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Proseminar “Lie groups”

Andreas Cap
Fall term 2024 /25

Prove that the determinant function det : M, (R) — R is regular in each point A €
M, (R) for which det(A) # 0. (Hint: Compute D det(A)(A).) Use this to show that
SL(n,R) = {A € M,(R) : det(A) = 1} is a Lie group and determine the tangent
space to SL(n,R) in the unit matrix.

Let O(n) C M,(R) be the set of all orthogonal matrices of size n x n. Show that
O(n) is a Lie group. (Hint: Consider A — A'A as a function from M,(R) to the
space of symmetric n X n-matrices. Prove that this function is regular in each point
A € O(n).) Determine the dimension of O(n) and show that the tangent space o(n)
to O(n) in the unit matrix is given by o(n) = {X € M,(R) : X' = —X}.

Derive an explicit description of the underlying manifold of the Lie group SL(2,R)
and of the subgroup SO(2) = O(2) N SL(2,R). (Hint: Writing real 2 x 2-matrices in
r+w —yYy-+=z
Yy+z T—w

For matrices X,Y € M, (R) define the commutator by [X,Y] := XY —-Y X. Prove that
this satisfies the Jacobi identity [X,[Y, Z]] = [[X,Y], Z] + [Y, [X, Z]]. Further show
that for X, Y € M,(R) the matrix [X,Y] is always trace-free while for X, Y € o(n)
one also has [X,Y] € o(n).

the form A = , one obtains det(A) = 2% + y? — 2% — w?.)

For fixed n consider the elementary matrices E;; € M,(R) which have an entry 1 in
the jth column of the ith row and all other entries equal to zero. Compute [E;;, Ey
explicitly. Using this show that for ¢ < j the elements E;;, F;; and H;; := E;; — Ej;
of sl(n,R) span a subspace that is closed under the Lie bracket and isomorphic to

sl(2,R).

Use the computations in the last exercise to prove that for any Lie algebra b, a non-
zero homomorphism f : sl(n,R) — b of Lie algebras has to be injective.

Hint: Similarly to Example 1.5 of the lecture, use the fact that f(X) = 0 implies
that f([X,Y]) = 0 for any Y. The main step in the proof is to show that f vanishes
on one element E;; with ¢ # j. To achieve this, consider an element X with f(X) =0
and distinguish cases (a bit tedious) depending on where X has non-zero entries.

Consider the space 0(3) of skew-symmetric 3 x 3-matrices. Show that for A € O(3) and
X € 0(3) one always gets AXA™! € 0(3). Show further that (X,Y) := —1tr(XY)
defines a positive-definite inner product on 0(3) such that (AX A~ AY A1) = (X, Y).

Find an orthonormal basis for the inner product (, ) on 0(3) defined in the previous
example. Prove that the commutator on o(3) coincides with the cross-product on R3
in the resulting identification.

For X € 0(3) consider the map adx : 0(3) — 0(3), which is given by adx (V) := [X,Y].
Determine the matrix representation of ady with respect to the orthonormal basis
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constructed in the previous example. Verify that (X,Y) — tr(ady oady) is a non-
zero multiple of the inner product ( , ).

Prove that b(X,Y) := tr(XY) defines a non-degenerate, symmetric bilinear form
on M,(R) such that b(AXA™', AYA™!) = b(X,Y) for all A € GL(n,R) and all
X,Y € M,(R). Determine the signature of this bilinear form.

Similarly to example (2), prove that U(n) := {A € M, (C) : A*A =1} and SU(n) :=
{A € U(n) : det(A) = 1} are Lie groups. Show that their tangent spaces in the unit
matrix I are given by u(n) = {A € M,(C) : A* = —A} and su(n) = {A € u(n) :
tr(A) = 0}, respectively.

Verify directly that the manifold underlying the Lie group SU(2) from the previous
example is the three-dimensional sphere S3.

Show that for X,Y" € su(2), one always has tr(XY) € R and that (X,Y) = —1 tr(XY)
defines a positive definite inner product on the vector space su(2). Prove that for all
X € su(2), the map ady : su(2) — su(2) is skew symmetric with respect to this inner
product and that X +— ady defines an isomorphism su(2) — o(3).

Prove that for each matrix A € SU(2), the adjoint action Ad(A) : su(2) — su(2) is
orthogonal for the inner product constructed in the previous example. Conclude that
Ad defines a homomorphism SU(2) — SO(3) and use that previous example and the
fact that SO(3) is connected to show that this homomorphism is onto.

Show that for a connected Lie group G, the kernel of the homomorphism Ad : G —
G L(g) coincides with the center Z(G) of G. Prove that for SU(2) one has Z(SU(2)) =
{#I} and use this to show that the underlying manifold of SO(3) is the real projective
space RP3.

Verify that the 3-dimensional Lie algebra g := sl(2,R) is not isomorphic to o(3).
(Hint: Find a matrix X € g for which the map ad(X) : g — ¢ is nilpotent. Show
that the existence of an isomorphism ¢ : g — 0(3) would lead to a contradiction to
example (9).)

Let G C GL(2,R) be the subgroup of all matrices of the form b) with a,b € R

a
01
and a # 0. Determine the Lie algebra g of G and show that any non-commutative 2-
dimensional Lie algebra is isomorphic to g. (Hint: Given an arbitrary non-commutative

2-dimensional Lie algebra b, construct a basis {X, Y} for h such that [X,Y] =Y".)

Complex projective space CP™ is defined as the space of all complex lines through 0
in C"*'. Show that CP" can be naturally made into a compact smooth manifold by
realizing it as a homogeneous space of the Lie groups GL(n + 1,C), U(n + 1) and
SU(n+1).

Show that the complex projective space CP! can be identified with the sphere S*
(Riemannian sphere extending C). Together with the previous example, this shows
that S? is a homogeneous space of GL(2,C). Show that the chart obtained from this
point of view via the proof of Theorem 1.16 of the course defines a diffeomorphism
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from R? onto the complement of a point in S? which leads to the usual inhomogeneous
coordinates on CP*.

Similarly as in the previous example, interpret S? = CP! as a homogeneous space of
SU(2). Show that this leads to a smooth map p : S* — S? such that p~!(z) = S* for
each x € S? (“Hopf fibration”). Prove that for each y € S? putting V := S?\ y, one
obtains p~1(V) =@ V x S'. Is it true that S® = S? x S'7?

A complex structure on a real vector space V is a linear map J : V — V such that
JoJ = —idy. Show that such a structure can be used to make V into a complex
vector space by defining scalar multiplication as (a +ib) - v := av + bJ(v). Use this to
conclude that a finite dimensional real vector space V' admits such a structure if and
only if its dimension is even.

Prove that the set 7, of all complex structures on R?” can be made into a smooth
manifold by identifying it with the homogeneous space GL(2n,R)/GL(n,C).

Let G be a Lie group, H C G a closed subgroup and G/H the corresponding homo-
geneous space. Let g and h be the Lie algebras of G and H and consider the quotient
vector space g/h. Prove that the adjoint action of elements of H on g defines an action

Ad of H on g/b.

In the setting of the previous exercise consider the canonical projection p : G — G/H.
Show that for an element g € G' and a tangent vector § € TG, the element Ty, -
€+ b € g/h depends only on Typ - € € T,u(G/H). Conclude that this construction
leads to a linear isomorphism ¢, : Tyx(G/H) — g/b such that ¢, = Ad(h™!) o ¢,
holds for all g € G and h € H.

Use the previous example to show that X(G/H) can be identified with the space

{f €C=(G,g/b): f(gh) = Ad(h"")(f(9)) Vg€ G heH}

Prove that the group G naturally acts on X(G/H) and show that in this picture this
action is given by (g - f)(¢') := f(g7'¢’). Conclude that for a G-invariant vector
field £ € X(G/H) corresponding to a function f : G — g/b as above, the element
f(e) € g/b is H-invariant. Conversely show that an H-invariant element of g/b
naturally can be extended to a function corresponding to a G-invariant vector field.

Let V be a finite-dimensional real vector space and let b : V x V' — R be a non-
degenerate, symmetric bilinear form on V. For a subspace W C V put W+ := {v €
V :Vw € W : b(v,w) = 0}. Prove that W+ is a linear subspace of V of dimension
dim(V) — dim(W) and that the following conditions are equivalent.
(a) The restriction of b to W is non-degenerate.
(b) The restriction of b to W+ is non-degenerate.
(c) WnWwt={0}.
() V=WaW.
Consider R""! endowed with the bilinear form b(z,y) = zly! +- - + a"y™ — 2"y HL
and the subset H" := {z € R"™ : b(z,x) = —1,2"" > 0}. Show that H" is a smooth

submanifold of R and that b induces a (positive definite) Riemannian metric on H".
The resulting Riemannian manifold is called hyperbolic space of dimension n. Show
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that there is a natural transitive action of the orthogonal group O(n,1) of b on H",
which has the property that each of the maps ¢, is compatible with the Riemannian
metric.

Let B" = {x € R" : |z| < 1} be the n-dimensional unit ball. Define a map f : B" —
H™ by f(z) := \/1—(1’, 1). Prove that f is a diffeomorphism for each n and give a

1—|z|?
geometric description of f for n = 2. Compute the Riemannian metric on B™ that is
obtained by pulling back the hyperbolic metric on H" by f.

Consider the standard Hermitian inner product (, ) on C" and let w : C"xC" — R its
imaginary part. Show that w defines a non-degenerate, skew-symmetric real bilinear
form on the real vector space C", which in addition satisfies w(iz,iw) = w(z, w) for
all z,w € C".

The Heisenberg group: Prove that the set of all real (n + 2) x (n + 2)-matrices,
1 v a

which have the block form | 0 I o |, with block sizes 1, n and 1 and I € M, (R)
0 0 1

denoting the unit matrix, form a Lie subgroup of GL(n + 2,R). Show further that
the matrices such that w = v = 0 and a € Z form a discrete normal subgroup. Define
the Heisenberg group H,, as the quotient group.

In the setting of the previous exercise, show the sending a matrix as above to (u; +
WU, .o Uy + 10, €27) defines a diffeomorphism #H,, — C" x U(1). Describe the mul-
tiplication on #,, in this picture. In particular, show that for elements (z, @), (w, ) €
C" x U(1), the commutator in H, corresponds to (0, e~2"*(=w)) where w is the skew
symmetric bilinear form from exercise (29). Conclude from this that the commutator
subgroup of H,, coincides with the center Z(#,) and is isomorphic to U(1).

Similarly to exercise (31) prove that the Lie algebra b, of the Heisenberg group can
be identifies with C" @ R, endowed with the bracket [(z,a), (w,b)] = (0, —w(z,w)).
Compute the exponential map of the Heisenberg group as a map C"®R — C" x U(1).
Show that there is a real basis {qi,...,qn,P1,.--,Pn, 2} for b, such that z € 3(h,),
9i: ;] = [pispj] = 0, and [g;, p;] = 0y52.

Consider a matrix with entries u, v and a as in exercise (30). Define an action of such
a matrix on a function f : R® — C by ((u,v,a) - f)(z) := ¥@=®2) f(z — y). Prove
that this defines a homomorphism from #,, to the group of invertible linear maps on
the vector space of all functions R® — C. Explain why for an L2-function f, also
(u,v,a) - f is an L2-function. Finally, show that f + (u,v,a) - f defines a unitary
operator on L?(R", C).

Consider the Lie algebra b, of the Heisenberg group as in exercise (32). For a smooth
function f : R® — R™ with compact support and an element X € b, prove that
(X - f)(@) := L|,o(exp(tX) - f)(x) defines a compactly supported smooth function
X f:R" = R" Show that [X,Y]- f=X-(Y -f)—Y (X f) holds for all X, Y € b,
and f € C*(R™ R"). Compute the actions of the elements of the basis constructed
in exercise (32).



