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hep-th/9410147Vienna, ESI-153 (1994)Dubna, JINR-E2-94-383Four dimensional integrable theories 1Ch. Devchand and V. OgievetskyJoint Institute for Nuclear Research 141980 Dubna, RussiaAbstract. There exist many four dimensional integrable theories. They include self-dual gaugeand gravity theories, all their extended supersymmetric generalisations, as well the full (non-self-dual) N=3 super Yang-Mills equations. We review the harmonic space formulation of thetwistor transform for these theories which yields a method of producing explicit connectionsand metrics. This formulation uses the concept of harmonic space analyticity which is closelyrelated to that of quaternionic analyticity.1. IntroductionMany Lorentz invariant four dimensional exactly solvable nonlinear theories are known. Themost remarkable of these are those admitting the Penrose-Ward twistor transform [1], which maybe thought of as an analogue of the transformation to action-angle variables for hamiltoniandynamical systems, in the sense that it involves a transformation to variables in which thedynamics is trivial, reducing the problem to that of inverting the transformation. Further, thesolution methods for many lower-dimensional completely integrable systems, like the inversescattering transform for the KdV equation, may be thought of as reductions of the twistortransform [2], so the prospect has arisen, of a uni�cation of the various existing methods ofsolving two dimensional systems as di�erent manifestations of the twistor transform for self-dual Yang-Mills (SDYM).The twistor transform, which takes its most dramatic form in its application to the solutionof the self-dual Yang-Mills and Einstein equations has been found to have a remarkably clearrealisation in the language of `harmonic spaces' ([3]-[7]). In fact harmonic or twistor spacesadmit supersymmetrisation, yielding a remarkably simple supersymmetrisation of the SDYMand Einstein equations, which is much more straightforward, and moreover independent of theN-extension (where N is the number of independent supersymmetries), than the supersymmetri-sations of the corresponding full non-self-dual theories, for which the supersymmetrisation foreach extension N has to be considered anew. All N-extended supersymmetric theories may1Talk by V. Ogievetsky at the G�ursey Memorial Conference I, Istanbul, June 19941



therefore be treated on an equal footing [8, 9]. Moreover, for the self-dual super Yang-Millstheories, there exists a remarkable `matreoshka'-like nested structure [8] in which the N = 0solution data may be dressed-up to higher N solution data in a basically algebraic fashion usingsolutions of �rst-order equations.The list of four-dimensional theories (which may equally well be considered to be in complexi�edspace or in real spaces of Euclidean (4,0) or Kleinian (2,2) signature) amenable to the twistortransform is therefore quite large and includes� Self-dual Yang-Mills (SDYM) equations, for any semisimple gauge group.� All N-extended (N = 1; ::; 4) supersymmetrisations of the latter.� Self-dual Einstein equations, with or without cosmological constant.� All N-extended Poincar�e and conformal self-dual supergravities.� The full (i.e. non-self-dual ) N=3 super-Yang-Mills theory (even in the Minkowskian (3,1)signature).In this talk, we shall describe the harmonic space versions of the twistor transform for allthe above theories. The crucial feature allowing the applicability of the twistor transform to�eld theories is the possibility of presenting the equations of motion in the form of algebraicconstraints amongst the components of some curvature tensor, the paradigmatic example beingthe Yang-Mills self-duality equations. In particular, the constraints take the form[D�i;D�j] = ���Fij ;where �; � are spinor indices of some group having skew-symmetric invariant ��� , i; j are someother indices or labels, and Fij are the non-zero curvatures representing the obstruction toFrobenius' integrability. Twistor or harmonic space is an auxiliary space in which the curvatureis zero in some `analytic' subspaces, allowing the use of `Frobenius variables' to reduce the system.In the harmonic space setting a transformation to such variables converts the system to a set ofCauchy-Riemann-like (CR) equations, thereby reducing the problem to that of reconstructingthe original variables from the `analytic' data (satisfying these CR equations). The crucialidea of harmonic space analyticity is closely related to the concepts of quaternionic and Fueteranalyticity, to which Feza G�ursey, whom we all loved so dearly, devoted so much attention.It is therefore especially appropriate to present these ideas at this meeting dedicated to hismemory. In fact it was precisely in Feza's last paper (with V. Ogievetsky and M. Evans)[4] thatthe intimate relation between quaternionic and harmonic space analyticities was clari�ed. Thatpaper was completed shortly after Feza's untimely death and we feel it appropriate to quote thededication to Feza contained in its manuscript, which Physical Review refused to include in thepublished version.\Feza G�ursey, a �ne human being and outstanding physicist, passed away on April 13, 1992. Heis a coauthor of the present paper, which is one of a series of his works devoted to quaternionicaspects of four-dimensional �eld theories, a �eld in which he was a pioneer. Feza enthusiasticallyparticipated in the writing of this paper, even as he fought the disease to which he �nallysuccumbed. Sadly, he did not live long enough to approve the paper's �nal version, and so bearsno responsibility for whatever shortcomings it may possess. It was a great joy and privilegeto work with Feza, and to bene�t from his fertile mind and keen intelligence. The experienceof working with him and the wonderful personality of Feza G�ursey will abide forever in thememories of the two other authors. " 2



2. From 2D complex to 4D quaternionic analyticityIn two-dimensional Euclidean space the two real coordinates may be quite naturally combinedinto a single complex number x� = fx1; x2g ! z = x1 + ix2 and the most general conformalcoordinate transformation in two dimensions is the analytic transformationz0 = f(z); �z0 = �f(�z): (1)In virtue of the Cauchy-Riemann condition, @@�zf(z) = 0, its d'Alembertian vanishes, @@z @@�zf(z) =0:Similarly naturally, four dimensional coordinates may be combined into a quaternion. In spinornotation we have x� ! q = x� _� = � x0 � ix3 �ix1 � x2�ix1 + x2 x0 + ix3 � = x0 + eaxa (2)where the Pauli matrices represent the algebra of the quaternionic units, ea = �i�aeaeb = ��ab + �abcec: (3)Analytic transformations (1) are fundamental to 2D-conformal �eld theories. Feza G�urseyoften wondered whether there exist 4D theories in which some form of quaternionic analyticityplays a correspondingly crucial rôle [10], [11]. However, the notion of quaternionic analyticityis rather delicate and there are several possible forms, some of which being too restrictive tobe applicable to �eld theories. For instance, the straightforward generalisation of the Cauchy-Riemann condition @@�q f = 12 � @@x0 + 13ea @@xa� f = 0 (4)where @@�q satis�es @@�qq = 0 and @@�q �q = 1 is well known (see e.g. [12]) to allow only a linearsolution f = a + qb, with constant quaternions a and b, because of the noncommutativity ofquaternions.Fueter quaternion analyticity [13, 14], however, is less restrictive. This de�nes an analyticfunction of a quaternion q, as a Weierstrass-like seriesf(q) =X anqn; (5)where the coe�cients an are real or complex numbers (or quaternions, but multiplying qn ononly one side, e.g. left as in (5)). Such a function obeys a Cauchy-Riemann-like condition, ofthe third order in derivatives and is therefore in general not a harmonic function (2f(q) 6= 0),although it is bi-harmonic (22f(q) = 0). Moreover, it is not invariant under SO(4) rotations[14].In self-dual and N = 2 supersymmetric theories, however, manifolds of quaternionic characternamely quaternionic-K�ahler and hyper-K�ahler manifolds naturally arise [15]. In these theorieshyper-K�ahler and quaternionic structures are related to yet another notion of analyticity, namelyharmonic-space analyticity, which we shall explain.3. Harmonic spaceHarmonic space [3] is essentially an enlargement of four dimensional space-time, which maybe thought of in terms of the coset space Poincar�e groupLorentz group , to coset space Poincar�e groupSU(2)�U(1) =Poincar�e groupLorentz group � SU(2)U(1) (for the case of signature (4,0)). This space has additional coordinates3



parametrising the two-sphere S2 = SU(2)U(1) . Of course, one could choose polar (�; �) or stereo-graphic (z; �z) coordinates to describe this sphere. However, it is in practice very useful to use amore abstract parametrisation using two fundamental representations of the SU(2) algebra, u�_�(where _� is an SU(2) spinor index and � denote U(1) charges), which are just spin 12 sphericalharmonics of S2, de�ned up to the U(1) equivalence u�_� � e�
u�_� ; 
 2 IC and satisfying theequations � _� _�u+ _�u� _� = 1. The further hermiticity condition u�_� = u+ _� yields two indepen-dent real variables. In the complexi�ed setting, however, u+_� and u�_� are independent and anappropriate equivalence relation holds [4].4. Self-dual Yang-MillsThe usual self-duality condition for the Yang-Mills �eld strengthF�� = 12�����F�� ; (6)basically says that the (0,1) part of the gauge �eld vanishes. This is better expressed in termsof 2-spinor notation in the form: f _� _� = 0 which is equivalent to the statement that the �eldstrengths curvature only contains the (1,0) Lorentz representation, i.e.[D� _� ; D� _�] = � _� _�f��: (7)Now multiplying (7) by the two commuting spinors u+ _�; u+ _�, one can compactly represent it asthe vanishing of a curvature [r+� ;r+� ] = 0 ; (8)where r+� � u+ _�r� _�, with linear system r+�' = 0 : (9)This is precisely the Belavin-Zakharov-Ward linear system for SDYM. Now the u+ _� are actuallyharmonics [3] on S2 and it is better to consider these equations in an auxiliary space withcoordinates fx�� � x� _�u�_� ; u�_� ; u+ _�u�_� = 1g, where the harmonics are de�ned up to a U(1)phase, and gauge covariant derivatives in this harmonic space arer+� = @+� + A+� = @@x�� +A+� : (10)In this space (8) is actually not equivalent to the self-duality conditions. We also need[D++;r+� ] = 0 ; (11)where D++ is a harmonic space derivative which acts on negatively-charged harmonics to yieldtheir positively-charged counterparts, i.e. D++u�_� = u+_� , whereas D++u+� = 0. This operator,in a �xed parametrisation, has also been considered by Newman (e.g. [16]). In ordinary x-space,when the harmonics are treated as parameters, the condition (11) is actually incorporated inthe de�nition of r+� as a linear combination of the covariant derivatives. The system (8,11) isnow equivalent to SDYM and has been considered by many authors, e.g. [4, 5]; the equivalenceholding in spaces of signature (4,0) or (2,2), or in complexi�ed space. In this regard, we shouldnote that for real spaces, our understanding is completely clear for the Euclidean signature. Forthe (2,2) signature, the situation is richer and more intricate due to the noncompact nature of therotation group and our present considerations concern only those signature (2,2) con�gurationswhich may be obtained by Wick rotation of (4,0) con�gurations.4



Now, in (11) the covariant derivative (10) has pure-gauge formr+� = @+� + '@+� '�1: (12)and D++ is `short' i.e. has no connection. This choice of frame (the `central' frame) is actuallyinherited from the four-dimensional x-space and is not the most natural one for harmonic space.We may however change coordinates to a basis in which r+� is `short' and D++ is `long' (i.e.acquires a Lie-algebra-valued connection) instead. Namely,r+� = @+�D++ = D++ + V ++; (13)a change of frame tantamount to a gauge transformation by the `bridge' ' in (9). In this basis(the `analytic' frame) the SDYM system (8,11) remarkably takes the form of a Cauchy-Riemann(CR) condition @@x��V ++ = 0 (14)expressing independence of half the x-coordinates. In virtue of passing to this basis the nonlinearSDYM equations (6) are in a sense trivialised: Any `analytic' (i.e. satisfying (14)) functionV ++ = V ++(x+�; u�) corresponds to some self-dual gauge potential. From any such V ++, bysolving the linear equation D++' = 'V ++ (15)for the bridge ', a self-dual vector potential may be recovered from the harmonic expansion:'@+�'�1 = u+ _�A� _�; (16)the linearity in the harmonics u+ _� being guaranteed by (11).Solving (15) for an arbitrary analytic gauge algebra valued function V ++ yields the general localself-dual solution. This correspondence between self-dual gauge potentials and holomorphicprepotentials V ++ is a convenient tool for the explicit construction of local solutions of theself-duality equations.Furthermore, in the analytic subspace of harmonic space (with coordinates fx+�; u�_�g), thereexists an especially simple presentation of the in�nite-dimensional symmetry group acting onsolutions of the self-duality equations. It is the (apparently trivial) transformation V ++ !V ++0 = g++; where g++ depends in an arbitrary way on V ++ and its derivatives as well as onthe analytic coordinates themselves, modulo gauge transformations V ++ ! e��(V +++D++)e�,where � is also an arbitrary analytic function.5. Supersymmetric self-dual Yang-Mills theoriesYang-Mills theories can be supersymmetrised to couple successively lower spin �elds to thevector �eld. Since extended super Yang-Mills theories are massless theories, the components areclassi�ed by helicity and we have the following representation content in theories up to N=3:helicity : 1 12 0 �12 12 0 �12 �1N = 0 f�� f _� _�N = 1 f�� �� � _� f _� _�N = 2 f�� �i� W W � _�i f _� _�N = 3 f�� �i� Wi � _� �� W i � _�i f _� _� (17)5



In real Minkowski space �elds in the left and right triangles are related by CPT conjugation butin complexi�ed space or in a space with signature (4,0) or (2,2), we may set �elds in one of thetriangles to zero without a�ecting �elds in the other triangle. If we set all the �elds in the right(left) triangle to zero, the equations of motion reduce to the super (anti-) self-duality equations.For instance, the self-duality equations for the N=3 theory take the form��
D
 _�f�� = 0�
�D
 _��i� = 0� _
 _�D� _
� _� = �[�k�;Wk]D� _�D� _�Wi = 12�ijkf��j ; �k�g: (18)We see that the spin 1 source current actually factorises into parts from the two triangles, so itmanifestly vanishes for super self-dual solutions. The �rst equation in (18) is just the Bianchiidentity for self-dual �eld-strengths. So apart from the self-duality condition (6), we have oneequation for zero-modes of the covariant Dirac operator in the background of a self-dual vectorpotential (having (6) as integrability condition) and two further non-linear equations. However,any given self-dual vector potential actually determines the general (local) solution of the restof the equations. This is the most striking consequence of the matreoshka phenomenon: theN=0 core determining the properties of the higher-N theories. Another consequence is is thatmany conserved currents identically vanish in the super self-dual sector. For instance, sinceself-duality always implies the source-free second order Yang-Mills equations, the spin 1 sourcecurrent vanishes for the entire matreoshka. Further, the usual Yang-Mills stress tensor clearlyvanishes for self-dual �elds: T� _�;� _� � f _� _�f�� = 0 ;and as a consequence of this, once one has put on further layers of the matreoshka, the super-currents generating supersymmetry transformations, which contain the stress tensor as well asits superpartners also identically vanish for super self-dual �elds.In N-independent form, (18) can be conveniently written as the following super curvatureconstraints in chiral superspace: f �Di_�; �Dj_�g = � _� _�W ijfD�i;D�jg = 0 = [D�i;r��]fD�j ; �Di_�g = 2�ijr� _� : (19)Having expressed the super self-duality equations in this form, the supersymmetrisation of theharmonic-twistor construction is straightforward. In harmonic superspaces with coordinatesfx�� � u�_� x� _�; �#�i � u�_� �# _�i ; #�i; u�_� g;these take the form fD�i;D�jg = 0 = f �D+i; �D+jg[r+� ;r+� ] = 0 = [ �D+i;r+� ]fD�j; �D+ig = 2�ijr+�[D�i;r+� ] = 0; (20)where the gauge covariant derivatives are given byD�i = D�i + A�i; �D+i = u+ _� �Di_� = �D+i + �A+i; r+� = u+ _�r� _� = @+� +A+� ; (21)6



and satisfy the equations [D++;D�i] = [D++; �D+i] = [D++;r+� ] = 0 : (22)The equations (20,22) are equivalent to (19) and (20) are consistency conditions for the followingsystem of linear equations D�i' = 0�D+i' = 0r+�' = 0; (23)This system is extremely redundant, ' allowing the following transformation under the gaugegroup '! e��(x� _�;�# _�i #�i)'e�(x+�;�#+i ;u�_� ) ; (24)where � and � are arbitrary functions of the variables shown, without a�ecting the constraints(20). These constraints therefore allow an economic choice of chiral-analytic basis in which thebridge � and the prepotential V ++ depend only on positively U(1)-charged, barred Grassmannvariables, viz. �#+i , being independent of #i� and �#�i . In this basis, ' too is independent of #i� and�#�i ; its non-analyticity manifesting itself in its dependence on x��. Moreover, consistently withthe commutation relations (20), the covariant spinor derivatives take the form D�i = @@#�i ; �Di =2#�ir+� : The super self-duality conditions (20,22) are therefore equivalent to the same systemof equations as the N=0 SDYM equations, viz. (9,11), except that now ' and A+� are chiralsuper�elds depending on fx��; �#+i ; u�_�g [8]. As for the N=0 case, we may express this system inthe form of analyticity conditions for the harmonic space connection super�eld V ++:@@x��V ++(x+�; �#+i; u�_� ) = 0: (25)and the bridge ' to the central basis may be found by solving (15). Fields solving (18) maythen be obtained by inserting solutions ' of (15) into the expression'@+� '�1 = u+ _�A� _�(x� _�; �# _�i ); (26)(the left side being guaranteed to be linear in u+), and expanding the super�eld vector potentialon the right to obtain the component multiplet satisfying (18) thus:A� _�(x; �#) = A� _�(x) + �# _�i�i�(x) + �ijk �# _�j �# _�i r� _�Wk(x) + �ijk �# _�i �# _�j �# _
kr� _
� _�(x) : (27)It is remarkable that super self-duality implies the absence of higher-order terms in �#. In factany N=0 solution completely and recursively determines its higher-N extensions [8].The most general in�nite-dimensional group of transformations of super-self-dual solutionsacquires a transparent form in the analytic harmonic superspace with coordinates fx+�; �#+i; u�_�g.As for the N = 0 case, it is given by the transformationV ++ ! V ++0 = g++(V ++; x+�; �#+i; u�_� ); (28)where g++ is an arbitrary doubly U(1)-charged analytic algebra-valued functional, modulo gaugetransformations V ++ ! e��(V +++D++)e�, where � is also an arbitrary analytic function. Thisgroup has an interesting subgroup of transformationsV ++ ! V ++0 = V ++(x+0 ; �#+0 ; u0); (29)induced by di�eomorphisms of the analytic harmonic superspacex+�0 = x+�0(x+; �#+; u); �#+i0 = �#+i0(x+; �#+; u); u0 = u0(x+; �#+; u): (30)7



6. N=3 (non-self-dual) super Yang-Mills theoryAs we have seen, the spin 1 source currents of all super self-dual theories vanish because theyfactorise into parts from the two triangles in (17). It turns out that we can restore these sourcecurrents and solve the full (i.e. non-self-dual) super Yang-Mills equations by intermingling self-dual and anti-self-dual holomorphic data [17]; and this works exactly for the N=3 case. Againthe crucial feature is the presentability of the thrice-extended super Yang-Mills equations in theform of the super-curvature constraints [18]fDi� ; Dj�g = ���Wijf �Di_� ; �Dj_�g = � _� _�W ijfDi� ; �Dj_�g = 2�jir� _�; (31)where DA � @A + AA = (r� _�;Di�; �Dj_�); i; j = 1; 2; 3; are gauge-covariant super-derivatives.These constraints are purely kinematical for N=1,2 but are equivalent to the dynamical equationsfor the component �elds for N=3 [19]. Now in order to present these as zero-curvature conditionsin some harmonic space, the appearance of invariants of both simple parts of the Lorentz group(��� ; � _� _�) requires the `harmonisation' of the entire Lorentz group. This allows the considerationof all possible signatures, with the corresponding harmonic spaces being given by:Euclidean (4; 0) : Poincar�e groupLorentz group � SU(2)U(1) � SU(2)U(1)Lorentzian (3; 1) : Poincar�e groupLorentz group � SL(2; IC)L(1; IC)Kleinian (2; 2) : Poincar�e groupLorentz group � SL(2;IR)SO(2) � SL(2;IR)SO(2)To thus harmonise the entire Lorentz group, we need to introduce harmonics with both dottedand undotted indices: u+_� ; u�_� and v�� ; v	� , satisfying the constraintsu+ _�u�_� = 1 ; v��v	� = 1and having the hermiticity condition u+_� = v	� for the Lorentzian signature. Now in harmonicspace with coordinates u+_� ; u�_� and v	� ; v�� andx�� = x� _�u�_�v�� ; x�	 = x� _�u�_�v	� ;#i� = #i�v�� ; #i	 = #i�v	� ; �#�i = �# _�i u�_� ;The superspace constraints (31) are equivalent to the following system of equations in harmonicsuperspace f �D+i ; �D+jg = 0 = fD�i ; D�j gf �D+j ; D�i g = 2r+�[D++; �D+j ] = 0 = [D++;D�i ] = [D++;r+�][D��; �D+j ] = 0 = [D��;D�i ] = [D��;r+�][D++; D��] = 0; (32)where D++ = u+ _� @@u� _� ; D�� = v�� @@v	� :8



Now as before, we can go to an `analytic frame' in which the covariant derivatives ( �D+j ;D�i ;r+�)lose their connection parts and the derivatives (D++; D��) acquire connections (V ++; V ��) in-stead. For the latter, (32) are just the generalised Cauchy-Riemann `analyticity' conditions@@ �#�i V ++ = 0 = @@ �#�i V ��@@#	iV ++ = 0 = @@#	iV ��@@x�	V ++ = 0 = @@x�	V ��together with the zero-curvature conditionD++V �� �D��V ++ + [V ++; V ��] = 0;which relates the two harmonic space connections (V ++; V ��). Analytic (V ++; V ��) satisfyingthis relationship therefore encode the solution of N=3 super Yang-Mills theory [20].7. Self-dual gravity and supergravityAnalogously to (7) self-dual gravity may be described by the equation[D� _� ; D� _�] = � _� _�R�� ; (33)where now the covariant derivative contains a vierbein as well as a connection,D� _� = E� _�� _�@� _� + ! _�� ; (34)so (33) is not only a curvature constraint on the components of the connection, but also azero-torsion condition on the vierbein. Moreover, since the Riemann tensor has irreduciblecomponents R�� � C(��
�)�
� + R(��)( _
 _�)� _
 _� + 16R��� ;R _� _� � C( _� _� _
 _�)� _
 _� + R(
�)( _� _�)�
� + 16R� _� _�;where C( _� _� _
 _�)(C(��
�)) are the (anti-) self-dual components of the Weyl tensor, R(��)( _
 _�) arethe components of the tracefree Ricci tensor, R is the scalar curvature, (�
�;� _
 _�) are generatorsof the tangent space gauge algebra, self-duality, i.e. the vanishing of R _� _� clearly implies thatthe curvature takes values only in one SU(2) algebra with generators �
�, so we may work ina `self-dual gauge' in which the connection also takes values only in this SU(2), i.e. only thishalf of the tangent space group is localised, while the second SU(2) remains rigid. Restrictingthe holonomy group in this fashion, the curvature part of (33) is automatic, these equationsreducing to the zero torsion conditions on the vierbein. Now, since we have to deal with thevanishing of torsions, the harmonic space system equivalent to (33) is rather di�erent to that inthe self-dual Yang-Mills case. It takes the form[D+� ;D+� ] = 0[D++;D+� ] = 0[D+� ;D�� ] = 0 (modulo R��)[D++;D�� ] = D+� : (35)Now, going to Frobenius coordinatesx�a ! x��h = x��h (x�au�a ; u�a ) ; (36)9



in which the covariant derivative D+� = @+� , the partial derivative, all the dynamics gets concen-trated in the vielbeins and connection components ofD++ = @++ +H++�+@�h� + (x�+h +H++��)@+h� + !++:These may be solved for [6] in terms of an arbitrary analytic prepotential L+4 and the problemreduces to �nding the explicit functions (36) for any speci�ed choice of L+4. Inverting thetransformation (36) the self-dual vierbein then allows itself to be decoded. An explicit illustrationof the procedure may be found in [6], where the simplest monomial choice of prepotential,L+4 = g(x1+h x2+h )2, where g is a dimensionful parameter, is shown to correspond to the self-dualTaub-NUT metric.Remarkably, the N-extended supersymmetric self-duality equations allow themselves to be ex-pressed in chiral superspace in the same form as (33),[DB _�;DA _�] = � _� _�RAB ; (37)except that now the indices A;B are `superindices' of the superalgebra OSp(N j1). The ex-plicit construction of the self-dual super-vielbein therefore closely follows that for the non-supersymmetric case. This yields interesting non-trivial supersymmetrisations of hyper-K�ahlermanifolds. In [9] we construct some explicit examples of super deformations of 
at space (withcurvature only in the odd directions) and of Taub-NUT space.8. Open problemsWe have discussed a large class of four dimensional integrable systems allowing solution usingthe harmonic-twistor transform. Our considerations have raised a number of interesting ques-tions. Integrability in two dimensions is known to imply remarkable constraints on the S-matrixyielding factorisation into two-particle amplitudes. Whether the integrability of the four dimen-sional theories discussed here has any analogous consequences, either for these thories themselvesor for their dimensional reductions, remains an open question. This question is especially inter-esting for the full N=3 Yang-Mills theory, which is known to be an ultraviolet �nite �eld theory.A further intriguing open question is what class of non-self-dual solutions to the usual N=0Yang-Mills equations can be obtained by reduction of this supersymmetric construction; andwhether the existence of two spectral parameters (corresponding to the two sets of harmonics)yields new classes of lower dimensional exactly solvable systems.The remarkable conjunction of maximal supersymmetrisation, ultraviolet �niteness, and clas-sical integrability in the sense described here, suggests the need to investigate the full (non-self-dual ) Poincar�e and conformal supergravity theories in this light as well. The correspondingsuper-twistor construction remains an open problem.We should like to thank the Erwin Schr�odinger Institute, Vienna, where this lecture was writtenup, for generous hospitality.References[1] R. Penrose, Gen. Rel. Grav. 7 (1976) 31; R.S. Ward and R.O. Wells,Twistor geometry and�eld theory, Camb. Univ. Press, Cambridge, 1990.[2] R.S. Ward, Phil.Trans.Roy.Soc. A315 (1985) 451; L. Mason and G. Sparling, J. Geom. Phys.8 (1992) 243.[3] A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, E. Sokatchev, Class. Quant. Grav. 1(1984) 469, 2 (1985) 255. 10
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