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DAMTP/94-20q-EPSILON TENSOR FOR QUANTUM ANDBRAIDED SPACESS. Majid1Department of Applied Mathematics & Theoretical PhysicsUniversity of Cambridge, Cambridge CB3 9EWFebruary, 1994 { revised July 1994Abstract The machinery of braided geometry introduced previously is used nowto construct the � `totally antisymmetric tensor' on a general braided vector spacedetermined by R-matrices. This includes natural q-Euclidean and q-Minkowski spaces.The formalism is completely covariant under the corresponding quantum group suchas gSOq(4) or gSOq(1; 3). The Hodge � operator and di�erentials are also constructedin this approach.1 IntroductionIn this paper we apply the systematic theory of braided geometry introduced during the last fewyears by the author[1][2][3][4][5] to the problem of de�ning the totally antisymmetric tensor �ijkland other antisymmetrisers on quantum spaces of R-matrix type, for the �rst time in a generalway.Braided-geometry di�ers from other approaches to q-deforming physics in that the deforma-tion is put directly into non-commutativity or `braid statistics' of the tensor product of inde-pendent systems. Individual algebras also tend to be non-commutative (as in non-commutativegeometry) but this is a secondary phenomenon. The theory is modelled on ideas of super-geometry with a braiding 	 (typically de�ned by a parameter q) in the role of �1 for usual boseor fermi statistics. It turns out that this point of view is rather powerful and using it a greatmany problems encountered in other approaches are immediately overcome.The starting point of braided geometry is that quantum group covariance, unlike usual groupcovariance, induces braid statistics[1][2]. The quantum group plays the role ofZ2-grading in the1Royal Society University Research Fellow and Fellow of Pembroke College, Cambridge1



theory of super-symmetry even when the quantum group is very far from discrete (e.g. when itis the q-deformed Lorentz group). The systematic development of braided geometry has beena matter of going back to basics and re-inventing from scratch the most fundamental conceptsin physics on this basis, layer by layer. After covariance, the next layer is that of coaddition onquantum spaces, introduced in [3]. Once one can add vectors on braided or q-deformed vectorspaces, the next layer is di�erentiation, introduced in [4] as an in�nitesimal coaddition:@if(x) = coe� of ai in f(a+ x) (1)where the addition is a braided addition (so a and x braided-commute). Following this, thereis also translation-invariant integration[6]. Braided matrices, traces etc were also introduced in[1][2]. The approach also links up with the more usual approach based on quantum forms andnon-commutative geometry by pushing the arguments of [7] backwards (from partial derivatives@i to exterior derivative d). This is essentially known though some details are included in thepresent paper for completeness. It provides a constructive approach to d.The antisymmetric tensor by contrast needs a conceptually new point of view in order to beable to apply this existing braided geometry. Here we present a novel and, we believe, powerfulpoint of view about it. This point of view is useful even when q = 1 where it corresponds tothe view that the exterior algebra of forms can and should be viewed as a super-space withco-ordinates �i, say. Usually, one realises super-spaces using exterior algebras, but our point ofview is the reverse of this. The braided geometry applies just as well to super-spaces and theirq-deformations as to bosonic-spaces and their deformations, so we can apply it at once to theexterior algebra without e�ort. In particular it is natural for us to de�ne�i1i2���in = @@�i1 @@�i2 � � � @@�in �1�2 � � ��n (2)on any reasonable n-dimensional braided space with top form �1�2 � � ��n. We also construct theHodge �-operator and interior products on forms in this setting.Finally, important examples such as q-Euclidean and q-Minkowski spaces are also known inthis framework of braided geometry[8][9], which examples are compatible too with the earlierideas of [10][11][12] based on spinors. Hence our results apply at once to these important braidedspaces. 2



During the preparation of this paper there appeared [13] in which the q-epsilon tensor in thecase of q-Minkowski space was found directly by computer and used to develop Hodge theoryand scaler electrodynamics. Our general formulation in Section 3 is motivated in part by this.We would also like to mention [14] where q-epsilon tensors for SOq(n)-covariant Euclidean spaceswere considered, again rather explicitly. The tensor for GLq-covariant quantum planes is evenmore well known. By contrast with such speci�c examples, we present here a uniform R-matrixapproach.AcknowledgementsThis work was completed during a visit to the Erwin Schr�odinger Institute, Wien. I would liketo thank the sta� there for their help and support.Preliminaries on braided vector spacesHere we recall the formulation in [3] of braided vector and covector spaces, and strengthen theirconstruction slightly for our purposes. The position co-ordinates x = fxig form a braided-covector space, while their di�erentials @i form a braided vector space[4]. Throughout thispaper, we treat only spaces of this type, i.e. braided versions of Rn.The input data for these constructions are a pair of R-matrices R;R0 2Mn
Mn such that[3]R012R13R23 = R23R13R012; R023R13R12 = R12R13R023R12R13R23 = R23R13R12; (PR + 1)(PR� 1) = 0; R21R0 = R021Rwhere P is the usual permutation matrix. These are enough to ensure that there are braidedvector and covector spacesV�(R0; R) = fxig : x1x2 = x2x1R0; V (R0; R) = fvig : v1v2 = R0v2v1with braided coaddition x00 = x+ x0, v00 = v+ v0 where these obey the same relations providedx;v and their identical primed copies have braid statisticsx01x2 = x2x01R; v01v2 = Rv2v01:3



There are also braid statistics between x and v etc. Mathematically, they form braided-Hopfalgebras in the braided category of A(R)-comodules where A(R) is the usual quantum group orbialgebra associated to R. For regular R-matrices they also live in the braided category of eA-comodules, where A is a Hopf algebra quotient of A(R) and eA is its dilatonic extension[3]. Thetransformation laws are x ! xt& and v ! &�1t�1v where t is the quantum matrix generatorand & the dilaton.To this framework, we now add the additional conditionsR12R013R023 = R023R013R12; R23R013R012 = R012R013R23R012R013R023 = R023R013R012so that there is a certain symmetry between R and R0. More precisely, we have a symmetryR $ �R0and can thereby de�ne�(R0; R) � V�(�R;�R0) = f�ig; ��(R0; R) � V (�R;�R0) = f�igwhich we call respectively the braided covector space of antisymmetric tensors or forms � andbraided vector space of coforms ��. As a braided-Hopf algebra, the latter is the dual of theformer. In our geometrical application, the di�erentials �i = dxi obey the algebra of forms,while the operators @@�i necessarily obey the algebra of coforms. The forms and coforms arecovariant under the transformation � ! �t& and � ! &�1t�1� of a quantum group obtainedfrom A(�R0) = A(R0). We assume for convenience that this is the same as the quantum groupobtained from A(R). This is true in some generality, for example whenever PR0 = f(PR) forsome function f . It is also true for our q-Euclidean and q-Minkowski examples. See [8] for thelatter.2 Symmetric and antisymmetric tensors by di�erentiationIn [4] was introduced a general theory of partial di�erentiation @i on braided spaces of the typeabove. This recovered all known cases and, moreover, works generally. If fxig are the position4



co-ordinates, then @i are given explicitly as the operators[4]@@xi (x1 � � �xm) = ei1x2 � � �xm [m;R]1���m (3)where ei is a basis covector (ei)j = �ij , i.e.@@xi (xi1 � � �xim) = �ij1xj2 � � �xjm [m;R]j1���jmi1���im :Here [m;R] = 1 + (PR)12 + (PR)12(PR)23 + � � �+ (PR)12 � � � (PR)m�1;m (4)are the braided integers which we introduced for this purpose. One of the main theorems in [4]is that these di�erentiation operators on fxig obey the vector relations as for the fvig. Onecan say that the partial-derivatives R0-commute. They also obey a braided-Leibniz rule withbraiding R[4].Moreover, since the result is quite general, it holds just as well for the partial derivatives @@�i ,@@�i (�1 � � ��m) = ei1�2 � � ��m �m;�R0�1���m (5)on the algebra of forms f�ig. We deduce that these di�erential operators obey the relationsof the coforms ��. This means that they �R-commute and obey a braided Leibniz rule withbraiding �R0.These theorems about the partial-derivatives are quite powerful, and we use them now. Inparticular we can di�erentiate any function f and will know thatvi1i2���im = @@xi1 � � � @@xim fis an R0-symmetric tensor of rank m, in the senseR0ipip+1ab vi1���ip�1baip+2���im = vi1���im ; 8p = 1; � � � ; m� 1: (6)If f is a scaler function (quantum group covariant) then, because all our constructions in [4] arecovariant, we will know that this tensor is likewise invariant. The same applies in the � space,in which case the tensors must be manifestly �R-symmetric i.e., R-antisymmetric in the senseRipip+1ab �i1���ip�1baip+2���im = ��i1 ���im ; 8p = 1; � � � ; m� 1: (7)5



For a simple example of this idea, we suppose that the co-ordinate algebra fxig has a radiusfunction r2 which is quantum-group invariant (a scaler under the transformation). Then�ij = @@xi @@xj r2is an R0-symmetric invariant tensor, which we call the metric associated to the radius function.If r2 is quadratic then � is an ordinary C -number matrix. In nice cases it will be invertible.Moreover, invariance implies at once the �rst half of the identities�ia�jbRambn = Raibj�am�bn; �ia�jbR0ambn = R0aibj�am�bn (8)We adopt the second half too in order to keep the symmetry between R and �R0. They havethe meaning that then[8] the algebra of vectors and covectors are isomorphic viaxi = �iava; vi = xa�ai; �ja�ia = �ij = �aj�aiso that the metric can be used to raise and lower indices for any operators behaving like thevectors and covectors. It clearly does the same job for raising and lowering indices of the formsand coforms by the symmetry.We now use the same idea in the deformed super-space of forms. We say that the braidedspace has form dimension n if the algebra of forms has (up to normalisation) a unique element ofhighest degree n, which we call the top form !. In nice cases the form dimension will be the sameas the number n of our co-ordinate generators and indeed, the top form will be ! = �1 � � ��n.We then de�ne �i1i2���in = @@�i1 � � � @@�in ! = @@�i1 � � � @@�in �1 � � ��n:By the reasoning above, it will be R-antisymmetric.If we want to have tensors with lower indices, we can obtain them also by di�erentiationof monomials in the co-ordinates. Thus an R0-symmetric tensor of rank m with lower indicesmeans xi1���ip�1baip+2 ���imR0aipbip+1 = xi1���im ; 8p = 1; � � � ; m� 1 (9)and an R-antisymmetric tensor with lower indices means�i1���ip�1baip+2���imRaipbip+1 = ��i1���im ; 8p = 1; � � � ; m� 1: (10)6



The �rst of these can be obtained by applying any m-th order di�erential operator built from@@xi to monomials xi1 � � �xim . Likewise, we can follow the same idea in form-space and obtain anR-antisymmetric tensor by applying any m-th order operator built from @@�i to �i1 � � ��im . Forexample, we de�ne �i1���in = @@�n � � � @@�1 �i1 � � ��in :Its total R-antisymmetry is inherited this time from antisymmetry of the �i co-ordinates inform-space.Proposition 2.1 If the top form is ! = �1 � � ��n say, we have an explicit formula:�i1���in = ([n;�R0]!)in���i112���n ; �i1���in = ([n;�R0]!)12���ni1���inwhere [n;�R0]! = (id
[2;�R0])(id
[3;�R0]) � � � [n;�R0]= (1� PR0n�1 n)(1� PR0n�2 n�1 + PR0n�2 n�1PR0n�1 n) � � �� � �(1� PR012 + PR012PR023 � � � �+ (�1)n�1PR012PR023 � � �PR0n�1 n)is built from braided-integers (4).Proof This follows directly from the above de�nitions by carefully iterating the formula (5)for braided-di�erentiation on the � co-ordinates. tuFor example, in four dimensions, the braided 4-factorial matrix is([4;�R0]!)i1���i4j1���j4 = [2;�R0]i3i4b3b4 [3;�R0]i2b3b4a2a3a4 [4;�R0]i1a2a3a4j1j2j2j4and is totally R-antisymmetric in its lower indices and in its upper-indices.If one wants totally antisymmetric tensors of lower rank, these are provided by the lowerbraided-factorials [m;�R0]! in the same way. For example@@�i1 @@�i2 �j1�j2 = [2;�R0]i2i1j1j2 ; [2;�R0] = 1� PR0@@�i1 @@�i2 @@�i3 �j1�j2�j3 = ([3;�R0]!)i3i2i1j1j2j3 ; [3;�R0]! = (1� PR023)(1� PR012 + PR012PR023)etc. One can also take di�erent numbers of � derivatives and co-ordinates, giving tensors withdi�erent numbers of lower and upper indices, but again totally R-antisymmetric among thelower and among the upper. 7



If one wants tensors with totally R0-symmetric inputs and outputs, these are provided bybraided-factorials [n : R]! and other braided-integers, with R in place of �R0. The symmetricand antisymmetric theory here are just the same construction, with a di�erent choice of R-matrix. In this context, there is already proven a braided-binomial theorem in [4] for `counting'such `braided permutations'.3 Application to Hodge �-operatorOne can obtain still more tensors with symmetric or antisymmetric inputs and outputs bycontraction along the lines of [13]. For example, given our � tensors it is natural to consider thecontractions of n �m indices,P i1���im j1���jm = �i1���imam+1���an�j1���jman���am+1 : (11)These are typically proportional to projection operators, i.e.P i1���iman���am+1Pam+1 ���anjm���j1 = dmP i1���im jm���j1for some constants fdmg. This is veri�ed in examples, where also these constants can be deter-mined. On the other hand, it appears to be a rather general feature which can be expected forany suitably nice R;R0-matrices. These P project onto tensors with totally R-antisymmetricindices.Proposition 3.1 There is a well-de�ned operator on forms given byP : �! �; P(�i1 � � ��im) = Pi1���imam���a1�a1 � � ��am = dm�i1 � � ��imProof One can expect the diagonal form in view of the above remarks since the products�i1 � � ��im are already R-antisymmetric. Here we check that P as an operator is indeed well-de�ned. Indeed, the relations of � are respected asP(�i1 � � ��b�a � � ��im)Raipbip+1 = �i1���ba���imam+1 ���an�b1 ���bman���am+1�b1 � � ��bm = �P(�i1 � � ��im)for all p due to R-antisymmetry of �. We give this is in detail because this and a similarconsideration for the output of P dictates the ordering of the indices in the action of P . tu8



As another immediate application of our epsilon tensor one can write a general R-matrixformula for the quantum-determinant of the symmetry quantum group of our theory, namelydet(t) = d�10 �i1���inti1 j1 � � � tin jn�jn ���j1 = ([n;�R0]!)1���ni1���inti1 j1 � � � tin jn([n;�R0]!)j1���jn1���n :There is no metric needed here, but if one exists then it is easy to see from (8) that it canused to turn any R0-symmetric or R-antisymmetric tensor with upper-indices to one with lowerindices. In our setting with a unique top form, one can also expect that a totally antisymmetrictensor with n indices is unique up to a scale. In this case one has�i1i2���in = ��i1a1 � � ��inan�a1���an = ��a1���an�a1i1 � � ��anin (12)where � is a constant depending on the metric.Finally, one can use the � tensor in the usual way to de�ne a Hodge �-operator, along thelines in [13] for q-Minkowski space, where � was found by hand. In the present formulation wehaveProposition 3.2 There is a well-de�ned operator on forms given by� : �! �; (�i1 � � ��im)� = �a1���ambn ���bm+1�a1i1 � � ��amim�bm+1 � � ��bn = Hi1���iman���am+1�am+1 � � ��an :(13)Proof This time consistency with the relations of � follows using (8) after which we can thenuse antisymmetry of � as in the preceding proposition. tuThe appropriate tensor H here has square which is typically proportional to the projectorsin (11), Hi1���iman���am+1Ham+1���anjm���j1 / Pi1���imjm���j1 :This too is veri�ed in examples, were one also learns the constants of proportionality. It holdsin some generality and means that �2 / id on forms of each degree. This is analogous to theclassical situation. Motivated by this one can also de�ne the interior product of forms by aform �i as the adjoint under � of multiplication by �i in the exterior algebra. It obeys a gradedZ2-Leibniz rule, as checked for q-Minkowski case in [13].It is possible also to make a much more radical formulation of the interior product and Hodge� operations, based on the idea of di�erentiation on form space and not directly on �. Thus we9



de�ne the braided-interior product i and braided-Hodge operator � in the algebra of forms f�igby if(�)g(�) = f(@)g(�); f(�)� = if(�)�1 � � ��nwhere f(@) consists of relacing �i by the operators @i = �ia @@�a . For � we use �1 � � ��n (say) asthe top form. We have explicitly,(�i1 � � ��im)�= �i1a1 � � ��imam @@�a1 � � � @@�am �1 � � ��n= �i1a1 � � ��imam((id
[n�m+ 1;�R0]) � � � [n;�R0])am���a1bm+1 ���bn12���n �bm+1 � � ��bn :(14)For example, in four dimensions, the formulae are(�i1�i2�i3�i4)� = ��1�i1���i4(�i1�i2�i3)� = �i1a1�i2a2�i3a3�ba1a2a3�b(�i1�i2)� = �i1a1�i2a2(id
[3;�R0])[4;�R0]a2a1b1b21234 �b1�b2(�i)� = �ia[4;�R0]ab1b2b31234 �b1�b2�b3 ; 1� = �1�2�3�4:Note that only the Hodge operations on n and n � 1 degree forms involve the braided-factorialor � tensor directly. The other degrees usually involving � and normalisation integers 1(n�m)! etc.are obtained now by di�erentiation.This second approach to the Hodge operation is di�erent from the �rst one, though agreeswhen q = 1 after suitable normalisations at each degree. In general we do not have that i isa graded derivation and we also do not have that �2 / id on forms of a given degree. On theother hand, this second approach is conceptually quite simple and can be thought of in fact asa kind of `Fourier transform' in form-space f�ig. This is suggested by the interior product ifappearing as braided-di�erentiation in form-space. Moreover, from this point of view one wouldexpect �2 to be something like the braided-antipode S on the braided-Hopf algebra f�ig, whichis not simply �1 in the braided case. The technology for braided Fourier transform is in [6].4 Di�erential formsUntil now we have considered the algebra of forms �i in isolation, as some q-deformed superspace.For completeness we now consider both the co-ordinates M = fxig and the forms �i together10
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Figure 1: (a) de�nition of exterior di�erential d in braided approach (b) braided-Leibniz rulefor action of partial derivatives and (c) proof of usual graded-Leibniz rule for dwith �i = dxi. Thus we consider the exterior algebra
 = �
M; x1�2 = �2x1R (15)where the product is the braided tensor product with the cross-relations as stated. The essenceof the braided tensor product here is that it keeps all constructions covariant, hence 
 remainsa comodule algebra under our background quantum group eA (I would like to thank A. Sudberyfor this remark[15]).Next we consider 
 as bi-graded with components
pjq = spanf�i1 � � ��ipxj1 � � �xjqg; 
p = �1q=0
pjq; 
jq = �1p=0
pjqwhere 
p are the usual p-forms in di�erential geometry. Actually, one can proceed quite sym-metrically with 
jq the `di�erential forms in super-space' generated by xi = d�i.Proposition 4.1 We de�ne the exterior derivative d asd : 
p ! 
p+1; d(�i1 � � ��ipf(x)) = �i1 � � ��ip�i @@xi f(x):11



It obeys a right-handed Z2-graded-Leibniz ruled(fg) = (�1)p(df)g + fdg; 8f 2 
; g 2 
p:Proof This is well-de�ned because the partial derivatives @@xi are well-de�ned as operatorson M = V �[4]. I.e. our d is built up from well-de�ned operations. It is also covariant underthe quantum group eA for the same reasons. Here the element = �i
 vi in �
 V (whereV is the vector algebra) is invariant under the transformation law in [2] and hence behavesbosonically (i.e. with trivial braiding). We consider d as the action of the V part of this elementonM by the action � de�ned by di�erentiation[4], followed by the product in �. This is showndiagrammatically in Figure 1 (a). Part (b) recalls the module-algebra property of the action�[4] which comes out as the braided-Leibniz rule for the di�erentials @@xi = �vi because thecoproduct � in the degree one part V1 of the vector algebra is just the linear one vi
 1+1
 vi.Using these facts about partial derivatives from [4] we can easily prove the Leibniz rule for d,which we do in part (c). On the left is the braided tensor product[16] in �
M, followed byd in the box. We then use the braided-Leibniz rule from part (b) for the �rst equality andfunctoriality (rearrangement of braids) for the second, as well as associativity of the products.In these diagrams we work in the braided category of ~A-comodules in which the braiding 	 =is given by R. But the commutation relations of � are also given by �R so we have� �	(�i
 �i1 � � ��ip) = (�1)p�i�i1 � � ��ipwhich we use for the third equality. Note that we do not make use of the coaddition on �, whichwould require a di�erent braiding (based on �R0) from the one we use here. Finally we usefunctoriality and associativity again to recognise the result. Conceptually, the element �i
 @@xiis bosonic (invariant) and hence the resulting derivation property is the usual Z2-graded one(albeit coming out from the right in our present conventions) and not a braided one. tuThis is the construction of the exterior di�erential calculus on a quantum or braided vectorspace coming out of braided geometry. The resulting R-matrix formulaedx1dx2 = �dx2dx1R; x1dx2 = dx2x1R (16)12



here are essentially the same as in [7] but the di�erence is that we begin with our well-de�nedpartial di�erential operators @@xi and de�ne d from them in a well-de�ned way, rather thanarguing backwards by consistency requirements within the axiomatic framework of Woronowicz.In the braided approach the starting point is the braided addition law[3], which then de�nespartial derivatives[4], which in turn de�ne d as above.In nice cases, one will also have that d2 = 0. Using the above de�nition it is clear that theessential requirement for this is the identity�1�2@2@1 = 0 (17)which in turn is immediate at least when PR0 = f(PR) for some function f such that f(�1) 6= 1.For then �1�2@2@1 = �1�2(PR0)@2@1 = �1�2f(PR)@2@1 = f(�1)�1�2@2@1: This includes the Heckecase where R0 / R but also the more general construction[3] where R0 is built from the minimalpolynomial of R. In cases where PR0 is not given explicitly in terms of PR, we can check (17)directly using the same strategy. The same remarks apply for the proof of covariance of thevector addition law in [3].Using these ingredients one can immediately write down a Laplacian L = d� + �d where� = �d� and develop a general theory of wave-equations and electromagnetism on general braidedspaces associated to R-matrices. In our setting we consider the gauge potential as A 2 
1 andlet F = dA. The gauge theory is well-de�ned because d2 = 0. It is compatible with the Maxwellequations �F = j because �2 / id. In other words, the properties needed have been coveredin our theory above and hold in some generality. More speci�c applications will be studiedelsewhere, but see [13] where these concepts are developed directly for q-Minkowski with someinteresting results.5 ExamplesA simple example is the quantum plane Cnq associated to the usual GLq(n) R-matrix. In thiscase our general formula for the � tensor recovers the usual one as in [17]. There is no invariantmetric so we do not have a Hodge �-operator. The di�erential calculus recovers the one of [18][7].This is clear already from the comparison of the corresponding partial derivatives in [4].13



On the other hand, many other important algebras in q-deformed physics are in fact braidedspaces with a coaddition law, so at once amenable to our machinery. Note that once the additivebraid statistics R is known, we do not need to do any more work for the di�erential calculus:we just write down (16) with the same R as used in the braid statistics for the addition law onthe quantum space.For example, we know from [5] that the quantum matrices A(R) = ftijg have an additionlaw, at least when R is Hecke. We can put it into the form of a braided space byRt1t2 = t2t1R , tI tJ = tBtAR0AIBJ ; R0IJKL = R�1j0 i0 l0k0Ri1 j1k1 l1t01t2 = R21t2t01R , t0I tJ = tBt0ARAIBJ ; RIJKL = Rl0k0 j0 i0Ri1 j1k1 l1where tI = ti0 i1 . We recover at once the vector algebra[5] and bicovariant di�erential calculus[19]R@2@1 = @1@2R; dt1dt2 = �R21dt2dt1R; t1dt2 = R21dt2t1R (18)on A(R) where @I = @i1 i0 = @@ti0 i1 is written as a matrix. This includes the usual resultsfor Mq(n) and multiparametric Mp;q(n) etc. That d2 = 0 for this class is known so we omitthe direct check of (17) which is needed in our constructive approach of the last section. Itis very similar to the proof for �A(R) below. The construction is covariant under eA built fromA(R)cop
A(R) as explained in[5], which corresponds to bicovariance under GLq(n) etc. in theusual approach. The dilatonic extension here is needed if one wants to go to quotient quantumgroups rather than working at the GLq level. That R0 obeys the QYBE etc. is easily checkedand means that the theory in Section 2 applies and gives us a q-epsilon tensor on A(R) to gowith this di�erential calculus.For a second class of examples, we have the algebras �A(R) = fxijg introduced in [9] as avariant of A(R) and again with a braided addition law when R is Hecke. It forms a braidedspace with[9]R21x1x2 = x2x1R , xIxJ = xBxAR0AIBJ ; R0IJKL = R�1l0k0 j0 i0Ri1 j1k1 l1x01x2 = Rx2x01R , x0IxJ = xBx0ARAIBJ ; RIJKL = Rj0 i0 l0k0Ri1 j1k1 l114



which gives at once the vector algebra and quantum di�erential calculusR@2@1 = @1@2R21; dx1dx2 = �Rdx2dx1R; x1dx2 = Rdx2x1R (19)on �A(R). Since this is a new di�erential calculus, we formally verify (17) asX = Trdx1dx2@2@1 = Tr dx1dx2R�1R@2@1 = �TrRdx2dx1@1@2R21 = �Tr dx2dx1@1@2(1 + �PR)2X = ��Tr dx2dx1R�121 R21@1@2PR = ��Tr dx2dx1R�121 @2@1P (1 + �PR)= �TrR21dx1dx2@2@1P � �2Trdx2dx1@1@2 = �2X � �2Xwhere � = q� q�1 and Tr = Tr 1Tr 2 over the two sets of matrix indices. Hence X = 0 provided4 + �2 6= 0, i.e. provided q2 6= �1. We just used the relations (19) many times, cyclicity of thetrace and the Hecke assumption R21R = 1 + �PR.It is also easy to see that R0 obeys the QYBE etc. so that the theory above applies and givesus a q-epsilon tensor on �A(R) to go with this di�erential calculus. Our constructions here arecovariant under eA obtained from A(R)
A(R). The simplest case with R the standard 4 � 4SUq(2) R-matrix gives q-Euclidean space[9] and is studied in detail in Section 5.1. It is covariantunder gSUq(2)
SUq(2), i.e. the q-Euclidean rotation group with dilatonic extension.For a third immediate class of examples, we know from [8] that the braided matrices B(R) =fuijg introduced in [1] also have a braided addition law when R is Hecke. It appears in the formof a braided space with[1][8]R21u1Ru2 = u2R21u1R , uIuJ = uBuAR0AIBJ ; R0IJKL = R�1dk0j0aRk1 bai0Ri1 cbl1 eRcj1 l0dR�1u01Ru2 = u2R21u01R , u0IuJ = uBu0ARAIBJ ; RIJKL = Rj0 adk0Rk1 bai0Ri1 cbl1 eRcj1 l0dwhere eR is given by transposition in the second two indices, inversion and transposition again.The �rst multi-index R-matrix was introduced by the author in [1] (as well as another one formultiplicative braid statistics), while the second was introduced by Meyer in [8]. The algebrahere is an important one and appears in other contexts also as explained in [20]. For this algebrawe have at once the vector algebra and di�erential calculusR@2 eR@1 = @1gR21@2R21; R�1du1Rdu2 = �du2R21du1R; R�1u1Rdu2 = du2R21u1R (20)15



as recently studied by several authors[21][22] and references therein. We would like to stressthat these relations themselves are just (and necessarily) the same form as Meyer's additivebraid statistics and hence could not be considered as new. On the other hand, [21] containsan interesting new result that 
 itself can have a braided addition law in this and other cases.Meanwhile [22] contains an interesting observation about its braided-comodules. For complete-ness, we need to add from our constructive point of view the formal proof of (17) and hence ofd2 = 0 asX = Trdu1du2@2@1 = Tr du1Rdu2@2 eR@1 = Trdu1Rdu2R�1R@2 eR@1= �TrRdu2R21du1@1gR21@2R21 = �Trdu2R21du1@1gR21@2(1 + �PR)2X = ��Tr du2R21du1R�121 R21@1gR21@2PR = ��Tr du2R21du1R�121 @2 eR@1P (1 + �PR)= �TrR21du1Rdu2@2 eR@1P � �2Trdu2R21du1@1gR21@2 = �2X � �2Xwhich implies X = 0 provided q2 6= �1. In fact, there is a mathematically precise equivalencebetween this proof and the one for A(R) and its variant above for �A(R), provided respectivelyby the theory of transmutation[1] or twisting[9]. This expresses products of the u in terms ofproducts of the t or x in a precise way and in a corresponding way for the partial di�erentials@. It is also known that R0 here obeys the QYBE[23], while the mixed relations involving R;R0are also easily checked in the same way and reduce to the QYBE for R. Hence we are inthe symmetrical situation needed for our theory of the � tensor. Moreover, our constructionis manifestly covariant under a quantum group eA obtained from A(R)./A(R), where ./ is thedouble cross product construction from [24]. See also [3, Sec. 4]. The standard 4 � 4 R-matrix gives q-Minkowski space studied in detail in Section 5.2. Here the covariance is undergSUq(2)./SUq(2) which is the q-Lorentz group of [12][10] with dilatonic extension.In both cases here the dilatonic extension is needed for the braiding to be given by our cate-gorical constructions with the correct normalisation[3]. One could try to leave it out by adjustingthe normalisations in (16) etc. by hand but in this case one can expect an inconsistency at someother point where both the braiding and the determinant or other non-quadratic relations ofthe background quantum group are needed. An alternative way out is to allow the q-Lorentz16



group to be treated with anyonic or q-statistics[25]. This will be explained elsewhere. We notealso that the relation between �A(R) and braided matrices B(R) by a twisting construction forcomodule algebras[9] becomes a quantum Wick rotation in the Euclidean/Minkowski case. Weknow also from their original de�nition in [1] that the braided matrices B(R) are strictly relatedto A(R) by transmutation. This is already re
ected in the similarity of the proofs above andit would be interesting to formalise it further as a theory of twisting and transmutation fordi�erential calculi and � tensors.We conclude with the simplest cases of the �A(R) and B(R) constructions computed in detailusing the symbol manipulation package REDUCE. This is needed to determine the normal-isations dm etc. concerning the projectors and Hodge operators. Direct R-matrix methodslike those above are not yet known for these properties, but they are veri�ed in both of theseexamples as well as in similar ones based on other well-known R-matrices.5.1 q-Euclidean spaceFor q-Euclidean space, we use the de�nition in [9] as twisting �Mq(2) of the usual 2� 2 quantummatrices. This is the simplest example of the �A(R) construction above. We have generatorsx = �a bc d� and relationsba = qab; ca = q�1ac; da = ad; db = q�1bd dc = qcdbc = cb + (q � q�1)ad: (21)This is actually isomorphic to the usual Mq(2) by a permutation of the generators, so one canregard the following as results on this with its additive structure as introduced in [5].The vector algebra of derivatives is@@d @@c = q�1 @@c @@d; @@d @@b = @@b @@dq; @@d @@a = @@a @@d@@c @@b = @@b @@c + (q � q�1) @@a @@d; @@c @@a = @@a @@cq; @@b @@a = q�1 @@a @@bThe metric is [9] �IJ = 0BB@ 0 0 0 10 0 �q 00 �q�1 0 01 0 0 01CCA = @@xI @@xJ (ad� qcb): (22)17



It has determinant det(�) = 1 and is already correctly normalised, so � = 1 in (12). HerexJxI�IJ = (1 + q�2)(ad� qcb)is a natural `radius function' according to the construction in [9].The algebra of forms isdada = 0; dbdb = 0; dcdc = 0; dddd = 0dbda = �q�1dadb; dcda = �dadcq; dddb = �dbddqdcdb = �dbdc; dddc = �q�1dcdd; ddda = �(q � q�1)dbdc � daddWe have the q-epsilon tensor as:�abcd = ��acbd = �adbc = ��adcb = �bcad = ��bcda = 1��cbad = �cbda = ��dabc = �dacb = ��dbca = �dcba = 1�acdb = ��cdba = ��dcab = q; ��abdc = ��bacd = �bdca = �dbac = q�1��cadb = �cdab = q2; �badc = ��bdac = q�2��adad = �dada = (q � q�1)The resulting raw (un-normalised) antisymmetriser projectors P have associated constantsd0 = 2q4[2]2[3]; d1 = �2q2[3]; d2 = q2[2]2; d3 = �2q2[3]; d4 = 2q4[2]2[3]where [m] � [m; q�2] = 1�q�2m1�q�2 . In each case, the projections are on the space of totallyR-antisymmetric tensors and have the same ranks as classically.The Hodge �-operator for this metric is:(dadbdcdd)� = 1; (dadbdc)� = da; (dadbdd)� = db(dadcdd)� = �dc; (dbdcdd)� = �dd(dadb)� = �q[2]dadb; (dadc)� = q[2]dadc; (dadd)� = 2dbdc� (q � q�1)dadd(dbdc)� = 2dadd+ (q � q�1)dbdc; (dbdd)� = q[2]dbdd; (dcdd)� = �q[2]dcdd18



(da)� = 2q2[3]dadbdc; (db)� = 2q2[3]dadbdd; (dc)� = �2q2[3]dadcdd; (dd)� = �2q2[3]dbdcdd1� = 2q4[2]2[3]One can check that the square of this Hodge * operator is�2 = (�1)mP = (�1)mdmon forms of degree m. The Hodge �-operator on 2-forms is a 6�6 matrix with eigenvalues �q[2]with multiplicity 3. The self-dual and antiself dual 2-forms with respect to it are characterisedby F � = q[2]F; (self � dual form); F � = �2[q]F; (anti� self � dual form):Of course, one may adjust the normalisation of � to have the more usual limiting form.Note that our computations here have been for a matrix basis where the metric � has thesignature (2,2) in the q = 1 limit. The � tensor and value of �2 are as one would expect forthis after bearing in mind the ordering of the indices in our conventions (there is a reversal in(13)). There is a complex transformation with real determinant which maps the matrix basisto the usual space-time basis t; x; y; z with Euclidean signature, so in this basis we still have �2positive. Again this is the right classical result for our index conventions. The same remarksapply for the quantum case with q real. The noncommutative matrix generators transform toself-adjoint or `real' ones by a complex linear transformation[9]. The � computed in the newbasis is not just tensorially related to the one in the matrix basis because the top form dtdxdydzis di�erent from dadbdcdd that we di�erentiated before. But these top forms are proportionalup to a real constant and � transforms tensorially up to this.By way of contrast, we include also the second Hodge �-operator:(dadbdcdd)� = 1; (dadbdc)� = �da; (dadbdd)� = �db(dadcdd)� = dc; (dbdcdd)� = dd(dadb)� = �qdadb; (dadc)� = q�1dadc; (dadd)� = dbdc � (q � q�1)dadd(dbdc)� = dadd; (dbdd)� = q�1dbdd; (dcdd)� = �qdcdd19



(da)� = �dadbdc; (db)� = �dadbdd; (dc)� = dadcdd; (dd)� = dbdcddOn two-forms it has eigenvalues q�1;�q each with multiplicity 3. Hence with respect to � wehave F � = q�1F; (self � dual form); F � = �qF; (anti� self � dual form)5.2 q-Minkowski spaceWe use for q-Minkowski space the 2 � 2 braided-hermitian matrices introduced in [1]. It is thesimplest example of the B(R) construction above. The covector algebra of position co-ordinatesu = �a bc d� is:ba = q2ab; ca = q�2ac; da = ad; bc = cb+ (1� q�2)a(d� a)db = bd+ (1� q�2)ab; cd = dc+ (1� q�2)ca (23)This maps onto a braided tensor product of two copies of the quantum plane and is therebycompatible with the approach of [10][11] also. The additive structure we need is from [8].The vector algebra of di�erentiation operators is:@@d @@c = q�2 @@c @@d; @@d @@b = @@b @@dq2@@d @@a = @@a @@d; @@b @@a = @@a @@b + @@b @@d(q2 � 1)@@c @@a = @@a @@c + @@c @@d(q�2 � 1); @@c @@b = @@b @@c + @@d @@d(q�2 � 1) + @@a @@d(q2 � 1)The metric is [8]: �IJ = @@uI @@uJ (ad� q2cb) = 0BB@ q�2 � 1 0 0 10 0 �q2 00 �1 0 01 0 0 01CCA : (24)It has det(�) = q2 = � as the required normalisation constant in (12). We get back the `radiusfunction' from the metric as uJuI�IJ = (1 + q�2)(ad� q2cb):The algebra of forms isdcdc = 0; dada = 0; dbdb = 0; dbda = �dadb20



dcda = �dadc; dcdb = �dbdc; dddd = dbdc(1 � q�2)dddc = �dcddq�2 + dadc(1� q�2); dddb = �dbddq2 � dadb(q2 � 1)ddda = �dbdc(q2 � 1)� daddThe dimensions in each degree are the usual ones: 1:4:6:4:1 and we can take a basis dxi1 � � �dximwith i1 < i2 � � � < im with top form dadbdcdd.We have the q-epsilon tensor as:�addd = ��bdcd = ��dadd = �dbdc = �ddad = ��ddda = 1� q�2��adad = ��cdbd = �dada = �dcdb = q2 � 1�abcd = ��acbd = �adbc = ��adcb = ��bacd = �bcad = ��bcda = �cabd = 1��cbad = �cbda = ��dabc = �dacb = �dbac = ��dbca = ��dcab = �dcba = 1�acdb = ��cadb = �cdab = ��cdba = q2��abdc = �badc = ��bdac = �bdca = q�2:The resulting raw (un-normalised) antisymmetriser projectors have associated constantsd0 = 2q4[2]2[3]; d1 = �2q2[3]; d2 = q2[2]2; d3 = �2q2[3]; d4 = 2q4[2]2[3]as in the Euclidean case. The corresponding projections are on the space of totallyR-antisymmetrictensors and have the same ranks as classically.The Hodge �-operator for this metric is:(dadbdcdd)� = q�2; (dadbdc)� = q�2da; (dadbdd)� = q�2db(dadcdd)� = �dc; (dbdcdd)� = q�2(1� q�2)da� q�2dd(dadb)� = �[2]dadb; (dadc)� = [2]dadc; (dadd)� = 2dbdc� (1� q�2)dadd(dbdc)� = 2q�2dadd+(1�q�2)dbdc; (dbdd)� = [2](dbdd+2(1�q�2)dadb); (dcdd)� = �[2]dcdd(da)� = 2q2[3]dadbdc; (db)� = 2q2[3]dadbdd;(dc)� = �2q2[3]dadcdd; (dd)� = �2q2[3](dbdcdd� (1� q�2)dadbdc); 1� = 2q4[2]2[3]21



One can check that the square of this Hodge * operator is�2 = (�1)mq�2P = (�1)mq�2dmon forms of degree m. The Hodge �-operator on 2-forms has eigenvalues �[2] with multiplicity3. The self-dual and antiself dual 2-forms with respect to it are characterised byF � = [2]F; (self � dual form); F � = �[2]F; (anti� self � dual form):As before, one can adjust the normalisation of � to have the more usual limit when q = 1.Also, the same remarks apply as in the Euclidean case to the e�ect that there is a natural�-structure and a complex transformation from our matrix basis to self-adjoint or `real' space-time bases t; x; y; z[26]. This time the top form, � and � change by an imaginary factor. Thisagain brings our results here in line with the classical situation for our indexing conventions.Finally, by way of contrast our alternative Hodge �-operator is(dadbdcdd)� = q�2; (dadbdc)� = �daq�2(dadbdd)� = �dbq�2 ; (dadcdd)� = dc; (dbdcdd)� = ddq�2 � daq�2(1� q�2)(dadb)� = �dadb; (dadc)� = dadcq�2; (dadd)� = dbdc + dadd(q�2 � 1); (dbda)� = dadb(dbdc)� = daddq�2; (dbdd)� = dbddq�2 + dadb(1 � q�4); (dcdd)� = �dcdd(da)� = �dadbdc; (db)� = �dadbdd; (dc)� = dadcddq�2; (dd)� = dbdcdd�dadbdc(1�q�2)On two-forms it has eigenvalues q�1;�1 each with multiplicity 3. Hence with respect to � wehave F � = q�1F; (self � dual form); F � = �F; (anti� self � dual form)References[1] S. Majid. Examples of braided groups and braided matrices. J. Math. Phys., 32:3246{3253,1991.[2] S. Majid. Quantum and braided linear algebra. J. Math. Phys., 34:1176{1196, 1993.22
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