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Abstract

In these lecture notes we present an introduction to non-standard
analysis especially written for the community of mathematicians, physi-
cists and engineers who do research on J. F. Colombeau’ theory of new
generalized functions and its applications. The main purpose of our
non-standard approach to Colombeau’ theory is the improvement of
the properties of the scalars of the varieties of spaces of generalized
functions: in our non-standard approach the sets of scalars of the func-
tional spaces always form algebraically closed non-archimedean Can-
tor complete fields. In contrast, the scalars of the functional spaces
in Colombeau’s theory are rings with zero divisors. The improve-
ment of the scalars leads to other improvements and simplifications
of Colombeau’s theory such as reducing the number of quantifiers and
possibilities for an axiomatization of the theory. Some of the algebras
we construct in these notes have already counterparts in Colombeau’s
theory, other seems to be without counterpart. We present applica-
tions of the theory to PDE and mathematical physics. Although our
approach is directed mostly to Colombeau’s community, the readers
who are already familiar with non-standard methods might also find a
short and comfortable way to learn about Colombeau’s theory: a new
branch of functional analysis which naturally generalizes the Schwartz
theory of distributions with numerous applications to partial differen-
tial equations, differential geometry, relativity theory and other areas
of mathematics and physics.

MSC: Functional Analysis (46F30); Generalized Solutions of PDE (35D05).
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1 Introduction

This lecture notes are an extended version of the several lectures I gave at
the University of Vienna during my visit in the Spring of 2006. My audience
consisted mostly of colleagues, graduate and undergraduate students who do
research on J.F. Colombeau’s non-linear theory of generalized functions (J.F.
Colombeau’s ([10]-[15]) and its applications to ordinary and partial differ-
ential equations, differential geometry, relativity theory and mathematical
physics. With very few exceptions the colleagues attended my talks were not
familiar with nonstandard analysis. This fact strongly influenced the nature
of my lectures and these lecture notes. I do not assume that the reader of
these notes is necessarily familiar neither with A. Robonson’s non-standard
analysis (A. Robonson [73]) nor with A. Robonson’s non-standard asymp-
totic analysis (A. Robinson [74] and A. Robonson and A.H. Lightstone [56]).
I have tried to downplay the role of mathematical logic as much as possible.
With examples from Colombeau’s theory I tried to convince my colleagues
that the involvement of the non-standard methods in Colombeau theory has
at least the following three advantages:

1. The scalars of the non-standard version of Colombeau’s theory are
algebraically closed Cantor complete fields. Recall that in Colmbeau’s
theory the scalars of the functional spaces are rings with zero divisors.

2. The involvement of non-standard analysis in Colombeau’s theory leads
to simplification of the theory by reducing the number of the quanti-
fiers. This should be not of surprise because non-standard analysis is
famous with the so called reduction of quantifiers. For comparison, the
familiar definition of a limit of a function in standard analysis involves
three (non-commuting) quantifiers. In contrast, its non-standard char-
acterization uses only one quantifier. Another example gives the def-
inition of a compact set in point set topology involves at least two
quantifiers. In contrast, there is a free of quantifiers non-standard char-
acterization of the compactness in terms of monads. Since Colombeau’
theory is relatively heavy of quantifiers, the reduction of the numbers
of quantifiers makes the theory more attractive to colleagues outside
the Colombeau’s community and in particular to theoretical physicists.

3. In my lectures and in these notes I decided to follow mostly the so
called constructive version of the non-standard analysis where the non-
standard real number a ∈ ∗R is equivalence class of families (ai) in the
ultrapower RI for some infinite set I. Similarly, every non-standard
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smooth function f ∈ ∗E(Ω) is defined as equivalence class of fami-
lies (fi) in the ultrapower E(Ω)I . Here E(Ω) is a (short) notation
for C∞(Ω). The equivalence relation in both RI and E(Ω)I is de-
fined in terms of a free ultrafilter U on I. In our approach the choice
of the index set I and the choice of the ultrafilter U are borrowed
from Colombeau’s theory. This approach to non-standard analysis is
more directly connected with the standard (real) analysis and allow to
involve the non-standard analysis in research with comparatively lim-
ited knowledge in the non-standard theory. The non-standard analy-
sis however has also axiomatic version based on two axioms known a
Saturation Principle and Transfer Principle. The involvement of non-
standard analysis, if based on these two principles, opens the opportu-
nities for axiomatization of Colombeau’s theory. I have demonstrated
this in the notes by presenting a couple of proofs to several theorems:
one using families (nets), and another using these two axioms. The
first might be more convincible for beginners to non-standard analysis
but the second proofs are more elegant and short because it does not
involve the representatives of the generalized numbers and generalized
functions.

Let T stand for the usual topology on Rd. J.F. Colombeau’s non-linear
theory of generalized functions is based on varieties of families of differential
commutative rings G def= {G(Ω)}Ω∈T such that: 1) Each G is a sheaf of differ-
ential rings (consequently, each f ∈ G(Ω) has a support which is a closed
set of Ω). 2) Each G(Ω) is supplied with a chain of sheaf-preserving em-
beddings C∞(Ω) ⊂ D′(Ω) ⊂ G(Ω), where C∞(Ω) is a differential subring
of G(Ω) and the space of L. Schwartz’s distributions D′(Ω) is a differen-
tial linear subspace of G(Ω). 3) The ring of the scalars C̃ of the family
G (defined as the set of the functions in G(Rd) with zero gradient) is a
non-Archimedean ring with zero devisors containing a copy of the complex
numbers C. Colombeau theory has numerous applications to ordinary and
partial differential equations, fluid mechanics, elasticity theory, quantum
field theory and more recently to general relativity.
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2 κ-Good Two Valued Measures

I follow the philosophy that every non-standard real number a ∈ ∗R is,
roughly speaking, a family (ai) in the ultrapower RI for some infinite set I.
Similarly, every nonstandard smooth function f ∈ ∗E(Ω) is again, roughly
speaking, a family (fi) in the ultrapower E(Ω)I . Here E(Ω) is a (short)
notation for C∞(Ω).

Definition 2.1 (κ-Good Two Valued Measures) Let I be an infinite
set of cardinality κ, i.e. card(I) = κ. A mapping p : P(I) → {0, 1} is a
κ-good two-valued (probability) measure if

(i) p is finitely additive, i.e. p(A∪B) = p(A)+p(B) for disjoint A and B.

(ii) p(I) = 1.

(iii) p(A) = 0 for finite A.

(iv) There exists a sequence of sets (In) such that

(a) I ⊃ I1 ⊃ I2 ⊃ . . . ,
(b) In \ In−1 6= ∅ for all n,
(c)

⋂∞
n=1 In = ∅,

(d) p(In) = 1 for all n.

(v) If I is uncountable, we impose one more property: p should be κ-good
in the sense that for every set Γ ⊆ I, with card(Γ) ≤ κ, and every
reversal R : Pω(Γ) → U there exists a strict reversal S : Pω(Γ) → U
such that S(X) ⊆ R(X) for all X ∈ Pω(Γ). Here Pω(Γ) denotes the
set of all finite subsets of Γ and U = {A ∈ P(I) | P (A) = 1}.

Remark 2.1 (Reversals) Let Γ ⊆ I. A function R : Pω(Γ) → U is called
a reversal if X ⊆ Y implies R(X) ⊇ R(Y ) for every X, Y ∈ Pω(Γ). A
function S : Pω(Γ) → U is called a strict reversal if S(X ∪ Y ) = S(X) ∩
S(Y ) for every X, Y ∈ Pω(Γ). It is clear that every strict reversal is a
reversal (which justifies the terminology).

Remark 2.2 (Ignore (v) unless you really need it) The property (v)
in the definition of p is needed only to prove the Saturation Principle (see
later) in the full generality, i.e. for family of internal sets (Aγ)γ∈Γ with
card(Γ) ≤ card(I). In the case when Γ is countable or I is countable, the
property (v) is not needed. In particular we do not need property (v) in this
Lecture Notes and the reader is advised to ignore it.
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3 Existence of Two Valued κ-Good Measures

Theorem 3.1 (Existence of Two Valued κ-Good Measures) Let I be
an infinite set and let (In) be a sequence of sets with the properties (a)-(c)
(think of Colombeau’s theory). Then there exists a two valued κ-good mea-
sure p : P(I) → {0, 1}, where κ = card(I), such that p(In) = 1 for all
n ∈ N.

Remark 3.1 We should note that for every infinite set I there exists a
sequence (In) with the properties (a)-(c).

Proof: Step 1: Define F0 ⊂ P(I) by

F0 = {A ∈ P(I) | In ⊆ A for some n}.

It is easy to check that F0 is a free countably incomplete filter on I
in the sense that F0 has the following properties:

(i) ∅ /∈ F0.

(ii) F0 is closed under finite intersections.

(iii) F0 3 A ⊆ B ∈ P(I) implies B ∈ F0.

(iv) In ∈ F0 for all n ∈ N.

Step 2: We extend F0 to a ultrafilter U on I by Zorn lemma: Let L
denote the set of all free filter F on I containing In, i.e.

L = {F ⊂ P(I) | F satisfies (i)-(iv), where F0 should be replaced byF}.

We shall order L by inclusion ⊂. Observe that every chain L in L is bounded
from above by

⋃
A∈L A and it is not difficult to show that

⋃
A∈L A ∈ L. Thus

L has maximal elements U by Zorn lemma. In what follows we shall keep U
fixed.

Step 3: We shall prove now that U has the following (free ultrafilter)
properties:

(1) ∅ /∈ U .

(2) U is closed under finite intersections.

(3) U 3 A ⊆ B ∈ P(I) implies B ∈ U .

(4) In ∈ U for all n ∈ N.

6



(5) A ∪B ∈ U implies either A ∈ U or B ∈ U .

Indeed, U satisfies (1)-(4) by the choice of U since U ∈ L. To show the
property (5), suppose (on the contrary) that A ∪ B ∈ U and A,B /∈ U for
some subsets A and B of I. Next, we observe that FA = {X ∈ P(I) |
A∪X ∈ U} is also a free filter on I (i.e. FA satisfies the properties (1)-(4)).
Next, we observe that FA is a proper extension of U since B ∈ FA \ U by
the assumption for B, contradicting the maximality of U .

Step 4: Define p : P(I) → {0, 1} by p(A) = 1 whenever A ∈ U and
p(A) = 0 whenever A /∈ U . We have to show now that p is a κ-good two
valued measure (Definition 2.1). To check the finite additivity property (i)
of p, suppose that A ∩ B = ∅ for some A,B ∈ P(I). Suppose, first, that
A ∪B ∈ U , so we have p(A ∪B) = 1. On the other hand, by properties (1)
and (5), exactly one of the following two statements is true: either (a) A ∈ U
and A /∈ U or (b) A /∈ U and A ∈ U . In either case we have p(A)+p(B) = 1,
as required. Suppose, now, that A∪B /∈ U , so we have p(A∪B) = 0. In this
case we have A /∈ U and B /∈ U by property (3). Thus p(A)+p(B) = 0. The
property (ii): p(I) = 1 holds since I ∈ U by properties (3) and (4) of U . To
prove the property (iii), suppose (on the contrary) that p(A) = 1 for some
finite set A ⊂ I, i.e. A ∈ U . It follows that there exists i ∈ A such that
{i} ∈ U by property (5) of U since we have

⋃
i∈A{i} = A. Thus {i} ∈ In for

all n ∈ N by properties (1), (2) and (4) of U . It follows that {i} ∈
⋂

n∈N In

contradicting property (c) of the sequence (In). The property (iv) holds
by the choice of U since In ∈ F0 ⊂ U thus p(In) = 1. For the proof of
the property (v) of the measure p we shall refer to C. C. Chang and H. J.
Keisler [8] or to T. Lindstrøm [55]. N

4 A Non-Standard Analysis: The General Theory

Definition 4.1 (A Non-Standard Extension of a Set) Let S be a set
and I be and infinite set, and SI be the corresponding ultrapower.

(i) We say that (ai) and (bi) are equal almost everywhere in I, in symbol
ai = bi a.e., if p({i ∈ I | ai = bi in S}) = 1, or equivalently, if
{i ∈ I | ai = bi in S} ∈ U , where U = {A ∈ P(I) | p(A) = 1}. We
denote by ∼ the corresponding equivalence relation, i.e. (ai) ∼ (bi) if
ai = bi a.e..

(ii) We denote by 〈ai〉 the equivalence class determined by (ai). The set of
all equivalence classes ∗S = SI/∼ is called a non-standard exten-
sion of S.
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(iii) Let s ∈ S. We define ∗s = 〈ai〉, where ai = s for all i ∈ I. We
define the canonical embedding σ : S → ∗S by σ(s) = ∗s, and denote
by σS = {∗s | s ∈ S} the range of σ. We shall sometimes treat this
embedding as an inclusion, S ⊆ ∗S, by letting s = ∗s for all s ∈ S.

(iv) More generally, if X ⊆ S, we define ∗X ⊆ ∗S by

∗X = {〈xi〉 ∈ ∗S | xi ∈ X a.e.}.

We have X ⊆ ∗X under the embedding x → ∗x. We say that ∗X is
the non-standard extension of X.

Theorem 4.1 (Axiom 1. Extension Principle) Let S be a set. Then
S ⊆ ∗S and S = ∗S i f f S is a finite set.

Proof: S ⊆ ∗S holds in the sense of the embedding σ. Suppose, first, that S
is a finite set and let 〈ai〉 ∈ ∗S. We observe that the finite collection of sets
{i ∈ I | ai = s}, s ∈ S, are mutually disjoint and

⋃
s∈S{i ∈ I | ai = s} = I.

Thus
∑

s∈S p({i ∈ I | ai = s}) = 1 by the finite additivity of the measure p.
It follows that there exists a unique s0 ∈ S such that p({i ∈ I | ai = s0}) = 1
(and p({i ∈ I | ai = s0}) = 0 for all s ∈ S, s 6= s0). Thus we have
〈ai〉 = ∗s0 ∈ S, as required. Suppose now, that S is an infinite set. We have
to show that ∗S \S 6= ∅. Indeed, by axiom of choice, there exists a sequence
(sn) in S such that sm 6= sn whenever m 6= n. Next, we define (ai) ∈ SI

by ai = sn, where n = max{m ∈ N | i ∈ Im−1 \ Im} and we have let also
I0 = I. Let s ∈ S. We have to show that the set {i ∈ I | ai 6= s} is of
measure 1. Indeed, if s is not in the range of (sn), then {i ∈ I | ai 6= s} = I
and is of measure 1. If s is in the range of (sn), then s = sk for exactly one
k ∈ N. We observe that Ik ⊆ {i ∈ I | ai 6= s}. Now the set {i ∈ I | ai 6= s}
is of measure 1 because Ik is of measure one, by property (iv)-(c) of p. The
proof is complete. Thus 〈si〉 ∈ ∗S \ S as required.

N
In what follows (Ai) ∈ P(S)I means that Ai ⊆ S for all i ∈ I.

Definition 4.2 (Internal Sets) Let A ⊆ ∗S. We say that A is an inter-
nal set of ∗S if there exists a family (Ai) ∈ P(S)I of subsets of S such
that

A = {〈si〉 ∈ ∗S | si ∈ Ai a.e. }.

We say that the family (Ai) generates A and we write A = 〈Ai〉. Let, in
the particular, Ai = A for all i ∈ I and some A ⊆ S. We say that the
internal set ∗A = 〈Ai〉 is the non-standard extension of A. We denote
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by ∗P(S) the set of the internal subsets of ∗S. The sets in ∗P(S) \P(S) are
call external.

If X ⊆ S, then ∗X is internal and ∗X is generated by the constant family
Xi = X for all i ∈ I. In particular ∗S is an internal set. Let 〈si〉 ∈ ∗S \S be
the element defined in the proof of Theorem 4.1. Then the singleton {〈si〉}
is an internal set which is not of the form ∗X for some X ⊆ S. This internal
set is generated by the singletons {si}, i.e. {〈si〉} = 〈{si}〉. More generally,
every finite subset of ∗S is an internal set. We shall give more examples of
infinite internal sets of ∗R and ∗C in the next section. If A ⊆ S, then A is
an external set of ∗S.

In what follows we use the notation N0 = {0, 1, 2, . . . }.

Theorem 4.2 (Axiom 2. Sequential Saturation) ∗S is sequentially sat-
urated in the sense that every sequence {An}n∈N0 of internal sets of ∗S with
the finite intersection property has a non-empty intersection.

Proof: We have
⋂m

n=0 An 6= ∅ for all m ∈ N0, by assumption. We have
to show that

⋂∞
n=0 An 6= ∅. The fact that An are internal sets means

that An = 〈An,i〉 for some An,i ⊆ C, where n ∈ N0, i ∈ I. We have
〈
⋂m

n=0 An,i〉 =
⋂m

n=0 〈An,i〉 =
⋂m

n=0 An 6= ∅. Thus for every m ∈ N0 we
have

(1) Φm = {i ∈ I | ∩m
n=0 An,i 6= ∅} ∈ U .

Without loss of generality we can assume that A0,i 6= ∅ for all i ∈ I (indeed,
if Φ0 6= I, we can choose another representative of A0 by A′

0,i = A0,i for
i ∈ Φ0 and by A′

0,i = C for i ∈ I \ Φ0). Next, we define the function
µ : I → N0 ∪ {∞}, by

µ(i) = max{m ∈ N0 | ∩m
n=0 An,i 6= ∅}.

Notice that µ is well-defined because the set

{m ∈ N0 | ∩m
n=0 An,i 6= ∅},

is non-empty for all i ∈ I due to our assumption for A0,i. Thus we have⋂µ(i)
n=0 An,i 6= ∅ for all i ∈ I. Hence (by Axiom of Choice) there exists

(Ai) ∈ CI such that Ai ∈
⋂µ(i)

n=0 An,i for all i ∈ I. We intend to show that
〈Ai〉 ∈

⋂∞
n=0 An or equivalently, to show that for every m ∈ N0 we have

{i ∈ I | Ai ∈ Am,i} ∈ U . We observe that

Φm ⊆ {i ∈ I | Ai ∈ Am,i}.
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Indeed, i ∈ Φm implies
⋂m

n=0 An,i 6= ∅ which implies 0 ≤ m ≤ µ(i) (by
the definition of µ(i)) leading to Ai ∈ Am,i, by the choice of (Ai). On the
other hand, we have Φm ∈ U , by (1) implying {i ∈ I | Ai ∈ Am,i} ∈ U , as
required, by property (3) of U .

N
In the next theorem we use for the first time the property (v) of the

probability measure p (Definition 2.1). Recall that κ = card(I).

Theorem 4.3 (Saturation Principle in ∗C: The General Case) ∗C is
κ+-saturated in the sense that every family {Aγ}γ∈Γ of internal sets of ∗C
with the finite intersection property, and an index set Γ with card(Γ) ≤ κ,
has a non-empty intersection.

Proof: We shall refer to the original source C. C. Chang and H. J. Keisler [8]
(or, for a presentation, to T. Lindstrøm [55]).

Definition 4.3 (Superstructure) Let S be an infinite set. The super-
structure V (S) on S is the union

V (S) =
∞⋃

n=0

Vn(S),

where the Vn(S) are defined inductively by

V0(S) = S, V1(S) = S ∪ P(S),
Vn+1(S) = Vn(S) ∪ P(Vn(S)).(2)

The members of V (S) are called entities. The members of V (S) \ S are
called the sets of the superstructure V(S) and the members of S are called
the individuals of the superstructure V (S).

Definition 4.4 (The Language L(V (S))) The language L(V (S)) is the
usual “language of the analysis” with the following restrictions: All quanti-
fiers are bounded by sets in the superstrucure V (S), i.e. quantifiers appear
in the formulae of the language L(V (S)) only in the form

(∀x ∈ A)P (x) or (∃x ∈ A)P (x),

where P (x) is a predicate in one or more variables and A ∈ V (S) \ S. In
particular, formulae such as

(∀x)P (x),
(∃x)P (x),
(∀x ∈ s)P (x),
(∃x ∈ s)P (x),
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where s ∈ S, do not belong the the language L(V (S)).

In what follow V (∗S) stands for the supersructure of ∗S and L(V (∗S))
stands for the language on V (∗S) which are defined exactly as V (S) and
L(V (S)) after replacing S by ∗S.

Theorem 4.4 (Axiom 3. Transfer Principle) Let P (x1, x2, . . . xn) be a
predicate in L(V (S)) and A1, A2, . . . , An ∈ V (S). Then P (A1, A2, . . . An) is
true L(V (S)) i f f P (∗A1,

∗A2, . . .
∗An) is true in L(V (∗S)).

For examples of application of the Transfer Principle we refer to the first
proofs of Lemma 5.1 and Lemma 5.2 later in this text.

5 A. Robinson’s Non-Standard Numbers

In this section we apply the non-standard construction in the particular case
S = C, where C is the field of the complex numbers.

Definition 5.1 (Non-Standard Numbers) (i) We define the complex
non-standard numbers as the factor ring ∗C = CI/ ∼, where (ai) ∼
(bi) if ai = bi a.e., i.e. if

p ({i ∈ I | ai = bi}) = 1

(or, equivalently, if {i ∈ I | ai = bi} ∈ U , where U = {A ∈ P | p(A) =
1}.) We denote by 〈ai〉 ∈ ∗C the equivalence class determined by (ai).
The algebraic operations and the absolute value in ∗C is inherited from
C. For example, |〈xi〉| = 〈|xi|〉.

(ii) The set of real non-standard numbers ∗R is (by definition) the
non-standard extension of R, i.e.

∗R = {〈xi〉 ∈ ∗C | xi ∈ R a.e. }.

The order relation if ∗R is defined by 〈ai〉 < 〈bi〉 if ai < bi in R a.e.,
i.e. if

p ({i ∈ I | ai < bi}) = 1.

(iii) The mapping r → ∗r defines an embeddings C ⊂ ∗C and R ⊂ ∗R by
the constant nets, i.e. ∗r = 〈ai〉, where ai = r for all i ∈ I.

Theorem 5.1 (Basic Properties) (i) ∗C is an algebraically closed non-
archimedean field.
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(ii) ∗R is a real closed (totally ordered) non-archimedean field.

Proof: We shall separate the proof of the above theorem in several small
lemmas and prove some of them. We shall present also two proofs to each of
the lemmas; one of them based on the Saturation Principle (Theorem 4.4)
and the other on the properties of the measure p. The content of the next
lemma is a small (but typical) part of the statement that both ∗C and ∗R
are fields.

Lemma 5.1 (No Zero Divisors) ∗C is free of zero divisors.

Proof 1: The statement

(∀x, y ∈ C)(xy = 0 ⇒ x = 0 ∨ y = 0),

is true because C is free of zero divisors. Thus

(∀x, y ∈ ∗C)(xy = 0 ⇒ x = 0 ∨ y = 0),

is true (as required) by Transfer Principle (Theorem 4.4).
N

Proof 2: Suppose 〈ai〉〈bi〉 = 0 in ∗C for some 〈ai〉, 〈bi〉 ∈ ∗C. Thus 〈aibi〉 =
0 implying p({i ∈ I | aibi = 0}) = 1. On the other hand,

{i ∈ I | aibi = 0} = {i ∈ I | ai = 0} ∪ {i ∈ I | bi = 0},

because C is free of zero divisors. It follows that

p({i ∈ I | ai = 0}) + p({i ∈ I | bi = 0}) ≥ 1,

by the additivity of p. Since the range of p is {0, 1}, it follows that ether
p({i ∈ I | ai = 0}) = 1 or p({i ∈ I | bi = 0}) = 1, i.e. either 〈ai〉 = 0 or
〈bi〉 = 0, as required. N

Lemma 5.2 (Trichotomy) Let a, b ∈ ∗R. Then ether a < b or a = b or
a > b.

Proof 1: The statement

(∀x, y ∈ R)(x 6= y ⇒ x < y ∨ x > y),

is true because R is a totally ordered set. Thus

(∀x, y ∈ ∗R)(x 6= y ⇒ x < y ∨ x > y),
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is true (as required) by Transfer Principle (Theorem 4.4).
N

Proof 2: Suppose that 〈ai〉, 〈bi〉 ∈ ∗R. We observe that the sets

A = {i ∈ I | ai < bi}, B = {i ∈ I | ai = bi}, C = {i ∈ I | ai > bi},

are mutually disjoint and A ∪ B ∪ C = I because R is a totally ordered
set. Thus p(A) + p(B) + p(C) = 1 by the additivity of the measure p. It
follows that exactly one of the following is true: p(A) = 1 or p(B) = 1 or
p(C) = 1, since the range of p is {0, 1}. Thus exactly one of the following is
true: 〈ai〉 < 〈bi〉, 〈ai〉 = 〈bi〉, and 〈ai〉 > 〈bi〉.

N
The rest of the proof of Theorem 5.1 can be done in a similar manner

and we leave it to to the reader. N

6 Infinitesimals, Finite and Infinitely Large Num-
bers

Definition 6.1 (i) We define the sets of infinitesimal, finite, and in-
finitely large numbers as follows:

I(∗C) = {x ∈ ∗C : |x| < 1/n for all n ∈ N},

F(∗C) = {x ∈ ∗C : |x| < n for some n ∈ N},

L(∗C) = {x ∈ ∗C : |x| > n for all n ∈ N},

(ii) Let x, y ∈ ∗C. We say x and y are infinitely close, in symbol x ≈ y,
if x− y ∈ I(∗C). The relation ≈ is called infinitesimal relation on
∗C.

(iii) Let x ∈ ∗C and r ∈ C. We write x ; y if x − r ∈ I(∗C). We shall
often refer to ; an asymptotic expansion of x.

Proposition 6.1 (Basic Properties)

∗C = F(∗C) ∪ L(∗C),(3)
F(∗C) ∩ L(∗C) = ∅,(4)
I(∗C) ⊂ F(∗C),(5)
I(∗C) ∩ C = {0},(6)

and similarly for ∗R.
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Proof: These results follow directly from the definitions of infinitesimal,
finite and infinitely large numbers and the fact that ∗R is a totally ordered
field. N

Example 6.1 (Infinitesimals) Let ν = 〈ai〉, where (ai) ∈ CI , ai = n,
n = max{m ∈ N | i ∈ Im−1 \ Im}. The non-standard number ν is an in-
finitely large natural number in the sense that ν ∈ ∗N and (∀ε ∈ R+)(ε < ν).
Indeed, we choose n ∈ N such that ε ≤ n and observe that In ⊂ {i ∈ I | ai >
n ≥ ε}. Thus p({i ∈ I | ai > ε}) = 1 since p(In) = 1. Among other things
this example show that ∗R and ∗C are proper extensions of R and C, respec-
tively.The numbers νn, n

√
ν, ln ν, eν are infinitely large numbers in ∗R. In

contrast, the numbers 1/νn, 1/ n
√

ν, 1/ ln ν, e−ν are non-zero infinitesimals
in ∗R. If r ∈ R, then r + 1/νn is a finite (but not standard) number in ∗R.
Also eiν is a finite number in ∗C and eiνν2 + i ln ν + 5 + 3i is an infinitely
large number in ∗C.

Our next goal is to define and study a ring homomorphism st from
the ring of finite numbers F(∗C) to C, called standard part mapping. The
standard part mapping is, in a sense, a counterpart of the concept of limit
in the usual (standard) analysis. In contrast to limit, however, the standard
part mapping is applied to non-standard numbers rather than to sequences
of standard numbers or functions.

Definition 6.2 (Standard Part Mapping) (i) The standard part map-
ping st : F(∗R) → R is defined by the formula:

(7) st(x) = sup{r ∈ R | r < x}.

If x ∈ F(∗R), then st(x) is called the standard part of x.

The standard part mappings defined in (ii) and (iii) below are exten-
sions of the standard part mapping just defined; we shall keep the
same notation, st, for all.

(ii) The standard part mapping st : F(∗C) → C is defined by the
formula st(x + y i) = st(x) + st(y) i.

(iii) The mapping st : ∗R → R∪{±∞} is defined by (i) and by st(x) = ±∞
for x ∈ L(∗R±), respectively.

Theorem 6.1 (Standard Part Mapping on Finite Numbers) (i) Ev-
ery finite non-standard number x ∈ F(∗C) has a unique asymptotic
expansion

(8) x = st(x) + dx.
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where dx ∈ I(∗C). Consequently, if x ∈ ∗C, then x ∈ F(∗C) i f f
x = c + dx for some c ∈ C and some dx ∈ I(∗C).

(ii) The standard part mapping is a ring homomorphism from F(∗C) onto
C, i.e. for every x, y ∈ F(∗C) we have:

st(x± y) = st(x)± st(y),(9)
st(x y) = st(x) st(y),
st(x/y) = st(x)/st(y), whenever st(y) 6= 0.

(iii) C consists exactly of the fixed points of st in ∗C, in symbol,

(10) C = {x ∈ ∗C | st(x) = x}.

Consequently, st ◦ st = st, where ◦ denotes “composition”.

(iv) x ∈ I(∗R) i f f st(x) = 0.

(v) The standard part mapping st is an order preserving ring homomor-
phism from F(∗R) onto R, where “order preserving” means that if
x, y ∈ F(∗R), then x < y implies st(x) ≤ st(y) (hence, x ≤ y implies
st(x) ≤ st(y)).

Proof: (i) Suppose, first, that x ∈ F(∗R). We have to show that x− st(x)
is infinitesimal. Suppose (on the contrary) that 1/n < |x − st(x)| for some
n. In the case x > st(x), it follows 1/n < x − st(x), contradicting (7). In
the case x < st(x), it follows 1/n < st(x) − x, again contradicting (7). To
show the uniqueness of (8), suppose that r + dx = s + dy for some r, s ∈ R
and some dx, dy ∈ I(∗R). It follows that r− s is infinitesimal, hence, r = s,
since the zero is the only infinitesimal in R. The result extends to F(∗C)
directly by the formula in part (ii) of Definition 6.2.

(ii) follows immediately from (i).
(iii) follows immediately from (i) by letting dx = 0.
(iv) follows directly from the definition of st.
(v) If x ≈ y, then it follows st(x) = st(y) (regardless whether x < y,

x = y or x > y). Suppose x < y and x 6≈ y. It follows st(x)+dx < st(y)+dy.
We have to show that st(x) ≤ st(y). Suppose (on the contrary) that st(x) >
st(y). It follows 0 < st(x) − st(y) < dy − dx implying st(x) − st(y) ≈ 0,
hence, st(x) = st(y), a contradiction. N

15



Corollary 6.1 (An Isomorphism) (i) F(∗R)/I(∗R) is ordered field iso-
morphic to R under the mapping q(x) → st(x), where q : F(∗R) → F(∗R)/I(∗R)
is the quotient mapping.

(ii) F(∗C)/I(∗C) is field isomorphic to C under the mapping Q(x) →
st(x), where Q : F(∗C) → F(∗C)/I(∗C) is the quotient mapping.

(iii) The isomorphism described in (ii) is an extension of the isomor-
phism described in (i).

We leave the proof to the reader.

Example 6.2 Let c ∈ C and let dx ∈ I(∗C) be a non-zero infinitesimal.
Then we have:

st(c + dxn) = c,

st(dx/|dx|) = ±1,

st
(

cdx + 7dx2 + dx3

dx

)
= st(c + 7dx + dx2) = c,

st
(
−3 + 4dx

dx

)
= st(1/dx)× st(−3 + 4dx) = (±∞)× (−3) = ∓∞,

where the choice of the sign ± depends on whether dx is positive or negative,
respectively.

Definition 6.3 (Standard Part of a Set) If A ⊆ ∗C, we define the stan-
dard part of A by

(11) st[A] = {st(x) | x ∈ A ∩ F(∗C)}.

Lemma 6.1 If A ⊆ ∗C, then A ∩ C ⊆ st[A]. (A proper inclusion might
occur; see the example below.). In particular, we have st[∗R] = R and
st[∗C] = C.

Proof: The inclusion A ∩ C ⊆ st[A] follows directly from part (iii) of The-
orem 6.1.

Example 6.3 Consider the set A = {x ∈ ∗R | 0 < x < 1}. We have
A ∩ C = {x ∈ R | 0 < x < 1}. On the other hand, st[A] = {x ∈ R | 0 ≤
x ≤ 1}. Indeed, if ε is a positive infinitesimal in ∗R, then ε, 1− ε ∈ A and
st(ε) = 0, and st(1− ε) = 1.
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7 NSA and the Usual Topology on Rd

In what follows we let ∗Rd = ∗R× ∗R× · · · × ∗R (d times). If x ∈ ∗Rd, then
x ≈ 0 means that ||x|| is infinitesimal.

Definition 7.1 (Monads) If X ⊆ Rd, then

µ(X) = {r + dx | r ∈ X, dx ∈ ∗Rd, ||dx|| ≈ 0}.

is called the monad of X in ∗Rd. If r ∈ Rd, we shall write simply µ(r)
instead of the more precise µ({r}), i.e.

µ(r) = {r + dx | dx ∈ I(Rd)}.

We observe that µ(X) =
⋃

r∈X µ(r).
In what follows T stands for the usual topology on Rd.

Theorem 7.1 (Boolean Properties) The mapping µ : T → P(∗Rd) is a
Boolean homomorphism. Also µ preserves the arbitrary unions in the sense
that µ

(⋃
λ∈Λ Ωλ

)
=

⋃
λ∈Λ µ(Ωλ) for any set Λ and any family of open sets

{Ωλ}λ∈Λ.

Theorem 7.2 (The Usual Topology on Rd) Let X ⊆ Rd. Then:

(i) A set X is open in Rd i f f µ(X) ⊆ ∗X.

(ii) X is compact in Rd i f f ∗X ⊆ µ(X).
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8 Non-Standard Smooth Functions

Definition 8.1 (Non-Standard Smooth Functions) Let Ω is an open
set of Rd. Then:

(i) The ring (algebra) of the non-standard smooth functions is defined
the factor ring

∗E(Ω) = E(Ω)I/ ∼,

where (fi) ∼ (gi) if fi = gi in E(Ω) for almost all i in the sense that

p ({i | fi = gi}) = 1.

We denote by 〈fi〉 ∈ ∗E(Ω) the equivalence class determined by (fi).

(ii) The algebraic operations and partial differentiation in ∗E(Ω) is inher-
ited from ∗E(Ω). For example, ∂α〈fi〉 = 〈∂αfi〉.

(iii) The mapping f → ∗f defines an embedding E(Ω) ↪→ ∗E(Ω) by the
constant families, i.e. fi = f for all i ∈ I. We say that ∗f is the
non-standard extension of f .

(iv) Every 〈fi〉 ∈ ∗E(Ω) is a pointwise mapping of the form 〈fi〉 : ∗Ω →
∗C, where 〈fi〉(〈xi〉) = 〈fi(xi)〉 and

∗Ω = {〈xi〉 ∈ ∗Rd | xi ∈ Ω a.e. },

is the non-standard extension of Ω.

(v) Let X ⊆ E . The non-standard extension ∗X of X is defined by

∗X = {〈fi〉 ∈ ∗E(Ω) | fi ∈ X a.e. }.

In particular,

∗D(Ω) = {〈fi〉 ∈ ∗E(Ω) | fi ∈ D(Ω) a.e. }.

Proposition 8.1 ∗E(Ω) is a differential algebra over the field ∗C.

Definition 8.2 (Sup and Support) Let 〈fi〉 ∈ ∗E(Ω) and let K ⊂⊂ Ω.
Then

(i) supx∈∗K |〈fi〉(x)| = 〈supx∈K |fi(x)|〉.
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(ii) supp〈fi〉 = 〈supp(fi)〉.

We shall refer to these as internal sup and internal support of 〈fi〉,
respectively.

Proposition 8.2 Let f ∈ ∗E(Ω). Then:

(i) (∀K ⊂⊂ Ω)(supx∈∗K f(x) ∈ ∗R).

(ii) supp(f) is a closed set of ∗R in the interval topology of ∗R.

Lemma 8.1 (Characterizations) Let f ∈ ∗E(Ω) and supp(f) denote the
(internal) support of f in ∗Ω. Then the following are equivalent:

(i) supp(f) ⊂ µ(Ω).

(ii) ∃K ⊂⊂ Ω such that supp(f) ⊆ ∗K.

(iii) There exists an open relatively compact subset O of Ω such that f ∈
∗D(O) (The latter implies f(x) = 0 for all x ∈ ∗(Ω \ O).)

Definition 8.3 (Compact Support) Let X ⊆ ∗E(Ω). We denote

Xc = {f ∈ X | supp(f) ⊂ µ(Ω)}.

In particular, we have:

∗Dc(Ω) = {f ∈ ∗D(Ω) | supp(f) ⊂ µ(Ω)},(12)
Xc = ∗Dc(Ω) ∩ X ,(13)
∗Dc(Ω) = ∗Ec(Ω) = {f ∈ ∗E(Ω) | supp(f) ⊂ µ(Ω)}.(14)

Lemma 8.2 (Characterizations) Let f ∈ ∗E(Ω). Then the following are
equivalent:

(i) (∀x ∈ µ(Ω)) [f(x) ∈Mρ(∗C)].

(ii) (∀K ⊂⊂ Ω)(∃n ∈ N)(supx∈∗K |f(x)| ≤ ρ−n).

(iii) (∀K ⊂⊂ Ω)(∀n ∈ ∗N \ N)(supx∈∗K |f(x)| ≤ ρ−n).

Lemma 8.3 (Characterizations) Let f ∈ ∗E(Ω). Then the following are
equivalent:

(i) (∀x ∈ µ(Ω)) [f(x) ∈ Nρ(∗C)].

(ii) (∀K ⊂⊂ Ω)(∀n ∈ N)(supx∈∗K |f(x)| ≤ ρn).

(iii) (∀K ⊂⊂ Ω)(∃n ∈ ∗N \ N)(supx∈∗K |f(x)| ≤ ρn).
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9 Local Properties of ∗E(Ω)

In what follows T stands for the usual topology on Rd and ∗T stands for
order topology of ∗Rd (more precisely, ∗T stands for the product topology
on ∗Rd generated by the order topology on ∗R).

Theorem 9.1 (A Non-Standard Sheaf) The collection {∗E(Ω)}Ω∈∗T is
a sheaf of differential rings on ∗Rd in the sense that f ∈ ∗E(Ω) and O ⊆ Ω
implies f |O ∈ ∗E(O) for every Ω,O ∈ ∗T .

Proof: From the (standard) functional analysis we know that the collection
{E(Ω)}Ω∈T is a sheaf of differential rings on Rd in the sense that f ∈ E(Ω)
and O ⊆ Ω implies f |O ∈ E(O) for every Ω,O ∈ T . Thus our result follows
directly from the Transfer Principle (Theorem 4.4). N

Corollary 9.1 (Non-Standard Support) Let f ∈ ∗E(Ω) and supp(f) be
the support of f (Definition 8.2). Then supp(f) is a closed set of ∗Ω in the
topology ∗T on ∗Rd.

Proof: The result follows (also) by Transfer Principle (or directly from the
above theorem). N

Remark 9.1 (A Counter Example) The next example shows that the
collection {∗E(Ω)}Ω∈T is not a sheaf of differential rings on Rd under
the restriction f � O = f |∗O. Indeed, let Ω = R+ and Ωn = (0, n) for
n ∈ N. Let ϕ ∈ D(R+), ϕ 6= 0, and let ν be an infinitely large number in
∗R+ (see Example 6.1). We define f(x) = ∗ϕ(x− ν) for all x ∈ ∗R+. It is
clear that

⋃
n∈N(0, n) = R+ and f � (0, n) = f |∗(0, n) = 0 for all n. Yet,

f � R+ = f |∗R+ = f 6= 0.

Our conclusion is that in order to convert the non-standard smooth
functions ∗E(Ω) into an algebra of generalized functions, we have to per-
form a factorization of the space ∗E(Ω). A general method for such
factorization will be presented in the next section.
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10 F-Asymptotic Numbers

In this section we describe a variety of algebraically closed fields F̂ in terms
of a given convex subring F of ∗C. We call these fields F-asymptotic
hulls and their elements F-asymptotic numbers. The fields F̂ are non-
archimedean fields whenever F is a non-archimedean ring. We construct an
embedding F̂ ↪→ ∗C and a ring homomorphism ŝt : F → ∗C which we call
a quasi-standard part mapping. The quasi-standard part mapping reduces
to the familiar standard part mapping st : F(∗C) → ∗C in particular case
when F is the ring F(∗C) of finite numbers in ∗C. Our asymptotic hull
construction can be viewed as a generalization of A. Robinson’s theory of
asymptotic numbers (A. H. Lightstone and A. Robinson [56]). We also
generalize some more recent results in (T. Todorov and R. Wolf [95]) on
the A. Robinson field ρR. Non-archimedean fields isomorphic to the fields
of the form F̂ are studied in model theory (D. Marker, M. Messmer, A.
Pillay [61]) although the fields in model theory are rarely constructed in the
framework of ∗R or ∗C as here (see the discussion below). A construction
similar to the presented here appears in the H. Vernaeve Ph.D. Thesis [98]
(for a comparison see the equivalence relation ∼ defined on p. 87, Sec. 3.6,
altered by the additional condition used in Lemma 3.32 on p. 89).

We believe that every algebraically closed non-archimedean field in math-
ematics is either isomorphic to some asymptotic hull F̂ (for a suitable choice
of ∗C and F), or it is isomorphic to a subfield of some F̂ . For example, the
field C〈t〉 of Levi-Civita power series with complex coefficients is isomorphic
to a subfield of A. Robinson’s field ρC of asymptotic numbers (A. H. Light-
stone and A. Robinson [56]). On the other hand, we show that ρC is of
the form F̂ (Example 10.2). For that reason we hope that our asymptotic
hull construction might facilitate the communication between the mathe-
maticians working in non-standard analysis and its applications on one side
and those working in model theory of fields on the other (A. Macintyre, Lou
van den Dries and [?]). Our immediate purpose however is to support the
theory of F-asymptotic functions ÊF (Ω) presented in the next section:
each ÊF (Ω) is an algebra of generalized functions of Colombeau type with a
field of scalars F̂ .

In what follows ∗C stands for a non-standard extension of the field of
the complex numbers C. Here is the summary of our basic definitions (the
justification and the detail follow later in this section):

1. Let F be a convex subring in ∗C, i.e. F is a subring of ∗C such that

(15) (∀z ∈ ∗C)(∀ζ ∈ F)(|z| ≤ |ζ| ⇒ z ∈ F).
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We denote by F0 the set of all non-invertible elements of F , i.e.

(16) F0 = {z ∈ F | z = 0 or 1/z /∈ F}.

We also define the real part <(F) of F by

<(F) = {±|z| : z ∈ F}.

We also denote by F+ the set of the positive elements of F , i.e.

(17) F+ = {|z| : z ∈ F , z 6= 0}.

2. The F-asymptotic hull is the factor ring F̂ = F/F0. The elements of
F̂ are the complex F-asymptotic numbers (or simply asymptotic
numbers if no confusion could arise). Let q : F → F̂ stand for the
corresponding quotient mapping. If z ∈ F , we shall often write ẑ
instead of q(z) when no confusion could arise. Similarly, if S ⊆ ∗C,
we let Ŝ = q[S ∩F ]. In the particular case S ⊆ C we shall often write
simply S instead of the more precise Ŝ. We also define the real part
<(F̂) of F̂ by

(18) <(F̂) = {±|z| : z ∈ F̂},

and observe that <̂(F) = <(F̂). The elements of <(F̂) are the real
F-asymptotic numbers (or simply real asymptotic numbers if no
confusion could arise). Also, F̂+ stands for the set of the positive
elements of F̂ , i.e.

(19) F̂+ = {|z| : z ∈ F̂ , z 6= 0}.

3. We define the embeddings C ↪→ F̂ and R ↪→ <(F̂) by the mapping
z → ẑ. We shall often identify z with its image ẑ writing simply C ⊂ F̂
and R ⊂ <(F̂), respectively.

4. We denote by I(F̂), F(F̂) and L(F̂) the sets of the infinitesimal,
finite and infinitely large elements of F̂ , respectively. We write x ≈ 0
whenever x ∈ I(F̂).

5. Let us denote

Fd = F × F × · · · F ,

Fd
0 = F0 ×F0 × · · · F0,

F̂d = F̂ × F̂ × · · · F̂ .
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(d times). We denote by || · || the usual Euclidean norm in either Fd or
F̂d. If z = (z1, z2, · · · , zd) ∈ F , we shall write ẑ = (ẑ1, ẑ2, · · · , ẑd) ∈ F̂ .
Let z ∈ Cd. We observe that z ∈ Fd i f f ||z|| ∈ F . Also z ∈ Fd

0

i f f ||z|| ∈ F0. Notice that F̂d is a vector space over the field F̂ .

6. Similarly, let <(F) be the real part of F and <(F̂) be the real part of
of F̂ . We define the real parts of Fd and F̂ by

<(Fd) = <(F)×<(F)× · · · <(F) (d times),

<(F̂d) = <(F̂)×<(F̂)× · · · <(F̂) (d times),

respectively. Notice that <(F̂d) is a vector space over the field
<(F̂).

7. We define the embeddings Cd ↪→ F̂d and Rd ↪→ <(F̂d) by the mapping
z → ẑ. We shall often identify z with its image ẑ writing simply
Cd ⊂ F̂d and Rd ⊂ <(F̂d), respectively.

8. If X ⊆ Rd, then the F-monad of X is the set µF (X) ⊂ <(F̂d),

(20) µF (X) = {r + dx | r ∈ X, dx ∈ <(F̂d), ||dx|| ≈ 0}.

We certainly have X ⊂ µF (X). Notice that x̂ ∈ µF (X) i f f
x ∈ µ(X), where µ(X) is the usual monad of X in ∗Rd (Section 7).

It is not immediately clear that the set F0 defined above is an ideal in F
(let alone a convex maximal ideal). To show this we need some preparation.

Theorem 10.1 (Convex Rings) Let F be a convex subring of ∗C. Then
F contains a copy of the ring F(∗C) of the finite elements of ∗C. Conse-
quently, F contains a copy C. We summarize these as C ⊂ F(∗C) ⊆ F ⊆
∗C.

Proof: Suppose z ∈ F(∗C). We have |z| < n for some n ∈ Z by the
definition of F(∗C). To show that z ∈ F , it is sufficient to show that Z ⊂ F .
Indeed, we observe that {±|z| : z ∈ F} is a subring of F . This follows
from the fact that z ∈ F implies ±|z| ∈ F by the convexity of F (since,
obviously, | ± |z|| ≤ |z|) and also the inequalities ||z| ± |ζ|| ≤ max{|2z|, |2ζ|}
and |z||ζ| ≤ max{|z2|, |ζ2|} combined, again, with the convexity of F . Thus
{±|z| : z ∈ F} is a totally ordered ring as a subring of ∗R. This proves that
{±|z| : z ∈ F} contains a copy of Z which implies that F contains a copy
of Z. Now, |x| < n and n ∈ F implies x ∈ F (as required) by the convexity
of F . N
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Definition 10.1 (Maximal Fields) Let F be (as before) a convex subring
in ∗C. A subfield M of ∗C is called maximal in F if M is a subring of F
and there is no a subfield F of ∗C such that: (a) F is also a subring of F ;
(b) F is a proper field extension of M. We denote by Max(F) the set of
all maximal fields in F .

Lemma 10.1 (Some Properties of Max(F)) Let F be (as before) a con-
vex subring in ∗C. Then:

(i) Max(F) 6= ∅.

(ii) If M ∈Max(F), then M ∩ F0 = {0}.

(iii) Let F be a field which is a subring of F . Then F can be extended to a
maximal field, i.e. there exists M ∈Max(F) such that F ⊆ M.

(iv) Every M ∈Max(F) is an algebraically closed field.

(v) If M ∈Max(F), then <(M) is a real closed field.

(vi) Let M ∈ Max(F). Then Md is a vector space over M and <(Md)
def
=

<(M)d is a vector space over <(M).

Proof: (i) Let L denote the set of all subfields L of ∗C which are subrings
of F and we order L by inclusion. We have L 6= ∅, since C ∈ L by Theo-
rem 10.1. Also, we observe that if S is a totally ordered subset of L under
the inclusion ⊂ , then

⋃
L∈S L ∈ L. Thus L has maximal elements M, as

required, by Zorn’s lemma.
(ii) Suppose (on the contrary) that there exists z ∈ M ∩ F0 such that

x 6= 0. It follows that 1/x ∈ M ∩ (∗C \ F) contradicting M ⊂ F .
(iii) follows with almost the same arguments as in (i): The set L should

be replaced by the set LF of all subfields L of ∗C such that F ⊆ L ⊂ F .
(iv) Let cl(M) denote the algebraically closure of M in ∗C. Since ∗C is

an algebraically closed field, it suffices to show that M = cl(M). We show
first that cl(M) ⊂ F . For suppose γ ∈ cl(M). Notice that γ is algebraic
over M which means that γ is a solution of some polynomial equation:
γn + a1 γn−1 + · · ·+ an = 0 with coefficients ak in M. Thus the estimation
|γ| ≤ 1 + |a1| + · · · + |an| implies that γ ∈ F , as desired, by the convexity
of F . Now, M = cl(M) follows from the maximality of M (D. Marker, M.
Messmer, A. Pillay [61]).

(v) follows directly from (iv) (see again D. Marker, M. Messmer, A.
Pillay [61]).
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(vi) follows directly from (iv) and (v).
N
The next result shows, among other things, that F and F0 are exactly

the sets of the finite and infinitesimal numbers in ∗C, respectively, relative
to a given maximal field M. In what follows, M+ stands for the set of the
positive elements of M, i.e.

(21) M+ = {|z| : z ∈ M, z 6= 0}.

Theorem 10.2 (Characterization) Let F be (as before) a convex subring
in ∗C.

(i) If M ∈Max(F) (Definition 10.1), then

F = {z ∈ ∗C | (∃ε ∈ M+)(|z| ≤ ε},(22)
F0 = {z ∈ ∗C | (∀ε ∈ M+)(|z| < ε}.(23)

(ii) The sets F0, F \ F0 and ∗C \ F are disconnected in the sense that

(∀z1 ∈ F0)(∀z2 ∈ F \ F0)(∀z3 ∈ ∗C \ F)(|z1| < |z2| < |z3|).

(iii) F0 consists of infinitesimals only, i.e. F0 ⊆ F(∗C).

(iv) F0 is a convex maximal ideal in F . Consequently, the factor ring
F̂ = F/F0 is a field.

(v) F̂ is an archimedean field i f f F = F(∗C).

Proof: (i) Let γ ∈ F and suppose (on the contrary) that (∀ε ∈ M+)(|γ| >
ε). We observe that γ is transcendental over M since M is an algebraically
closed field by part (iii) of Lemma 10.1. Thus M(γ) is a proper field extension
of M within F , contradicting the maximality of M. This proves the formula
(22) about F . Let γ ∈ F0. If γ = 0, there is nothing to prove. If γ 6= 0,
we have 1/γ /∈ F by the definition of F0. Next, suppose (on the contrary)
that |γ| ≥ ε for some ε ∈ M+. It follows that |1/γ| ≤ 1/ε implying 1/γ ∈ F
by formula (22), a contradiction. Conversely, suppose that |γ| < ε for all
ε ∈ M+ and some γ ∈ ∗C. It follows that 1/ε < |1/γ| for all ε ∈ M+

implying 1/γ /∈ F by the formula (22). Thus γ ∈ F0 which proves the
formula (23).

(ii) follows immediately from (i).
(iii) The inclusion F0 ⊆ F(∗C) follows from the formula (23) and the

fact that Q ⊂ M.
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(iv) The proof that F0 is a convex maximal ideal in F is almost identical
to the proof that the set of infinitesimals I(∗C) is a convex maximal ideal
in the ring of the finite numbers F(∗C) of ∗C and we leave the detail to the
reader.

(v) Suppose that F̂ is an archimedean field. In view of the inclusion
F(∗C) ⊆ F (Theorem 10.1) it suffices to show that F ⊆ F(∗C). Indeed,
z ∈ F implies that ẑ is finite (since F̂ is archimedean by assumption) thus z
is finite. Conversely, F = F(∗C) implies that F̂ is archimedean as a factor
ring of an archimedean ring.

N
Our next goal is to study the factor ring F̂ .

Lemma 10.2 (Isomorphic Fields) Let F be a field which is a subring of
F and F̂ = q[F]. Then the fields F and F̂ are isomorphic under the mapping
q |F from F to F̂ (or, alternatively, under the mapping (q |F)−1 from F̂ to
F). In particular, M and M̂ are isomorphic fields for every M ∈ Max(F)
(Definition 10.1).

Proof: We have F ⊆ F by assumption. Notice that there exists a maximal
field M in F such that F ⊆ M by part (ii) of Lemma 10.1. It follows that
F ∩ F0 = {0} by Lemma 10.2. Thus F and F̂ are isomorphic.

N
Our next goal is to prove that F̂ is an algebraically closed field by showing

that F̂ and M̂ are, actually, the same (that is to say that M is a field of
representatives for F̂).

Lemma 10.3 (Remote Points) Let F be (as before) a convex subring in
∗C and let M ∈ Max(F) (Definition 10.1). Let γ ∈ F be a point such
that γ − r /∈ F0 for all r ∈ M. Then P (γ) /∈ F0 for all polynomials P ∈
M[x], P 6= 0.

Proof: Suppose (on the contrary) that P (γ) ∈ F0 for some P ∈ M[x], P 6= 0.
It follows that P̂ (γ) = 0 implying P̂ (γ̂) = 0 in F̂ , where P̂ denotes the
polynomial in M̂[x], obtained from P by replacing the coefficients ak in P
by âk. Observe, now, that M̂ is an algebraically closed field, by part (iii)
of Lemma 10.1, as a field isomorphic to M (Lemma 10.2). Hence, it follows
γ̂ ∈ M̂ meaning γ − r ∈ F0 for some r ∈ M, a contradiction. N

Theorem 10.3 (Embeddings) Let F be (as before) a convex subring in
∗C and M ∈Max(F) (Definition 10.1). Then:
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(i) We have F = M⊕F0 in the sense that every z ∈ F has a unique asymp-
totic expansion z = r + dz, where r ∈ M and dz ∈ F0. Consequently,
M is a field of representatives for F̂ in the sense that F̂ = M̂.

(ii) The fields M and F̂ are isomorphic under the mapping q |M from M
to F̂ (or, alternatively, under the mapping (q |M)−1 from F̂ to M).
Consequently:

(a) The field F̂ (of the complex F-asymptotic numbers) is an alge-
braically closed field.

(b) The field <(F̂) (of the real F-asymptotic numbers) is a real
closed field.

(iii) The mapping σM : F̂ → ∗C, defined by σM = (q |M)−1, is a field
embedding

(24) F̂ ↪→ ∗C,

of F̂ into ∗C. The situation just described can be summarized in the
following commutative diagram:

F q−−−−→ F̂

id

x yid

M q|M−−−−→ M̂.

(iv) The mapping stM : F → ∗C, defined by stM(r + dz) = r, is a ring
homomorphism with range stM [F ] = M. Also stM is an extension of
the standard part mapping st : F(∗C) → C, i.e. stM | F(∗C) = st. We
say that stM is a M-standard part mapping (see the remark below).
Consequently, for every z ∈ F we have

z = stM(z) + dz,

where dz ∈ F0.

(v) The mapping σ : C → F̂ , defined by σ(z) = ẑ, is a field embedding
of C into F̂ and we have the formula σM | F(∗C) = σ ◦ st.

Proof: (i) Suppose (on the contrary) that γ ∈ F and γ − r /∈ F0 for all
r ∈ M (see Lemma 10.3). We have M(γ) ⊂ F , contradicting the maximality
of M, since M(γ) is a proper field extension of M.
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(ii) The isomorphism between M and F̂ follows directly from the asymp-
totic expansion z = r + dz. Consequently, F̂ is an algebraically closed field
since M is an algebraically closed field and <(F̂) is a real closed field since
<(M) is a real closed field by Lemma 10.1.

(iii) follows directly from (ii) because M and M̂ are isomorphic by
Lemma 10.2, and because F̂ = M̂ by what was just proved in part (i).

(iv) follows directly from (i).
(v) We have F(∗C) ⊆ F by Theorem 10.1 and F0 ⊆ I(∗C) by Theo-

rem 10.2. The latter implies the formula σM|F(∗C) = σ ◦ st and the state-
ment about σ follows from (iii). N

Remark 10.1 (Quasi-Standard Part Mapping) According to the above
theorem, every maximal field M determines a unique field embedding σM
(24). Conversely, every field embedding σM of F̂ into ∗C determines a max-
imal field M ⊂ F by σM[ F̂ ] = M. On the ground of the isomorphism
between M and F̂ we shall sometimes identify M with F̂ by simply letting
M = F̂ . That means nothing but to “pick up and fix” a particular maximal
field M within F , to replace the embedding F̂ ↪→ ∗C (24) by the simple in-
clusion F̂ ⊂ ∗C. In this environment stM reduces to the quotient mapping
q : F → F̂ . We shall write simply ŝt : F → ∗C instead of the more pre-
cise stM : F → M and call ŝt a quasi-standard part mapping associated
with the asymptotic hull F̂ and its particular embedding F̂ ↪→ ∗C (24). We
summarize all these as:

ŝt : F → F̂ ⊆ ∗C,

ŝt(z) = q(z) for all z ∈ F .

“Quasi” stands to distinguish ŝt from the “genuine standard part mapping
st : F(∗C) → ∗C with range st[F(∗C)] = C. Recall that ŝt is an extension of
st, i.e. ŝt | F(∗C) = st.

Example 10.1 (Archimedean Hull) Let F = F(∗C). In this case we
have F0 = I(∗C) and F̂ = C (see part (iv) of Theorem 10.2). Also
ŝt(z) = st(z) for all z ∈ F(∗C). In this particular case the spilling principles
presented earlier in Theorem 11.1 reduce the the familiar spilling principles
in non-standard analysis.

Here are several example of non-archimedean asymptotic hulls, i.e.
examples of non-archimedean algebraically closed fields of the form F̂ .
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Example 10.2 (A. Robinson’s Asymptotic Numbers) Let ρ be a pos-
itive infinitesimal in ∗R and let F = Mρ(∗C), where

(25) Mρ(∗C) = {z ∈ ∗C : |z| ≤ ρ−n for some n ∈ N},

is the ring of the ρ-moderate numbers in ∗C. In this case F0 = Nρ(∗C),
where

(26) Nρ(∗C) = {z ∈ ∗C : |z| ≤ ρn for all n ∈ N},

is the ideal of the ρ-negligible numbers in ∗C. The elements of the
non-standard hull F̂ = Mρ(∗C)/Nρ(∗C)

def
= ρC are called complex ρ-

asymptotic numbers. The field of the real ρ-asymptotic numbers
ρR = <(ρC) = Mρ(∗R)/Nρ(∗R) is introduced by A. Robinson [74] and is
intimately connected with the asymptotic expansions of standard functions
(A.H. Lightstone and A. Robinson [56]). The field ρC is also known as A.
Robinson’s valuation field because it is endowed with a non-archimedean
valuation v : ρC → R ∪ {∞} defined by

v(z) = sup{r ∈ Q | z

q(ρr)
≈ 0}, z 6= 0,

and v(0) = ∞. We also have the following formula for the valuation:

v(q(z)) = st(logρ |z|), z ∈Mρ(∗C) \ Nρ(∗C),

and v(q(z)) = ∞ for z ∈ Nρ(∗C). The valuation metric dv : ρC × ρC → R
is defined by dv(z, ζ) = e−v(z−ζ) under the convention that e−∞ = 0. We
should note that the valuation topology and the order topology on ρC are
the same. For more recent results on ρR we refer to (T. Todorov and R.
Wolf [95]).

Example 10.3 (ρ-Finite Constants) Let ρ be (as before) a positive in-
finitesimal in ∗R and let F = Fρ(∗C), where

(27) Fρ(∗C) = {z ∈ ∗C : |z| < 1/ n
√

ρ for all n ∈ N},

is the set of the ρ-finite numbers in ∗C. In this case F0 = Iρ(∗C), where

(28) Iρ(∗C) = {z ∈ ∗C : |z| ≤ n
√

ρ for some n ∈ N},

is the set of the ρ-infinitesimal numbers in ∗C. We denote F̂ = Fρ(∗C)/Iρ(∗C)
def
= C and the elements of C will be often called ρ-finite constants.
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Example 10.4 (Logarithmic Field) Let ρ be (as before) a positive in-
finitesimal in ∗R and let

F = {z ∈ ∗C : |z| < ln(ρ) for all n ∈ N},

where l1(ρ) = | ln ρ| def
= |∗ ln ρ| is the non-standard extension of the usual

logarithmic function lnx evaluated at ρ, l2(ρ) = ln (| ln ρ|), . . . , ln+1(ρ) =
ln (ln(ρ)) for n = 1, 2, . . . . Notice that (ln(ρ)) is a strictly decreasing se-
quence of infinitely large positive numbers in ∗R. In this case we have

F0 = {z ∈ ∗C : |z| ≤ 1/ln(ρ) for some n ∈ N},

The corresponding non-standard hull F̂ = F/F0 is a non-archimedean field.

Example 10.5 (Exponential Field) Let ρ be (as before) a positive in-
finitesimal in ∗R and let

F = {z ∈ ∗C : |z| ≤ expn(ρ) for some n ∈ N},

where exp1(ρ) = exp(ρ) = ∗eρ is the non-standard extension of the usual real
exponential function ex evaluated at ρ, exp2(ρ) = exp(exp(ρ)), expn+1(ρ) =
exp(expn(ρ)). Notice that (expn(ρ)) is a increasing sequence of infinitely
large positive numbers in ∗R. In this case we have

F0 = {z ∈ ∗C : |z| < 1/ expn(ρ) for all n ∈ N}.

We shall call F̂ = F/F0
def
= E exponential field and the elements of E will

be sometimes called exponential constants since both eρ and e1/ρ are in
F \ F0.

Example 10.6 (The Case F = ∗C) Let F = ∗C. In this case F0 = {0}
and F̂ = ∗C. In this case ŝt reduces the the identity function in ∗C, i.e.
ŝt(x) = x for all x ∈ ∗C. This asymptotic hull, although somewhat triv-
ial, plays part of the construction of one particular algebra of generalized
functions (see Section ?? of Chapter ??)

Remark 10.2 (Real Asymptotic Hulls) We presented the complex ver-
sion of the asymptotic hull construction because it better fits to our imme-
diate needs in the next section. Some readers however might prefer a real
version of the same construction. They should consider a convex subring F
of ∗R (not of ∗C) instead, i.e. F is a subring of ∗R such that

(29) (∀x ∈ ∗R)(∀y ∈ F)(|x| ≤ |y| ⇒ x ∈ F).
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All results presented in this section remain valid if the phrase “algebraically
closed field” is replaced everywhere by “real closed field”. In particular,
the fields of the form F̂ (and the fields M and M̂) will be real closed (not
algebraically closed) fields. We shall summarize this by simply saying that
F̂ is a real asymptotic hull. For example, if F is a convex subring of
∗C, then <(F) is a convex subring of ∗R. Consequently, <(F̂) is a real
asymptotic hull because <(F̂) = <̂(F). Here is another example of a convex
subring of ∗R (compare with Example 10.2):

(30) Mρ(∗R) = {x ∈ ∗R : |x| ≤ ρ−n for some n ∈ N}.

The corresponding real asymptotic hull coincides with A. Robinson’s field of
real asymptotic numbers ρR. We shall leave the detail of the “real case” to
the reader.
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11 Spilling Principles

In this section we present several spilling principles in terms of a given
convex subring F of ∗C (Section 10). These principles play role in our theory
similar, say, to the Cantor principle in real analysis or to the Hahn-Banach
theorem in functional analysis. We should note that the spilling principles
presented below are more general than the more familiar underflow and
overflow principles in non-standard analysis. Actually the latter follow
as a particular case for F = F(∗C). We are unaware of any counterparts of
the spilling principles presented here in J.F. Colombeau’s theory.

Theorem 11.1 (Spilling Principles) Let F be a convex subring of ∗C
(Section 10) and A ⊆ ∗C be an internal set (Definition 4.2). Then:

(i) Overflow of F : If A contains arbitrarily large numbers in F , then
A contains arbitrarily small numbers in ∗C \ F . Consequently,

F \ F0 ⊂ A ⇒ A∩ (∗C \ F) 6= ∅.

(ii) Underflow of F \ F0 : If A contains arbitrarily small numbers in
F\F0, then A contains arbitrarily large numbers in F0. Consequently,

F \ F0 ⊂ A ⇒ A∩ F0 6= ∅.

(iii) Overflow of F0 : If A contains arbitrarily large numbers in
F0, then A contains arbitrarily small numbers in F\F0. Consequently,

F0 ⊂ A ⇒ A∩ (F \ F0) 6= ∅.

(iv) Underflow of ∗C \ F : If A contains arbitrarily small numbers in
∗C\F , then A contains arbitrarily large numbers in F . Consequently,

∗C \ F ⊂ A ⇒ A∩ (F \ F0) 6= ∅.

Proof: (i) If A is unbounded in ∗C, there is nothing to prove. If A is
bounded in ∗C, then sup(|A|) = x exists in ∗R, where |A| = {|z| : z ∈ A}.
Notice that x /∈ F . To show this, suppose (on the contrary) that x ∈ F
and let M be a maximal field within F (Definition 10.1). We have x ≤ ε for
some ε ∈ M+ by Theorem 10.2, contradicting the assumptions for A since
M+ ⊂ F . Next, there exists z ∈ A such that x/2 < |z| < x by the choice of
x and we have z /∈ F since x/2 /∈ F . We just proved that A∩ (∗C \F) 6= ∅.
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It remains to show that A∩ (∗C \ F) does not have a lower upper bound in
∗C\F . Suppose (on the contrary) that that there exists λ ∈ ∗C \ F such that
λ ≤ |z| for all z ∈ A ∩ (∗C \ F). The set Aλ = {z ∈ A : |z| < λ} is internal
and we have A∩F ⊆ Aλ by the choice of λ. It follows that Aλ has (just like
A) arbitrarily large elements in F and we conclude that Aλ ∩ (∗C \ F) 6= ∅
by what was proved above. Thus there exists z ∈ A ∩ (∗C \ F) such that
|z| < λ, a contradiction.

(ii) follows immediately from (i) and the fact that z ∈ F \ F0 implies
1/z ∈ F \ F0 and also that z ∈ ∗C \ F implies 1/z ∈ F0.

The proof of (iii) is similar to the proof of (i) and we leave it to the
reader.

(iv) follows immediately from (iii) and the fact that z ∈ F0 \ {0} implies
1/z ∈ ∗C \ F and also that z ∈ F \ F0 implies 1/z ∈ F \ F0.

N
Recall that F(∗C), I(∗C) and L(∗C) denote the sets of the finite, in-

finitesimal and infinitely large numbers in ∗C, respectively, and L(∗C) =
F(∗C)\I(∗C) (Section 6). Here is the more familiar spilling (underflow and
overflow) principles about F(∗C), I(∗C) and L(∗C).

Corollary 11.1 (The Usual Spilling Principles) Let A ⊆ ∗C be an in-
ternal set. Then:

(i) Overflow of F(∗C): If A contains arbitrarily large finite numbers, then
A contains arbitrarily small infinitely large numbers. Consequently,

F(∗C) \ I(∗C) ⊂ A ⇒ A∩ L(∗C) 6= ∅.

(ii) Underflow of F(∗C) \ I(∗C): If A contains arbitrarily small fi-
nite non-infinitesimals, then A contains arbitrarily large infinitesi-
mals. Consequently,

F(∗C) \ I(∗C) ⊂ A ⇒ A∩ I(∗C) 6= ∅.

(iii) Overflow of I(∗C): If A contains arbitrarily large infinitesimals, then
A contains arbitrarily small finite non-infinitesimals. Consequently,

I(∗C) ⊂ A ⇒ A∩ (F(∗C) \ I(∗C)) 6= ∅.

(iv) Underflow of L(∗C): If A contains arbitrarily small infinnitely large
numbers, then A contains arbitrarily large finite numbers. Conse-
quently,

L(∗C) ⊂ A ⇒ A∩ (F(∗C) \ I(∗C)) 6= ∅.
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Proof: The result follows directly from the previous theorem in the partic-
ular case of F = F(∗C) taking into account that in this case F0 = I(∗C)
and F \ F0 = L(∗C) (Example 10.1). N
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12 F-Asymptotic Functions

In this section we describe a variety of differential rings ÊF (Ω) of general-
ized functions on an open set Ω in terms of a given convex subring F of
∗C (Section 10). The elements of ÊF (Ω) are named F-asymptotic func-
tions because their values are in the field F̂ of the F-asymptotic num-
bers and because, more importantly, each ÊF (Ω) is an algebra over the
field F̂ (Section 10). We intend to convert some of ÊF (Ω) into algebras
of Colombeau’s type by supplying ÊF (Ω) with a copy of the space of
Schwartz distributions D′(Ω) in one of the next sections. In this section we
generalize some of the results in (Oberguggenberger and T. Todorov [66]),
where the algebra of ρ-asymptotic functions ρE(Ω) is introduced; within our
more general theory the algebra ρE(Ω) appears as a particular example (Ex-
ample 12.2). Similar to some of our results appear in the H. Vernaeve Ph.D.
Thesis [98] (for comparison see the definition of EM (Ω) on p. 90, Sec. 3.6).

Here is the summary of the basic definitions. The justification of the
definitions will be presented later in this section and some of the results will
be worked out in detail in some of the next sections.

1. In what follows ∗C stands for a non-standard extension of the field
of the complex numbers C. Let F be a convex subring in ∗C, F0 be
the ideal of the non-invertible elements of F . Let F̂ be the field of
F-asymptotic numbers. Recall F̂ is an algebraically closed (possibly
non-archimedean) field (Section 10). Let Ω be an open set of Rd.
In what follows µF (Ω) denotes the F-monad of Ω (34). Also ∗E(Ω)
stands for the ring of internal non-standard smooth functions of the
form f : ∗Ω → ∗C (Section 8).

2. We define the set of F-moderate functions MF (Ω) and the set of
the F-negligible functions in ∗E(Ω) by

MF (Ω) = {f ∈ ∗E(Ω) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F)},

NF (Ω) = {f ∈ ∗E(Ω) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F0)},

respectively. Let ÊF (Ω) = MF (Ω)/NF (Ω) be the corresponding factor
ring. We say that ÊF (Ω) is generated by F . The elements of ÊF (Ω)
are named F-asymptotic functions on Ω. We denote by QΩ :
MF (Ω) → ÊF (Ω) the corresponding quotient mapping. However we
shall often f̂ instead of QΩ(f) for the equivalence class of f ∈MF (Ω).

3. We define the embedding

(31) E(Ω) ↪→ ÊF (Ω),
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by f → ∗̂f , where ∗f is the non-standard extension of f .

4. Let f̂ ∈ ÊF (Ω) and x̂ ∈ µF (Ω) (34). We define the value of f̂ at x̂

by the formula f̂(x̂) = f̂(x). We shall use the same notation, f̂ , for
the corresponding graph f̂ : µF (Ω) → F̂ .

5. Let Ω,O be two open sets of Rd such that O ⊆ Ω. Let f̂ ∈ ÊF (Ω). We
define the restriction f̂ � O of f̂ on O by the formula

f̂ � O = f̂ |∗O,

where ∗O is the non-standard extension of O and f |∗O is the usual
(pointwise) restriction of f on ∗O.

6. Simpler Notation: We shall sometimes drop F , as a lower-index,
in MF (Ω), NF (Ω), ÊF (Ω), µF (Ω), etc. and write simply

M(Ω), N (Ω), Ê(Ω), µ(Ω), . . . ,

instead when no confusion could arise. The elements of Ê(Ω) will be
called simply asymptotic functions on Ω (meaning F-asymptotic
functions for the given specific F).

Theorem 12.1 (Some Basic Results) Let F be (as before) a convex sub-
ring of ∗C. Then:

(i) MF (Ω) is a differential subring of ∗E(Ω) and NF (Ω) is a differential
ideal in MF (Ω). Consequently, ÊF (Ω) is a differential ring.

(ii) E(Ω) is a differential subalgebra of ÊF (Ω) over C under the embedding
f → ∗̂f . We shall often write this as an inclusion

E(Ω) ⊂ ÊF (Ω),

instead of (31).

(iii) Let Td stand for the usual topology on Rd. The collection ÊF
def
=

{ÊF (Ω)}Ω∈Td
is a sheaf of differential rings on the topological space

(Rd, Td) under the restriction �. Consequently, every function f̂ ∈
ÊF (Ω) has a support supp(f̂) which is a closed set of Ω.
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(iv) Each ÊF (Ω) ∈ ÊF is a differential ring with ring of scalars F̂ in the
sense that

(32) F̂ =
{

f̂ ∈ ÊF (Rd) | ∇f̂ = 0
}

,

where ∇f̂ = ∇̂f is the gradient f̂ in ÊF (Rd) and 0 in ∇f̂ = 0 is the
zero of the ring ÊF (Rd). Consequently, each ÊF (Ω) is a differential
algebra over the field F̂ under the ring operations in ÊF (Ω).

(v) The embedding ÊF (Ω) ↪→ F̂µF (Ω), defined by the pointwise values of
f̂ ∈ ÊF (Ω), preserves the addition, multiplication and partial differen-
tiation in ÊF (Ω).

Proof: The properties (i), (ii) and (iv) follow easily from the definition of
ÊF (Ω) and we shall leave to the reader to check the detail. The proof of (iii)
and (v) is more complicated. We shall proof (iii) in Section ?? and we shall
prove (v) in Section ??.

N
Here are several examples algebras of asymptotic functions.

Example 12.1 (Nothing New) Let F = F(∗C). In this case we have
F0 = I(∗C) and F̂ = C (Example 10.1). For the F-moderate and F-
negligible functions we have MF (Ω) = F(∗E(Ω)) and NF (Ω) = I(∗E(Ω)),
respectively, where

F(∗E(Ω))
def
= {f ∈ ∗E(Rd) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)(∂αf(x) ∈ F(∗C)),

I(∗E(Ω))
def
= {f ∈ ∗E(Rd) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)(∂αf(x) ∈ I(∗C))},

The F-asymptotic functions are the familiar smooth functions, i.e.

ÊF (Ω) = E(Ω).

Example 12.2 (ρ-Asymptotic Functions) Let ρ be a positive infinitesi-
mal in ∗R and let

F = Mρ(∗C) = {x ∈ ∗C : |x| ≤ ρ−n for some n ∈ N},

is the ring of the ρ-moderate numbers in ∗C. In this case we have:

F0 = Nρ(∗C) = {x ∈ ∗C : |x| ≤ ρn for all n ∈ N},

F̂ = Mρ(∗C)/Nρ(∗C)
def
= ρC,(33)
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(Example 10.2). For the F-moderate and F-negligible functions we have
MF (Ω) = Mρ(∗E(Ω)) and NF (Ω) = Nρ(∗E(Ω)), respectively, where

Mρ(∗E(Ω))
def
=

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈Mρ(∗C)]
}

,

Nρ(∗E(Ω))
def
=

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Nρ(∗C)]
}

.

The corresponding factor ring

ρE(Ω) = Mρ(∗E(Ω))/Nρ(∗E(Ω)),

is an algebra over the field of A. Robinson’s asymptotic numbers ρC (Exam-
ple ??). The algebra ρE(Ω) is introduced in (M. Oberguggenberger and T.
Todorov[66]) under the name ρ-asymptotic functions. We shall follow
this terminology. The reader will find a more detail about ρE(Ω) in Chap-
ter ??. The algebra ρE(Ω) is, in a sense, a non-standard counterpart of a
special Colombeau’s algebra (J. F. Colombeau [12]) with the important
improvement of the properties of the scalars: The ring of the scalars
ρC of ρE(Ω) constitutes an algebraically closed Cantor-complete field. In
contrast, the ring of the scalars C̃ of Colombeau simple algebra Gs(Ω) is a
ring with zero divisors.

Example 12.3 (Logarithmic Hull) Let ρ be (as before) a positive in-
finitesimal in ∗R and let

F = Fρ(∗C) = {x ∈ ∗C : |x| < 1/ n
√

ρ for all n ∈ N},

is the set of the ρ-finite numbers in ∗C. In this case we have:

F0 = Iρ(∗C) = {x ∈ ∗C : |x| ≤ n
√

ρ for some n ∈ N},

F̂ = Fρ(∗C)/Iρ(∗C)
def
= C,

(Example 10.4). For the F-moderate and F-negligible functions we have
MF (Ω) = Fρ(∗E(Ω)) and NF (Ω) = Iρ(∗E(Ω)), respectively, where

Fρ(∗E(Ω))
def
=

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Fρ(∗C)]
}

,

Iρ(∗E(Ω))
def
=

{
f ∈ ∗E(Ω) | (∀α ∈ Nd

0)(∀x ∈ µ(Ω)) [∂αf(x) ∈ Iρ(∗C)]
}

.

The corresponding ring of F-asymptotic functions

ÊF (Ω) = Fρ(∗E(Ω))/Iρ(∗E(Ω)),

is an algebra over the field of logarithmic constants C (Example 10.4).
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Example 12.4 (Exponential Asymptotic Functions) Let ρ be (as be-
fore) a positive infinitesimal in ∗R and let

F = {x ∈ ∗C : |x| ≤ expn(ρ) for some n ∈ N}.

In this case we have F0 = {x ∈ ∗C : |x| < 1/ expn(ρ) for all n ∈ N} and

F̂ = F/F0
def
= E. The corresponding ring of asymptotic functions ÊF (Ω) is

an algebra over the exponential field E (Example 10.5).

Example 12.5 (The case F = ∗C) Let F = ∗C. In this case F0 = {0}
and F̂ = ∗C (Example 12.5). For the F-moderate and F-negligible functions
we have

MF (Ω) = ∗E(Ω),

NF (Ω) = {f ∈ ∗E(Rd) | (∀α ∈ Nd
0)(∀x ∈ µ(Ω)(∂αf(x) = 0)},

respectively. The ring of F-asymptotic functions

ÊF (Ω) = ∗E(Ω)/NF (Ω)
def
= Ê(Ω).

is an algebra over the field ∗C. The algebra Ê(Ω) is, in a sense, a non-
standard counterpart of Egorov algebra (Yu. V. Egorov [20]-[21])
with the important improvement of the properties of the scalars: The ring
of the scalars ∗C of Ê(Ω) constitutes an algebraically closed saturated field.
In contrast, the the scalars of Egorov’s algebra are a ring with zero divisors.
The algebra Ê(Ω) will be studied in detail in Chapter ??.
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13 F-Moderate and F-Negligible Functions

In this section we present several characterizations of the F-moderate
and F-negligible functions (Section 12).

Through out this section F stands for a convex subring of ∗C (Section 10)
and M ∈Max(F) stands for a maximal field within F (Definition 10.1).

Theorem 13.1 Let f ∈ ∗E(Ω). Then the following are equivalent:

(i) (∀x ∈ µ(Ω))(f(x) ∈ F).

(ii) (∀x ∈ µ(Ω))(∃M ∈ M+)(|f(x)| ≤ M).

(iii) (∀K ⊂⊂ Ω)(∃M ∈ M+)(supx∈∗K |f(x)| ≤ M).

(iv) (∀x ∈ µ(Ω))(∃A ∈ F \ F0)(|f(x)| ≤ A).

(v) (∀K ⊂⊂ Ω)(∃A ∈ F \ F0)(supx∈∗K |f(x)| ≤ A).

(vi) (∀x ∈ µ(Ω))(∀B ∈ ∗R+ \ F)(|f(x)| < B).

(vii) (∀K ⊂⊂ Ω)(∀B ∈ ∗R+ \ F)(supx∈∗K |f(x)| < B).

Remark 13.1 We should note that the above theorem remains true even
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains
arbitrarily large numbers.

Proof: (i)⇔(ii) follows immediately by part (i) of Theorem 10.2.
(ii)⇒(iii): Let K ⊂⊂ Ω and recall that ∗K ⊂ µ(Ω) by Theorem 7.2. We

observe that supξ∈∗K |f(ξ)| ∈ F . Indeed, suppose (on the contrary) that
γ =: supξ∈∗K |f(ξ)| /∈ F which implies also γ/2 /∈ F . There exists y ∈ ∗K
such that γ/2 < |f(y)| < γ by the choice of γ. It follows f(y) /∈ F which
contradicts to (i) (hence it contradicts to (ii)) since y ∈ µ(Ω). On the other
hand, supξ∈∗K |f(ξ)| ∈ F implies that the internal set

A = {a ∈ ∗R+ : sup
ξ∈∗K

|f(ξ)| ≤ a},

contains ∗R+\F by by part (ii) of Theorem 10.2. ThusA contains arbitrarily
small numbers in ∗C \F . It follows that A∩ (F \F0) 6= ∅ by the Underflow
of ∗C \ F (Theorem 11.1). Thus supx∈∗K |f(x)| ≤ A holds for any A ∈
A ∩ (F \ F0). Also there exists M1 ∈ M such that A−M1 ∈ F0 by part (i)
of Theorem 10.3. Let H ∈ M+. Then (iii) holds for M = M1 + H.
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(iii)⇒(iv): Suppose that x ∈ µ(Ω) and observe that st(x) ∈ Ω by the
definition of µ(Ω). Since Ω is an open set, there exists ε ∈ R+ such that
K ⊂⊂ Ω, where K = {r ∈ Ω : |r − st(x)| ≤ ε}. There exists M ∈ M+ such
that supξ∈∗K |f(ξ)| ≤ M by assumption which implies (iv) for A = M since
x ∈ ∗K and M ∈ M+ ⊂ F \ F0.

The proof of (iv)⇒(v) is almost identical to the proof of (ii)⇒(iii) and
we leave it to the reader.

(v)⇒(vi) follows immediately by part (ii) of Theorem 10.2.
(vi)⇒(vii): Suppose (on the contrary) that γ =: supξ∈∗K |f(ξ)| ≥ B for

some K ⊂⊂ Ω and some B ∈ ∗R+ \ F . We have B/2 ≤ |f(y)| < γ for
some y ∈ ∗K by the choice of γ. This contradicts (vi) since y ∈ µ(Ω) and
B/2 ∈ ∗R+ \ F .

(vii)⇒(i): Suppose that x ∈ µ(Ω) and observe that st(x) ∈ Ω by the
definition of µ(Ω). As before there exists K ⊂⊂ Ω such that x ∈ ∗K. As
before the internal set A contains ∗R+\F . Thus (as before) A∩(F\F0) 6= ∅
by the Underflow for ∗C \ F (Theorem 11.1). Thus supξ∈∗K |f(ξ)| < A for
any A ∈ A∩ (F \F0). It follows that |f(x)| < A since x ∈ ∗K by the choice
of K. Thus f(x) ∈ F (as required) by the convexity of F .

N
Here is a list of characterizations of the F-moderate functions.

Corollary 13.1 (F-Moderate Functions) Let f ∈ ∗E(Ω). Then the fol-
lowing are equivalent:

(i) f ∈MF (Ω).

(ii) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∃M ∈ M+)(|∂αf(x)| ≤ M).

(iii) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∃M ∈ M+)(supx∈∗K |∂αf(x)| ≤ M).

(iv) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∃A ∈ F \ F0)(|∂αf(x)| ≤ A).

(v) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∃A ∈ F \ F0)(supx∈∗K |∂αf(x)| ≤ A).

(vi) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∀B ∈ ∗R+ \ F)(|∂αf(x)| < B).

(vii) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∀B ∈ ∗R+ \ F)(supx∈∗K |∂αf(x)| < B).

Remark 13.2 We should note that the above corollary remains true even
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains
arbitrarily large numbers.
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Proof: An immediate after replacing f by ∂αf in Theorem 13.1.
N
We turn to the F-negligible functions.

Theorem 13.2 Let f ∈ ∗E(Ω). Then the following are equivalent:

(i) (∀x ∈ µ(Ω))(f(x) ∈ F0).

(ii) (∀x ∈ µ(Ω))(∀M ∈ M+)(|f(x)| < M).

(iii) (∀K ⊂⊂ Ω)(∀M ∈ M+)(supx∈∗K |f(x)| < M).

(iv) (∀x ∈ µ(Ω))(∃A ∈ F0)(|f(x)| ≤ A).

(v) (∀K ⊂⊂ Ω)(∃A ∈ F0)(supx∈∗K |f(x)| ≤ A).

(vi) (∀x ∈ µ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|).

(vii) (∀K ⊂⊂ Ω)(∀B ∈ F \ F0)(supx∈∗K |f(x)| < |B|).

Remark 13.3 We should note that the above theorem remains true even
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains
arbitrarily small numbers.

Proof: We shall prove the equivalence of (i) and (v) only and leave the rest
of the proof to the reader (who might decide to adapt the arguments used
in the proof of the previous lemma).

(i)⇒(v) Suppose that K is a compact subset of Ω and recall that ∗K ⊂
µ(Ω) by Theorem 7.2. Notice that supx∈∗K |f(x)| ∈ F0. Indeed, suppose
(on the contrary) that γ =: supx∈∗K |f(x)| /∈ F0 which implies γ/2 /∈ F0.
Also there exists y ∈ ∗K such that γ/2 < |f(y)| < γ by the choice of γ.
Thus |f(y)| /∈ F0 contradicting to our assumption (i) since y ∈ µ(Ω). On
the other hand, supx∈∗K |f(x)| ∈ F0 implies that the internal set

A = {c ∈ ∗C : sup
x∈∗K

|f(x)| ≤ |c| },

contains F \F0 by by part (ii) of Theorem 10.2. It follows that A∩F0 6= ∅
by the Underflow of F \F0 (Theorem 11.1). Thus supx∈∗K |f(x)| ≤ A holds
(as required) for any c ∈ A ∩ F0 and A = |c|.

(i)⇐(v): Suppose that x ∈ µ(Ω). As in the previous lemma, there exists
ε ∈ R+ such that K = {r ∈ Ω : |r − st(x)| ≤ ε} ⊂⊂ Ω. Observe that there
exists A ∈ F0 such that supξ∈∗K |f(ξ)| ≤ A by assumption. Thus f(ξ) ∈ F0

for all ξ ∈ ∗K (as required) by the convexity of F0.
N
Here is a list of characterizations of the F-negligible functions.
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Corollary 13.2 (F-Negligible Functions) Let f ∈ ∗E(Ω). Then the fol-
lowing are equivalent:

(i) f ∈ NF (Ω).

(ii) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∀M ∈ M+)(|f(x)| < M).

(iii) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∀M ∈ M+)(supx∈∗K |f(x)| < M).

(iv) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∃A ∈ F0)(|f(x)| ≤ A).

(v) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∃A ∈ F0)(supx∈∗K |f(x)| ≤ A).

(vi) (∀α ∈ Nd
0)(∀x ∈ µ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|).

(vii) (∀α ∈ Nd
0)(∀K ⊂⊂ Ω)(∀B ∈ F \ F0)(supx∈∗K |f(x)| < |B|).

Remark 13.4 We should note that the above corollary remains true even
if the maximal field M is replaced by a set S ⊆ F \F0 such that S contains
arbitrarily small numbers.

Proof: An immediate after replacing f by ∂αf in Theorem 13.2.
N
In the next theorem we present several more characterizations of the F-

negligible functions (in addition to the presented above), where the quantifier
∀α ∈ Nd

0 is replaced simply by α = 0.

Theorem 13.3 (A Simplification) Let f ∈ MF (Ω). Then f ∈ NF (Ω)
i f f f(x) ∈ F0 for all x ∈ µ(Ω). Consequently, we have the following several
formulas for NF (Ω):

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ µ(Ω)(f(x) ∈ F0)},
NF (Ω) = {f ∈MF (Ω) | (∀x ∈ µ(Ω))(∀M ∈ M+)(|f(x)| < M)},
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∀M ∈ M+)( sup

x∈∗K
|f(x)| < M)},

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ µ(Ω))(∃A ∈ F0)(|f(x)| ≤ A)},
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∃A ∈ F0)( sup

x∈∗K
|f(x)| ≤ A)},

NF (Ω) = {f ∈MF (Ω) | (∀x ∈ µ(Ω))(∀B ∈ F \ F0)(|f(x)| < |B|)},
NF (Ω) = {f ∈MF (Ω) | (∀K ⊂⊂ Ω)(∀B ∈ F \ F0)( sup

x∈∗K
|f(x)| < |B|)}.
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Proof: (⇒) follows immediately after letting α = 0.
(⇐) Suppose that x ∈ µ(Ω). We have to show that ∂αf(x) ∈ F0 for

all multi-indexes α ∈ Nd
0, |α| ≥ 1. We start with |α| = 1. If ∇f(x) = 0,

there is nothing to prove. Suppose that ∇f(x) 6= 0 and let ε ∈ M+. It
suffices to show that ||∇f(x)|| < ε in view of Theorem 10.2. Since Ω is
an open set, there exists an open relatively compact set O of Ω such that
st(x) ∈ O ⊂⊂ Ω. Now f ∈ MF (Ω) implies

∣∣∣∑|α|=2 ∂αf(ξ)
∣∣∣ < δ for some

δ ∈ M+ and all ξ ∈ ∗O by Corollary 13.1 since ∗O ⊂ µ(Ω). Let h ∈ I(Md) be
an infinitesimal vector with the direction of ∇f(x) and of length ||h|| < ε/δ.
Notice that ||h|| ∈ M+ thus ||h|| ∈ F \ F0 which is important for what
follows. We have |f(x + h)− f(x)| < δ||h||2/2 by part (vi) of Theorem 10.2
since f(x+h)−f(x) ∈ F0 by assumption and x+h ∈ µ(Ω). Next we observe
that the Taylor formula:

∇f(x) · h = f(x + h)− f(x)− 1
2

∑
|α|=2

∂αf(x + θh) hα.

holds for some θ ∈ ∗R, 0 < θ < 1, by Transfer Principle (Theorem 4.4).
Thus x + θh ≈ x ≈ st(x) implying x + θh ∈ ∗O. We have

|∇f(x) · h| < δ||h||2/2 + δ||h||2/2 < δ||h||2.

Also we have |∇f(x) · h| = ||∇f(x)|| ||h|| by the choice of the direction of
h. It follows ||∇f(x)|| = δ||h|| < ε as required. We generalize this result
for |α| = 2, 3, . . . by induction. The different formulas for NF (Ω) follow
immediately by Theorem 13.2. N
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14 Pointwise Values and Fundamental Theorem in
ÊF(Ω)

In this section we show that every asymptotic function f̂ ∈ ÊF (Ω) can
be characterized with its pointwise values in the field F̂ (Section 10). We
also prove a fundamental theorem of calculus in ÊF (Ω) (Section 12). In
this section we generalize some of the results in Todor Todorov [93] which
deals with the particular case F = Mρ(∗C) (Example 10.2) only. The
closest counterpart in J.F. Colombeau’s theory of generalized functions can
be found in M. Kunzinger and M. Oberguggenberger’s article [45], where a
characterization of Colombeau’s generalized functions in G(Ω) in the ring of
generalized scalars C̃ is established.

Recall that every non-standard smooth function f ∈ ∗E(Ω) is a pointwise
function of the form f : ∗Ω → ∗C, i.e. ∗E(Ω) ⊂ ∗C ∗Ω (Section 8). We shall
use the notation introduced in the first several pages in (Section 10) and
(Section 12). In particular, let F be a convex subring of ∗C and Ω ⊆ Rd be
an open set of Rd. Then

µF (Ω) = {r + dx | r ∈ Ω, dx ∈ <(F̂d), ||dx|| ≈ 0},

is the F-monad of Ω. Here <(F̂d) stands for the real part of the vector
space F̂d (Section 10, # 8). We denote by F̂ µF (Ω) the ring of the functions
F of the form F : µF (Ω) → F̂ . For convenience of the reader we shall recall
the definition pointwise values presented in (Section 10).

Definition 14.1 (Pointwise Values) Let f̂ ∈ ÊF (Ω) be a F-asymptotic
function (Section 12) and x̂ ∈ µF (Ω) be a F-asymptotic point. We define
the value of f̂ at x̂ by the formula

f̂(x̂) = f̂(x).

We shall use the same notation, f̂ , for the asymptotic function f̂ ∈ ÊF (Ω)
and its graph f̂ ∈ F̂µF (Ω) given by the mapping f̂ : µF (Ω) → F̂ .

The correctness of the above definition is justified by the following result.

Lemma 14.1 (Correctness) Let x, y ∈ µ(Ω) and f, g ∈ MF (Ω). Then
x− y ∈ F0 and f − g ∈ NF (Ω) implies f(x)− g(y) ∈ F0.

Proof: We have f(x)− f(y) = ∇f(t) · (x− y) by Transfer Principle (Theo-
rem 4.4) for some t ∈ ∗Rd between x and y (in the sense that t = x+θ(y−x)
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for some θ ∈ ∗R, 0 < θ < 1). Also

|f(x)− g(y)| =|f(x)− f(y) + f(y)− g(y)| ≤ |f(x)− f(y)|+ |f(y)− g(y)| ≤
≤ ||∇f(t)|| ||x− y||+ |f(y)− g(y)|.

Observe that x − y ∈ F0 implies x − y ≈ 0 by part (iii) of Theorem 10.2)
implying st(x) = st(y) = st(t). It follows t ∈ µ(Ω) since x, y ∈ µ(Ω) by
assumption. Thus f ∈ MF (Ω) implies ||∇f(t)|| ∈ F . For the first term we
have ||∇f(t)|| ||x− y|| ∈ F0 since ||x− y|| ∈ F0 by assumption and F0 is an
ideal in F . Also f − g ∈ NF (Ω) implies |f(y) − g(y)| ∈ F0 since y ∈ µ(Ω)
by assumption. Thus |f(x)− g(y)| ∈ F0 as required.

N
Recall that we have the embedding E(Ω) ↪→ Ê(Ω) under the mapping

f → ∗̂f (Section 12). The next result shows that the evaluation in ÊF (Ω)
reduces to the usual evaluation in E(Ω). Recall that

Proposition 14.1 (The Usual Evaluation) Let f ∈ E(Ω). Then ∗̂f is
an extension of f , i.e. ∗̂f |Ω = f .

Proof: ∗̂f(x̂) = ∗̂f(x) = f̂(x) = f(x) since ∗f is an extension of f . We also
have x = x̂ for all x ∈ Ω by the identification Ω with its image in <(Fd)
(# 14, Section 10). Thus ∗̂f(x) = f(x) as required. N

Theorem 14.1 (Ring Homomorphism) The mapping

ÊF (Ω) 3 f̂ → f̂ ∈ F̂ µF (Ω),

from ÊF (Ω) into F̂ µF (Ω) is a ring homorphism.

Proof: To show that the mapping is injective, observe that f̂(x̂) = 0 for all
x̂ ∈ µF (Ω) is equivalent to f(x) ∈ F0 for all ∀x ∈ µ(Ω). The latter implies
f ∈ NF (Ω)) by Theorem 13.3. Thus f̂ = 0 as required. The mapping
preserves the addition because (f̂ + ĝ)(x̂) = f̂(x̂) + ĝ(x̂) = ̂f(x) + g(x) and
similarly for the multiplcation. N.

Theorem 14.2 (Fundamental Theorem) Let Ω be an arcwise connected
open set of Rd and let f ∈MF (Ω). Then the followinng are equivalent:

(i) (∃ ĉ ∈ F̂)(∀ x̂ ∈ µF (Ω))(f̂(x̂) = ĉ).

(ii) (∃ c ∈ F)(∀x ∈ µ(Ω))(f(x)− c ∈ F0).
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(iii) (∀x ∈ µ(Ω))(||∇f(x)|| ∈ F0).

(iv) (∀ x̂ ∈ µF (Ω))(∇f̂(x̂) = 0).

(v) ∇f̂ = 0 in ÊF (Ω).

Proof: (i)⇔(ii), (iii)⇔(iv) and (iv)⇔(v) follow directly from Theorem 14.1.
(ii)⇒(iii): Suppose that x ∈ µ(Ω). If ∇f(x) = 0, there is nothing to

prove. Suppose that ∇f(x) 6= 0 and let h ∈ I(Md) be an infinitesimal
vector in the direction of ∇f(x). By the Mean Value Theorem applied by
Transfer Principle (Theorem 4.4), we have

∇f(x) · h = f(x + h)− f(x)− 1
2

∑
|α|=2

∂αf(x + θh) hα,

for some θ ∈ ∗R, 0 < θ < 1. We have
∣∣∣1
2

∑
|α|=2 ∂αf(x + θh)

∣∣∣ ≤ δ for
some δ ∈ M+ by Theorem 10.2 since x + θh ∈ µ(Ω) and f ∈ MF (Ω) by
assumption. Also |∇f(x) · h| = ||∇f(x)|| ||h|| by the choice of the direction
of h. Thus

||∇f(x)|| ≤
(

f(x + h)− f(x)
||h||2

+ δ

)
||h||,

Observe that f(x + h)− f(x) ∈ F0 by assumption since x + h ∈ µ(Ω). Thus
f(x+h)−f(x)

||h||2 + δ ∈ M+. Consequently, there exists M ∈ M+ such that the
internal set

A =
{
||h|| : h ∈ ∗Rd,

∇f(x)
||∇f(x)||

=
h

||h||
, ||∇f(x)|| ≤ M ||h||

}
,

contains I(M+). Thus A contains arbitrarily small numbers in F \F0 since
M+ ⊂ F \ F0. It follows that A contains arbitrarily large numbers F0 by
the Underflow of F \ F0 (Theorem 11.1). Thus there exists h ∈ ∗Rd such
that ||∇f(x)|| ≤ M ||h|| and ||h|| ∈ F0. It follows that ||∇f(x)|| ∈ F0 (as
required) since F0 is an ideal in F .

(ii)⇐(iii): Suppose that x, y ∈ µ(Ω). Since Ω is arcwise connected by
assumption, it follows that ∗Ω is ∗-arcwise connected by Transfer Principle
(Theorem 4.4). Thus there exists a ∗-continuous curve L ⊂ µ(Ω) which
connects x and y. We have

f(x)− f(y) =
∫

L
∇f(t) · dl,
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(again, by Transfer Principle). It follows that

f(x)− f(y) = ∇f(t) · (x− y),

for some t ∈ L by the Mean Value Theorem (and Transfer Principle). Thus
|f(x) − f(y)| ≤ ||∇f(t)|| ||x − y|| ∈ F0, since (as before) F0 is an ideal in
F and we have ||∇f(t)|| ∈ F0 by assumption and ||x − y|| ∈ F(∗R) ⊂ F .
Let c = f(y) for some (any) y ∈ µ(Ω). The result is f(x) − c ∈ F0 for all
x ∈ µ(Ω) as required. N
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15 Convolution in Non-Standard Setting

Definition 15.1 (Convolution) (i) Let T ∈ D′(Ω) and let T : D(Ω) →
C be the corresponding mapping. We define the non-standard ex-
tension ∗T : ∗D(Ω) → ∗C of T by the formula

〈∗T , 〈ϕi〉〉 = 〈〈T, ϕi〉〉 ,

where 〈ϕi〉 ∈ ∗D(Ω).

(ii) Let T ∈ E ′(Ω) and 〈Di〉 ∈ ∗D(Rd). We define the convolution between
∗T and 〈Di〉 by the formula

∗T ? 〈Di〉 = 〈T ? Di〉,

where T ? Di is the usual convolution between T and Di in the sense
of distribution theory (i.e. 〈T (ξ), Di(x−ξ)〉 for every x ∈ Ω and every
i ∈ I).

Lemma 15.1 For every T ∈ E ′(Ω) and every D ∈ ∗D(Rd) we have ∗T ?D ∈
∗E(Ω).

16 Schwartz Distributions in ρE(Ω)

If f ∈ L1
loc(Ω), we denote by Tf ∈ D′(Ω) the Schwartz distribution with

kernel f , i.e.

〈Tf , ϕ〉 =
∫

Ω
f(x)ϕ(x) dx,

for all ϕ ∈ D(Ω). Recall that E(Ω) is a differential subring of ρE(Ω) under
the embedding

E(Ω) ↪→ ρE(Ω),

defined by the mapping f → ∗̂f , where ∗f is the non-standard extension of
f (i.e. ∗f = 〈fi〉, fi = f for all i ∈ I) and ∗̂f stands for the corresponding
equivalence class (see the beginning of Section ??).

Theorem 16.1 (Existence of an Embedding) There exists an embed-
ding ΣΩ : D′(Ω) → ρE(Ω) which preserves the sheaf-properties and the
linear operations in D′(Ω) (including partial differentiation) and such that
ΣΩ(Tf ) = ΣΩ(∗f) for every f ∈ E(Ω). Consequently, the multiplication in
ρE(Ω) reduces to the usual pointwise multiplication on E(Ω). We summarize
this in:

E(Ω) ↪→ D′(Ω) ↪→ ρE(Ω)
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Proof: We shall separate the proof in numerous definitions and lemmas:

Definition 16.1 (ρ-Delta Function) D ∈ ∗E(Rd) is called a ρ-delta func-
tion if:

1. ||x|| 6≈ 0 implies D(x) = 0. (Lemma: There exists a positive in-
finitesimal, say ρ, such that ||x|| ≤ ρ implies D(x) = 0).

The next conditions on D depend on the choice of ρ:

2.
∫
||x||≤ρ D(x) dx− 1 ∈ Nρ(∗C).

3.
∫
||x||≤ρ D(x) xα dx ∈ Nρ(∗C) for all |α| 6= 0.

4. D ∈Mρ(∗E(Rd)), i.e.

(∀α ∈ Nd
0)(∀x ∈ µ(Rd)) (∂αD(x) ∈Mρ(∗C)) .

Theorem 16.2 There exists a ρ-delta function D.

Proof: : For the original proof we refer to (M. Oberguggenberger and T.
Todorov [66]). Here is a summary of this result:

Step 1) For every n ∈ N, we define the set of test-functions:

Bn = {ϕ ∈ D(Rd) :(34) ∫
Rd

ϕ(x) dx = 1,∫
Rd

xαϕ(x) dx = 0 for all α ∈ Nd
0, 1 ≤ |α| ≤ n,

||x|| ≥ 1/n ⇒ ϕ(x) = 0,

1 ≤
∫

Rd

|ϕ(x)| dx < 1 +
1
n
}.

Lemma 16.1 (Properties of Bn) (B1) Bn 6= ∅ for all n.
(B2) D(Rd) = B0 ⊃ B1 ⊃ B2 ⊃ B3 ⊃ . . . . (Thus Bn ∩ Bn = Bmax (m,n)).
(B3) ∩n Bn = ∅.

Step 2) Find the non-standard extension of Bn:
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∗Bn = {ϕ ∈ ∗D(Rd) :(35) ∫
∗Rd

ϕ(x) dx = 1,∫
∗Rd

xαϕ(x) dx = 0 for all α ∈ Nd
0, 1 ≤ |α| ≤ n,

||x|| ≥ 1/n ⇒ ϕ(x) = 0,

1 ≤
∫
∗Rd

|ϕ(x)| dx < 1 +
1
n
}.

Step 3) Let M be an infinitely large positive number in Fρ(∗R). For
example, M = | ln ρ| will do. Define the internal sets:

An = {ϕ ∈ ∗Bn : ∗ sup||x||≤1/n|∂αϕ(x)| < M

n
for all |α| ≤ n},

We observe that (trivially) ∗D(Rd) ⊃ A1 ⊃ A2 ⊃ . . . . Also, An 6= ∅ for all
n. Indeed, ϕ ∈ Bn implies ∗ϕ ∈ An since

∗ sup||x||≤1/n|∂α(∗ϕ(x))| = sup||x||≤1/n|∂αϕ(x)| < M

n
,

and sup||x||≤1/n|∂αϕ(x)| is a real number and M/n is an infinitely large
positive number for any n ∈ N. Thus there exists

Θ ∈
∞⋂

n=1

An 6= ∅,

by Saturation Principle (Theorem 4.2). Notice that Θ satisfies all prop-
erties (1)-(4) of the definition of ρ-delta function except (possibly) the
property (5).

Step 3) The non-standard function D ∈ ∗D(Rd), defined by the formula

D(x) = ρ−dΘ(x/ρ),

is the ρ-delta function we are looking for.

Definition 16.2 The mapping T → QΩ (∗T ? D) from E ′(Ω) to ρE(Ω) is
the embedding of the space of distributions with compact support in Ω.

Step 4)
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Definition 16.3 (ρ-Cut-Off Function) ΠΩ ∈ ∗D(Ω) is called a ρ-cut-off
function for the open set Ω ⊆ Rd if

(a) ΠΩ(x) = 0 for all x ∈ µ(Ω).

(b) supp(ΠΩ) ⊆ {x ∈ ∗Ω | ∗d(x, ∂Ω) ≥ ρ}

Lemma 16.2 There exists a ρ-cut-off-function.

Proof: Let Ωρ = {x ∈ ∗Ω | ∗d(x, ∂Ω) ≥ 2ρ, ||x|| < 1/ρ } and let χ be the
characteristic function of Ωρ. The function ΠΩ = χ ? D is the ρ-cut-off
function we are looking for. N

Definition 16.4 The mapping T → QΩ (∗TΠΩ) ? D) from D′(Ω) to ρE(Ω)
is the embedding the existence of which was stated in Theorem 16.1.

The proof of Theorem 16.1 is complete. N
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