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based on the joint article math.DG/0504469 with V. Žádńık
(Brno)

Chains on a CR manifold M form a system of canonical
unparametrized curves, one in each direction transverse to the
contact subbundle

They determine a Cartan geometry on an open subset of the
projectivized tangent bundle of M

We analyze this Cartan geometry in terms of the canonical
Cartan connection associated to the CR structure

Apart from other results on the chains, we obtain a conceptual
proof of the fact that a chain preserving diffeomorphism must
be a CR isomorphism or a CR anti–isomorphism
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Let M be a smooth manifold of dimension 2n + 1.

almost CR structure of hypersurface type: subbundle
H ⊂ TM of corank 1, J : H → H complex structure on H

Levi–bracket: The tensorial map L : H × H → TM/H
induced by the Lie bracket of vector fields. We always assume
that L is non–degenerate

partial integrability : L(Jξ, Jη) = L(ξ, η). Then L is the
imaginary part of a Hermitian form; signature (p, q) of M

equivalently for H ⊗ C = H1,0 ⊕ H0,1 we have
[H0,1,H0,1] ⊂ H ⊗ C.

integrability : [H0,1,H0,1] ⊂ H0,1 or equivalently vanishing of
the Nijenhuis tensor N : H × H → H induced by

N(ξ, η) = [ξ, η]− [Jξ, Jη] + J([Jξ, η] + [ξ, Jη]).
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The homogeneous model

Consider V = Cn+2 with a Hermitian form 〈 , 〉 of signature
(p + 1, q + 1) with p + q = n, let C ⊂ V be the cone of non–zero
null–vectors, and let M ⊂ P(V) = CPn+1 be the projectivization
of C.

As a real hypersurface in a complex manifold, M inherits a CR
structure of signature (p, q). Let π : C → M be the projection.
Then for v ∈ C, map Tvπ induces isomorphisms

{w ∈ V : <(〈w , v〉) = 0}/Cv → Tπ(v)M

{w ∈ V : 〈w , v〉 = 0}/Cv → Hπ(v)M

The group G = PSU(V) acts on M by CR automorphisms so
M ∼= G/P, where P ⊂ G is the stabilizer of an isotropic line
`0 ⊂ V. It turns out that G = AutCR(M).
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Choose a basis {e0, . . . , en+1} for V such that

〈v ,w〉 = v0w̄n+1 + vn+1w̄0 +
∑p

j=1 vj w̄j −
∑n

j=p+1 vj w̄j .

Then the Lie algebra g of G has the form

g =


w Z iz

X A −IZ ∗

ix −X ∗I −w̄

 : w − w̄ + tr(A) = 0


with x , z ∈ R, w ∈ C, X ∈ Cn, Z ∈ Cn∗, and A ∈ u(p, q), where I
is the diagonal matrix diag(1, . . . , 1,−1, . . . ,−1). This gives a
decomposition

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

such that [gi , gj ] ⊂ gi+j and the Lie algebra p of P is g0⊕ g1⊕ g2.
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Theorem (Tanaka, Chern–Moser)

Let M be a partially integrable almost CR manifold of signature
(p, q). Then there is a canonical principal bundle p : G → M with
structure group P and a canonical Cartan connection ω ∈ Ω1(G, g)
which provide an equivalent description of the structure.

The correspondence to the underlying structure is as follows: Via
ω, we obtain an isomorphism TM ∼= G ×P (g/p). Now g/p

contains the P–invariant complex subspace (g−1 ⊕ p)/p which
under this isomorphism has to induce the CR subbundle H ⊂ TM
(with its complex structure).
The Cartan connection satisfies a normalization condition on its
curvature, which makes it unique.
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Chains

Chains form a family of distinguished paths (unparametrized
curves) in a CR manifold. Given a point x ∈ M and a line ` in
TxM which is not contained in Hx , there is a unique chain c
through x such that Txc = `.

For the homogeneous model M = P(C), the chains are exactly the
intersections of M with those projective lines in P(V) which are
not contained in M.
In general, chains can be defined as solutions of a certain system of
ODE’s or via the canonical Cartan connection:

Let (p : G → M, ω) be the canonical Cartan geometry associated
to a partially integrable almost CR structure on M. Then the
chains on M are the projections of the integral curves of the rank
one subbundle ω−1(g−2) ⊂ TG.
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Path geometries

The space of directions on a manifold N can be naturally
interpreted as the projectivized tangent bundle PTN. This is a
smooth fiber bundle over N with fiber RPdim(N)−1.

Any immersed one–dimensional submanifold ` ⊂ N naturally
lifts to an immersed submanifold ˆ̀⊂ PTN.

Smooth families of paths with one path through each point in
each direction are equivalent to rank one foliations of PTN
and hence to appropriate line subbundles in TPTN.

This notion of path geometries immediately generalizes to
open subsets of PTN.

Hence chains in M determine a line subbundle on the space
P0TM of transverse directions.
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Put G̃ := PGL(k + 2, R), and let P̃ be the joint stabilizer of the
line spanned by the first basis vector and the plane spanned by the
first two basis vectors.

block decomposition of the Lie algebra g̃ of the form g̃0 g̃E
1 g̃2

g̃E
−1 g̃0 g̃V

1

g̃−2 g̃V
−1 g̃0


with blocks of size 1, 1, and k, such that p̃ = g̃0 ⊕ g̃1 ⊕ g̃2.

G̃/P̃ ∼= PT (RPk) in such a way that g̃V
−1 corresponds to the

vertical subbundle, while g̃E
−1 corresponds to foliation

determined by the lifts of projective lines.
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Theorem

Let U ⊂ PTN be an open subset and let E ⊂ TU be a line
subbundle which is complementary to the vertical subbundle within
the tautological subbundle. Then there is a canonical principal
bundle G̃ → U with structure group P̃ endowed with a canonical
normal Cartan connection ω̃ ∈ Ω1(G̃, g̃) which induces the given
structure. The pair (G̃, ω̃) is unique up to isomorphism.

“inducing the given structure” means that under the
isomorphism TU ∼= G̃ ×P̃ (g̃/p̃) obtained from ω̃, the
subspaces g̃V

−1 and g̃E
−1 of g̃/p̃ correspond to the vertical

subbundle respectively to E .

ω̃ satisfies a normalization condition on its curvature, which
makes it unique
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Let M be a manifold endowed with a partially integrable almost
CR structure, and let (p : G → M, ω) be the canonical Cartan
bundle and connection. Via the adjoint action, P acts on
g/p ∼= g−2 ⊕ g−1. Let Q ⊂ P be the stabilizer of the line g−2.
Then

N := G/Q is naturally isomorphic to P0TM.

G → N is a principal fiber bundle with structure group Q on
which ω ∈ Ω1(G, g) defines a Cartan connection

q = g0 ⊕ g2 and g−2 defines a Q–invariant subspace in g/q.
Under the isomorphism TN ∼= G ×Q (g/q) obtained via ω this
subspace induces the line subbundle defining the chains.
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Basic question: Can we construct the canonical Cartan geometry
(G̃ → N, ω̃) on N = P0TM determined by the chains directly
(i.e. without prolongation) from the Cartan geometry (G → N, ω).

To obtain (G̃, ω̃) from (G, ω) we need a homomorphism i : Q → P̃
and a linear map α : g → g̃ such that

1 α ◦ Ad(g) = Ad(i(g)) ◦ α for all g ∈ Q

2 α|q = i ′ : q → p̃

3 the induced map α : g/q → g̃/p̃ is a linear isomorphism

Given these data, one obtains an extension functor by putting
G̃ := G ×Q P̃, where Q acts on P̃ via i , and letting ω̃ be the
unique form such that ω̃|TG = α ◦ ω.

Andreas Čap Geometry of chains



CR structures and the canonical Cartan connection
Chains and the associated path geometry

Relating the two Cartan geometries
Applications

Basic question: Can we construct the canonical Cartan geometry
(G̃ → N, ω̃) on N = P0TM determined by the chains directly
(i.e. without prolongation) from the Cartan geometry (G → N, ω).

To obtain (G̃, ω̃) from (G, ω) we need a homomorphism i : Q → P̃
and a linear map α : g → g̃ such that

1 α ◦ Ad(g) = Ad(i(g)) ◦ α for all g ∈ Q

2 α|q = i ′ : q → p̃

3 the induced map α : g/q → g̃/p̃ is a linear isomorphism

Given these data, one obtains an extension functor by putting
G̃ := G ×Q P̃, where Q acts on P̃ via i , and letting ω̃ be the
unique form such that ω̃|TG = α ◦ ω.
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Equivalence: Two pairs (i , α) and (̂i , α̂) are equivalent iff there is
an element g̃ ∈ P̃ such that î(g) = g̃−1i(g)g̃ and
α̂ = Ad(g̃−1) ◦ α. The extension functors associated to equivalent
pairs are naturally isomorphic.

Proposition

If the extension functors associated to (i , α) and (̂i , α̂) produce
isomorphic results for one partially integrable almost CR structure,
then the two pairs are equivalent.

Strategy

Find (i , α) which produces a regular normal Cartan geometry
for the homogeneous model G/P

Then (i , α) is determined up to equivalence, an we can check
for which structures the resulting extension functor produces
the canonical Cartan geometry
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We have to determine the effect of the extension functor
associated to (i , α) on curvatures. The curvatures are most easily
encoded in the curvature functions

κ : G → L(Λ2(g/p), g) κ̃ : G̃ → L(Λ2(g̃/p̃), g̃)

Proposition

The restriction of κ̃ to G ⊂ G̃ is given by

(X̃ + p̃, Ỹ + p̃) 7→ α(κ(X ,Y )) + [α(X ), α(Y )]− α([X ,Y ]),

where X ∈ g is such that α(X + q) = X̃ + p̃ and likewise for Y .
This restriction completely determines κ̃.
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Thus the problem for the homogeneous model is reduced to the
purely algebraic question of finding (i , α) in such a way that the
map

(X̃ + p̃, Ỹ + p̃) 7→ [α(X ), α(Y )]− α([X ,Y ]),

with X ,Y as before satisfies the normalization condition for
geometries of type (G̃ , P̃). This is solved by

i

(
ϕ 0 iaϕ
0 Φ 0
0 0 ϕ̄−1

)
:=


|ϕ| −a|ϕ| 0 0

0 |ϕ|−1 0 0

0 0 <(
|ϕ|
ϕ Φ) −=(

|ϕ|
ϕ Φ)

0 0 =(
|ϕ|
ϕ Φ) <(

|ϕ|
ϕ Φ)

 ,

α
(

w Z iz
X A −IZ∗
ix −X∗I −w̄

)
:=

 <(w) −z <(Z) −=(Z)
x −<(w) −=(X∗I) −<(X∗I)

<(X ) =(IZ∗) <(A) −=(A)+=(w)
=(X ) −<(IZ∗) =(A)−=(w) <(A)
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The map α : g → g̃ is not a Lie algebra homomorphism, so even
for the homogeneous model we get κ̃ 6= 0. If κ = 0, then κ̃ is a
map g̃V

−1 ⊗ g̃−2 → g̃0 which can be computed explicitly.

Theorem

Let M be a partially integrable almost CR manifold, and put
N = P0TM. Applying the extension functor associated to (i , α) to
(G → N, ω), one the canonical Cartan associated to the path
geometry of chains if and only if the CR Cartan connection is
torsion free and hence iff M is integrable, i.e. CR.
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From the explicit description of κ̃, one can compute the harmonic
curvature components which are the principal curvature quantities.
There are two independent components for this geometry whose
geometric interpretation is well understood. Using this one proves

The chain equation is never locally equivalent to the trivial
equation y ′′ = 0. For the homogeneous model, one obtains a
non–trivial system of ODE’s with large automorphism group.

The path geometry of chains is torsion free if and only if M is
spherical, i.e. locally CR isomorphic to G/P.

There is no linear connection on M which has the chains
among its (unparametrized) geodesics.
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The complete symmetrization of the mapping

(ξ, η, ζ) 7→ L(ξ, J(η))J(ζ)

can be recovered from the harmonic curvature of the path
geometry of chains. Hence the almost complex structure J
can be reconstructed up to sign, and the signature of M can
be reconstructed. This implies

Corollary

Let M1 and M2 be CR manifolds and let f : M1 → M2 be a local
contact diffeomorphism which maps chains to chains. Then f is
either a local CR isomorphism or a local CR anti–isomorphism.
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