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Abstract. 1 2 A quasilinear equation of divergent type with singular
data and singular coefficients is approximated by a net of equations of
the same type with enough regular coefficients and data. Solutions of the
net of equations are obtained by the classical methods. Known a priory
estimates are improved so that a net of solutions can be considered as
a solution in an appropriate algebra of generalized functions.

1. Introduction

Many linear and non-linear problems with irregular data or irregular co-
efficients, have been analyzed by the mean of appropriate approximations
through appropriate nets of C∞ functions. One possible approach leads to
the framework of generalized function algebra, cf. [1], [2], [8], [18]. Espe-
cially, we point out the recent work in this direction, [5], [6], [10], [11], [12], in
the analysis of linear and nonlinear PDE with rough coefficients and initial
data. They considered such problems in algebras of generalized functions
where approximated nets of solutions have the meaning as elements of al-
gebras of generalized functions enough large to contain embedded Schwartz
distributions.

Our paper follows such an approach. Actually, we continue our inves-
tigations of linear elliptic equations with singular coefficients and data in
[15]. In this paper, we solve an irregular Dirichlet quasi-linear elliptic prob-
lem using Leray-Schauder fixed point theorem (cf. [14]) in the framework
of nets of equations with a priori estimates controlled by the growth order
of constants appearing in these estimates. We transfer and improve some
results of the classical theory for a Dirichlet quasi-linear elliptic problem
given in [7] in the frame of certain generalized function algebra related to a
strongly and uniformly elliptic quasi-linear Dirichlet problem with singular
coefficients and singular boundary conditions. We refer to [3], [13], [17], [16],
[20] for the classical results concerning quasi-linear Dirichlet problems.

More precisely, our approach is adapted to certain spaces of generalized
functions because we follow the use of Leray-Schauder fixed point theorem
in [7], Chapter 11. In order to apply the fixed point theorem we reconsider a
priori bounds which are given in [7] in Theorems 8.22, 8.24, 8.27 and 8.29 as
well as in Lemma 8.23. The novelty in the procedure of our proof (although
we follow the known one of [7]) and the improvements of bounds in quoted
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assertions of [7], are our main contribution in solving an irregular Dirichlet
quasi-linear elliptic problem.

In order to explain our approach the following simple example from [15]
is useful.

Example 1. Consider ∆u = 0, u|∂Ω = φ|∂Ω, where Ω = B1 =: {(x1, x2) :
x2

1 + x2
2 < 1}, with two boundary data given by φ:

Case I: φ(x1, x2) = δ(x1)δ(x2 − 1), (x1, x2) ∈ R2,

Case II: φ(x1, x2) = δ((x2
1 + x2

2)
1/2 − 1), (x1, x2) ∈ R2.

Let θ ∈ C∞
0 (R)

∫
θ = 1, supp θ ∈ [−1, 1].

With approximations
Case I: δ(x1)δ(x2 − 1) = 1

ε2 θ(x1
ε )θ(x2−1

ε ), (x1, x2) ∈ R2, ε < 1 (assuming
θ(0) = 0),

Case II: δ((x2
1 + x2

2)
1/2 − 1) = 1

εθ( (x2
1+x2

2)1/2−1
ε ), (x1, x2) ∈ R2, ε < 1

(assuming θ(0) = 1),
in the respective cases, we replace the given boundary data with the respec-
tive family of data:
Case I: φε|∂Ω(t) = 1

ε2 θ( t
ε)θ(

√
1−t2−1

ε ), |t| ≤ ε, φε = 0 on the rest of ∂Ω,

Case II: φε|∂Ω = 1/ε, ε < 1.

The Poisson formula implies that in Case I, a net of solutions (uε)ε con-
verges in the sense of distributions in B1 to the harmonic function

(x1, x2) 7→ Cθ
|x|2 − 1

x2
1 + (x2 − 1)2

, (x1, x2) ∈ B1,

with the boundary equals zero everywhere except point (0, 1) where the
boundary value is infinity. The net of solutions (uε)ε determines a general-
ized function [(uε)ε]. In Case II solutions are harmonic functions uε(x1, x2) =
1/ε, ε < 1, in B1 with boundary values 1/ε, ε < 1. Note that [(1/ε)ε] is a
generalized constant, as it will be explained in the second section.

We will show in Section 3 that nets of boundary data given above, satisfy
a generalized slope condition in a uniformly convex domain Ω. This slope
condition will be used in the main theorem, Theorem 4, for the proof of the
existence of a generalized solution for a quasilinear problem of second order
with a highly singular boundary data. More precisely, we prove the existence
of a family of solutions in the frame of an appropriate algebra of generalized
functions, in the so-called Colombeau type extensions of spaces Ck,α(Ω̄) and
C∞(Ω̄). Our approach is adapted to these spaces because we will follow the
use of Leray-Schauder theorem as it is done in [7], Chapter 11. The nonlinear
problem ai,j(Du)Di,ju = 0 is transformed first to the net of non linear
problems ai,j

ε (Duε)Di,juε = 0, ε ∈ (0, 1), with slowly increasing coefficients
ai,j

ε (ε → 0), then to a net of linear problems ai,j
ε (Dv)Di,juε = 0, ε ∈ (0, 1)

and, at the end, the problem is solved by the use of the Leray-Schauder
fixed point theorem. The estimates of derivatives for a solution net (uε)ε

are given by constants depending on ε. As it is mentioned, in order to apply
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the fixed point theorem we are led to revisit and improve a priori bounds
which are given in [7] in Theorems 8.22, 8.24, 8.28 and 8.29 as well as in
Lemma 8.23. In fact we give adequate versions of these theorems so that
the bounds for norms |uε|0,α,Ω do not depend on α.

Different growth rates of coefficients and initial data with respect to ε → 0
lead to solutions in generalized ultradistribution type algebras ([19]) or in as-
ymptotic type algebras([4]). Our choice of the growth rate is accommodated
to the simplest exposition within Colombeau type algebras.

We note that a wide range of irregular problems can be modulated and
discussed using the same method. In fact, in this paper we consider very
simple form of a quasilinear Dirichlet problem in order to point out the
difficulties which are brought into the equation through strong singularities
of coefficients and initial data.

2. Colombeau extension

First, we recall the definition of the Colombeau type extention G(E),
where E is a vector space on C with an increasing sequence of seminorms
µn, n ∈ N. The space of moderate nets EM (E), respectively, of null nets
N (E), is constituted by nets (rε)ε∈(0,1] ∈ E(0,1] with the properties

(∀n ∈ N) (∃a ∈ R)(µn(rε) = O(εa)), (2.1)

respectively, (∀n ∈ N) (∀b ∈ R)(µn(rε) = O(εb)).

(O is the Landau symbol.) The quotient space G(E) = EM (E)/N (E) with
elements [(fε)ε], [(gε)ε], ..., (equivalence classes are denoted by [·]) is called
the Colombeau extension of E. Putting vn(rε) = sup{a; µn(rε) = O(εa)}
and en((rε)ε, (sε)ε) = exp(−vn(rε−sε)), n ∈ N, we obtain (en)n, a sequence
of ultra-pseudometrics on EM (E) defining the ultra-metric topology (sharp
topology) on G(E).

If E = C (or E = R) and the seminorms are equal to the absolute value,
then the corresponding spaces are E0 and N0; E0 is an algebra and N0 is an
ideal. As a quotient, one obtains Colombeau algebra of generalized complex
numbers C̄ = E0/N0 (or R̄). If a set Ω is open in Rn and E = C∞(Ω)
is endowed with the usual sequence of seminorms (this is Schwartz space
E(Ω)), then the above definition gives Colombeau simplified algebra G(Ω) =
EM (Ω)/N (Ω) ([2], [18]). Its elements are called generalized functions and we
keep this name for elements of any space or algebra constructed as extensions
of some space of functions E.

Then the embedding of compactly supported Schwartz distributions (el-
ements of E ′(Ω)) is made through the convolution with a net of mollifiers
hε = ε−nh(·/ε) constructed by a rapidly decreasing function h ∈ S(Rn)
with the properties

∫
h(t)dt = 1,

∫
tmh(t)dt = 0,m ∈ Nn, |m| > 0. The

embedding is given by
f 7→ [(f ∗ hε|Ω)ε].
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By the sheaf properties of D′(Ω) and G(Ω), this embedding is extended to
D′(Ω) → G(Ω).

Let Ω be a bounded open set in Rn and α ∈ (0, 1]. Recall ([7], p. 94),
a domain Ω and its boundary are of Ck,α− class 0 < α ≤ 1, if at each
point x0 ∈ ∂Ω there is a ball B = B(x0) (x0 is the center) and a bijection
ψ : B → D such that ψ(B ∩ Ω) ⊂ Rn

+, ψ(B ∩ ∂Ω) ⊂ ∂Rn
+, and ψ ∈

Ck,α(B), ψ−1 ∈ Ck,α(D). A domain Ω has a boundary portion T ∈ ∂Ω of
Ck,α− class if at each point x0 ∈ T there is a ball B(x0) in which the above
conditions are satisfied and B(x0) ∩ ∂Ω ⊂ T.

We will consider Colombeau type extensions in cases E = Ck,α(Ω̄), k ∈ N
and E = C∞(Ω̄) and norms

|f |k,Ω = sup{|f (p)(x)|; |p| ≤ k, x ∈ Ω},
|f |k,α,Ω = |f |k,Ω + [f ]k,α,Ω, k ∈ N0,

where, for f ∈ C∞(Ω̄), k ∈ N0,

[f ]k,α,Ω = sup
{ |f (p)(x)− f (p)(y)|

|x− y|α ; x, y ∈ Ω, x 6= y, |p| = k
}

.

The completion of C∞(Ω̄) with respect to the norm | · |k,α,Ω defines Ek =
Ck,α(Ω̄), k ∈ N. Recall, if k + α > k′ + α′, then the imbedding of Ck,α(Ω̄)
into Ck′,α′(Ω̄) is a compact linear operator.

Note that the sequences of norms | · |k,α,Ω, k ∈ N and | · |k,Ω, k ∈ N define
the same uniform structure on C∞(Ω̄).

In case E = C∞(Ω̄), we need one more construction. Let (gε)ε be a net
in C0,α(Ω̄) such that

gε ∈ Ck,α(Ω̄), ε < εk, k ∈ N, (2.2)

where (εk)k ∈ (0, 1)N strictly decreases to zero ((εk)k ↓ 0). Denote by
EC∞(Ω) the space of such nets.

Two such nets are in relation, (gε)ε ∼ (rε)ε, if

gε = rε, ε < ε0, for some ε0 ∈ (0, 1).

This is an equivalence relation and with the corresponding classes in
EC∞(Ω)/ ∼, we define by (2.1) spaces EM [E], N [E]. Thus, equivalent
elements (gε)ε, (rε)ε ∈ EC∞(Ω) define the same element of EM [E] iff one
of them satisfies (2.1). We define the corresponding Colombeau type space
G[E] = EM [E]/N [E]. If E = C∞(Ω̄), we will show in the appendix that there
exists a canonical isomorphism of G[E] onto G(E). Clearly, G(E) = G[E]
in case E = Ck,α(Ω̄) since for any representative (rε)ε the same class is
determined by a representative (gε)ε, where gε = 0, ε > 0 and gε = rε, ε ≤
ε0, for some ε0 < 1.

Let us note that the use of G[C∞(Ω̄)], actually of EM [C∞(Ω̄)], enable
us to use in the sequel the theory of Banach spaces on parts of nets for
ε < εk, k ∈ N (cf. (2.2)).
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3. Dirichlet problem

3.1. Assumptions and examples. We will consider a quasi-linear Dirich-
let problem, a strictly and uniformly elliptic equation whose coefficients and
data lack regularity assumptions. We will impose additional assumptions
related to irregularities carried into equations and formulate the problem
through nets of equations and corresponding assumptions. Our main refer-
ence is [7].

Let (Qε)ε be a net of elliptic nonlinear operators of divergent type of the
form

Qε(u) = divAε(Du) = ai,j
ε (Du)Di,ju, ε < 1, (3.3)

where ai,j
ε (p) = DpiA

j
ε(p), p = (p1, ..., pn) ∈ Rn.

In the case n = 2, the procedure which will be given below, can be applied
to a net (Qε)ε of elliptic nonlinear operators of the form

Qε(u) = ai,j
ε (x, u, Du)Di,ju, u ∈ C∞(Ω̄). (3.4)

We assume that ai,j
ε , ε ∈ (0, 1), are smooth functions on the respective do-

mains. Let λε and Λε denote the minimal and maximal eigenvalues of the
matrix

(
ai,j

ε

)
. We assume

0 < λε(x, t, p)|ξ|2 ≤ ai,j
ε (x, t, p)ξiξj ≤ Λε(x, t, p)|ξ|2, (3.5)

p ∈ Rn, ξ ∈ Rn \ {0}, x ∈ Ω, t ∈ R, ε < 1.

In the sequel, we will denote by c(ε), ε ∈ (0, 1) a net of functions deter-
mining the growth rate of constants in the bounds which are to follow. We
will assume that it is a constant function or a function tending to zero as
ε → 0. In fact we will assume in our main Theorem 4 that

| log c(ε)| = O(log | log ε|), ε → 0. (3.6)

The reason will be seen later since we are aimed to give a generalized function
solution determined by a net of solutions and for this the Harnack type
estimates involve necessary assumptions on c(ε).

Assume additionally:

(∀d ∈ Nn
0 )(∃l ∈ R)(∃a ∈ R) (3.7)

sup
{ |∂d

xai,j
ε (x, t, p)|

(1 + |t|+ |p|)a
;x ∈ Ω̄, t ∈ R, p ∈ Rn

}
= O(cl(ε)).

(∃C > 0)(∃µ > 0)(∃b ∈ R) (3.8)
cµ(ε)

C
(1 + |t|+ |p|)b ≤ λε(x, t, p) ≤ Λε(x, t, p) ≤ C

cµ(ε)
(1 + |t|+ |p|)b,

p ∈ Rn, x ∈ Ω̄, t ∈ R, ε < 1.

If (Qε)ε is of the form (3.3), then we exclude variables x and t in the condi-
tions given above.

Note that (3.8) implies the uniform ellipticity

Λε/λε ≤ C2c−2µ(ε), ε < 1. (3.9)
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Example 2. (i) Strongly and uniformly elliptic equations with coefficients
not depending on ε but with singular boundary data are the main source of
examples (cf. Example 1).

(ii) Consider in R3 an equation formally of the form

Q(Du) = (1 +
3∑

i=1

f(Diu))∆u,

where f is a locally integrable function on R3. With

A = (x1 + F (ux1), x2 + F (ux2), x3 + F (ux3)) and F ′ = f,

we have Q(Du) = divA(Du), that is equation of the form (3.3).
Even in a case f = δ we can give a meaning to this equation through the

corresponding family of equations:

Qε(Du) =
(ψ(ux1/c(ε)) + ψ(ux2/c(ε)) + ψ(ux3/c(ε))

c(ε)
+ 1

)
∆u, ε < 1,

(3.10)
where ψ is a compactly supported smooth function whose integral equals 1.
Then, for p ∈ R3,

λε(p) = 1, Λε(p) = 1 +
1

c(ε)

(
ψ(p1/c(ε)) + ψ(p2/c(ε)) + ψ(p3/c(ε))

)
, ε < 1.

Family of operators (3.10) is of the form (3.3) for which all the assumptions
(3.3)-(3.6) hold.

We will study a Dirichlet problem with a slope condition adapted to the
setting of generalized functions.

Definition 1. Let (φε)ε ∈ EM [E], where E = C∞(Ω̄), or E = Ck,α(Ω̄) for
some k ∈ N. Let Γε = {(x, zε), x ∈ ∂Ω, zε = φε(x)}, ε < 1. The boundary
data on ∂Ω satisfies a moderate slope condition if for any Pε ∈ Γε, ε < 1 there
exist hyperplanes π+

ε,Pε
and π−ε,Pε

defined by zε = π+
ε,Pε

(x) and zε = π−ε,Pε
(x)

such that
π−ε,Pε

(x) ≤ φε(x) ≤ π+
ε,Pε

(x), x ∈ ∂Ω, ε < 1,

and such that for some K > 0 and some m ∈ R,

sup{|Dπ+
ε,Pε

(x)|, |Dπ−ε,Pε
(x)|; x ∈ ∂Ω, Pε ∈ Γε} ≤ Kεm, ε < 1.

Example 3. 1. In the case when Ω = {(x, y);x2 + y2 < 1} and θ(x, y) =
δ((x2 +y2)1/2−1) (case II in Example 1), the slope condition simply follows
with the estimate 1/ε.

2. Let now, for equation (3.3), Ω be any uniformly convex domain in R2

such that ∂Ω 3 P = (0, 1) and φ(x, y) = δ(x)δ(y−1) as in case I in Example
1 (with Ω = B1). In order to have the generalized slope condition, we take
corresponding delta nets in x−plane and y−plane as case I in Exampe 1 and
obtain that the slope condition holds with Kε−4, ε < 1.
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In fact, second example in Example 3, is a very special case of the following
one.

Example 4. If Ω is uniformly convex, of C2 class and if (φε)ε ∈ EM (Ck,α(Ω̄)),
k > 2, then (φε)ε satisfies the moderate slope condition with respect to Ω.

Recall, Ω is uniformly convex, if there exists C > 0 such that for every
point P0 ∈ ∂Ω there exists a hyperplane πP0 such that

d(x, πP0) ≥ C||x− x0||2, x ∈ ∂Ω, where P0 = x0.

By, [9], Corollary 4.3, φ ∈ C1,1(Ω̄) is the necessary and sufficient con-
dition for φ to satisfy the bounded slope condition on such a domain. In
particular, if φ ∈ C2(Ω̄), then the above assertion follows by evaluating a
determinant depending on second derivatives of φ (cf. [9], p. 505). Note
that in [9] are considered more general assumptions equivalent with the slope
condition. In our case we use one of results for the illustration of the theory.

3.2. Estimates for nets of solutions. We will give several results needed
for the proof of our main theorem, Theorem 4.

First, we need Lemma 1 as an extension of Lemma 8.23 in [7].

Lemma 1. Let α ∈ (0, 1). Let ω be a non-decreasing function on (0, R0]
such that

ω(τδR) ≤ γδω(R) + σδ(R), R ≤ R0

where for every δ < 1, σδ is a non-decreasing function, 0 < γδ < 1, γδ →
1 as δ → 0, 0 < τδ < 1, τδ → 1 as δ → 0 and limδ→0

log nγδ
log nτδ

= c > 1.

Then there exists δ0 such that

ω(R) ≤ 1
γδ

( R

R0

)α
ω(R0)+

1
1− γδ

σδ

(( R

R0

) log γδ−α log τδ
log γδ ·R0

)
, R ≤ R0, δ < δ0

Proof. Let R1 < R0 and δ ∈ (0, 1) be fixed. We have ω(τδR) ≤ γδω(R)+
σδ(R1), R ≤ R1 By iteration, this inequality gives

ω(τm
δ R) ≤ γm

δ ω(R1) + σδ(R1)
m−1∑

i=0

γi
δ ≤ γm

δ ω(R0) + σδ(R1)
1

1− γδ
, R ≤ R1.

Let m be chosen so that τm
δ R1 < R ≤ τm−1

δ R1. This implies

ω(R) ≤ ω(τm−1
δ R1) ≤ γm−1

δ ω(R0) +
σδ(R1)
1− γδ

≤ 1
γδ

( R

R1

) log γδ
log τδ ω(R0) +

σδ(R1)
1− γδ

Let δ0 > 0 be chosen so that log γδ
log τδ

> 1 + h, h > 0, δ < δ0. We

have 0 < α
log τδ

log γδ
< 1, δ < δ0. Let µδ =

log γδ − α log τδ

log γδ
, δ < δ0. Note

(1− µδ)
log γδ

log τδ
= α.
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Put R1 = R1−µδ
0 Rµδ , δ < δ0. It follows

ω(R) ≤ 1
γδ

( R

R0

)(1−µδ)(
log γδ
log τδ

)
ω(R0) +

σδ(R
1−µδ
0 Rµδ)

1− γδ

i.e.

ω(R) ≤ 1
γδ

( R

R0

)α
ω(R0) +

1
1− γδ

σδ

[( R

R0

)µδ

R0

]
, R < R0.

This completes the proof of lemma.
Remark. The crucial fact of the next Theorem 1 is that α ∈ (0, 1/2) is

fixed and does not depend on ε. The direct application of Lemma 8.23 of
[7] would imply that in Theorem 1 instead of fixed α we would have a net
(αε)ε tending to zero with ε → 0. Because of that we had to prove Lemma
1. Thus, the changes in the proof of Theorem 8.22 of [7] (based on Lemma
8.23) realized through the next Theorem 1 are interesting in itself (see also
[3], [17]). This theorem is strictly involved in the proof of Theorem 4, and
for its proof we will use the following generalized weak Harnack inequality
which will be explained in the proof of Theorem 4:

R−n||uε||L1(BηR(y)) ≤ C exp(cm(ε)) inf
x∈BR(y)

uε(x), (3.11)

where η ∈ (1, 2).
The linearization of (3.3) (and similarly of (3.4)) is done by putting a

function v instead of u in coefficients ai,j(Du) Thus, equation (3.3), with
ãi,j

ε (x) = ai,j
ε (Dv(x)), is of the form

Lεuε := Di(ãi,j
ε (x)Djuε) + (−

n∑

j=1

n∑

p=1

∂

∂xp
ãi,j

ε (x))Diuε = 0. (3.12)

In comparison to (8.1) and (8.3) in [7], we have b = 0, d = 0, f = 0, g = 0.

Theorem 1. Let α ∈ (0, 1/2) and Ω be a bounded open set. Let (Lε) be of the
form (3.12), and satisfy conditions ( 3.7), ( 3.8). If (uε)ε ∈ (W 1,2(Ω))(0,1)

satisfies Lεuε = 0 in Ω, ε < 1, then for every ε < 1, uε is locally continuous
in Hölder sense and there exist M > 0, such that for every B0 = BR0(y) ⊂ Ω
and every R ≤ R0,

oscBR(y)uε ≤ MRαR−α
0 oscB0uε.

Proof. Let ε < 1. One has to repeat the proof of Theorem 8.22, [7]
with MηεR and mηεR instead of M4R and of m4R defined as supremum and
infimum of uε on the ball BηεR(y). Recall, ηε ∈ (1, 2). We will use the
notation Mε,R and mε,R for the supremum and the infimum of uε on the
ball BR(y).

Now, similarly as in Theorem 8.22. of [7], we use (3.11) for Mηε − uε and
uε −mηε in BR/2+ηεR/2 and obtain

R−n

∫

BR/2+ηεR/2

(MηεR − uε)dx ≤ C exp(cm(ε))(MηεR −Mε,R),
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R−n

∫

BR/2+ηεR/2

(uε −mηεR)dx ≤ C exp(cm(ε))(mε,R −mηεR)

By addition

MηεR −mηεR ≤ C exp(cm(ε))(MηεR −mηεR + mε,R −Mε,R)

This leads to

ωε(R) = oscBR(y)uε = Mε,R −mε,R ≤ (1− 1
C exp(cm(ε)

)ωε(τεR), (3.13)

where we put τε = 1/ηε.
Using (3.13) and the Lemma 1, with σ = 0, δ = ε, γε = 1− 1

C exp(cm(ε)) , τε =
√

γε, we have µε = 1− α

2
, and

ω(R) ≤ 1
γε

( R

R0

)α
ω(R0), R ≤ R0.

(Note that m is a negative constant.) This finishes the proof of Theorem 1
For the next two theorems the notions of exterior and uniform exterior

cone condition are used. Recall that this the uniform exterior cone condition
means that there exists a finite rigid circular cone V such that at every
x ∈ ∂Ω there exists Vx, congruent to V, such that Ω̄ ∩ Vx = x (see [7],
p.205).

The assumption ∂Ω is of C2,α- class implies that ∂Ω satisfies the uniform
exterior cone condition on the boundary.

The next step is the extension of Theorem 8.27 in [7], where we use Lemma
1 again.

Theorem 2. Let α ∈ (0, 1/2) and Ω be a bounded open set. Let (Lε) be of the
form (3.12), and satisfy conditions ( 3.7), ( 3.8). If (uε)ε ∈ (W 1,2(Ω))(0,1)

satisfies Lεuε = 0, ε < 1, in Ω, and Ω satisfies an exterior cone condition
at a point x0 ∈ ∂Ω, then, for every 0 < R ≤ R0 and B0 = BR0(x0),

oscΩ∩BR
uε ≤ Cexp(cm(ε))(RαR−α

0 + σε(
√

RR0)), ε < 1, (3.14)

where σε(R) = osc∂Ω ∩BRuε, ε < 1.

Proof. Similarly as in Theorem 1, we come to the inequality

oscΩR
uε ≤ γεoscΩηεR

uε + osc∂(ΩηεR)uε,

where ΩR = Ω∩BR(x0), ∂(ΩR)∩BR(x0). Now the proof follows by the use
of Lemma 1.

Theorem 2 leads to a reformulated Theorem 8.29 of [7]:

Theorem 3. Assume that Ω satisfies a uniform exterior cone condition on
a portion T of the boundary. Let α0 < 1, Kε = O(exp (cm(ε)) and

osc∂Ω∩BR(x0)uε ≤ KεR
α0 , x0 ∈ T,R > 0,

Then for α ∈ (0, α0/2], uε ∈ Cα(Ω ∪ T ) and, for every Ω′ ⊂⊂ Ω ∪ T,
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‖uε‖Cα(Ω′) ≤ C exp (cm(ε))supΩ|uε|, ε < 1,

where C depends on d′ = dist(Ω′, ∂Ω− T )

3.3. Main theorem. Let k ∈ N. The assumptions in the next theorem are:

α ∈ (0, 1/2), E = Ck+2,α(Ω̄),

Ω is open and bounded , ∂Ω is of Ck+2,α − class
cm(ε) = O(| log ε|), for all m ∈ N. (3.15)

For example, one can take c(ε) = log | log ε|, ε < 1.

Theorem 4. Assume that (Qε)ε is a net of strongly and uniformly elliptic
operators of the form (3.3) or (3.4) with ai,j

ε ∈ Ck+1(Ω̄×R×Rn) satisfying
(3.7) and (3.8) with d ≤ k + 1. Moreover, assume that (φε)ε ∈ EM [E],
where ∂Ω satisfies a moderate slope condition with (φε)ε. Then, there exists
(uε)ε ∈ EM [E] such that

Qε(uε) = 0, uε
∣∣∣∂Ω

= φε, ε < 1. (3.16)

Proof We follow ideas of Chapter 11 in [7] but for a parametric dependent
family of equations. Actually, we change this procedure at an essential point
(in order to obtain a priory bounds for the derivatives of order k of a solution)
although the steps of the proof are the same as the corresponding steps of
the proof in [7].

Let v ∈ Ck+1,α(Ω̄) be fixed. Consider a family of operators Qv
ε defined by

Qv
ε(u) = aij

ε (x, v, Dv)Diju, ε < 1.

For fixed ε, Qv
ε is a strictly and uniformly elliptic linear operator. From

(3.7), (3.8) and the fact that the k−th derivative of ai,j
ε (x, v, Dv) is a poly-

nomial expression of ∂i
xai,j

ε (x, v, Dv), ∂i
xv and ∂i

xDv, i ≤ k, it follows

|ai,j
ε (x, v,Dv)|k,α,Ω ≤ C0c

µ0(ε)(1 + |v|k,α,Ω + |Dv|k,α,Ω)b0 , ε < 1, (3.17)

for some C0 > 0, µ0 ∈ R, and b0 ∈ R.
By the classical theory ([7]), we know that the linear Dirichlet problem

Qv
ε(u) = 0 in Ω, u∣∣∣∂Ω

= σφε,

for every fixed σ ∈ [0, 1] and ε ∈ (0, 1) admits a unique solution uv,σ
ε (cf. [7],

Theorems 6.6 and 6.19) in Ck+2,α(Ω̄) satisfying the estimate

|uv,σ
ε |2,α,Ω ≤ Cε,σ(|uv,σ

ε |0,α,Ω + |φε|2,α,Ω),
where Cε,σ > 0 depends on Ω, λε(x, v, Dv) and Λε(x, v,Dv). Inspecting the
proof of Theorem 6.6 in [7], we have found in [15] that

Cε,σ ≤ C
Λ3

ε

λ3
ε

, ε < 1.
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This and (3.17) (with k = 0) imply that there exist C1 > 0,m1 ∈ R, and
b1 ∈ R such that

Cε,σ ≤ C1c
m1(ε)(1 + |v|1,α,Ω)b1 , ε < 1.

This leads to

|uv,σ
ε |2,α,Ω ≤ C1c

m1(ε)(1 + |uv,σ
ε |0,α,Ω + |v|1,α,Ω + |φε|2,α,Ω)b1 , ε < 1. (3.18)

Now using (3.17) and the same arguments as above related to the c(ε)−
polynomial growth of constants appearing in (3.18), we conclude that there
exists C > 0,m ∈ R, and p ∈ R such that

|uv,σ
ε |k+2,α,Ω ≤ Ccm(ε)(1 + |uv,σ

ε |0,α,Ω + |v|k+1,α,Ω + |φε|k+2,α,Ω)p, ε < 1.
(3.19)

(See Exercise 6.2 in [7])
Fix ε < 1 and denote by T k

ε,σ the mapping

T k
ε,σ(v) = uv,σ

ε , v ∈ Ck+1,α(Ω̄).

If for every ε < 1 there exists a fixed point v = uσ
ε , then it verifies

|uσ
ε |k+2,α,Ω ≤ Ccm(ε)(1 + |uσ

ε |0,α,Ω + |uσ
ε |k+1,α,Ω + |φ|k+2,α,Ω)p, ε < 1.

Using this and (3.19), starting with k = 0, with another C > 0,m ∈ R and
p ∈ R, we have

|uσ
ε |k+2,α,Ω ≤ Ccm(ε)(1 + |uσ

ε |0,α,Ω + |Duσ
ε |0,α,Ω + |φε|k+2,α,Ω)p. (3.20)

Now we will prove a priori bounds for |uσ
ε |1,α,Ω, of the form

|uσ
ε |1,α,Ω ≤ S exp (cs(ε)), ε < 1, ( for some S > 0, s ∈ R). (3.21)

Because of this condition, we had assumed (3.6). This leads to the bound
S1ε

−s1 , with suitable positive constants S1 and s1.
In proving this we follow [7], p. 282, steps I, II, III and IV, where I is the

estimate of supΩ |uε| in terms of its values on the boundary, II is the estimate
of sup∂Ω |Duε| in terms of supΩ |uε|, III is the estimate of supΩ |Duε| in terms
of sup∂Ω |uε| and supΩ |uε|, and IV is the estimate of supΩ[Duε]α,Ω in terms
of supΩ |Duε| and supΩ |uε|.

By the maximum principle we obtain bounds of |uv,σ
ε |0,α,Ω by |uv,σ

ε |0,α,∂Ω

( [7], Theorems 10.3, 10.4 and 10.9); this is I.
The slope condition is introduced because of II and it gives the polynomial

bounds in ε for sup{|Duε(x)|; x ∈ ∂Ω}. (cf. Chapters 14 and 15 in [7]).
The proof of III is the same as in [7], p. 284, considering the weak solutions

to
Diā

i,j
ε

(x)(Djwε) = 0, (3.22)
where

āi,j
ε (x) = ai,j

ε (Duε(x)) and wε = Dkuε, k = 1, ...n.

As in [7], we use the weak maximum principle and obtain

sup
Ω
|uε| ≤ sup

∂Ω
|Duε| ≤ Kεm, ε < 1,
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where Kεm is from the boundary slope condition.
The proof of IV is essential. We will give it only in the case of (3.3).
Following the same line of the proof as in [7], we have reformulated The-

orem 8.22 as Theorem 1.
Considering a family of linear equations (3.12) Lεuε = 0, we start from

the reformulation of Theorem 8.18, [7] for the net of equations. In the
proof of such theorem with β 6= −1, all the constants appearing in the
estimates are of c(ε)− polynomial growth but for β = −1 one obtains a
c(ε)− polynomial estimate for log(uε + kε) (in our case kε = 0). This leads
to the weak Harnack type inequality (8.47) and (8.63) in [7] (see also[16]).
With the same arguments as in [7], it follows that the constants in (8.47)
and (8.63) of [7] are of the form exp(Λε/λε + Rνε), where νε is also of c(ε)−
polynomial growth. Assumption (3.9) implies that constants are of the form
C exp (cm(ε)), for some C > 0 and m ∈ R not depending on ε.

Now we use (8.47) of [7]:

R−n||uε||L1(B2R(y)) ≤ C exp (cm(ε)) inf
x∈BR(y)

uε(x), ε < 1, (3.23)

where uε ∈ W 1,2(Ω) is a solution to (3.12) and non-negative in the ball
B4R(y) ⊂ Ω.

By (3.23), we have (3.11):

R−n||u||L1(BηδR(y)) ≤ C exp (cm(ε)) inf
x∈BR(y)

u(x),

where 1 < ηδ < 2. The use of this inequality in Theorem 1 implies that
for every ε < 1, uε is locally continuous in Hölder sense and there exist
M > 0, m ∈ R such that for every B0 = BR0(y) ⊂ Ω and every R ≤ R0

oscBR(y)uε ≤ M exp (cm(ε))RαR−α
0 oscB0uε.

Now with the same assumptions we have the conclusion of reformulated
version of Theorem 8.24 [7] but always with α not depending on ε :

For every Ω′ ⊂⊂ Ω there exist M > 0, m ∈ R such that

‖uε‖Cα(Ω′) ≤ M exp (cm(ε))‖uε‖L2(Ω), ε < 1.

The assumption in Theorem 4: α < 1/2 implies that α0 = 2α < 1 This
was important for Theorem 3. Thus, Theorem 3 (reformulated Theorem
8.29, [7]) enable us to continue with the proof of IV. It follows as it is de-
scribed in [7], pp. 284-285, considering the weak solutions to (3.22). (First,
we have to make necessary change of coordinates to arrive to portions of
xn = 0 instead of portions of ∂Ω. Then we have to use the Theorem 3 for
the bounds of w for the derivatives Dyk

w, k = 1, ..., n− 1 and the Morrey’s
estimate for Dynw, Theorem 7.19 in [7]. This completes the proof of (3.21).

Now by (3.20) (with some new constants C and m), we have

|uσ
ε |k+1,α,Ω < C exp (cm(ε))(|uσ

ε |1,α,∂Ω + |φε|k+2,α,Ω), ε < 1, (3.24)
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where on the left side we put k + 1, α -norm although it holds for k + 2, α
-norm.

For every ε < 1, T k
ε,σ is a continuous mapping from Ck+1,α(Ω̄) into

Ck+2,α(Ω̄) and thus, a compact mapping from Ck+1,α(Ω̄) into Ck+1,α(Ω̄).
By (3.24) we have that every solution uσ

ε , if exists, being the fixed point
of T k

ε,σ, satisfies the bound

|uσ
ε |k+1,α,Ω ≤ Ck exp cmk(ε), ε < 1 (3.25)

for suitable Ck > 0 and mk > 0. Now the assumption (3.15) implies the
estimate

|uσ
ε |k+1,α,Ω ≤ Cεm, ε < 1. (3.26)

Proposition 1 (i) in the Appendix, implies that that there exists (uε)ε, a
fixed point for (T k

ε )ε ( with σ equals 1) which satisfies (3.26). The theorem
is proved.

Remark. Let us underline that in [7], step IV is realized ”with some
β ∈ (0, 1)” instead of our fixed α ∈ (0, 1). And this is another difference of
our procedure in relation to [7] since we already come to inequality (3.20)
in a different way.

We give the existence of a solution of the Dirichlet problem extending
E = C∞(Ω̄) to generalized function algebra.

Theorem 5. Let (Qε)ε be a net of strongly and unifotmly elliptic operators
of the form (3.3) or (3.4) with ai,j

ε ∈ (C∞)(0,1)(Ω̄) satisfying (3.7), (3.8). Let
∂Ω be of C∞- class and let ∂Ω and (φε)ε ∈ EM [C∞(Ω̄)] satisfy the moderate
slope condition.

Then there exists a solution to (3.16) in EM [C∞(Ω̄)] and thus in G[C∞(Ω̄)].

Remark. Since there is is a canonical isomorphism G[C∞(Ω̄)] onto
G(C∞(Ω̄)) (cf. Proposition 2 in the appendix), and every element of EM [C∞(Ω̄)]
determines an element of G(Ω), it follows that there exists a solution to (3.16)
in G(Ω) .

Proof. The proof follows from Theorem 4. Fixing k ∈ N, k > 1, the
proposed assumptions imply that there exist (uε)ε ∈ EM (Ck+1,α(Ω̄)) such
that for a sequence (εk)k ↓ 0

Qε(uk
ε) = 0, uk

ε
∣∣∣∂Ω

= φε, |uk
ε |k+1,α,Ω < Ckε

mk , ε < εk (3.27)

for suitable Ck > 0 and mk < 0, k ∈ N. Assume that (Ck)k and (−mk)k are
increasing positive sequences of numbers. Note, in (3.27) bounds for k + 1
are larger than for k. But since uk+1

ε is also a fixed point for the mapping
T k

ε,σ, we have

|uk+1
ε |k,α,Ω < Ckε

mk , ε < εk.
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Now taking
uε = uk

ε , ε ∈ [εk+1, εk), k ∈ N,

we obtain solution (uε)ε ∈ EM [C∞(Ω̄)]. This proves the theorem.

4. Appendix

One can easily deduce the following version of Leray- Schauder theorem
for Colombeau extensions.

Proposition 1. Let (Tε) be a net of mappings of EM [E] into itself.
(i) Let E = Ck,α(Ω̄), where k is fixed. Assume that Tε : E → E is compact , ε <

1. Moreover, assume that there exist C > 0 and a > 0 such that the following
implication holds:

If σTεxε = xε, xε ∈ E, ε ∈ (0, 1), σ ∈ [0, 1],

then ‖xε‖ ≤ Cεa, ε < 1.

Then (Tε)ε : EM [E] → EM [E] has a fixed point (xε)ε ∈ EM [E].
In particular, if we assume that (Tε)ε is a net of mappings with the prop-

erty
Tεuε − Tεvε ∈ N [E] if uε − vε ∈ N [E], (4.28)

then [(Tε)ε] : G[E] → G[E] defined by

[(Tε)ε][uε] = [(Tεuε)ε], (uε)ε is a representative of u,

has a fixed point x ∈ G[E].
(ii) Assume that E = C∞(Ω̄). Put En = Cn,α(Ω̄), n ∈ N. Assume that

there exists (εn) ↓ 0 such that Tε : En → En is compact, ε < εn, n ∈ N.
Moreover, assume that for every n ∈ N there exist Cn > 0 and an > 0 such
that the following implication holds:

If σTεxε = xε, xε ∈ En, ε ∈ (0, εn), σ ∈ [0, 1],

then ‖xε‖n ≤ Cnεan , ε < εn, n ∈ N.

Then (Tε)ε : EM [E] → EM [E] has a fixed point (xε)ε ∈ EM [E] .
In particular, if we assume that (4.28) holds for (Tε)ε, then we have

[(Tε)ε] : G[E] → G[E] has a fixed point x ∈ G[E] ([(Tε)ε] is defined in
the same way as in part (i)).

Proposition 2. Let E = C∞(Ω̄). There is a canonical isomorphism i of
G[E] onto G(E).

Proof. Let (Rε)ε ∈ EM [E]. We can choose a net (rε)ε ∈ EM (E) and
(εn)n ↓ such that

‖Rε − rε‖n ≤ e−1/ε, ε ∈ (0, εn). (4.29)
(Note, the sequence of norms (‖ · ‖n)n∈N is increasing). Define

i((Rε)ε) = (rε)ε, i([(Rε)ε]) = [(rε)ε].

This is an algebraic isomorphism.
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Remark. Consider generalized function extensions related to spaces
(E, µn) and (F, νn), with increasing sequences of norms. Any continuous lin-
ear operator h : E → F, can be extended to the continuous linear mapping
h : G[E] → G[F ] (with respect to the sharp topologies). Similar extensions
can be made for nonlinear mappings satisfying appropriate growth condi-
tions (cf. [4]). For example, the assumptions on (Tε)ε which imply (4.28)
can be easily formulated. Such considerations can be useful in a more gen-
eral setting of nonlinear problems. In this paper we have made the concrete
realization of a general concept.
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