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Abstract The machinery of braided geometry introduced previously is used now
to construct the € ‘totally antisymmetric tensor’ on a general braided vector space
determined by R-matrices. This includes natural ¢-Fuclidean and g-Minkowski spaces.
The formalism is completely covariant under the corresponding quantum group such

as 504(4) or SO,4(1,3). The Hodge * operator and differentials are also constructed
in this approach.

1 Introduction

In this paper we apply the systematic theory of braided geometry introduced during the last few
years by the author[1][2][3][4][5] to the problem of defining the totally antisymmetric tensor €;;x
and other antisymmetrisers on quantum spaces of R-matrix type, for the first time in a general
way.

Braided-geometry differs from other approaches to g-deforming physics in that the deforma-
tion is put directly into non-commutativity or ‘braid statistics’ of the tensor product of inde-
pendent systems. Individual algebras also tend to be non-commutative (as in non-commutative
geometry) but this is a secondary phenomenon. The theory is modelled on ideas of super-
geometry with a braiding ¥ (typically defined by a parameter ¢) in the role of £1 for usual bose
or fermi statistics. It turns out that this point of view is rather powerful and using it a great
many problems encountered in other approaches are immediately overcome.

The starting point of braided geometry is that quantum group covariance, unlike usual group

covariance, induces braid statistics[1][2]. The quantum group plays the role of Zo-grading in the
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theory of super-symmetry even when the quantum group is very far from discrete (e.g. when it
is the ¢-deformed Lorentz group). The systematic development of braided geometry has been
a matter of going back to basics and re-inventing from scratch the most fundamental concepts
in physics on this basis, layer by layer. After covariance, the next layer is that of coaddition on
quantum spaces, introduced in [3]. Once one can add vectors on braided or g-deformed vector

spaces, the next layer is differentiation, introduced in [4] as an infinitesimal coaddition:
9' f(x) = coeff of a; in f(a+ x) (1)

where the addition is a braided addition (so a and x braided-commute). Following this, there
is also translation-invariant integration[6]. Braided matrices, traces etc were also introduced in
[1][2]. The approach also links up with the more usual approach based on quantum forms and
non-commutative geometry by pushing the arguments of [7] backwards (from partial derivatives
9 to exterior derivative d). This is essentially known though some details are included in the
present paper for completeness. It provides a constructive approach to d.

The antisymmetric tensor by contrast needs a conceptually new point of view in order to be
able to apply this existing braided geometry. Here we present a novel and, we believe, powerful
point of view about it. This point of view is useful even when ¢ = 1 where it corresponds to
the view that the exterior algebra of forms can and should be viewed as a super-space with
co-ordinates #;, say. Usually, one realises super-spaces using exterior algebras, but our point of
view is the reverse of this. The braided geometry applies just as well to super-spaces and their
q-deformations as to bosonic-spaces and their deformations, so we can apply it at once to the

exterior algebra without effort. In particular it is natural for us to define
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on any reasonable n-dimensional braided space with top form 6165 - --6,,. We also construct the
Hodge *-operator and interior products on forms in this setting.

Finally, important examples such as ¢-Euclidean and ¢-Minkowski spaces are also known in
this framework of braided geometry[8][9], which examples are compatible too with the earlier
ideas of [10][11][12] based on spinors. Hence our results apply at once to these important braided

spaces.



During the preparation of this paper there appeared [13] in which the ¢-epsilon tensor in the
case of ¢-Minkowski space was found directly by computer and used to develop Hodge theory
and scaler electrodynamics. Our general formulation in Section 3 is motivated in part by this.
We would also like to mention [14] where g-epsilon tensors for SO, (n)-covariant Euclidean spaces
were considered, again rather explicitly. The tensor for G'L,-covariant quantum planes is even
more well known. By contrast with such specific examples, we present here a uniform R-matrix

approach.
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Preliminaries on braided vector spaces

Here we recall the formulation in [3] of braided vector and covector spaces, and strengthen their
construction slightly for our purposes. The position co-ordinates x = {z;} form a braided-
covector space, while their differentials @' form a braided vector space[4]. Throughout this
paper, we treat only spaces of this type, i.e. braided versions of R".

The input data for these constructions are a pair of R-matrices R, R’ € M,, @ M,, such that[3]
RiyR13Ry3 = RosRi3Ryy,  RyzRi3Riy = RigRi3 Ry,

R12R13R23 = R23R13R12, (PR + 1)(PR — 1) = 0, Rle/ = /21R

where P is the usual permutation matrix. These are enough to ensure that there are braided

vector and covector spaces
V(R ,R)={z;}: xyxo = xoxy R, V(R ,R)= {vl} © vivy = R'vovy

with braided coaddition x” = x4+ x’, v/ = v + v’/ where these obey the same relations provided

x,v and their identical primed copies have braid statistics

/ / / /
X Xz = Xox R, Vvivy = Rvyvy.



There are also braid statistics between x and v etc. Mathematically, they form braided-Hopf
algebras in the braided category of A(R)-comodules where A(R) is the usual quantum group or
bialgebra associated to R. For regular R-matrices they also live in the braided category of A-
comodules, where A is a Hopf algebra quotient of A(R) and A is its dilatonic extension[3]. The
transformation laws are x — xt¢ and v — ¢ 't~!v where t is the quantum matrix generator
and ¢ the dilaton.

To this framework, we now add the additional conditions
R12R33R/23 = /23R/13R127 R23Rll3R/12 = /12R/13R23

! ! r ot ! !
12R13R23 - 23R13R12

so that there is a certain symmetry between R and R’. More precisely, we have a symmetry
R~ —-R
and can thereby define
AR, R) =V (—R,—R)={0:}, A(R,R)=V(-R,—F)={¢"}

which we call respectively the braided covector space of antisymmetric tensors or forms A and
braided vector space of coforms A*. As a braided-Hopf algebra, the latter is the dual of the
former. In our geometrical application, the differentials 8; = dz; obey the algebra of forms,
while the operators 8%1' necessarily obey the algebra of coforms. The forms and coforms are
covariant under the transformation § — ftc and ¢ — ¢ 't7'¢ of a quantum group obtained
from A(—R') = A(R’). We assume for convenience that this is the same as the quantum group
obtained from A(R). This is true in some generality, for example whenever PR’ = f(PR) for

some function f. It is also true for our ¢-Euclidean and ¢-Minkowski examples. See [8] for the

latter.
2 Symmetric and antisymmetric tensors by differentiation

In [4] was introduced a general theory of partial differentiation 0" on braided spaces of the type

above. This recovered all known cases and, moreover, works generally. If {2;} are the position



co-ordinates, then 9 are given explicitly as the operators[4]

0
Ox;

(X1 Xpm) = 1%+ X [m; R)y (3)

where e’ is a basis covector (e'); = 6';, i.e.

8 i e 4m
a—xi(% ey, = 8, g, my R TT
Here
[m; R] =1+ (PR)12 + (PR)lQ(PR)Q,?, —+ 4 (PR)12 ce (PR)m—l,m (4)

are the braided integers which we introduced for this purpose. One of the main theorems in [4]
is that these differentiation operators on {z;} obey the vector relations as for the {v'}. One
can say that the partial-derivatives R'-commute. They also obey a braided-Leibniz rule with
braiding R[4].

Moreover, since the result is quite general, it holds just as well for the partial derivatives 8%1"

0
06;

(01 .. Om) = ei102 Y- [m7 _R/]l...m (5)

on the algebra of forms {6;}. We deduce that these differential operators obey the relations
of the coforms A*. This means that they —R-commute and obey a braided Leibniz rule with
braiding —R'.

These theorems about the partial-derivatives are quite powerful, and we use them now. In

particular we can differentiate any function f and will know that

1112 Tm 9 9 f
8$Z’1 8$Z’m
is an R'-symmetric tensor of rank m, in the sense
Mplptl iq-iy_qbai R TR _
L e e B e B (6)

If f is a scaler function (quantum group covariant) then, because all our constructions in [4] are
covariant, we will know that this tensor is likewise invariant. The same applies in the # space,

in which case the tensors must be manifestly — R-symmetric i.e., R-antisymmetric in the sense

Ril;jp+1¢i1~~~ip_1baip+2~~~im = _¢i1~~~im7 vp = 17 cee, M — 1. (7)



For a simple example of this idea, we suppose that the co-ordinate algebra {z;} has a radius
Junction r* which is quantum-group invariant (a scaler under the transformation). Then

j_ 0 0

- Oy %jr

is an R'-symmetric invariant tensor, which we call the metric associated to the radius function.
If 7? is quadratic then 7 is an ordinary C-number matrix. In nice cases it will be invertible.

Moreover, invariance implies at once the first half of the identities
nianjbRambn = Raibjnamnbnv nianjbR/ambn = R/aibjnamnbn (8)

We adopt the second half too in order to keep the symmetry between R and —R'. They have

the meaning that then[8] the algebra of vectors and covectors are isomorphic via
T; = niava7 ?Ji — xanai7 njania — 62] — najnai

so that the metric can be used to raise and lower indices for any operators behaving like the
vectors and covectors. It clearly does the same job for raising and lowering indices of the forms
and coforms by the symmetry.

We now use the same idea in the deformed super-space of forms. We say that the braided
space has form dimension n if the algebra of forms has (up to normalisation) a unique element of
highest degree n, which we call the top form w. In nice cases the form dimension will be the same

as the number n of our co-ordinate generators and indeed, the top form will be w = 6 ---8,,.

We then define
J J J J

62122...277, — w = 010n

a6, 00 260, 98

1

in in

By the reasoning above, it will be R-antisymmetric.
If we want to have tensors with lower indices, we can obtain them also by differentiation
of monomials in the co-ordinates. Thus an R’-symmetric tensor of rank m with lower indices

means

R b =i Vp=1,---,m—1 (9)

L ip ipt1 im >

i1 -ip1baipya-im

and an R-antisymmetric tensor with lower indices means

a. b _ L
0; R, =0

i1-tp1baipya-im



The first of these can be obtained by applying any m-th order differential operator built from

% to monomials z;, ---z;, . Likewise, we can follow the same idea in form-space and obtain an
k2

m

R-antisymmetric tensor by applying any m-th order operator built from % to 0;, ---0; . For

example, we define
J J

iy = = =0,
Cain = 507" 5,

R

Its total R-antisymmetry is inherited this time from antisymmetry of the 6; co-ordinates in
form-space.
Proposition 2.1 If the top form isw = 61 ---0,, say, we have an explicit formula:
vt = ([ =R iy = ([ =R,
where
[n; =Rt = (1d ©[2; - R)(id @[3; = R]) - - -[n; — ]
=(1- PR, JL= PR, 5 oy + PRy PRy )

n—1 n

+++(1 = PR}y + PR}, PRys — -+ -+ (—1)"""PR{, PRyy--- PR}, _; ,)

is built from braided-integers (/).

Proof This follows directly from the above definitions by carefully iterating the formula (5)

for braided-differentiation on the 8 co-ordinates. 0O

For example, in four dimensions, the braided 4-factorial matrix is

([47 _R/]')Zlu _ [27 _R/]zzlbt [37 _R/]igbgb4 [47 _R/]Z’41‘142a3{14

J1eJa azasay J1J2J24

and is totally R-antisymmetric in its lower indices and in its upper-indices.
If one wants totally antisymmetric tensors of lower rank, these are provided by the lower

braided-factorials [m, —R']! in the same way. For example

g 9 y
5o ga it = 2R3, [2-R]=1-PK
1 2

J1j2’

o d 0 inini
90 96.. 00 07,05,05, = ([3; —R/]!)f{jz]‘lga [3; —R/]! =(1- PR/23)(1 - PR/12 + PR/12PR/23)
1 2 13

etc. One can also take different numbers of 8 derivatives and co-ordinates, giving tensors with
different numbers of lower and upper indices, but again totally R-antisymmetric among the

lower and among the upper.



If one wants tensors with totally R’-symmetric inputs and outputs, these are provided by
braided-factorials [n : R]! and other braided-integers, with R in place of —R'. The symmetric
and antisymmetric theory here are just the same construction, with a different choice of R-
matrix. In this context, there is already proven a braided-binomial theorem in [4] for ‘counting’

such ‘braided permutations’.
3 Application to Hodge x-operator

One can obtain still more tensors with symmetric or antisymmetric inputs and outputs by
contraction along the lines of [13]. For example, given our € tensors it is natural to consider the

contractions of n — m indices,
772'1...2' Jim €1 i ...an€j1"'jma""'am+1. (11)
These are typically proportional to projection operators, i.e.

772'1...2' dnGmt1 D

dmeit _ R
. et = dpPi i,

for some constants {d,,}. This is verified in examples, where also these constants can be deter-
mined. On the other hand, it appears to be a rather general feature which can be expected for
any suitably nice R, R'-matrices. These P project onto tensors with totally R-antisymmetric
indices.

Proposition 3.1 There is a well-defined operator on forms given by

PiA— A, Pl -0;) = Pipoi) ™ 0y, 0, = dby, -

m 1

.6

m

Proof One can expect the diagonal form in view of the above remarks since the products

0, -

1 -0,

are already R-antisymmetric. Here we check that P as an operator is indeed well-

m

defined. Indeed, the relations of A are respected as

P(O;, - 0p8, - - - 6;

tm

)Ra b — ¢ 661...bman~..am+1 0b1 . ebm — _P(ell “ .. Ozm)

ip i1 i1 ba- i Qg1 -an

for all p due to R-antisymmetry of €. We give this is in detail because this and a similar

consideration for the output of P dictates the ordering of the indices in the action of P. O



As another immediate application of our epsilon tensor one can write a general R-matrix

formula for the quantum-determinant of the symmetry quantum group of our theory, namely

det(t) = dalql...intiljl . -ti"jngj""'jl = ([n; —R’]!)l"'”» tiljl . -ti"jn([n; —R’]!){l,,'fﬁj".

21 ln

There is no metric needed here, but if one exists then it is easy to see from (8) that it can
used to turn any R'-symmetric or R-antisymmetric tensor with upper-indices to one with lower
indices. In our setting with a unique top form, one can also expect that a totally antisymmetric

tensor with n indices is unique up to a scale. In this case one has

.. . — . . ag--a — ayg--a . .
62122"'277, - )\7721(11 o 'ThnanG "= )\6 n77!l121 o 'nanln (12)

where A is a constant depending on the metric.
Finally, one can use the ¢ tensor in the usual way to define a Hodge *-operator, along the
lines in [13] for ¢-Minkowski space, where € was found by hand. In the present formulation we

have
Proposition 3.2 There is a well-defined operator on forms given by

. . RPN SISO A .
¥ A — A7 (02»1 .. 'Oim)* = ¢t1ambn m+177a1i1 .. 'namimebmH -0, = H; A mt1 g

n 21 tm

amss "

(13)

n*

Proof This time consistency with the relations of A follows using (8) after which we can then

use antisymmetry of € as in the preceding proposition. 0O

The appropriate tensor H here has square which is typically proportional to the projectors
in (11),

. An@mid
i, H

H;

dmein Cgmen
g1 an X Piy i, .

This too is verified in examples, were one also learns the constants of proportionality. It holds
in some generality and means that *? o id on forms of each degree. This is analogous to the
classical situation. Motivated by this one can also define the interior product of forms by a
form 6; as the adjoint under * of multiplication by #; in the exterior algebra. It obeys a graded
Zo-Leibniz rule, as checked for ¢-Minkowski case in [13].

It is possible also to make a much more radical formulation of the interior product and Hodge

* operations, based on the idea of differentiation on form space and not directly on €. Thus we



define the braided-interior product i and braided-Hodge operator o in the algebra of forms {6;}
by

iy6)9(0) = f(D)g(0), f(6)° =ip@)br---0n

where f(0) consists of relacing 6; by the operators 0; = Uia%. For o we use 6y ---0,, (say) as

the top form. We have explicitly,

. ) )
a1

am

(6 0,---0,

X A1 b1 b
= iy Miman (A @[ —m 4+ 1 =R) - [ng =R G0, - 0p,(14)
For example, in four dimensions, the formulae are
(0;,0:,0:,0,,)° = X\ e,

ba1 ana3 0[)

(0i1 0i2 0i3)o = Mira1Tza2izas €
(0i1 0i2)o = Miya1Mizaz (id ®[3; _R/])M; _R/]?%%}lbl > 051 052
(6:)° = miald; — R'I355727 06, 00,00, 1° = 016,050,

Note that only the Hodge operations on n and n — 1 degree forms involve the braided-factorial
or € tensor directly. The other degrees usually involving ¢ and normalisation integers m etc.
are obtained now by differentiation.

This second approach to the Hodge operation is different from the first one, though agrees
when ¢ = 1 after suitable normalisations at each degree. In general we do not have that ¢ is
a graded derivation and we also do not have that o? o id on forms of a given degree. On the
other hand, this second approach is conceptually quite simple and can be thought of in fact as
a kind of ‘Fourier transform’ in form-space {§;}. This is suggested by the interior product i
appearing as braided-differentiation in form-space. Moreover, from this point of view one would

expect o? to be something like the braided-antipode S5 on the braided-Hopf algebra {#;}, which

is not simply £1 in the braided case. The technology for braided Fourier transform is in [6].
4 Differential forms

Until now we have considered the algebra of forms 6, in isolation, as some g-deformed superspace.

For completeness we now consider both the co-ordinates M = {z;} and the forms 6; together

10
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Figure 1: (a) definition of exterior differential d in braided approach (b) braided-Leibniz rule
for action of partial derivatives and (c) proof of usual graded-Leibniz rule for d

with 6; = dz;. Thus we consider the exterior algebra
Q= A@M, X102 = 02X1R (15)

where the product is the braided tensor product with the cross-relations as stated. The essence
of the braided tensor product here is that it keeps all constructions covariant, hence {2 remains
a comodule algebra under our background quantum group A (I would like to thank A. Sudbery
for this remark[15]).

Next we consider  as bi-graded with components
Qrle — span{fy, -0 xj, ---aj}, QP = @giogplq7 Qle = @;ozogplq

where QF are the usual p-forms in differential geometry. Actually, one can proceed quite sym-
metrically with Ql7 the ‘differential forms in super-space’ generated by x; = dé;.

Proposition 4.1 We define the exterior derivative d as

B8 = QP (0,0, F00)) = O O i ().
T

11



It obeys a right-handed Zs-graded-Leibniz rule
d(fg) = (=1)F(df)g+ fdg, VfeQ, ger

Proof This is well-defined because the partial derivatives % are well-defined as operators

on M = V*[4]. l.e. our d is built up from well-defined operations. It is also covariant under
the quantum group A for the same reasons. Here the element N\ = 6; @ v in A@V (where
V is the vector algebra) is invariant under the transformation law in [2] and hence behaves
bosonically (i.e. with trivial braiding). We consider d as the action of the V' part of this element
on M by the action « defined by differentiation[4], followed by the product in A. This is shown
diagrammatically in Figure 1 (a). Part (b) recalls the module-algebra property of the action
a[4] which comes out as the braided-Leibniz rule for the differentials 8%” = a, because the
coproduct A in the degree one part V; of the vector algebra is just the linear one v* @ 1+ 1 ® v*.
Using these facts about partial derivatives from [4] we can easily prove the Leibniz rule for d,
which we do in part (¢). On the left is the braided tensor product[16] in A@M, followed by
d in the box. We then use the braided-Leibniz rule from part (b) for the first equality and
functoriality (rearrangement of braids) for the second, as well as associativity of the products.
In these diagrams we work in the braided category of A-comodules in which the braiding ¥ = X

is given by R. But the commutation relations of A are also given by —R so we have

.0,

ip

o V(0 @0 )= (=1)P0:0;, ---6;

2»1.. »

which we use for the third equality. Note that we do not make use of the coaddition on A, which
would require a different braiding (based on —R') from the one we use here. Finally we use
functoriality and associativity again to recognise the result. Conceptually, the element 8; ® 8%1'
is bosonic (invariant) and hence the resulting derivation property is the usual Zgy-graded one

(albeit coming out from the right in our present conventions) and not a braided one. O

This is the construction of the exterior differential calculus on a quantum or braided vector

space coming out of braided geometry. The resulting R-matrix formulae

XmdX2 = —ddeXlR, deXQ = dXQXlR (16)

12



here are essentially the same as in [7] but the difference is that we begin with our well-defined
partial differential operators 8%1' and define d from them in a well-defined way, rather than
arguing backwards by consistency requirements within the axiomatic framework of Woronowicz.
In the braided approach the starting point is the braided addition law[3], which then defines
partial derivatives[4], which in turn define d as above.

In nice cases, one will also have that d? = 0. Using the above definition it is clear that the

essential requirement for this is the identity
01028281 - 0 (17)

which in turn is immediate at least when PR’ = f(PR) for some function f such that f(—1) # 1.
For then 016020201 = 0102( PR')020; = 0102 f(PR)0201 = f(—1)61620:9;. This includes the Hecke
case where R «x R but also the more general construction[3] where R’ is built from the minimal
polynomial of R. In cases where PR’ is not given explicitly in terms of PR, we can check (17)
directly using the same strategy. The same remarks apply for the proof of covariance of the
vector addition law in [3].

Using these ingredients one can immediately write down a Laplacian L = dé 4+ 6d where
6 = xd* and develop a general theory of wave-equations and electromagnetism on general braided
spaces associated to R-matrices. In our setting we consider the gauge potential as A € Q! and
let F' = dA. The gauge theory is well-defined because d = 0. It is compatible with the Maxwell
equations 6F = j because *?  id. In other words, the properties needed have been covered
in our theory above and hold in some generality. More specific applications will be studied
elsewhere, but see [13] where these concepts are developed directly for ¢-Minkowski with some

interesting results.
5 Examples

A simple example is the quantum plane C] associated to the usual G'L,(n) R-matrix. In this
case our general formula for the € tensor recovers the usual one as in [17]. There is no invariant

metric so we do not have a Hodge *-operator. The differential calculus recovers the one of [18][7].

This is clear already from the comparison of the corresponding partial derivatives in [4].

13



On the other hand, many other important algebras in q-deformed physics are in fact braided
spaces with a coaddition law, so at once amenable to our machinery. Note that once the additive
braid statistics R is known, we do not need to do any more work for the differential calculus:
we just write down (16) with the same R as used in the braid statistics for the addition law on
the quantum space.

For example, we know from [5] that the quantum matrices A(R) = {t';} have an addition

law, at least when R is Hecke. We can put it into the form of a braided space by

Rtity = toty R & ity = tpta R P,, R7K, = RVo, oy g My

1

tlth = Rgltgt/lR & t/ItJ = tBt;lRA[BJ, RIJKL = RlokojoiOthl klll

where t; = t%; . We recover at once the vector algebra[5] and bicovariant differential calculus[19]
R@g@l - 8182R, dtldtz - —Rgldtzdth, tldtz - Rgldtgth (18)

on A(R) where 97 = 9, =

ﬁ is written as a matrix. This includes the usual results
for M,(n) and multiparametric M, ,(n) etc. That d? = 0 for this class is known so we omit
the direct check of (17) which is needed in our constructive approach of the last section. It
is very similar to the proof for A(R) below. The construction is covariant under A built from
A(R)°P @ A(R) as explained in[5], which corresponds to bicovariance under G'L,(n) etc. in the
usual approach. The dilatonic extension here is needed if one wants to go to quotient quantum
groups rather than working at the GL, level. That R’ obeys the QYBE etc. is easily checked
and means that the theory in Section 2 applies and gives us a g-epsilon tensor on A(R) to go
with this differential calculus.

For a second class of examples, we have the algebras A(R) = {2!,} introduced in [9] as a

variant of A(R) and again with a braided addition law when R is Hecke. It forms a braided

space with[9]
1A B K —1ly . i1k
Royxixg = x9xi R S vy =apraR7 75, R7 75 p = RT7070 R ;MY

1

/ / / / A B I K ] { ; k
xX1X2 = Rxox1R & ajzg =22y R, Riy7p=RO R ;™

14



which gives at once the vector algebra and quantum differential calculus
R@g@l = 8182R21, XmdX2 = —RngXmR, deXQ = RngXlR (19)
on A(R). Since this is a new differential calculus, we formally verify (17) as

X="Tr XmdX28281 =Tr XmdXQR_lRazal = -—Tr RdXQXmalagRgl = -—Tr dXQXmalaz(l + )\PR)
2X = —ATr dxodx; Ry Ry1010: PR = —ATr dxadx Ry,' 050, P(1 + APR)

= ATr RgldxldX28281P - )\QTI’ dXQXmalaz = —2X — )\2X

Vand Tr = Tr1Tr, over the two sets of matrix indices. Hence X = 0 provided

where A = ¢ — ¢~
4+ A2 £0,i.e. provided ¢* # —1. We just used the relations (19) many times, cyclicity of the
trace and the Hecke assumption Ro1 R =1+ APR.

It is also easy to see that R’ obeys the QYBE etc. so that the theory above applies and gives
us a g-epsilon tensor on A(R) to go with this differential calculus. Our constructions here are
covariant under A obtained from A(R)® A(R). The simplest case with R the standard 4 x 4
SU4(2) R-matrix gives g-Euclidean space[9] and is studied in detail in Section 5.1. It is covariant
under SUq(Q)gSUq(Q), i.e. the g-Euclidean rotation group with dilatonic extension.

For a third immediate class of examples, we know from [8] that the braided matrices B(R) =

{u*;} introduced in [1] also have a braided addition law when R is Hecke. It appears in the form

of a braided space with[1][8]
1A B I K —1d j k i1 b pc .l
RyjuiRuy = Ry R & ujuy =upuaR™7 175, R 57, = RO R™ R R,
—1. ' ' ! pA B I K o d  pk h b e 1
R ulRuz = quglulR & Ujug = UBUAR I Js R J L= RJOa kOR 1ba¢0R”c 11ch1 Od

where R is given by transposition in the second two indices, inversion and transposition again.
The first multi-index R-matrix was introduced by the author in [1] (as well as another one for
multiplicative braid statistics), while the second was introduced by Meyer in [8]. The algebra
here is an important one and appears in other contexts also as explained in [20]. For this algebra

we have at once the vector algebra and differential calculus
R@gﬁ@l = 81;2;182]%21, R_ldlllellz = —dquzldulR, R_llllellg = du2R21u1R (20)
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as recently studied by several authors[21][22] and references therein. We would like to stress
that these relations themselves are just (and necessarily) the same form as Meyer’s additive
braid statistics and hence could not be considered as new. On the other hand, [21] contains
an interesting new result that € itself can have a braided addition law in this and other cases.
Meanwhile [22] contains an interesting observation about its braided-comodules. For complete-
ness, we need to add from our constructive point of view the formal proof of (17) and hence of

d? =0as
X = Trduyduydyd, = Trduy Rduyd, ROy = Trduy Rduy R~ R, Ro,
= —Tr Rduy Ry1duy &y Ry192 Ry = —Trduy Ryyduydy Ryy85(1 + APR)
2X = —ATrduy Ry duy Ry Ry1dy Ry @3 PR = —ATr duy Ry duy R719, R91 P(1+ APR)

= \r Rglduleu282}~{81P — )\QTI’ dqugldm@l}’{;@Q =-2X — )\2X

which implies X = 0 provided ¢? # —1. In fact, there is a mathematically precise equivalence
between this proof and the one for A(R) and its variant above for A(R), provided respectively
by the theory of transmutation[1] or twisting[9]. This expresses products of the u in terms of
products of the t or x in a precise way and in a corresponding way for the partial differentials
0.

It is also known that R’ here obeys the QYBE[23], while the mixed relations involving R, R’
are also easily checked in the same way and reduce to the QYBE for R. Hence we are in
the symmetrical situation needed for our theory of the ¢ tensor. Moreover, our construction
is manifestly covariant under a quantum group A obtained from A(R)A(R), where s is the
double cross product construction from [24]. See also [3, Sec. 4]. The standard 4 x 4 R-
matrix gives ¢-Minkowski space studied in detail in Section 5.2. Here the covariance is under
SUq(Q);:SUq(Q) which is the ¢-Lorentz group of [12][10] with dilatonic extension.

In both cases here the dilatonic extension is needed for the braiding to be given by our cate-
gorical constructions with the correct normalisation[3]. One could try to leave it out by adjusting
the normalisations in (16) etc. by hand but in this case one can expect an inconsistency at some

other point where both the braiding and the determinant or other non-quadratic relations of

the background quantum group are needed. An alternative way out is to allow the g-Lorentz
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group to be treated with anyonic or ¢-statistics[25]. This will be explained elsewhere. We note
also that the relation between A(R) and braided matrices B(R) by a twisting construction for
comodule algebras[9] becomes a quantum Wick rotation in the Euclidean/Minkowski case. We
know also from their original definition in [1] that the braided matrices B(R) are strictly related
to A(R) by transmutation. This is already reflected in the similarity of the proofs above and
it would be interesting to formalise it further as a theory of twisting and transmutation for
differential calculi and ¢ tensors.

We conclude with the simplest cases of the A(R) and B(R) constructions computed in detail
using the symbol manipulation package REDUCE. This is needed to determine the normal-
isations d,, etc. concerning the projectors and Hodge operators. Direct R-matrix methods
like those above are not yet known for these properties, but they are verified in both of these

examples as well as in similar ones based on other well-known R-matrices.
5.1 g-Euclidean space

For ¢-Euclidean space, we use the definition in [9] as twisting M,(2) of the usual 2 x 2 quantum
matrices. This is the simplest example of the A(R) construction above. We have generators
X = (a b) and relations
c d
ba = qab, ca=q lac, da=ad, db=q 'bd dc= qcd (21)
be=cb+(q—q Yad.
This is actually isomorphic to the usual M,(2) by a permutation of the generators, so one can

regard the following as results on this with its additive structure as introduced in [5].

The vector algebra of derivatives is

090 _ 400 90 _
adoc 1 dcod’ vdov
99 20 90 99 00

—_ -1 - - _ - = -
0= )5,50 9c0a = 9a9e” Woa - 242

0 0 0 1
1J 0 —¢ 0| _ 0 9 .
U0 gt 0 0| T Gayan, 0t ab) (22)
1 0 0 0



It has determinant det(n) = 1 and is already correctly normalised, so A = 1 in (12). Here
zyemt = (14 ¢7%)(ad — qeb)

is a natural ‘radius function’ according to the construction in [9].

The algebra of forms is
dada =0, dbdb =0, dede=0, dddd=0

dbda = —¢~'dadb, deda = —dadeq, dddb = —dbddg
dedb = —dbde, ddde = —¢g'dedd, ddda = —(q — ¢~ )dbde — dadd

We have the g-epsilon tensor as:

€abed = —€achd = €adbe = —€adch = €bhcad = —€beda = 1
—€chad = €cbda = —€dabe = €dach = —E€dbca = €dcba = 1
-1
€acdh = —€cdba = —€dcab = 4,  —€abde = —€hacd = €bdca = €dbac = ¢
_ _ 2 _ _ =2
—€cadb = €cdab = ¢ 5 €badc = —€bdac = 4

—€adad = €dada = (f] - q_l)
The resulting raw (un-normalised) antisymmetriser projectors P have associated constants
do =2¢"[2P°[3], dv=-2¢*[3], dy=q’[2]°, d3=—-2¢%3], dy=2¢"2]*[3]

l_q—2m
1—g—2

where [m] = [m,q7?] = In each case, the projections are on the space of totally

R-antisymmetric tensors and have the same ranks as classically.

The Hodge *-operator for this metric is:
(dadbdedd)” =1, (dadbde)” = da, (dadbdd)™ = db
(dadedd)™ = —de,  (dbdedd)” = —dd
(dadb)* = —q[2]dadb, (dade)* = g[2]dade, (dadd)* = 2dbde — (¢ — ¢~ ')dadd
(dbde)* = 2dadd + (¢ — ¢~ ')dbde, (dbdd)* = ¢[2]dbdd, (dedd)* = —q[2]decdd
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(da)* = 2¢*[3]dadbde, (db)* = 2¢*[3]dadbdd, (de)* = —2¢*[3]dadedd, (dd)* = —2¢*[3]dbdcdd
1" = 2¢"[2]°(3]
One can check that the square of this Hodge * operator is
2 = (=1)"P = (=1)"dy,

on forms of degree m. The Hodge *-operator on 2-forms is a 6 x 6 matrix with eigenvalues +¢[2]
with multiplicity 3. The self-dual and antiself dual 2-forms with respect to it are characterised
by

F* = q2]F, (self —dual form); F* = —2[¢q]F, (anti— self — dual form).

Of course, one may adjust the normalisation of * to have the more usual limiting form.

Note that our computations here have been for a matrix basis where the metric 1 has the
signature (2,2) in the ¢ = 1 limit. The € tensor and value of ** are as one would expect for
this after bearing in mind the ordering of the indices in our conventions (there is a reversal in
(13)). There is a complex transformation with real determinant which maps the matrix basis
to the usual space-time basis ¢, z,y, » with Euclidean signature, so in this basis we still have *?
positive. Again this is the right classical result for our index conventions. The same remarks
apply for the quantum case with ¢ real. The noncommutative matrix generators transform to
self-adjoint or ‘real’ ones by a complex linear transformation[9]. The ¢ computed in the new
basis is not just tensorially related to the one in the matrix basis because the top form dtdzdydz
is different from dadbdedd that we differentiated before. But these top forms are proportional

up to a real constant and ¢ transforms tensorially up to this.

By way of contrast, we include also the second Hodge o-operator:
(dadbdedd)® =1, (dadbde)® = —da, (dadbdd)® = —db

(dadedd)® = de, (dbdedd)® = dd
(dadb)® = —gdadb, (dade)® = ¢ 'dade, (dadd)® = dbde — (¢ — ¢~ *)dadd

(dbde)® = dadd, (dbdd)® = ¢~ 'dbdd, (dedd)® = —qdedd
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(da)° = —dadbde, (db)° = —dadbdd, (dc)° = dadedd, (dd)° = dbdedd

1

On two-forms it has eigenvalues ¢~", —g each with multiplicity 3. Hence with respect to o we

have

F°=q'F, (self —dual form); F° = —¢F, (anti— self — dual form)
5.2 g-Minkowski space

We use for ¢-Minkowski space the 2 x 2 braided-hermitian matrices introduced in [1]. It is the

simplest example of the B(R) construction above. The covector algebra of position co-ordinates
u=(* b is:
S \e d)

ba = ¢*ab, ca=q %ac, da=ad, be =cb+ (1 —q *)a(d - a) (23)
db=bd+ (1 —q%)ab, cd=dc+(1-q%)ca
This maps onto a braided tensor product of two copies of the quantum plane and is thereby

compatible with the approach of [10][11] also. The additive structure we need is from [8].

The vector algebra of differentiation operators is:

00 _ 5,00 00 _
adoc 1 dcod 9dob  dbod!

09 _ 00 ﬁﬁ_ﬁﬁ+ﬁim_n
ddda  9add 0bda  0adb ' 0bod
00 _090 009 00 _00 09, 09 5
9coa —daoe Tacod TV Gean = apae Tadad? VT geaa? Y
The metric is [8]:
¢?-1 0 1
g 0 0 0 —¢*> 0
g_ Y v 2.0 — q
- aufauj(“d q°cb) 0 -1 0 0 (24)
1 0 0 0

It has det(n) = ¢*> = A as the required normalisation constant in (12). We get back the ‘radius

function’ from the metric as
UJUInIJ =(1+ q_z)(ad — qzcb).
The algebra of forms is

dede =0, dade =0, dbdb =0, dbdae =—dadb
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deda = —dade, dedb = —dbde, dddd = dbde(1 — ¢~2)
ddde = —deddg™ + dade(1 — ¢7%), dddb = —dbddg® — dadb(¢® — 1)
ddda = —dbde(¢* — 1) — dadd

The dimensions in each degree are the usual ones: 1:4:6:4:1 and we can take a basis dz;, ---dx;,,
with 21 < ig--- < i, with top form dadbdecdd.
We have the g-epsilon tensor as:

2

€addd = —€bded = —€dadd = €dbdc = €ddad = —€ddda = 1 — q
_ _ _ _ 2 1
—€adad = —€edbd = €dada = €dedb = 4§ —
€abed = —€achd = €adbec = —€adch = ~€bhacd = €bcad = T€heda = €cabd = 1
—€chad = €cbda = —€dabe = €dach = €dbac = —€dbca = TE€dcab = €dcba = 1
2
€acdb = —€cadb = €edab = —€cdba = ¢
_ _ _ _ =2
—€abde = €badec = —€bdac = €bdca = 4 -

The resulting raw (un-normalised) antisymmetriser projectors have associated constants

do = 2¢"[2P°[3], v = =2¢°[3], d2=*[2]%, ds = —24°[3], dai=2¢"[2][3]

as in the Fuclidean case. The corresponding projections are on the space of totally R-antisymmetric

tensors and have the same ranks as classically.

The Hodge *-operator for this metric is:

(dadbdedd)* = ¢72, (dadbdc)* = ¢ ?da, (dadbdd)* = ¢~ *db

dadedd)” = —de,  (dbdedd)* = ¢~ 2(1 — ¢~2)da — ¢~2dd
( 7 q q q

(dadb)* = —[2]dadb, (dade)* = [2]dade, (dadd)” = 2dbde — (1 — ¢~ *)dadd

(dbde)* = 2¢~2dadd+(1—g~2)dbde, (dbdd)* = [2)(dbdd+2(1—¢~2?)dadb), (dedd)* = —[2]dcdd

(da)* = 2¢*[3]dadbde, (db)* = 2¢*[3]dadbdd,

1* = 2¢*[2]*[3]

(de)* = —2¢*[3]dadedd, (dd)* = —2¢*[3](dbdedd — (1 — ¢~ ?)dadbde),
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One can check that the square of this Hodge * operator is
*2 — (—1)m(]_2P — (_1)mq—2dm

on forms of degree m. The Hodge x-operator on 2-forms has eigenvalues +[2] with multiplicity

3. The self-dual and antiself dual 2-forms with respect to it are characterised by
F*=[2]F, (self —dual form); F*= —[2]F, (anti— self — dual form).

As before, one can adjust the normalisation of * to have the more usual limit when ¢ = 1.
Also, the same remarks apply as in the FEuclidean case to the effect that there is a natural
x-structure and a complex transformation from our matrix basis to self-adjoint or ‘real’ space-
time bases t,x, vy, z[26]. This time the top form, ¢ and % change by an imaginary factor. This
again brings our results here in line with the classical situation for our indexing conventions.

Finally, by way of contrast our alternative Hodge o-operator is
(dadbdedd)® = ¢72,  (dadbdc)® = —dag™?

(dadbdd)® = —dbg™?*, (dadedd)® = de, (dbdedd)® = ddg™? — dag™*(1 — ¢7%)
(dadb)® = —dadb, (dadc)® = dadeq™2, (dadd)° = dbde + dadd(q™* — 1), (dbda)® = dadb
(dbde)° = daddg™?, (dbdd)® = dbddg™* + dadb(1 — ¢™*), (dedd)® = —dedd
(da)® = —dadbde, (db)° = —dadbdd, (dc)° = dadeddg™?, (dd)° = dbdedd—dadbde(1—q~2)

1

On two-forms it has eigenvalues ¢~", —1 each with multiplicity 3. Hence with respect to o we

have

F°=q'F, (self —dual form); F° = —F, (anti— self — dual form)
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