 
losed subgroup. The basi
 idea behind Cartan geometriesis to endow the homogeneous spa
e G=H with a geometri
 stru
ture, whose auto-morphisms are exa
tly the left a
tions of the elements of G. The natural proje
tionG! G=H is well known to be a prin
ipal bundle with stru
ture group H. Left multi-pli
ation by g 2 G lifts the a
tion of g on G=H to an automorphism of this prin
ipalbundle. Of 
ourse, the group of prin
ipal bundle automorphisms of G! G=H is mu
hbigger than just the left translations, so an additional ingredient is needed to re
ognizeleft translations.It turns out that the right ingredient is the (left) Maurer Cartan form !MC 2
1(G; g). Re
all that this is just a di�erent way to en
ode the trivialization of thetangent bundle TG by left translations. By de�nition, for � 2 TgG we have!MC(�) = T�g�1 � � 2 TeG = g;where �g�1 denotes left translation by g�1.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 3Proposition. Let G be a Lie group and let H � G be a 
losed subgroup su
h that thehomogeneous spa
e G=H is 
onne
ted. Then the left translations �g are exa
tly theprin
ipal bundle automorphisms of G! G=H whi
h pull ba
k !MC to itself.For later use, we note some further properties of !MC. As we have noted above,!(LX) = X for all X 2 g. Note that for X 2 h, the ve
tor �eld LX 
oin
ideswith the fundamental ve
tor �eld �X on the prin
ipal bundle G ! G=H generatedby X. For g 2 H, 
onsider the right translation rg by g. Using that the adjointa
tion of g is the derivative of the 
onjugation by g, one immediately veri�es that(rg)�!MC = Ad(g�1) Æ !MC . Note that for g 2 H, the map rg is the prin
ipal righta
tion on the bundle G ! G=H. Finally, there is the Maurer{Cartan equation: Thefa
t that [LX; LX ℄ = L[X;Y ℄ for all X;Y 2 g implies that d!MC(�; �) + [!(�); !(�)℄ = 0for all ve
tor �elds � and � on G.2.2. Cartan geometries. The de�nition of a Cartan geometry is now obtained byrepla
ing G ! G=H by an arbitrary prin
ipal H{bundle and !MC by a form whi
hhas all the properties of !MC that make sense in the more general setting.De�nition. (1) A Cartan geometry of type (G;H) on a smooth manifold M is aprin
ipal H{bundle p : G ! M together with a one form ! 2 
1(G; g) (the Cartan
onne
tion) su
h that� (rh)�! = Ad(h)�1 Æ ! for all h 2 H.� !(�A) = A for all A 2 h.� !(u) : TuG ! g is a linear isomorphism for all u 2 G.(2) A morphism between two Cartan geometries (G ! M;!) and ( ~G ! ~M; ~!) is aprin
ipal bundle homomorphism � : G ! ~G su
h that ��~! = !.(3) The 
urvature K 2 
2(G; g) of a Cartan geometry (G ! M;!) of type (G;H) isde�ned by K(�; �) = d!(�; �) + [!(�); !(�)℄;for �; � 2 X (G).Noti
e that a Cartan geometry is a lo
al stru
ture, i.e. it 
an be restri
ted to opensubsets: For (p : G !M;!) and an open subset U �M , we simply have the restri
tion(p : p�1(U) ! U;!jp�1(U)). The 
urvature evidently is a lo
al invariant, i.e. the
urvature of this restri
ted geometry is the restri
tion of the original 
urvature.Any morphism � between two Cartan geometries as in (2) has an underlying smoothmap ' :M ! ~M . It turns out (see [27, 
hapter 5℄) that � is determined by ' up to asmooth fun
tion fromM to the maximal normal subgroup of G whi
h is 
ontained inH. In all 
ases of interest, this subgroup is trivial or at least dis
rete, when
e this maphas to be lo
ally 
onstant. In fa
t, it is ne
essary to in
luded the possibility of havingvarious morphisms 
overing the same base map to deal with stru
tures analogous toSpin stru
tures.By de�nition (G ! G=H;!MC ) is a Cartan geometry of type (G;H), and Propo-sition 2.1 exa
tly tells us that the automorphisms of this geometry are exa
tly theleft translations by elements of G. This geometry is 
alled the homogeneous model ofCartan geometries of type (G;H).



4 ANDREAS �CAPThe Maurer{Cartan equation noted in the end of 2.1 exa
tly says that the 
urvatureof the homogeneous model vanishes identi
ally. Indeed, the 
urvature exa
tly measuresto what extent the Maurer{Cartan equation fails to hold. One of the ni
e features ofCartan geometries is that vanishing of the 
urvature 
hara
terizes the homogeneousmodel lo
ally, i.e. any Cartan geometry of type (G;H) with vanishing 
urvature islo
ally isomorphi
 to (G ! G=H;!MC), see [27, 
hapter 5℄. More generally, the
urvature (at least in prin
iple) provides a solution to the equivalen
e problem. Thisis one of the reasons why already asso
iating to some geometri
 stru
ture a 
anoni
alCartan 
onne
tion is a powerful result. For the main part of the theory of paraboli
geometries however, the existen
e of a 
anoni
al Cartan 
onne
tion is only the startingpoint.There are other interesting features of general Cartan geometries, for example:� For any Cartan geometry (p : G ! M;!) of type (G;H), the automorphismgroup Aut(G; !) is a Lie group of dimension � dim(G). The Lie algebraaut(G; !) 
an be des
ribed 
ompletely, and analyzing its algebrai
 stru
tureleads to interesting results, see [9℄.� The homogeneous model (G ! G=H;!MC) satis�es a Liouville type theo-rem. If U and V are open subsets of G=H then any isomorphism betweenthe restri
tions of the geometry to these open subsets uniquely extends to anautomorphism of the homogeneous model.� There are various general tools available for Cartan geometries, for examplethe notions of distinguished 
urves and of normal 
oordinates.2.3. Cartan geometries determined by underlying stru
tures. The results listedabove be
ome parti
ularly powerful if a Cartan geometry is obtained as an equivalentdes
ription of some underlying geometri
 stru
ture. A very simple example is pro-vided by Riemannian geometries, whi
h 
orrespond to the 
ase that G is the Eu
lideangroup Eu
(n) and H = O(n). The Lie algebra g is isomorphi
 to h � Rn as an H{module. Therefore, a Cartan 
onne
tion of type (G;H) on a prin
ipal O(n){bundleG ! M de
omposes into an Rn{valued form � and a h{valued form 
 whi
h bothare H{equivariant. Then � de�nes a redu
tion of the linear frame bundle of M tothe stru
ture group O(n), whi
h is equivalent to a Riemannian metri
 on M . Theform 
 de�nes a prin
ipal 
onne
tion on G whi
h is equivalent to a metri
 
onne
tionon M . If 
 is torsion free, then it must be the Levi{Civita 
onne
tion. Conversely,starting from a Riemannian manifold, one obtains a torsion free Cartan geometry byusing the orthonormal frame bundle endowed with the soldering form and the Levi{Civita 
onne
tion. In that way, one obtains an equivalen
e between torsion free Cartangeometries of type (G;H) and n{dimensional Riemannian manifolds.The results dis
ussed above then imply� The isometry group of any Riemannian manifold is a Lie group of dimension� 12 dim(M)(dim(M) � 1).� Any isometry between two open subsets of Eu
lidean spa
e is the restri
tionof a uniquely determined Eu
lidean motion.� The 
on
epts of geodesi
s and Riemann normal 
oordinates for Riemannianmanifolds.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 5The 
ase of Riemannian metri
s is rather easy, sin
e the bundle G 
an be dire
tlyobtained from the underlying stru
ture. In other 
ases, one also has to 
onstru
t thisprin
ipal bundle, a pro
ess whi
h is usually 
alled prolongation. This also leads toadditional features. Let us dis
uss this in the 
ase of 
onformal stru
tures, whi
h is amodel 
ase for paraboli
 geometries:A 
onformal stru
ture on a smooth manifoldM is given by an equivalen
e 
lass [g℄of Riemannian metri
s on M . Here two metri
s g and ĝ are 
onsidered as equivalentif and only if ĝ = e2fg for some smooth fun
tion f on M . Equivalently, a 
onformalstru
ture 
an be de�ned as a redu
tion of stru
ture group of the frame bundle PM tothe group CO(n) of 
onformal isometries of Rn.It is a 
lassi
al result of E. Cartan, see [16℄ that for n = dim(M) � 3 
onformalstru
tures admit a 
anoni
al normal Cartan 
onne
tion. Consider the semisimple Liegroup G := SO(n+1; 1). This naturally a
ts on Rn+2 and the a
tion preserves the null
one. Fix a nonzero null ve
tor v and let P � G be the stabilizer of the lineRv. Then Pis an example of a paraboli
 subgroup of the semisimple Lie group G. It turns out thatP 
ontains an Abelian normal subgroup P+ �= Rn su
h that P=P+ =: G0 �= CO(n).The relation of these groups to 
onformal geometry is the following: The group Ga
ts transitively on the spa
e of null lines in Rn+2, whi
h is easily seen to be isomorphi
to Sn. Sin
e by de�nition P is the stabilizer of one null line we get G=P �= Sn andthis identi�es G with the group of 
onformal isometries of Sn and P with the group of
onformal isometries �xing a point x0 2 Sn. It turns out that the proje
tion from Pto G0 �= CO(n) is given by passing from a 
onformal isometry �xing x0 to its tangentmap in x0, see [17℄ for more details.Now 
onsider a manifoldM of dimension n endowed with a 
onformal stru
ture [g℄.The 
orresponding redu
tion of stru
ture group is a G0{prin
ipal bundle p0 : G0 !M endowed with a 
anoni
al di�erential form � 
alled the soldering form. Cartan'sresult states that this bundle 
an be 
anoni
ally extended to a prin
ipal bundle p :G ! M with stru
ture group P and the soldering form � 
an be extended to aCartan 
onne
tion ! 2 
1(G; g). If one requires the Cartan 
onne
tion ! to satisfy anormalization 
ondition, then it is uniquely determined.Conversely, given a prin
ipal P{bundle p : G ! M endowed with a Cartan 
on-ne
tion ! 2 
1(G; g), one obtains a G0{prin
ipal bundle G0 := G=P+ ! M and !indu
es a soldering form on that bundle, thus giving rise to a 
onformal stru
ture onM . In the end one obtains an equivalen
e of 
ategories between 
onformal stru
turesand Cartan geometries of type (G;P ).The additional feature provided by this is that one obtains new geometri
 obje
ts.Viewing a 
onformal stru
ture as a redu
tion to the stru
ture group CO(n) of the linearframe bundle, one obtains a natural ve
tor bundle asso
iated to ea
h representationof CO(n). Sin
e CO(n) is a quotient of P , this gives rise to a representation of P andthe resulting ve
tor bundles 
an also be viewed as asso
iated to the Cartan bundleG. But the group P admits more general representations than those 
oming from G0,and these give rise to new natural ve
tor bundles and thus new geometri
 obje
ts. Aparti
ularly interesting 
ase is to 
onsider restri
tions to P of representations of G.This leads to the so{
alled tra
tor bundles, see [1, 10℄.In a series of pioneering papers in the 1960's and 70's 
ulminating in [29℄, N. Tanakashowed that for all semisimple Lie groups and paraboli
 subgroups normal Cartan



6 ANDREAS �CAPgeometries are determined by underlying stru
tures. These results have been putinto the more general 
ontext of �ltered manifolds in the work of T. Morimoto (seee.g. [23℄) and a new version of the result tailored to the paraboli
 
ase was givenin [12℄. Otherwise put, these results show that these underlying stru
tures (whi
hseemingly are very diverse) admit 
anoni
al Cartan 
onne
tions. Our next aim is togive a uniform des
ription of the underlying stru
tures.2.4. Generalized 
ag manifolds. We �rst 
olle
t some ba
kground on the homoge-neous models of paraboli
 geometries. We will use elementary de�nitions, whi
h avoidstru
ture theory of Lie algebras.De�nition. Let g be a semisimple Lie algebra. A jkj{grading on g is a ve
tor spa
ede
omposition g = g�k � � � � � g0 � � � � � gksu
h that [gi; gj℄ � gi+j and su
h that the subalgebra g� := g�k�� � ��g�1 is generatedby g�1.For given g there is a simple 
omplete des
ription of su
h gradings (up to isomor-phism) in terms of stru
ture theory. For 
omplex g, they are in bije
tive 
orrespon-den
e with sets of simple roots of g and hen
e are 
onveniently denoted by Dynkindiagrams with 
rosses. For real g there is a similar des
ription in terms of the Satakediagram.Let us make this more expli
it for the 
ase g = sl(n + 1;K) for K = R or C . Upto isomorphism, ea
h jkj{grading is determined by a blo
k de
omposition of matri
es:One de
omposes Rn+1 into k + 1 blo
ks of sizes i0; : : : ; ik. The g0 
onsists of all blo
kdiagonal matri
es, and for i > 0, the 
omponent gi (respe
tively g�i) 
onsists of thosematri
es, whi
h only have nonzero entries in the ith blo
ks above (respe
tively below)the main diagonal. The 
orresponding Dynkin diagram is obtained as follows: Lookat the matrix entries in the �rst diagonal above the main diagonal. The blo
k inwhi
h they are 
ontained either lies in g0 or in g1. Use a dot in the �rst and a 
rossin the se
ond 
ase and 
onne
t ea
h entry with a line to its (one or two) neighbors.More expli
itly, 
onsider sl(4;K) with blo
ks of sizes 1, 1, and 2. Then one obtains aj2j{grading of the form 0BB� g0 g1 g2 g2g�1 g0 g1 g1g�2 g�1 g0 g0g�2 g�1 g0 g01CCAand the 
orresponding Dynkin (respe
tively Satake) diagram with 
rosses is� � Æ .Putting gi := gi � � � � � gk we obtain a �ltration g = g�k � � � � � gk of g su
hthat [gi; gj℄ � gi+j . In parti
ular, p := g0 is a subalgebra of g and p+ := g1 is anilpotent ideal in p su
h that p = g0 � p+ is a semidire
t sum. The subalgebras pobtained in that way are exa
tly the paraboli
 subalgebras of g used in representationtheory. In the 
omplex 
ase, a subalgebra of g is paraboli
 if and only if it 
ontains amaximal solvable subalgebra (i.e. a Borel subalgebra) of g. In the real 
ase, paraboli
subalgebras are de�ned via 
omplexi�
ation.Given a (not ne
essarily 
onne
ted) Lie group G with Lie algebra g, it turns outthat the normalizer P := NG(p) of p in G has Lie algebra p. This is the paraboli




TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 7subgroup of G asso
iated to the paraboli
 subalgebra p � g. It turns out that forg 2 P , the adjoint a
tion Ad(g) : g ! g not only preserves the �ltration 
omponentg0 but all �ltration 
omponents gi. Indeed, the whole �ltration 
an be re
onstru
tedalgebrai
ally from g0 = p. Further, one de�nes a 
losed subgroup G0 � P as the setof those g 2 P , whose adjoint a
tion even preserves the grading of g. Then G0 isredu
tive and has Lie algebra g0. One shows that exp de�nes a di�eomorphism fromp+ onto a 
losed subgroup P+ � P and P is the semidire
t produ
t of G0 and P+.A generalized 
ag variety is a homogeneous spa
e G=P for a semisimple Lie groupG and a paraboli
 subgroup P � G. These homogeneous spa
es are always 
ompa
tand for 
omplex G they are the only 
ompa
t homogeneous spa
es of G. In the
omplex 
ase, G=P 
arries a K�ahler metri
. Generalized 
ag manifolds are among themost important examples of homogeneous spa
es. They show up in many areas ofmathemati
s.Paraboli
 geometries are Cartan geometries of type (G;P ) for G and P as above. In2.3 we have seen that for an appropriate 
hoi
e of G and P , su
h a stru
ture (satisfyingan additional normalization 
ondition) is equivalent to a 
onformal Riemannian stru
-ture. Under the 
onditions of regularity and normality, general paraboli
 geometriesequivalent to a 
ertain underlying stru
ture. We will next des
ribe how this underlyingstru
ture is obtained.2.5. The �ltration of the tangent bundle. We �rst show how a paraboli
 geometry(p : G ! M;!) of type (G;P ) gives rise to a �ltration of the tangent bundle TM .De�ne the adjoint tra
tor bundle AM of M as AM := G �P g. (This is an importantexample of the 
on
ept of tra
tor bundles dis
ussed in 2.3.) Then we have the P{invariant �ltration fgig of g, whi
h gives rise to a �ltrationAM = A�kM � A�k+1M � � � � � AkMof the adjoint tra
tor bundle by smooth subbundles. The Lie bra
ket on g indu
es atensorial map f ; g : AM �AM ! AM . In parti
ular, ea
h �ber of AM is a �lteredLie algebra isomorphi
 to g.The Cartan 
onne
tion ! leads to an identi�
ation TM �= G�P g=p, with the a
tion
oming from the adjoint a
tion. The Killing form of g indu
es a duality between thisP{module and p+ = g1, so T �M �= G �P p+ = A1M . Hen
e T �M is a bundle ofnilpotent �ltered Lie algebras. On the tangent bundle, there are similar but moresubtle stru
tures: From above, we see that TM �= AM=A0M , and we obtain anindu
ed �ltration TM = T�kM � � � � � T�1M of the tangent bundle by puttingT iM := AiM=A0M . The asso
iated graded bundle isgr(TM) = gr�k(TM)� � � � � gr�1(TM);where gri(TM) = T iM=T i+1M . By 
onstru
tion, this implies that gri(TM) �= G �Pgi=gi+1. By de�nition, the subgroup P+ � P a
ts trivially on this quotient. Hen
e theP{a
tion fa
torizes over P=P+ �= G0 and as a G0{module we have gi=gi+1 �= gi.On the level of prin
ipal bundles, we observe that the subgroup P+ � P a
ts freelyon G. Hen
e the quotient G0 := G=P+ is a prin
ipal bundle over M with stru
turegroup P=P+ = G0. The Cartan 
onne
tion ! indu
es a bundle map from G0 to theframe bundle of gr(TM) whi
h de�nes a redu
tion of stru
ture group. In parti
ular,



8 ANDREAS �CAPgri(TM) �= G0�G0 gi, whi
h is a re�ned version of the identi�
ation of the representa-tion spa
es above. Putting the 
omponents together, we see that gr(TM) �= G0�G0 g�.The Lie bra
ket on g� is G0{invariant and hen
e gives rise to a tensorial map f ; g ongr(TM). Hen
e for ea
h x 2M , the spa
e gr(TxM) is a nilpotent graded Lie algebraisomorphi
 to g�.2.6. Filtered manifolds and their symbol algebras. A 
ru
ial observation for thesequel is that under a weak 
ondition, a �ltration of the tangent bundle of a manifoldgives rise to the stru
ture of a nilpotent graded Lie algebra on the asso
iated gradedof ea
h tangent spa
e.A �ltered manifold is a smooth manifold M together with a �ltration TM =T�kM � � � � � T�1M of the tangent bundle by smooth subbundles, whi
h is 
ompati-ble with the Lie bra
ket of ve
tor �elds, i.e. su
h that for � 2 �(T iM) and � 2 �(T jM)one always has [�; �℄ 2 �(T i+jM).Let q : T i+jM ! T i+jM=T i+j+1M = gri+j(TM) be the natural map, and 
onsiderthe operator �(T iM) � �(T jM) ! �(gri+j(TM)) de�ned by (�; �) 7! q([�; �℄). Sin
ethe indi
es of the �ltration 
omponents are always negative, the bundles T iM and T jMare 
ontained in T i+j+1M , whi
h implies that this operator is bilinear over smoothfun
tions. Therefore, it is indu
ed by a tensor T iM � T jM ! gri+j(TM). If � 2�(T i+1M), then [�; �℄ 2 �(T i+j+1M) so the result of this tensor depends only on the
lasses of � in gri(TM) and � 2 grj(TM). Taking together the various 
omponents,we obtain a tensor L : gr(TM)� gr(TM)! gr(TM) whi
h is 
alled the Levi bra
ket.By 
onstru
tion, this makes ea
h of the spa
es gr(TxM) into a nilpotent graded Liealgebra, 
alled the symbol algebra of the �ltered manifold at the point x. Consider alo
al isomorphism between �ltered manifolds, i.e. a lo
al di�eomorphism f su
h thatea
h of the maps Txf is an isomorphism of �ltered ve
tor spa
es. Then ea
h Txfindu
es and isomorphism between the asso
iated graded spa
es to the tangent spa
es,whi
h is easily seen to be an isomorphism of the symbol algebras.Therefore, the symbol algebra should be 
onsidered as the �rst order approximationof a �ltered manifold in a point, similarly to the tangent spa
e at a point of an ordinarymanifold. The usual tangent spa
e (viewed as an Abelian Lie algebra) is re
overed inthe 
ase of the trivial �ltration T�1M = TM .A priory, the isomorphism 
lass of the symbol algebra may 
hange from point topoint, but the 
ase that all symbol algebras are isomorphi
 to a �xed nilpotent gradedLie algebra a is of parti
ular interest. In this 
ase, there is a natural frame bundlefor the ve
tor bundle gr(TM) with stru
ture group the group Autgr(a) of all auto-morphisms of the Lie algebra a, whi
h in addition preserve the grading. This is therepla
ement for the usual frame bundle of a smooth manifold, whi
h is again re
overedin the spe
ial 
ase of the trivial �ltration.2.7. Regularity and normality. Let (p : G ! M;!) be a paraboli
 geometry oftype (G;P ). Then we have the 
urvature K 2 
2(G; g) of ! as introdu
ed in 2.2.The de�ning properties of K easily imply that it is horizontal and P{equivariant, soit de�nes a two{form � on M with values in the bundle G �P g = AM . Hen
e theCartan 
urvature 
an be viewed as a two form on M with values in the adjoint tra
torbundle.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 9The geometry (p : G ! M;!) is 
alled regular if and only if the 
urvature � hasthe property that �(T iM;T jM) � Ai+j+1M for all i; j < 0. Otherwise put, regularitymeans that the 
urvature is 
on
entrated in positive homogeneities.Re
all that a Cartan geometry of type (G;P ) is 
alled torsion free, if its 
urvatureK 2 
2(G; g) a
tually has values in p � g. In the paraboli
 
ase, this 
an be ni
elyreformulated as � lying in the subspa
e 
2(M;A0M) � 
2(M;AM). From this de-s
ription, it is evident that torsion free paraboli
 geometries are automati
ally regular,so regularity 
an be viewed as a 
ondition avoiding parti
ularly bad types of torsion.Note that the 
ondition is va
uous for j1j{gradings.The geometri
 meaning of the regularity 
ondition is easy to des
ribe (and also easyto prove):Proposition. Let (p : G ! M;!) be a paraboli
 geometry of type (G;P ), let fT iMgbe the indu
ed �ltration of the tangent bundle, and let f ; g be the tensorial Lie bra
keton gr(TM) introdu
ed in 2.5.Then the geometry is regular if and only if the �ltration fT iMg makes M into a�ltered manifold su
h that the natural bra
ket on ea
h symbol algebra 
oin
ides withf ; g. In parti
ular, ea
h symbol algebra is isomorphi
 to g�.For regular geometries, the bundle G0 ! M from 2.5 ni
ely ties into the 
on
eptsfor �ltered manifolds. The adjoint a
tion of G0 on g� is by Lie algebra automorphismswhi
h preserve the grading (by de�nition of G0), so it de�nes a homomorphism G0 !Autgr(g�). This homomorphism turns out to be in�nitesimally inje
tive provided thatnone of the simple ideal of g is 
ontained in g0. This 
ondition is very harmless, sin
esimple ideals 
ontained in g0 
an be left out without problems, so we will assumethroughout that it is satis�ed. As we have noted in 2.6, the group Autgr(g�) is thenatural stru
ture group for the ve
tor bundle gr(TM) sin
e ea
h symbol algebra isisomorphi
 to g�. The bundle G0 
an thus be interpreted as the �ltered manifoldversion of a �rst order G0{stru
ture.Now we have 
olle
ted the two stru
tures underlying a regular paraboli
 geometryof type (G;P ) that we will need in the sequel:� A �ltration fT iMg of the tangent bundle su
h that ea
h symbol algebra isisomorphi
 to g�.� A redu
tion of stru
ture group of the asso
iated graded gr(TM) to the stru
turegroup G0 � Autgr(g�).Similarly to the soldering form used for 
lassi
al �rst order stru
tures, this redu
tionof stru
ture group 
an be expressed by 
ertain partially de�ned di�erential forms onthe bundle G0. This leads to the des
ription of underlying stru
tures used in [12℄.The 
olle
tion of these two underlying stru
tures is 
alled a regular in�nitesimal 
agstru
ture, see [13℄.Fixing the underlying regular in�nitesimal 
ag stru
ture still leaves a lot of freedomfor the Cartan 
onne
tion !, so we need an additional normalization 
ondition: Re
allthe the 
otangent bundle T �M 
an be naturally viewed as G �P p+ = A1M . Hen
eit naturally is a bundle of nilpotent Lie algebras with the restri
tion of the algebrai
bra
ket f ; g ofAM . Now for ` > 0 we de�ne a tensorial operator �� : �`T �M
AM !
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AM by��(�1^ � � � ^ �` 
 s) := X̀i=1 (�1)i�1 ^ � � � ^ b�i ^ � � � ^ �` 
 f�i; sg+Xi<j (�1)i+jf�i; �jg ^ �1 ^ � � � ^ b�i ^ � � � ^ b�j ^ � � � ^ �` 
 sfor �r 2 T �M and s 2 AM , where as usual the hats denote omission. This is thedi�erential in the standard 
omplex 
omputing Lie algebra homology. In parti
ular,��Æ�� = 0, and the quotients ker(��)= im(��) are the pointwise Lie algebra homologiesof the Lie algebras T �xM with 
oeÆ
ients in the modules AxM .The homology groups H�(p+; g) are naturally P{modules and it is easy to see thatP+ a
ts trivially, so they are obtained by trivially extending the a
tion of G0. Hen
ethe above bundles ker(��)= im(��) 
an be naturally viewed as either G �P H`(p+; g) orG0�G0H`(p+; g). The latter interpretation shows that they 
an be dire
tly interpretedin terms of the underlying stru
ture. It is a 
ru
ial point in the theory that theG0{representations H`(p+; g) 
an be 
omputed expli
itly and algorithmi
ally usingKostant's version of the Bott{Borel{Weil theorem, see [30℄. (In that referen
e, as wellas in large parts of the literature, 
ohomology groups rather than homology groupsare used, but swit
hing between the two points of view is easy.)A paraboli
 geometry (p : G !M;!) is 
alled normal if and only if its 
urvature �has the property that ��(�) = 0.Theorem. Let (M; fT iMg) be a �ltered manifold su
h that ea
h symbol algebra isisomorphi
 to g�, and let G0 ! M be a redu
tion of gr(TM) to the stru
ture groupG0 � Autgr(g�). Then there is a regular normal paraboli
 geometry (p : G ! M;!)indu
ing the given data. If H1(p+; g) is 
on
entrated in non{positive homogeneousdegrees, then the pair (G; !) is unique up to isomorphism.Remark. (1) The 
ondition on H1(p+; g) 
an be easily turned into something mu
hmore 
on
rete, see [30, 12℄. If g is simple, then it ex
ludes exa
tly two series of examples
orresponding to the 
rossed Dynkin diagrams . . .� Æ Æ Æ and . . .� Æ Æ Æ< .Ex
ept for the very degenerate 
ase of the Dynkin diagram � (i.e. the Borel subalgebrain sl(2;K)), the 
orresponding regular normal paraboli
 geometries are still determinedby some underlying stru
ture. Geometri
ally, these give rise to 
lassi
al proje
tivestru
tures and a 
onta
t version of proje
tive stru
tures.(2) One a
tually obtains an equivalen
e of 
ategories between regular normal paraboli
geometries and regular in�nitesimal 
ag stru
tures.2.8. Examples. By Theorem 2.7, a regular normal paraboli
 geometry on M of type(G;P ) is for almost all 
hoi
es of G and P equivalent to a �ltration fT iMg of thetangent bundle su
h that ea
h symbol algebra is isomorphi
 to g� plus a redu
tionof the stru
ture group of gr(TM) to the group G0. In many situation, this simpli�esfurther, and we will dis
uss this next.(1) j1j{gradings. Here we are in the situation g = g�1 � g0 � g1 and p = g0 � g1.The 
lassi�
ation of su
h gradings is equivalent to the 
lassi�
ation of Hermitian andpseudo{Hermitian symmetri
 spa
es and therefore well known. Geometri
ally, the



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 11main point is that the �ltration fT iMg by de�nition 
onsists of just one bundle.Moreover, the regularity 
ondition is easily seen to be va
uous in this 
ase.Hen
e if (G;P ) 
orresponds to a j1j{grading, then Theorem 2.7 says that normalparaboli
 geometries of type (G;P ) are equivalent to 
lassi
al �rst order G0{stru
tureson M . Here G0 is 
onsidered as a (
overing of a) subgroup of GL(dim(M);R) viaAd : G0 ! GL(g�1).The most important examples of these stru
tures are 
onformal, almost quater-nioni
, and almost Grassmannian stru
tures. The ex
eptional 
ase 
orresponding tothe Dynkin diagram . . .� Æ Æ Æ 
orresponds to a j1j{grading. Here G0 = GL(g�1)so the underlying in�nitesimal 
ag stru
ture 
ontains no information at all. Normalparaboli
 geometries of this type are equivalent to 
lassi
al proje
tive stru
tures, whi
hwill be dis
ussed in more detail in 3.2 below.(2) Stru
tures determined by the �ltration. We have seen in 2.7 that the adjointa
tion de�nes a homomorphism G0 ! Autgr(g�). If this is an isomorphism, thenG0 is the full natural frame bundle of gr(TM) and there is no additional redu
tion ofstru
ture group. Hen
e in this 
ase Theorem 2.7 shows that a regular normal paraboli
geometry on M is equivalent to a �ltration fT iMg su
h that ea
h symbol algebra isisomorphi
 to g�.There is a simple way to obtain stru
tures of this type: For any semisimple g, thegroup G := Aut(g) has Lie algebra g. It turns out (see [25℄) that for this 
hoi
eof G we obtain G0 �= Autgr(g�) provided that H1(p+; g) is 
on
entrated in negativehomogeneous degrees. Again this homologi
al 
ondition is easy to verify, and it turnsout that it is often satis�ed. The paper [30℄ 
ontains a 
omplete list of pairs (g; p)su
h that the 
ondition is not satis�ed.This 
lass of examples 
ontains the quaternioni
 
onta
t stru
tures introdu
ed byO. Biquard, see [3, 4℄, generi
 distributions of rank 2 in dimension 5 (whi
h werestudied in Cartan's 
lassi
 [15℄), rank 3 in dimension 6, and rank 4 in dimension 7.(3) Paraboli
 
onta
t stru
tures. These 
orrespond to j2j{gradings su
h thatg�2 is one{dimensional and su
h that the bilinear form g�1 � g�1 ! g�2 de�ned bythe bra
ket is non degenerate. The 
lassi�
ation of su
h gradings is equivalent to the
lassi�
ation of quaternioni
 symmetri
 spa
es and therefore well know. Gradings ofthis type exist only on simple Lie algebras and are unique up to isomorphism. Witha few ex
eptions, they exist on all non{
ompa
t, non{
omplex simple Lie algebras.Sin
e g� by de�nition is a real Heisenberg algebra, a �ltration TM = T�2M �T�1M of TM su
h that ea
h symbol algebra is isomorphi
 to g� is exa
tly a 
onta
tstru
ture T�1M � TM . Hen
e the �ltration 
annot be enough to determine thegeometry and one needs the additional redu
tion to the stru
ture group G0, whi
h 
anbe expressed as an additional stru
ture on T�1M .This 
lass 
ontains non{degenerate partially integrable almost CR stru
tures ofhypersurfa
e type, for whi
h the additional stru
ture on T�1M is an almost 
omplexstru
ture, as well as Lagrangean 
onta
t stru
tures, where the additional stru
ture isa de
omposition of T�1M into the dire
t sum of two isotropi
 subbundles. Next, thereis the example of Lie 
onta
t stru
tures (see [26℄), in whi
h the additional stru
tureis a de
omposition of T�1M as the tensor produ
t of two auxiliary bundles, one ofwhi
h has rank 2 while the other one is endowed with a pseudo{eu
lidean metri
 of



12 ANDREAS �CAPsome �xed signature. Finally, this 
lass also 
ontains the se
ond ex
eptional stru
turementioned in Remark 2.7 (2). In that 
ase, regular normal paraboli
 geometries areequivalent to a 
onta
t analog of proje
tive stru
tures, see [20℄.(4) As an example of general paraboli
 geometries, we dis
uss generalized path geome-tries. These 
orrespond to the j2j{grading on sl(n + 2;R) 
orresponding to the �rstand se
ond simple root. In blo
k form, this de
omposition has the form0� g0 gL1 g2gL�1 g0 gR1g�2 gR�1 g0;1Awhere the blo
ks are of size 1, 1, and n. We have met this grading for n = 2 in 2.4.For later use, we have indi
ated de
omposition of g�1 into a one{dimensional partgL�1 and an n{dimensional part gR�1. Evidently, this de
omposition is invariant underthe adjoint a
tion of g0. For an appropriate 
hoi
e of G, the subgroup G0 
onsistsof all automorphisms of the graded Lie algebra g� whi
h in addition preserve thede
omposition g�1 = gL�1 � gR�1.From this des
ription, we 
an dire
tly read o� the geometri
 meaning of a regularin�nitesimal 
ag stru
ture of type (G;P ) on a smooth manifoldM of dimension 2n+1:One has two transversal subbundles L;R � TM of rank 1 and n, respe
tively, su
hthat for �; � 2 �(R) we have [�; �℄ 2 �(L � R) while the Lie bra
ket indu
es anisomorphism L
R! TM=(L�R).Examples of su
h stru
tures 
ome from path geometries. Let N be a manifold ofdimension n+1 and 
onsider the proje
tivized tangent bundle M := PTN , the spa
eof lines through the origin in TN . Take R to be the verti
al bundle of the proje
tionPTN ! N . Sin
eM is a proje
tivized tangent bundle, there is a tautologi
al subbun-dle H � TM of rank n+1. The �ber of H in a point 
onsists of those tangent ve
torswhose image in TN lies in the line determined by the point. Hen
eR is 
ontained inHand a path geometry on N is given by the 
hoi
e of a line subbundle L � H su
h thatH = L�R. A path geometry on N is equivalent to a family of unparametrized 
urvesin N , with exa
tly one 
urve through ea
h point in ea
h dire
tion. In parti
ular, asystem of se
ond order ODE's on a manifold Y 
an be equivalently des
ribed as a pathgeometry on Y � R by 
onsidering the unparametrized 
urves des
ribing the graphsof solutions, see [21, 19℄.For n 6= 2, the data (M;L;R) 
orresponding to a regular in�nitesimal 
ag stru
tureas above are lo
ally isomorphi
 to a path geometry. Namely, for n 6= 2 the subbundleR � TM turns out to be automati
ally integrable, and one de�nes N to be a lo
alleaf spa
e for the 
orresponding foliation. Then for an open subset U �M , there is asurje
tive submersion  : U ! N su
h that ker(Tx ) = Rx for all x 2 U . Under Tx ,the line Lx gives rise to a line in T (x)N , hen
e de�ning a lift ~ : U ! PTN . Possiblyshrinking U , ~ is an open embedding. By 
onstru
tion, T ~ maps R to the verti
alsubbundle and L�R to the tautologi
al subbundle.2.9. Harmoni
 
urvature. There is a last element of the general theory of paraboli
geometries that we have to dis
uss. The Cartan 
urvature � 2 
2(M;AM) as de�nedin 2.2 and 2.7 is a fairly 
ompli
ated obje
t. In parti
ular, to understand it geomet-ri
ally, one needs the adjoint tra
tor bundle, whi
h is an equivalent en
oding of the
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ipal Cartan bundle. An important feature of regular normal paraboli
 geometriesis that one may pass to the harmoni
 
urvature �H , whi
h is mu
h easier to handle,but as powerful as �.In 2.7 we have de�ned the operators �� : �`T �M 
 AM ! �`�1T �M 
 AM andnoted that ��Æ�� = 0. For a normal geometry the 
urvature � by de�nition is a se
tionof the subbundle ker(��) � �2T �M 
 AM . Hen
e we 
an proje
t it to a se
tion �Hof the quotient ker(��)= im(��). As we have noted in 2.7, this quotient bundle 
an beidenti�ed with G0 �G0 H2(p+; g), so it admits a dire
t interpretation in terms of theunderlying stru
ture and is algorithmi
ally 
omputable.We have also seen that H2(p+; g) splits into a dire
t sum of G0{irredu
ible 
om-ponents. Correspondingly, we obtain a splitting of �H into fundamental 
urvaturequantities. There are several general tools to des
ribe (parts of) �H in terms of theunderlying stru
ture.The following result shows that �H still is a 
omplete obstru
tion to lo
al 
atness,and indeed, it 
ontains the full information about �.Theorem. Let (p : G !M;!) be a regular normal paraboli
 geometry of type (G;P )with 
urvature � and harmoni
 
urvature �H .(1) (Tanaka) If �H vanishes identi
ally, then � vanishes identi
ally.(2) (Calderbank{Diemer) There is a natural linear di�erential operator L su
h thatL(�H) = �.The �rst part is a rather easy appli
ation of the Bian
hi{identity for Cartan 
onne
-tions. The se
ond part is mu
h more diÆ
ult. It follows from the general ma
hineryof BGG{sequen
es, see [14, 6℄.3. Corresponden
e spa
es and twistor spa
esNow we swit
h to the dis
ussion of 
onstru
tions relating paraboli
 geometries ofdi�erent type. We start with the 
onstru
tions of 
orresponden
e spa
es and twistorspa
es, whi
h is related to di�erent paraboli
 subgroups of the same group G. Thebasi
 referen
e for this 
hapter is [7℄.3.1. Corresponden
e spa
es. Consider a semisimple Lie group G with nested par-aboli
 subgroups Q � P � G. For the homogeneous models, we have the simpleobservation that G=Q naturally �bers over G=P . Moreover, we 
an interpret G=Q asG �P (P=Q), so this is the total spa
e of a natural �ber bundle over G=P . It turnsout that the �ber P=Q 
an be equivalently viewed as the quotient of the semisimplepart of G0 � P by its interse
tion with Q. This interse
tion turns out to be paraboli
,so P=Q again is a generalized 
ag manifold. The situations 
overed by this 
onstru
-tions are easy to des
ribe in the Dynkin (or Satake) diagram notation: The diagram
orresponding to q is obtained from the one 
orresponding to p by 
hanging dots into
rosses. The �ber P=Q 
an then be dire
tly read o� the two diagrams, see [2℄.Carrying this over to 
urved Cartan geometries is easy. Given a geometry (p : G !N;!) of type (G;P ) the subgroup Q � P a
ts freely on G. Hen
e the 
orresponden
espa
e CN := G=Q is a smooth manifold, and the obvious map G ! CN is a Q{prin
ipalbundle. Moreover, CN = G �P (P=Q), so � : CN ! N is a natural �ber bundle with�ber a generalized 
ag manifold. In parti
ular, this �ber is always 
ompa
t. By
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1(G; g) 
an also be viewed as a Cartan 
onne
tion on the prin
ipalQ{bundle G ! CN .The next obvious question is whether this 
onstru
tion is 
ompatible with regularityand normality. At this point, the uniform algebrai
 
onstru
tion of the normalization
ondition pays o�:Proposition. If (G ! N;!) is a normal paraboli
 geometry of type (G;P ) then theparaboli
 geometry (G ! CN;!) of type (G;Q) is normal, too.As we shall see in an example below, regularity is not preserved by the 
onstru
tionin general. However, �nding 
onditions whi
h are equivalent to regularity is usuallyvery easy.3.2. Example. Let Q � G := SL(n+ 2;R) be the paraboli
 subgroup 
orrespondingto generalized path geometries as in Example (4) of 2.8. Then Q is the stabilizer of the
ag 
onsisting of the line spanned by the �rst ve
tor sitting inside the plane spannedby the �rst two ve
tors of the standard basis of Rn+2. Hen
e we 
an write it as theinterse
tion P1 \ P2 for paraboli
s P1 and P2 (the stabilizers of the line respe
tivelythe plane). Let us start by analyzing the nested paraboli
s Q � P1 � G.Paraboli
 geometries of type (G;P1) 
orrespond to 
lassi
al proje
tive stru
tures on(n+1){dimensional manifolds, see Example (1) of 2.8. Su
h a stru
ture on a manifoldZ is given by the 
hoi
e of a proje
tive equivalen
e 
lass [r℄ of torsion free linear
onne
tions on TZ. Two linear 
onne
tions r and r̂ on TZ are 
alled proje
tivelyequivalent if there is a one form � 2 
1(Z) su
h thatr̂�� = r�� +�(�)� +�(�)�for all ve
tor �elds �; � 2 X(Z). Evidently, proje
tively equivalent 
onne
tions have thesame torsion. Alternatively, proje
tive equivalen
e 
an be 
hara
terized as having thesame torsion and the same geodesi
s up to parametrization. The harmoni
 
urvaturefor this geometry is the proje
tive Weyl 
urvature, i.e. the totally tra
efree part of the
urvature of any 
onne
tion in the 
lass.Sin
e ! is a Cartan 
onne
tion on G ! Z, we have TZ = G �P1 (g=p1). One easilyveri�es that Q � P1 
an be des
ribed as the stabilizer of a line in g=p1. Sin
e P1a
ts transitively on the proje
tive spa
e P(g=p1), see that P=Q �= P(g=p1). Hen
eCZ = G �P1 P=Q 
an be naturally identi�ed with the proje
tivized tangent bundlePTZ. Sin
e proje
tive stru
tures are torsion free, the 
urvature � of ! has values inp1, whi
h immediately implies that ! is regular as a Cartan 
onne
tion on G ! CZ.From Example (4) of 2.8 we 
on
lude that (G ! CZ;!) 
an be interpreted as a pathgeometry on Z. One veri�es that the paths des
ribed in that way are exa
tly theunparametrized geodesi
s of the 
onne
tions from the proje
tive 
lass.Let us now swit
h to the nested paraboli
 subgroups Q � P2 � G. A normalparaboli
 geometry (G ! N;!) of type (G;P2) exists only for dim(N) = 2n and isequivalent to an almost Grassmannian stru
ture. Essentially, su
h a geometry is givenby two auxiliary ve
tor bundles E and F over N of rank 2 and n, respe
tively, andan isomorphism E 
 F ! TN . The subgroup Q � P2 
an be 
hara
terized as thestabilizer of a line in the representation indu
ing E, whi
h similarly as above impliesthat CN 
an be identi�ed with the proje
tivization PE of E ! N .
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onne
tion on G ! CN in general. Regularityturns out to be equivalent to the fa
t that the stru
ture on N is Grassmannian ratherthan almost Grassmannian. This 
an be 
hara
terized by vanishing of a 
ertain torsionor equivalently by the fa
t that there is a torsion free 
onne
tion 
ompatible with thestru
ture. If this is satis�ed, then we obtain a generalized path geometry on PE. Thesubbundle L whi
h is one of the ingredients of that stru
ture is simply the verti
albundle of PE ! N . In parti
ular, the manifold N 
an be viewed the spa
e of all pathsof the indu
ed path geometry. The subbundle L � R � TCN is again a tautologi
alsubbundle. The splitting of this tautologi
al subbundle as L � R 
omes from thetorsion free 
onne
tions 
ompatible with the Grassmannian stru
ture.Suppose that n > 2 (the 
ase n = 2 will be dis
ussed later). Then starting from aGrassmannian stru
ture on N , we obtain a generalized path geometry on CN := PE.We know that the resulting subbundle R � TCN is involutive, so for suÆ
iently smallopen subsets U � CN we 
an form a lo
al leaf spa
e  : U ! Z. With a bit morework, one shows that one may take U = ��1(V ), for suÆ
iently small and 
onvexopen subsets V � N , where � : CN ! N is the natural proje
tion. One then obtainsa 
orresponden
e Z   � ��1(V ) ��! V;whi
h is the basis for twistor theory for Grassmannian stru
tures.3.3. Chara
terizing 
orresponden
e spa
es. A 
entral feature of the general the-ory of 
orresponden
e spa
es is that one 
an 
ompletely 
hara
terize paraboli
 geome-tries whi
h are lo
ally isomorphi
 to 
orresponden
e spa
es. This 
hara
terization isuniform for all the stru
tures.Let us return to the general setting of nested paraboli
s P � Q � G. The questionwe want to address is when a regular normal paraboli
 geometry (p : G !M;!) of type(G;Q) is lo
ally isomorphi
 to the 
orresponden
e spa
e CN for a paraboli
 geometryof type (G;P ). There is a fairly obvious ne
essary 
ondition: The subspa
e p=q � g=qis Q{invariant, thus giving rise to a subbundle V � TM . For a 
orresponden
e spa
eCN , this subbundle is the verti
al subbundle of the natural proje
tion CN ! N . Sin
ethe Cartan 
onne
tions for N and CN are the same, so are their 
urvatures. Sin
eve
tors from V are verti
al from the point of view of N , they must hook trivially intothe Cartan 
urvature of CN .It turns out that this 
ondition is also suÆ
ient:Theorem. Let (p : G ! M;!) be a paraboli
 geometry of type (G;Q) with Cartan
urvature �, and let V � TM be the distribution 
orresponding to p=q � g=q. ThenM admits an open 
overing fUig su
h that the restri
tion of (G ! M;!) to ea
h Uiis isomorphi
 to the 
orresponden
e spa
e of some paraboli
 geometry of type (G;P ) ifand only if i�� = 0 for all � 2 V.The proof of this theorem is not spe
i�
ally \paraboli
" and uses only prin
ipalbundle geometry. One �rst shows that the 
urvature 
ondition in the theorem impliesthat the distribution V � TM is involutive. Hen
e V gives rise to a foliation of M ,and one 
onsiders a lo
al leaf spa
e for this foliation, i.e. an open subset U � Mtogether with a surje
tive submersion  : U ! N su
h that ker(Tx ) = Vx for allx 2 U . For suÆ
iently small U , one next 
onstru
ts a di�eomorphism from an open
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ipal bundle N �P ! N ,whi
h satis�es a 
ertain equivarian
y 
ondition. This di�eomorphism is then used to
arry over ! to this open subset of N � P , and one proves that the resulting formuniquely extends to all of N � P by equivarian
y. It is easy to see that this not onlygives a paraboli
 geometry of type (G;P ) on N but also an isomorphism (of paraboli
geometries) between U and an open subset of CN .While this result is very satisfa
tory from a 
on
eptual point of view, it is diÆ
ultto apply in 
on
rete 
ases, sin
e the Cartan 
urvature is a 
ompli
ated obje
t. Frompart (2) of Theorem 2.9 we know that for regular normal geometries there is a nat-ural di�erential operator L whi
h 
omputes the Cartan 
urvature from the harmoni

urvature �H , whi
h is mu
h easier to handle. This operator is 
onstru
ted usingthe ma
hinery of BGG sequen
es and the 
onstru
tion is expli
it enough to lead torelations between algebrai
 properties of � and �H .Proposition. Let (G ! M;!) be a regular normal paraboli
 geometry of type (G;Q)with Cartan 
urvature � and harmoni
 
urvature �H , and let V � TM be as above. Ifi��H = 0 for all � 2 V, then i�� = 0 for all � 2 V.Combining this result with the theorem above, one obtains a very eÆ
ient lo
al 
har-a
terization of 
orresponden
e spa
es. From another point of view, these are equivalent
onditions for the existen
e of natural geometri
 stru
tures on twistor spa
es. It hasto be pointed out here that usually the stru
ture of the harmoni
 
urvature 
an beunderstood without detailed knowledge of the 
anoni
al Cartan 
onne
tion.3.4. Examples. Let us interpret the results on lo
al 
hara
terization of 
orrespon-den
e spa
es in the example dis
ussed in 3.2. So we start with a generalized path geom-etry (M;L;R) and the asso
iated regular normal paraboli
 geometry (p : G ! M;!)of type (G;Q). For n > 2 (whi
h we will still assume throughout this subse
tion), theharmoni
 
urvature �H splits into two irredu
ible 
omponents:T : L ^ TM=(L �R)! R Torsion� : R ^ TM=(L �R)! R� 
R CurvatureThe types of these 
omponents 
an be dedu
ed from the stru
ture of the homologygroup H2(q+; g), whi
h 
an be determined algorithmi
ally using Kostant's version ofthe Bott{Borel{Weil theorem. There are general pro
edures how to obtain expli
itformulae for the two 
omponents, say in terms of a lo
al non{vanishing se
tion of L.Let us �rst 
onsider the 
hara
terization of 
orresponden
e spa
es 
oming from thein
lusion Q � P1 � G. From 3.2 we know that these are exa
tly the path geometriesasso
iated to the unparametrized geodesi
s of a proje
tive 
lass of 
onne
tions. Thedistribution V 
orresponding to p1=q � g=q evidently is the subbundle R � TM . Theresults from 3.3 now show that M is lo
ally isomorphi
 to a 
orresponden
e spa
es ifand only if � vanishes identi
ally.As we have noted in 2.8, the subbundle R � TM is involutive (sin
e n > 2). Fora lo
al leaf spa
e  : U ! Z of the 
orresponding foliation, the subset U then isnaturally di�eomorphi
 to an open subset in the proje
tivized tangent bundle PTZ.Then our result shows that the generalized path geometry on M indu
es a proje
tivestru
ture on Z if and only if � vanishes identi
ally. If this is the 
ase, then the torsionT is dire
tly related to the proje
tive Weyl 
urvature of the indu
ed stru
tures on the
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al leaf spa
es. In parti
ular, the path geometry on M is lo
ally 
at if and only ifthe indu
ed proje
tive stru
tures on all lo
al leaf spa
es are lo
ally proje
tively 
at.Another interesting appli
ation of this 
riterion is to the path geometry asso
iatedto a system of se
ond order ODE's as des
ribed in 3.2. This reprodu
es a result of[19℄:Theorem. A system of se
ond order ODE's is lo
ally equivalent to a geodesi
 equationif and only if the 
urvature � of the asso
iated path geometry vanishes identi
ally.Now we swit
h to the 
hara
terization of 
orresponden
e spa
es with respe
t tothe in
lusion Q � P2 � G. The distribution V 
orresponding to p2=q � g=q is thesubbundle L � TM . This is always involutive and lo
al leaf spa
es for the asso
iatedfoliation lo
ally parametrize the paths of the path geometry. Hen
e here the maininterpretation of the 
hara
terization result is a 
riterion when a generalized pathgeometry lo
ally des
ends to a Grassmannian stru
ture on the spa
e of all paths.From 3.3 we see that this is the 
ase if and only if T = 0, whi
h is equivalent to thegeneralized path geometry being torsion free.Again there is an interesting appli
ation to the theory of systems of se
ond orderODE's: One de�nes su
h a system to be torsion free if and only if the asso
iatedpath geometry is torsion free. For su
h a systems we obtain an indu
ed Grassmannianstru
ture on the spa
e of solutions of the system. The 
urvature of this Grassmannianstru
ture 
an be 
onstru
ted from the 
urvature � of the path geometry. Of 
ourse,this 
urvature des
ends to the spa
e of solutions and hen
e is 
onstant along ea
hsolution. Using this, D. Grossman proved in [21℄ the following result.Theorem. For generi
 torsion free systems of se
ond order ODE's, the 
urvature ofthe asso
iated path geometry 
an be used to solve the system expli
itly.3.5. The 
ase n = 2. Let us brie
y dis
uss how the examples related to generalizedpath geometries dis
ussed in 2.9, 3.2, and 3.4 
hange in the 
ase n = 2. The ingredientsare proje
tive stru
tures on three manifolds, generalized path geometries in dimension�ve, and four dimensional almost Grassmannian stru
tures. The main point is that analmost Grassmannian stru
ture in dimension four is equivalent to a 
onformal pseudo{Riemannian spin stru
ture of split signature (2; 2). The auxiliary bundles E and Fwhose tensor produ
t is isomorphi
 to the tangent bundle both have rank two. Theyare exa
tly the two spinor bundles.The stru
ture of harmoni
 
urvatures for n = 2 is also di�erent from the 
ase n > 2.For almost Grassmannian stru
tures the more symmetri
 situation leads to the fa
tthat there are two 
urvatures rather than one 
urvature and one torsion. These two
omponents are exa
tly the self dual and the anti self dual part of the Weyl 
urvatureof the 
orresponding 
onformal stru
ture.On the level of path geometries, a third irredu
ible 
omponent in the harmoni

urvature shows up. This 
omponent is represented by a torsion � : �2R! L, whi
his the obstru
tion to involutivity of the subbundle R. (For n > 2, there also is a
orresponding 
omponent in the homology H2(q+; g), but this sits in homogeneityzero. By regularity, this 
omponent 
annot 
ontribute to the harmoni
 
urvature.)Starting from a 
onformal four manifold, the 
orresponden
e spa
e is a proje
tivizedspinor bundle, whi
h inherits a generalized path geometry. The torsion � on this spa
e
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orresponds exa
tly to the self dual part of the Weyl 
urvature downstairs. Vanishingof this part, i.e. anti self duality, is equivalent to existen
e of lo
al leaf spa
es for thebundle R on the 
orresponden
e spa
e. This is the basis for twistor theory for antiself dual four manifolds in split signature. The Riemannian version of twistor theory
an be either obtained from the 
omplex version of this 
onstru
tion or by an analogof the 
orresponden
e spa
e 
onstru
tion (for a subgroup whi
h is not paraboli
).4. Analogs of the Fefferman 
onstru
tionWe now swit
h to a se
ond general 
onstru
tion relating paraboli
 geometries ofdi�erent types. The basi
 example for this is Fe�erman's 
onstru
tion whi
h relatesCR stru
tures to 
onformal stru
tures. This 
onstru
tion is of di�erent nature to theones dis
ussed in se
tion 3 sin
e it involves two di�erent semisimple groups. Moredetails on the 
ontents of this se
tion 
an be found in [8℄ and [11℄.4.1. The Fe�erman 
onstru
tion. We start by reviewing Fe�erman's original 
on-stru
tion from [18℄ and its interpretation in terms of Cartan geometries. He startedfrom a stri
tly pseudo
onvex domain 
 � C n+1 with smooth boundary M := �
.This boundary naturally inherits a CR stru
ture (see below). Studying the Bergmankernel of 
, Fe�erman was led to 
onsider the ambient metri
: Put C � := C n f0gand 
onsider M# = M � C � � 
# = 
 � C � . A de�ning fun
tion r for M indu
es ade�ning fun
tion r# for M#. Sin
e M is stri
tly pseudo
onvex, r# 
an be used as thepotential for a pseudo{K�ahler metri
 g# of signature (n+1; 1). Fe�erman showed thatone may always 
hose r to be an approximate solution of a Monge{Amp�ere equationand doing this a 
ertain jet of g# along M# is invariant under biholomorphisms of 
.Otherwise put, this jet is a CR invariant of M .Hen
e it is a natural idea to look at the restri
tion of g# to M#. This turns outto be degenerate but only in the real dire
tions within the verti
al subspa
es of theproje
tion M# ! M . To get rid of these dire
tions, one passes to the spa
e ~M =M � (C �=R�) �= M � S1. Using a se
tion of the evident proje
tion M# ! ~M , one
an pull ba
k g# to a non{degenerate Lorentz metri
 on ~M . Changing the se
tionsleads to a 
onformal 
hange of the metri
, so one obtains a well de�ned 
onformal
lass of metri
s of signature (2n+1; 1) on ~M . This 
onformal 
lass is invariant underbiholomorphisms of 
 and hen
e depends only on the CR stru
ture of M .CR stru
tures �t into the general 
on
ept of paraboli
 geometries as the paraboli

onta
t stru
tures asso
iated to g = su(p + 1; q + 1). In fa
t, one obtains a moregeneral 
on
ept: A partially integrable almost CR stru
ture on a smooth manifold Mof dimension 2n+1 is a 
onta
t stru
ture H � TM together with an almost 
omplexstru
ture J : H ! H su
h that the Levi bra
ket L (see 2.6) satis�es L(J�; J�) =L(�; �) for all �; �. Under this assumption, L is the imaginary part of a Hermitianform (with values in the real line bundle TM=H), the Levi form, whi
h has a signature(p; q). Sin
e there is an ambiguity of sign, we require p � q to have the signature wellde�ned.The 
ompatibility of L and J , whi
h is usually referred to as partial integrability, 
analso be ni
ely formulated in terms of 
omplexi�
ations. The almost 
omplex stru
tureJ leads to a splitting of H 
C � TM 
C into the dire
t sum of the holomorphi
 partH1;0 and the anti holomorphi
 part H0;1, whi
h are 
onjugate to ea
h other. Partial
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t that the Lie bra
ket of two se
tions of H0;1 is ase
tion of H 
 C . An almost CR stru
ture is 
alled integrable or a CR stru
ture if thesubbundle H0;1M � TM 
 C is involutive, so the Lie bra
ket of two se
tions of H0;1even is a se
tion of H0;1.Partially integrable almost CR stru
tures of signature (p; q) are then equivalent toregular normal paraboli
 geometries asso
iated to the group PSU(p + 1; q + 1). Formany appli
ations it is better to extend the group to G := SU(p + 1; q + 1). LetP be the stabilizer of an isotropi
 
omplex line ` in V := C p+q+2 . Then a regularnormal paraboli
 geometry of type (G;P ) on a manifoldM is equivalent to a partiallyintegrable almost CR stru
ture of signature (p; q) plus a 
hoi
e of a 
omplex linebundle, whi
h is an (n + 2)nd root of the so{
alled 
anoni
al bundle. While su
h a
hoi
e need not exist in general, it is always possible lo
ally. The integrability 
onditionturns out to be equivalent to torsion freeness of the asso
iated paraboli
 geometry.IfM is the boundary of a stri
tly pseudo
onvex domain 
 � C n+1 , then one de�nesHxM as the maximal 
omplex subspa
e of TxM � TxC n+1 . This evidently has analmost 
omplex stru
ture and it de�nes a 
onta
t stru
ture by stri
t pseudo
onvexity.The latter 
ondition also implies that the signature is (n; 0). Looking at the 
omplex-i�ed tangent bundle, we see that H0;1M = (TM 
 C ) \ T 0;1C n+1. Sin
e C n+1 is a
omplex manifold, the subbundle T 0;1C n+1 � TC n+1 
 C is involutive, so we obtain aCR stru
ture on M . Triviality of the tangent bundle of C n+1 implies that the 
anoni-
al bundle of M is 
anoni
ally trivial, so there is no problem in 
hoosing an (n+2)ndroot.Now it is easy to obtain the Fe�erman 
onstru
tion for the homogeneous model: Thereal part of the Hermitian form onVde�nes an inner produ
t of signature (2p+2; 2q+2)on the underlying real ve
tor spa
e VR. Sin
e elements of G preserve this real part, weobtain an inje
tion G ,! SO(2p + 2; 2q + 2). Analyzing the indu
ed homomorphismbetween the fundamental groups one even shows that this naturally lifts to an in
lusioninto the spin group ~G := Spin(2p + 2; 2q + 2). Choose a real line `R in the isotropi

omplex line ` and let ~P � ~G be the stabilizer of `R. The interse
tionQ := G\ ~P is thestabilizer of `R in G, so it is evidently 
ontained in P and P=Q �= RP 1. Elementarylinear algebra shows that G a
ts transitively on the spa
e of real null lines in VR.Hen
e the in
lusion G ,! ~G indu
es a di�eomorphism G=Q! ~G= ~P . The latter spa
eis well known to be the homogeneous model of 
onformal spin stru
tures of signature(2p+ 1; 2q+ 1). Hen
e we obtain su
h a stru
ture (whi
h by 
onstru
tion is invariantunder the a
tion of G) on G=Q whi
h is the total spa
e of a 
ir
le bundle over G=P .Passing to 
urved geometries is easy: Looking at the tangent spa
es at the basepoints, the di�eomorphism G=Q ! ~G= ~P indu
es a linear isomorphism g=q ! ~g=~pwhi
h is equivariant over the in
lusion Q ,! ~P . Here q = g\ ~p is the Lie algebra of Q.In parti
ular, we obtain a 
onformal 
lass of inner produ
ts of signature (2p+1; 2q+1)on g=(g \ ~p) whi
h is invariant under the natural a
tion of Q. Given a partiallyintegrable almost CR stru
ture (M;H; J), let (G ! M;!) be the asso
iated regularnormal paraboli
 geometry. The subgroup Q � P a
ts freely on G, so the Fe�ermanspa
e ~M := G=Q is a smooth manifold and the total spa
e of the natural �ber bundleG �P P=Q over M . On the other hand, the evident proje
tion G ! ~M is a prin
ipalQ{bundle and ! 2 
1(G; p) de�nes a Cartan 
onne
tion on that bundle. In parti
ular,T ~M �= G �Q g=q so the Q{invariant 
lass of inner produ
ts on g=q gives rise to a
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onformal stru
ture on ~M , whi
h by 
onstru
tion depends only on the CR stru
tureon M .It is easy to give a more expli
it des
ription of ~M . Namely, one shows that ~M 
an benaturally identi�ed with the spa
e of real lines in a natural 
omplex line bundle, whi
his 
losely related to the 
hosen root of the 
anoni
al bundle. One 
an also 
onstru
texpli
itly a metri
 from the 
onformal 
lass in terms of a 
hoi
e of 
onta
t form onM (usually 
alled a pseudo Hermitian stru
ture) and the asso
iated Weyl 
onne
tion(see [13℄) on a 
omplex line bundle.4.2. Cartan geometry interpretation. The 
onstru
tion of the 
anoni
al 
onfor-mal 
lass on ~M from above 
an be easily reformulated in terms of Cartan geometries.As we know from 4.1, we have the Q{prin
ipal bundle G ! ~M and we 
an view the
anoni
al CR Cartan 
onne
tion ! as a Cartan 
onne
tion on that bundle. Now viathe in
lusion Q ,! ~P , we 
an extend the stru
ture group of this bundle. De�ne aprin
ipal ~P{bundle ~G := G �Q ~P ! ~M . Mapping u 2 G to the 
lass of (u; e) in ~Gde�nes an inje
tive smooth map j : G ! ~G whi
h is equivariant over the in
lusionQ ,! ~P . It is easy to show that there is a unique Cartan 
onne
tion ~! 2 
1( ~G; ~g) su
hthat ~!jTj(TG) = ! (viewing g as a Lie subalgebra of ~g).As a Cartan 
onne
tion on a prin
ipal ~P {bundle ~! is automati
ally regular andhen
e it indu
es a 
onformal spin stru
ture on the base ~M . From the 
onstru
tion itis evident this this leads to the 
onformal stru
ture des
ribed in 4.1.Now one might expe
t that ~! is the normal Cartan 
onne
tion asso
iated to this
onformal spin stru
ture, but this is not true in general:Theorem. Let (M;H; J) be a partially integrable almost CR stru
ture with Fe�ermanspa
e ~M . Then the Cartan 
onne
tion ~! on the extended prin
ipal bundle ~G ! ~M isnormal if and only if the almost CR stru
ture is integrable.The ne
essity of integrability follows rather easily from the fa
t that normal 
on-formal Cartan 
onne
tions are automati
ally torsion free. The proof of suÆ
ien
y ofthis 
ondition is mu
h more subtle. The result does not follow from algebrai
ally 
om-paring the normalization 
onditions for the two geometries in question but one has toprove additional properties of the 
urvature of a torsion free geometry. In that respe
t,the situation is very di�erent from the 
ase of 
orresponden
e spa
es dis
ussed in thelast se
tion.For some appli
ations of the Fe�erman 
onstru
tion, the question of normality of ~!is not relevant. For example, 
onformal invariants of the Fe�erman spa
e are alwaysinvariants of the underlying partially integrable almost CR stru
ture. However, wewill show below that normality of ~! leads to many other and deeper results.If the stru
ture on M is not integrable, then the 
anoni
al Cartan 
onne
tion forthe 
onformal spin stru
ture on ~M 
an be obtained by normalizing ~!. The di�eren
eof ~! from the normal Cartan 
onne
tion is given by a one form on ~M with values inthe 
onformal adjoint tra
tor bundle ~G � ~P ~g. One may try to imitate some of thedevelopments des
ribed below taking into a

ount the 
hange 
aused by this form. Tomy knowledge, this has not been explored up to now.4.3. Appli
ations of normality to CR geometry. We want to dis
uss a few resultswhi
h are based on normality of the Cartan 
onne
tion ~! in the 
ase of a CR stru
ture.
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ation in Fe�erman's original arti
le [18℄ as wellas in the �rst version for abstra
t CR stru
tures in [5℄.� Chern{Moser 
hains are the proje
tions to M of null geodesi
s in ~M .Chern{Moser 
hains in M 
an be obtained as the proje
tions of 
ow lines of ve
tor�elds on G whi
h are mapped to 
ertain 
onstant fun
tions by !. Likewise, 
onformal
ir
les on ~M are the proje
tions of 
ow lines of ve
tor �elds on ~G whi
h are mapped to
ertain 
onstant fun
tions by ~!. For initial dire
tions whi
h are null, 
onformal 
ir
lesare just null geodesi
s whi
h, as unparametrized 
urves, are 
onformally invariant.The initial dire
tion of a 
hain is always transversal to the 
onta
t subbundle, andsu
h a dire
tion always admits a lift to a null dire
tion in ~M . Then the result easilyfollows from the fa
t that ~! is obtained from ! by equivariant extension.� Relations between CR tra
tor 
al
ulus on M and 
onformal tra
tor 
al
ulus on ~M .Standard tra
tors are probably the ni
est way to relate a CR manifold to its Fe�er-man spa
e. The CR standard tra
tor bundle T of M is by de�nition the asso
iatedbundle G �P V, where V denotes the standard representation of G. By 
onstru
tion,this is a rank n + 2 
omplex ve
tor bundle endowed with Hermitian inner produ
t hof signature (p + 1; q + 1), and a 
omplex line subbundle T 1 � T whi
h is isotropi
for h. This subbundle 
orresponds to the 
omplex line in Vwhi
h is stabilized by P .The 
anoni
al Cartan 
onne
tion ! on G indu
es a Hermitian linear 
onne
tion on T ,
alled the normal standard tra
tor 
onne
tion.Likewise, the 
onformal standard tra
tor bundle ~T of the Fe�erman spa
e ~M is thebundle ~G � ~P V. This is a real bundle of rank 2n+4 endowed with a Eu
lidean bundlemetri
 ~h of signature (2p+2; 2q+2) and an a real line subbundle ~T 1 whi
h is isotropi
for ~h. The Cartan 
onne
tion ~! indu
es the normal standard tra
tor 
onne
tion on~T .The relation between the Cartan bundles and the Cartan 
onne
tions dis
ussedabove 
an be interpreted as the fa
t that ~T (in
luding the additional stru
tures) 
analso be obtained as G �G\ ~P V and the normal tra
tor 
onne
tion on ~T is indu
ed by!, viewed as a Cartan 
onne
tion on G ! ~M .Both for 
onformal and for CR stru
tures, the standard tra
tor bundle and thestandard tra
tor 
onne
tion lead to an eÆ
ient 
al
ulus. Hen
e we obtain a 
loserelation between CR tra
tor 
al
ulus on a CR manifold and 
onformal tra
tor 
al
uluson its Fe�erman spa
e.� Conformally invariant di�erential operators on ~M des
end to families of CR invari-ant di�erential operators on M .The relations between the standard tra
tor bundles ofM and ~M 
an be extended toother bundles, for example other tra
tor bundles and density bundles. One 
an theninterpret se
tions of some bundle over M as a subset of se
tions of some other bundleover ~M , whi
h usually are 
hara
terized as solutions of some di�erential equation. Itoften happens that this works for a whole family of bundles over M (with di�erentweights) and the same bundle on ~M . Based on the relations between tra
tor 
al
ulidis
ussed above, one shows that in several 
ases 
onformally invariant di�erential op-erators preserve the subspa
es of \downstairs" se
tions and hen
e des
end to (familiesof) CR invariant di�erential operators.
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ertain CR invariant di�erential equations.The solutions of 
ertain CR invariant di�erential equations admit a natural inter-pretation in terms of the 
onformal geometry of the Fe�erman spa
e. An examplefor this will be given in the dis
ussion of 
onformal isometries of the Fe�erman spa
ebelow.4.4. Conformal geometry of Fe�erman spa
es. The se
ond interesting line ofappli
ations is towards Fe�erman spa
es as an interesting sub
lass of 
onformal stru
-tures.� Fe�erman spa
es have a parallel orthogonal 
omplex stru
ture on the standard tra
torbundle and are lo
ally 
hara
terized by that.We have seen above that for the Fe�erman spa
e ~M of a CR manifold M , the
onformal standard tra
tor bundle 
an be interpreted as ~T = G �G\ ~P V, and thetra
tor 
onne
tion on that bundle is indu
ed by the CR Cartan 
onne
tion !. Sin
eV is a 
omplex ve
tor spa
e, we obtain an almost 
omplex stru
ture J on ~T , whi
h isorthogonal (or equivalently skew symmetri
) with respe
t to the tra
tor metri
, andparallel for the 
onne
tion on L( ~T ; ~T ) indu
ed by the standard tra
tor 
onne
tion.This 
an be interpreted as the fa
t that the holonomy of the standard tra
tor 
on-ne
tion is 
ontained in SU(p+1; q+1) � SO(2p+2; 2q+2). Conversely, one 
an showthat a 
onformal stru
ture of signature (2p+2; 2q+2) whi
h admits su
h a holonomyredu
tion, is lo
ally 
onformally isometri
 to a Fe�erman spa
e. This shows that therole of Fe�erman spa
es among general 
onformal stru
tures is similar to the role ofCalabi{Yau manifolds among general Riemannian manifolds.� Fe�erman spa
es admit nontrivial Twistor spinors and 
onformal Killing forms ofall odd degrees.Several 
onformally invariant di�erential equations whi
h are overdetermined (andthus do not have solutions in general) always admit nontrivial solutions on Fe�ermanspa
es. The simplest example of this situation is that one 
onstru
ts a nowhere van-ishing 
onformal Killing �eld j on ~M , whi
h spans the verti
al subbundle of ~M !M .The most 
on
eptual interpretation of this is via the almost 
omplex stru
ture J onthe standard tra
tor bundle ~T ! ~M . Sin
e this is skew symmetri
 with respe
t to thetra
tor metri
, it 
an be interpreted as a parallel se
tion of the adjoint tra
tor bundle~A = ~G � ~P ~g. It is well known that there is a natural proje
tion � : ~A! T ~M and theimage of a parallel se
tion under this proje
tion is automati
ally a 
onformal Killing�eld (whi
h in addition hooks trivially into the Cartan 
urvature).Viewing ~A as �2 ~T , we 
an form the k{fold wedge produ
t of J with itself, whi
hde�nes a nonzero parallel se
tion of the tra
tor bundle �2k ~T . This bundle naturallyproje
ts onto the bundle �2k�1T � ~M (twisted by an appropriate density bundle) andthe image of a parallel se
tion is a 
onformal Killing form (with additional properties),see [22℄. These 
onformal Killing forms 
an be expli
itly expressed in terms of the
onformal Killing �eld j from above. In 
ontrast to the simple algebrai
 formula onthe tra
tor level, these expressions involve 
ovariant derivatives of j.We have noted in 4.1, the Fe�erman spa
e ~M 
arries a natural spin stru
ture. Inparti
ular, we 
an 
onsider the tra
tor bundle ~S ! ~M 
orresponding to the spin repre-sentation of ~G = Spin(2p+2; 2q+2). Now it is well known that as a representation of



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 23the subgroup G = SU(p+1; q+1) this spin representation de
omposes and in parti
-ular 
ontains a two dimensional trivial subrepresentation. Using the relation betweenthe tra
tor 
al
uli dis
ussed above, one shows that this leads to a de
omposition ofthe spin tra
tor bundle ~S ! ~M , and in parti
ular one obtains a two parameter familyof parallel se
tions of that bundle. The bundle ~S 
omes with a 
anoni
al proje
tionto the spinor bundle of ~M , whi
h maps parallel se
tions to twistor spinors. Hen
e anyFe�erman spa
e admits a two parameter family of twistor spinors.� De
omposition of 
onformal Killing �elds.By naturality of the 
onstru
tion of the Fe�erman spa
e, any CR automorphism ofM lifts to a 
onformal isometry of ~M . Likewise, an in�nitesimal automorphism of Mindu
es a 
onformal Killing �eld on ~M . As the example of the homogeneous modelshows, there may be other 
onformal Killing �elds on ~M . It turns out that one 
an
ompletely des
ribe the spa
e of all 
onformal Killing �elds on ~M in terms of the CRgeometry of M .In�nitesimal automorphisms of paraboli
 geometries 
an be des
ribed in general interms of se
tions of the adjoint tra
tor bundle. For the 
ase of 
onformal stru
tures,this means that any 
onformal Killing �eld is the image of a uniquely determinedse
tion of the adjoint tra
tor bundle ~A whi
h satis�es a 
ertain 
onformally invariantdi�erential equation.As a representation of G = SU(V), the Lie algebra ~g = so(V) is not irredu
ible,but de
omposes as su(V)� R� �2CV. Here the �rst two summands 
orrespond to
omplex linear maps, while the last one 
orresponds to 
onjugate linear maps, and thetrivial summand 
onsists of purely imaginary multiples of the identity. This indu
esan analogous splitting of the 
onformal adjoint tra
tor bundle ~A! ~M .We 
an use this splitting to de
ompose any se
tion of ~A into a sum of three terms.Via tra
tor 
al
ulus one shows that for a se
tion 
orresponding to a 
onformal Killing�eld, ea
h of the three parts satis�es the in�nitesimal automorphism equation. Thusone 
on
ludes that any 
onformal Killing �elds � 2 X( ~M) de
omposes uniquely intoa sum �1 + �2 + �3 of 
onformal Killing �elds. One further shows that �1 des
ends toan in�nitesimal automorphism of the underlying CR manifoldM and �2 is a 
onstantmultiple of j. The summand �3 des
ends to a se
tion of �2CT ! M whi
h solvesa 
ertain CR invariant di�erential equation. Likewise, appropriate solutions of thisequation give rise to 
onformal Killing �elds on ~M .4.5. Analogs of the Fe�erman 
onstru
tion. From the dis
ussion in 4.1 it ispretty evident what is needed to obtain an analog of the Fe�erman 
onstru
tion: Onestarts with an in
lusion G ,! ~G of semisimple Lie groups and 
hooses a paraboli
subgroup ~P � ~G su
h that the G orbit of e ~P in ~G= ~P is open. Finally, one needs aparaboli
 subgroup P � G whi
h 
ontains G \ ~P .Suppose that (p : G ! M;!) is a paraboli
 geometry of type (G;P ). The de�ne~M := G=(G \ ~P ), whi
h is a smooth manifold and the total spa
e of the natural �berbundle G �P P=(G \ ~P ) ! M . To obtain an expli
it des
ription of ~M , it suÆ
esto give a good des
ription of the subgroup G \ ~P � P . As before, one 
an viewG ! ~M as a prin
ipal bundle with stru
ture group G\ ~P and ! 2 
1(G; g) as a Cartan
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onne
tion on this bundle. In parti
ular, this identi�es T ~M with the asso
iated bundleG �G\ ~P g=(g \ ~p).Sin
e the G{orbit of e ~P in ~G= ~P is open, the in
lusion g ,! ~g indu
es a linearisomorphism g=(g \ ~p) ! ~g=~p. Clearly, this isomorphism is equivariant under thein
lusion G \ ~P ,! ~P . Hen
e we 
an 
arry over ~P {invariant obje
ts related to ~g=~pto (G \ ~P ){invariant obje
ts related to g=(g \ ~p) and hen
e to natural geometri
obje
ts on ~M . In most examples dis
ussed below, this already suÆ
es to obtain theunderlying stru
ture of a regular normal paraboli
 geometry of type ( ~G; ~P ) on ~M . Inmore 
ompli
ated situations one in addition has to 
he
k that the map �2(~g=~p) ! ~gindu
ed by the 
urvature of ! is regular, but this usually is very easy.It is a mu
h more diÆ
ult problem to 
he
k whether ! indu
es the regular normalCartan 
onne
tion asso
iated to this underlying stru
ture. As in the 
lassi
al 
ase,one 
an form the extended bundle ~G := G �G\ ~P ~P , and there is a unique Cartan
onne
tion ~! on that bundle whi
h restri
ts to ! on TG � T ~G. To obtain an analogof Theorem 4.2 and appli
ations similar to the ones des
ribed in 4.3 and 4.4, one hasto �nd 
onditions for ~! being normal. To my knowledge, this has not been done forall the examples des
ribed below but for many of them there are hints 
oming fromindependent works on these stru
tures.Examples. (1) Closest to the 
lassi
al Fe�erman 
onstru
tion, one may 
onsider thegroup G := Sp(p + 1; q + 1) asso
iated to a quaternioni
 Hermitian form of signature(p + 1; q + 1) on H p+q+2 . Viewing this spa
e as C 2p+2q+4 gives rise to an in
lusionSp(p + 1; q + 1) ,! ~G := SU(2p + 2; 2q + 2). Taking P � G and ~P � ~G thestabilizer of a quaternioni
 respe
tively a 
omplex null line, one obtains G\ ~P � P andP=(G \ ~P ) �= CP 1. Paraboli
 geometries of type (G;P ) fall into the 
lass dis
ussed inExample (2) of 2.8, i.e. the stru
tures whi
h are (essentially) determined by a �ltrationof the tangent bundle. The modeling Lie algebra g� is a quaternioni
 Heisenbergalgebra of signature (p; q). This means that g�1 �= H p+q and g�2 �= =(H ), the spa
e ofpurely imaginary quaternions, in su
h that way that the bra
ket is by the imaginarypart of a quaternioni
 Hermitian form of signature (p; q). For q = 0, one obtains thequaternioni
 
onta
t stru
tures introdu
ed by Olivier Biquard, see [3, 4℄.Hen
e we see that, up to some dis
rete data (related to the fa
t that we use the groupSp rather than PSp) our 
onstru
tion starts with a quaternioni
 
onta
t stru
ture ofsignature (p; q) on some manifold M . The Fe�erman spa
e ~M is then the total spa
eof a natural �ber bundle over M with �ber CP 1 �= S2, and on ~M we naturally obtaina partially integrable almost CR stru
ture of signature (2p+1; 2q+1). This should be
losely related to O. Biquard's 
onstru
tion of a twistor spa
e for quaternioni
 
onta
tstru
tures.(2) Consider a ve
tor spa
e ~Vendowed with an inner produ
t of signature (p+1; q+2).Fixing a line ` on whi
h the inner produ
t is negative de�nite, the in
lusion `? ,! ~Vgives rise to an in
lusion G := SO(p + 1; q + 1) ,! SO(p + 1; q + 2) =: ~G. Choose anull plane W whi
h is transversal to `? and let ~P � ~G be the stabilizer of W. ThenW \ `? is a null line, and its stabilizer P evidently 
ontains G \ ~P . One veri�es thatthe G{orbit of e ~P in ~G= ~P 
onsists of those null planes in ~Vwhi
h are transversal to`?, so in this 
ase G=(G \ ~P ) is a proper open subset of ~G= ~P .
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 geometries of type (G;P ) are just 
onformal stru
tures of signa-ture (p; q). Given su
h a stru
ture on M one shows that the Fe�erman spa
e ~M 
anbe identi�ed with the open subset P+(T �M) of the proje
tivized 
otangent bundleof M 
onsisting of all lines in T �M on whi
h the 
onformal inner produ
t is positivede�nite. In parti
ular, for q = 0, we obtain the full proje
tivized 
otangent bundle.Of 
ourse, in any 
ase ~M 
arries a 
anoni
al 
onta
t stru
ture and the analog of theFe�erman 
onstru
tion re�nes this to a Lie 
onta
t stru
ture. This generalizes andexplains the results of [26℄.(3) Consider the in
lusion of G := Sp(2n;R) into ~G := SL(2n;R) by the standardrepresentation. Paraboli
 subgroups of G 
orrespond to isotropi
 
ags in the symple
-ti
 ve
tor spa
e R2n, whi
h paraboli
 subgroups in ~G 
orrespond to arbitrary 
ags.Hen
e there is only one 
hoi
e for a paraboli
 subgroup ~P � ~G su
h that the G{orbitof e ~P in ~G= ~P is open. Namely, one has to use the stabilizer of a line, sin
e for linesbeing isotropi
 is a va
uous 
ondition. In this 
ase P := G\ ~P is itself paraboli
 in G.Hen
e we 
on
lude that the analog of the Fe�erman 
onstru
tion this time startsfrom a geometry of type (G;P ) on M and produ
es the underlying stru
ture of ageometry of type ( ~G; ~P ) on the same spa
e M . Geometries of type (G;P ) are a
onta
t analog of proje
tive stru
tures, and our 
onstru
tion extends su
h a stru
tureto a 
lassi
al proje
tive stru
ture. This has been dire
tly obtained in [20℄, where moredetails about su
h stru
tures 
an be found.(4) To �nish, we dis
uss an exoti
 example whi
h however has a long history. Let Gbe the split real form of the ex
eptional Lie group G2. It is well known that G2 has a 7dimensional representation, and for the split form there is an invariant inner produ
tof signature (3; 4) on this representation. Hen
e this gives rise to an in
lusion of Ginto ~G := SO(3; 4). The stabilizer P � G of a line through a highest weight ve
tor inthis representation is one of the two maximal paraboli
 subgroups of G. This line iseasily seen to be isotropi
, so as in (3) we obtain P = G\ ~P , where ~P is the stabilizerof the highest weight line in ~G.Geometries of type (G;P ) are exa
tly the generi
 rank two distributions in dimension�ve whi
h are studied in Cartan's famous \�ve variables paper" [15℄. Given su
h adistribution on M , the analog of the Fe�erman 
onstru
tion produ
es a 
anoni
al
onformal 
lass of split signature (2; 3) on M . Su
h a 
anoni
al 
onformal 
lass wasre
ently dis
overed by P. Nurowski using Cartan's method of equivalen
e, see [24℄.Sin
e in Nurowski's 
onstru
tion one obtains the same normal Cartan 
onne
tion forboth geometries, it is very likely that the stru
ture des
ribed here 
oin
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