Proseminar "Lie groups"

Andreas Čap Fall term 2024/25

- (1) Prove that the determinant function det : $M_n(\mathbb{R}) \to \mathbb{R}$ is regular in each point $A \in$ $M_n(\mathbb{R})$ for which $\det(A) \neq 0$. (Hint: Compute $D \det(A)(A)$.) Use this to show that $SL(n,\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) = 1\}$ is a Lie group and determine the tangent space to $SL(n,\mathbb{R})$ in the unit matrix.
- (2) Let $O(n) \subset M_n(\mathbb{R})$ be the set of all orthogonal matrices of size $n \times n$. Show that $O(n)$ is a Lie group. (Hint: Consider $A \mapsto A^t A$ as a function from $M_n(\mathbb{R})$ to the space of symmetric $n \times n$ -matrices. Prove that this function is regular in each point $A \in O(n)$.) Determine the dimension of $O(n)$ and show that the tangent space $\mathfrak{o}(n)$ to $O(n)$ in the unit matrix is given by $\mathfrak{o}(n) = \{X \in M_n(\mathbb{R}) : X^t = -X\}.$
- (3) Derive an explicit description of the underlying manifold of the Lie group $SL(2,\mathbb{R})$ and of the subgroup $SO(2) = O(2) \cap SL(2, \mathbb{R})$. (Hint: Writing real 2 × 2-matrices in the form $A =$ $\int x + w - y + z$ $y + z$ $x - w$ \setminus , one obtains $\det(A) = x^2 + y^2 - z^2 - w^2$.
- (4) For matrices $X, Y \in M_n(\mathbb{R})$ define the commutator by $[X, Y] := XY YX$. Prove that this satisfies the Jacobi identity $[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]$. Further show that for $X, Y \in M_n(\mathbb{R})$ the matrix $[X, Y]$ is always trace-free while for $X, Y \in o(n)$ one also has $[X, Y] \in \mathfrak{o}(n)$.
- (5) For fixed *n* consider the *elementary matrices* $E_{ij} \in M_n(\mathbb{R})$ which have an entry 1 in the jth column of the ith row and all other entries equal to zero. Compute $[E_{ij}, E_{k\ell}]$ explicitly. Using this show that for $i < j$ the elements E_{ij} , E_{ji} and $H_{ij} := E_{ii} - E_{jj}$ of $\mathfrak{sl}(n,\mathbb{R})$ span a subspace that is closed under the Lie bracket and isomorphic to $\mathfrak{sl}(2,\mathbb{R}).$
- (6) Use the computations in the last exercise to prove that for any Lie algebra \mathfrak{h} , a nonzero homomorphism $f : \mathfrak{sl}(n, \mathbb{R}) \to \mathfrak{h}$ of Lie algebras has to be injective. **Hint:** Similarly to Example 1.5 of the lecture, use the fact that $f(X) = 0$ implies that $f([X, Y]) = 0$ for any Y. The main step in the proof is to show that f vanishes on one element E_{ij} with $i \neq j$. To achieve this, consider an element X with $f(X) = 0$ and distinguish cases (a bit tedious) depending on where X has non-zero entries.
- (7) Consider the space $\mathfrak{o}(3)$ of skew-symmetric 3×3-matrices. Show that for $A \in O(3)$ and $X \in \mathfrak{o}(3)$ one always gets $AXA^{-1} \in \mathfrak{o}(3)$. Show further that $\langle X, Y \rangle := -\frac{1}{2}$ $\frac{1}{2}tr(XY)$ defines a positive-definite inner product on $\mathfrak{o}(3)$ such that $\langle AXA^{-1}, AYA^{-1} \rangle = \langle X, Y \rangle$.
- (8) Find an orthonormal basis for the inner product \langle , \rangle on $\mathfrak{o}(3)$ defined in the previous example. Prove that the commutator on $\mathfrak{o}(3)$ coincides with the cross-product on \mathbb{R}^3 in the resulting identification.
- (9) For $X \in \mathfrak{o}(3)$ consider the map $\mathrm{ad}_X : \mathfrak{o}(3) \to \mathfrak{o}(3)$, which is given by $\mathrm{ad}_X(Y) := [X, Y]$. Determine the matrix representation of ad_X with respect to the orthonormal basis

constructed in the previous example. Verify that $(X, Y) \mapsto \text{tr}(\text{ad}_X \circ \text{ad}_Y)$ is a nonzero multiple of the inner product \langle , \rangle .

- (10) Prove that $b(X, Y) := \text{tr}(XY)$ defines a non-degenerate, symmetric bilinear form on $M_n(\mathbb{R})$ such that $b(AXA^{-1},AYA^{-1}) = b(X,Y)$ for all $A \in GL(n,\mathbb{R})$ and all $X, Y \in M_n(\mathbb{R})$. Determine the signature of this bilinear form.
- (11) Similarly to example (2), prove that $U(n) := \{A \in M_n(\mathbb{C}) : A^*A = \mathbb{I}\}\$ and $SU(n) :=$ ${A \in U(n) : \det(A) = 1}$ are Lie groups. Show that their tangent spaces in the unit matrix I are given by $\mathfrak{u}(n) = \{A \in M_n(\mathbb{C}) : A^* = -A\}$ and $\mathfrak{su}(n) = \{A \in \mathfrak{u}(n) : A \in \mathfrak{u}(n) \}$ $tr(A) = 0$, respectively.
- (12) Verify directly that the manifold underlying the Lie group $SU(2)$ from the previous example is the three-dimensional sphere $S³$.
- (13) Show that for $X, Y \in \mathfrak{su}(2)$, one always has $\text{tr}(XY) \in \mathbb{R}$ and that $\langle X, Y \rangle = -\frac{1}{2}$ $\frac{1}{2}\operatorname{tr}(XY)$ defines a positive definite inner product on the vector space $\mathfrak{su}(2)$. Prove that for all $X \in \mathfrak{su}(2)$, the map $ad_X : \mathfrak{su}(2) \to \mathfrak{su}(2)$ is skew symmetric with respect to this inner product and that $X \mapsto ad_X$ defines an isomorphism $\mathfrak{su}(2) \to \mathfrak{o}(3)$.
- (14) Prove that for each matrix $A \in SU(2)$, the adjoint action $\text{Ad}(A) : \mathfrak{su}(2) \to \mathfrak{su}(2)$ is orthogonal for the inner product constructed in the previous example. Conclude that Ad defines a homomorphism $SU(2) \rightarrow SO(3)$ and use that previous example and the fact that $SO(3)$ is connected to show that this homomorphism is onto.
- (15) Show that for a connected Lie group G, the kernel of the homomorphism Ad : $G \rightarrow$ $GL(\mathfrak{g})$ coincides with the center $Z(G)$ of G. Prove that for $SU(2)$ one has $Z(SU(2)) =$ $\{\pm\mathbb{I}\}\$ and use this to show that the underlying manifold of $SO(3)$ is the real projective space $\mathbb{R}P^3$.
- (16) Verify that the 3-dimensional Lie algebra $\mathfrak{g} := \mathfrak{sl}(2,\mathbb{R})$ is not isomorphic to $\mathfrak{o}(3)$. (Hint: Find a matrix $X \in \mathfrak{g}$ for which the map $\text{ad}(X) : \mathfrak{g} \to \mathfrak{g}$ is nilpotent. Show that the existence of an isomorphism $\varphi : \mathfrak{g} \to \mathfrak{o}(3)$ would lead to a contradiction to example (9).)
- (17) Let $G \subset GL(2,\mathbb{R})$ be the subgroup of all matrices of the form $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ with $a, b \in \mathbb{R}$ and $a \neq 0$. Determine the Lie algebra g of G and show that any non-commutative 2dimensional Lie algebra is isomorphic to \mathfrak{g} . (Hint: Given an arbitrary non-commutative 2-dimensional Lie algebra \mathfrak{h} , construct a basis $\{X, Y\}$ for \mathfrak{h} such that $[X, Y] = Y$.)
- (18) Complex projective space $\mathbb{C}P^n$ is defined as the space of all complex lines through 0 in \mathbb{C}^{n+1} . Show that $\mathbb{C}P^n$ can be naturally made into a compact smooth manifold by realizing it as a homogeneous space of the Lie groups $GL(n + 1, \mathbb{C})$, $U(n + 1)$ and $SU(n+1)$.
- (19) Show that the complex projective space $\mathbb{C}P^1$ can be identified with the sphere S^2 (Riemannian sphere extending C). Together with the previous example, this shows that S^2 is a homogeneous space of $GL(2,\mathbb{C})$. Show that the chart obtained from this point of view via the proof of Theorem 1.16 of the course defines a diffeomorphism

from \mathbb{R}^2 onto the complement of a point in S^2 which leads to the usual inhomogeneous coordinates on $\mathbb{C}P^1$.

- (20) Similarly as in the previous example, interpret $S^2 \cong \mathbb{C}P^1$ as a homogeneous space of $SU(2)$. Show that this leads to a smooth map $p: S^3 \to S^2$ such that $p^{-1}(x) \cong S^1$ for each $x \in S^2$ ("Hopf fibration"). Prove that for each $y \in S^2$ putting $V := S^2 \setminus y$, one obtains $p^{-1}(V) \cong V \times S^1$. Is it true that $S^3 \cong S^2 \times S^1$?
- (21) A complex structure on a real vector space V is a linear map $J: V \to V$ such that $J \circ J = -id_V$. Show that such a structure can be used to make V into a complex vector space by defining scalar multiplication as $(a + ib) \cdot v := av + bJ(v)$. Use this to conclude that a finite dimensional real vector space V admits such a structure if and only if its dimension is even.
- (22) Prove that the set \mathcal{J}_n of all complex structures on \mathbb{R}^{2n} can be made into a smooth manifold by identifying it with the homogeneous space $GL(2n,\mathbb{R})/GL(n,\mathbb{C})$.
- (23) Let G be a Lie group, $H \subset G$ a closed subgroup and G/H the corresponding homogeneous space. Let $\mathfrak g$ and $\mathfrak h$ be the Lie algebras of G and H and consider the quotient vector space $\mathfrak{q}/\mathfrak{h}$. Prove that the adjoint action of elements of H on \mathfrak{q} defines an action Ad of H on $\mathfrak{g}/\mathfrak{h}$.
- (24) In the setting of the previous exercise consider the canonical projection $p : G \to G/H$. Show that for an element $g \in G$ and a tangent vector $\xi \in T_qG$, the element $T_q\lambda_{q^{-1}}$. $\xi + \mathfrak{h} \in \mathfrak{g}/\mathfrak{h}$ depends only on $T_g p \cdot \xi \in T_{gH}(G/H)$. Conclude that this construction leads to a linear isomorphism $\varphi_g: T_{gH}(\tilde{G}/H) \to \mathfrak{g}/\mathfrak{h}$ such that $\varphi_{gh} = \underline{\text{Ad}}(h^{-1}) \circ \varphi_g$ holds for all $q \in G$ and $h \in H$.
- (25) Use the previous example to show that $\mathfrak{X}(G/H)$ can be identified with the space

$$
\{f \in C^{\infty}(G, \mathfrak{g}/\mathfrak{h}) : f(gh) = \underline{\mathrm{Ad}}(h^{-1})(f(g)) \quad \forall g \in G, h \in H\}.
$$

Prove that the group G naturally acts on $\mathfrak{X}(G/H)$ and show that in this picture this action is given by $(g \cdot f)(g') := f(g^{-1}g')$. Conclude that for a G-invariant vector field $\xi \in \mathfrak{X}(G/H)$ corresponding to a function $f: G \to \mathfrak{g}/\mathfrak{h}$ as above, the element $f(e) \in \mathfrak{g}/\mathfrak{h}$ is H-invariant. Conversely show that an H-invariant element of $\mathfrak{g}/\mathfrak{h}$ naturally can be extended to a function corresponding to a G-invariant vector field.

- (26) Let V be a finite-dimensional real vector space and let $b: V \times V \to \mathbb{R}$ be a nondegenerate, symmetric bilinear form on V. For a subspace $W \subset V$ put $W^{\perp} := \{v \in V\}$ $V : \forall w \in W : b(v, w) = 0$. Prove that W^{\perp} is a linear subspace of V of dimension $\dim(V) - \dim(W)$ and that the following conditions are equivalent.
	- (a) The restriction of b to W is non-degenerate.
	- (b) The restriction of b to W^{\perp} is non-degenerate.
	- (c) $W \cap W^{\perp} = \{0\}.$
	- (d) $V = W \oplus W^{\perp}$.
- (27) Consider \mathbb{R}^{n+1} endowed with the bilinear form $b(x, y) = x^1y^1 + \cdots + x^n y^n x^{n+1}y^{n+1}$ and the subset $\mathcal{H}^n := \{x \in \mathbb{R}^{n+1} : b(x, x) = -1, x^{n+1} > 0\}$. Show that \mathcal{H}^n is a smooth submanifold of \mathbb{R}^{n+1} and that b induces a (positive definite) Riemannian metric on \mathcal{H}^n . The resulting Riemannian manifold is called *hyperbolic space* of dimension n. Show

that there is a natural transitive action of the orthogonal group $O(n, 1)$ of b on \mathcal{H}^n , which has the property that each of the maps ℓ_q is compatible with the Riemannian metric.

- (28) Let $B^n = \{x \in \mathbb{R}^n : |x| < 1\}$ be the *n*-dimensional unit ball. Define a map $f : B^n \to$ \mathcal{H}^n by $f(x) := \frac{1}{\sqrt{2\pi}}$ $\frac{1}{1-|x|^2}(x,1)$. Prove that f is a diffeomorphism for each n and give a geometric description of f for $n = 2$. Compute the Riemannian metric on $Bⁿ$ that is obtained by pulling back the hyperbolic metric on \mathcal{H}^n by f.
- (29) Consider the standard Hermitian inner product \langle , \rangle on \mathbb{C}^n and let $\omega : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{R}$ its imaginary part. Show that ω defines a non-degenerate, skew-symmetric real bilinear form on the real vector space \mathbb{C}^n , which in addition satisfies $\omega(iz, iw) = \omega(z, w)$ for all $z, w \in \mathbb{C}^n$.
- (30) The Heisenberg group: Prove that the set of all real $(n + 2) \times (n + 2)$ -matrices, which have the block form $\sqrt{ }$ \mathcal{L} 1 u a $0 \quad \mathbb{I} \quad v$ 0 0 1 \setminus , with block sizes 1, n and 1 and $\mathbb{I} \in M_n(\mathbb{R})$ denoting the unit matrix, form a Lie subgroup of $GL(n+2,\mathbb{R})$. Show further that

the matrices such that $u = v = 0$ and $a \in \mathbb{Z}$ form a discrete normal subgroup. Define the Heisenberg group \mathcal{H}_n as the quotient group.

- (31) In the setting of the previous exercise, show the sending a matrix as above to $(u_1 +$ $iv_1, \ldots, u_n + iv_n, e^{2\pi i a}$ defines a diffeomorphism $\mathcal{H}_n \to \mathbb{C}^n \times U(1)$. Describe the multiplication on \mathcal{H}_n in this picture. In particular, show that for elements $(z, \varphi), (w, \psi) \in$ $\mathbb{C}^n \times U(1)$, the commutator in \mathcal{H}_n corresponds to $(0, e^{-2\pi i \omega(z,w)})$, where ω is the skew symmetric bilinear form from exercise (29). Conclude from this that the commutator subgroup of \mathcal{H}_n coincides with the center $Z(\mathcal{H}_n)$ and is isomorphic to $U(1)$.
- (32) Similarly to exercise (31) prove that the Lie algebra \mathfrak{h}_n of the Heisenberg group can be identifies with $\mathbb{C}^n \oplus \mathbb{R}$, endowed with the bracket $[(z, a), (w, b)] = (0, -\omega(z, w))$. Compute the exponential map of the Heisenberg group as a map $\mathbb{C}^n \oplus \mathbb{R} \to \mathbb{C}^n \times U(1)$. Show that there is a real basis $\{q_1, \ldots, q_n, p_1, \ldots, p_n, z\}$ for \mathfrak{h}_n , such that $z \in \mathfrak{z}(\mathfrak{h}_n)$, $[q_i, q_j] = [p_i, p_j] = 0$, and $[q_i, p_j] = \delta_{ij} z$.
- (33) Consider a matrix with entries u, v and a as in exercise (30). Define an action of such a matrix on a function $f : \mathbb{R}^n \to \mathbb{C}$ by $((u, v, a) \cdot f)(x) := e^{2\pi i (a - \langle v, x \rangle)} f(x - u)$. Prove that this defines a homomorphism from \mathcal{H}_n to the group of invertible linear maps on the vector space of all functions $\mathbb{R}^n \to \mathbb{C}$. Explain why for an L^2 -function f, also $(u, v, a) \cdot f$ is an L²-function. Finally, show that $f \mapsto (u, v, a) \cdot f$ defines a unitary operator on $L^2(\mathbb{R}^n,\mathbb{C})$.
- (34) Consider the Lie algebra \mathfrak{h}_n of the Heisenberg group as in exercise (32). For a smooth function $f : \mathbb{R}^n \to \mathbb{R}^n$ with compact support and an element $X \in \mathfrak{h}_n$ prove that $(X \cdot f)(x) := \frac{d}{dt}|_{t=0}(\exp(tX) \cdot f)(x)$ defines a compactly supported smooth function $X \cdot f : \mathbb{R}^n \to \mathbb{R}^n$. Show that $[X, Y] \cdot f = X \cdot (Y \cdot f) - Y \cdot (X \cdot f)$ holds for all $X, Y \in \mathfrak{h}_n$ and $f \in C_c^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. Compute the actions of the elements of the basis constructed in exercise (32).