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This talk reports on joint work with K. Flood and T. Mettler
(Brig), see arXiv:2409.12811

Building on classical work of Chern-Simons, we define global
invariants for certain types of connection forms with values in
a Lie algebra g on principal H-bundles over compact oriented
3-manifolds, which admit global smooth sections.

This needs a non-degenerate invariant bilinear form on g and
depending on this form and on H, the invariants can have
values in R or in R/Z.
In the case of principal connections, we introduce a concept of
flat extension, which is then shown to either imply vanishing
of the invariants or integrality of an R-valued invariant.

Geometric interpretations of flat extensions are provided in
several cases.
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Chern-Simons forms and the resulting invariants can be defined in
the general setting of Chern-Weil theory. Here we restrict to the
simplest version of the Chern-Simons 3-form, which leads to
invariants in dimension 3.

Consider a Lie algebra (g, [ , ]) endowed with a non-degenerate,
invariant, symmetric bilinear form ⟨ , ⟩ and Ω∗(N, g) for a
manifold N. For α ∈ Ωk(N, g) and β ∈ Ωℓ(N, g) we then obtain
[α, β] ∈ Ωk+ℓ(N, g) and ⟨α, β⟩ ∈ Ωk+ℓ(N) which are nicely
compatible with the exterior derivative.

To θ ∈ Ω1(N, g) one associates Θ := dθ + 1
2 [θ, θ] ∈ Ω2(N, g) and

then considers ⟨Θ,Θ⟩ ∈ Ω4(N). If N is the total space of a
principal G -bundle and θ is a principal connection form, then Θ is
its curvature and ⟨Θ,Θ⟩ is closed, horizontal and equivariant.
Hence it determines a cohomology class on the base, which
generalizes the first Pontryagin class.
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The starting point of Chern-Simons theory is that for
CS(θ) := ⟨θ, dθ⟩+ 1

3⟨θ, [θ, θ]⟩ one gets ⟨Θ,Θ⟩ = dCS(θ) (but
CS(θ) does not descend to the base). Note that if θ is flat, CS(θ)
is closed and hence determines a cohomology class on N.

Let (M, g) be a closed, oriented, Riemannian 3-manifold, N → M
its orthonormal frame bundle, and θ ∈ Ω1(N, o(n)) the Levi-Civita
connection. Since M is parallelizable, there is a global section
σ : M → N and one defines cσ :=

∫
M σ∗CS(θ) ∈ R. Normalizing

⟨ , ⟩ appropriately, one obtains for any other section σ̂,
cσ̂ − cσ ∈ Z, and hence an invariant in R/Z. Chern-Simons proved
that this is conformally invariant and vanishes if M admits an
isometric immersion into R4.

D. Burns and C. Epstein used CS(θ) for the canonical Cartan
connection of a compact, oriented CR 3-manifold with trivial
Cartan bundle to similarly define a global invariant. Here one can
show that cσ̂ = cσ so the invariant is R-valued.
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Background and definition of the invariants
Flat extensions

General definition of the invariants

We fix (g, [ , ], ⟨ , ⟩) and consider a subgroup H of a Lie group G
with Lie algebra g, so h ⊂ g. For a principal H-bundle π : P → M
let R : P × H → P be the principal action and consider the
“partial maps” Rh : P → P for h ∈ H and iu : H → P for u ∈ P.

Definition

θ ∈ Ω1(P, g) is called a g-connection form if R∗
hθ = Ad(h−1) ◦ θ

and i∗uθ = µH , the Maurer-Cartan form of H.

Observe that µH ∈ Ω1(H, h) ⊂ Ω1(H, g) and using the latter
interpretation, we can form CSg(µH) ∈ Ω3(H), which is closed
since µH satisfies the Maurer-Cartan equation. This also implies
that CSg(µH) is the left invariant form associated to
(X ,Y ,Z ) 7→ −1

6⟨X , [Y ,Z ]⟩. If h is simple, this is a multiple of the
Cartan 3-form, which generates H3(H,Z).
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Fix a principal H-bundle π : P → M over a closed oriented
3-manifold that admits a global section σ. For a g-connection form
θ ∈ Ω1(P, g) consider cσ :=

∫
M σ∗CS(θ) ∈ R.

Proposition

(1) If CSg(µH) is exact, then cσ ∈ R is independent of σ and
hence an invariant of θ.
(2) If [CSg(µH)] ∈ H3(H,Z) ⊂ H3(H,R), then cσ + Z ∈ R/Z is
independent of σ and hence an invariant of θ.

Sketch of proof: For a section σ̂, we get σ̂(x) = R(σ(x), h(x))
for some smooth function h : M → H. A direct computation shows
that R∗CS(θ) = CS(θ) + CSg(µH) + dφ for some φ ∈ Ω3(P).
This easily implies that cσ̂ = cσ +

∫
M h∗CSg(µH).

Note: The restriction of ⟨ , ⟩ to h may be degenerate.
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Examples on compact, oriented 3-manifolds

1 G = H = SO(3), ⟨ , ⟩ normalized such that
∫
H CS(µH) = ±1:

classical R/Z-valued invariant for Riemannian manifolds

2 G = H = SO0(2, 1): R-valued invariant for Lorentzian
manifolds admitting a global orthonormal frame

3 G = H = SL(3,R),⟨ , ⟩ normalized as for SO(3): R/Z-valued
invariant for volume preserving affine connections

4 G = PSU(2, 1) ⊃ H stabilizer of isotropic line: R-valued
Burns-Epstein invariant for CR manifolds admitting a global
CR vector field; Here ⟨ , ⟩ is degenerate on h.

5 Similar R-valued invariants for Legendrean contact structures
(or equivalently path geometries or 2nd order ODE)
respectively contact projective structures. In both cases, a
condition ensuring triviality of the Cartan bundle has to be
imposed.
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These provide a systematic way to construct sufficient conditions
for vanishing of Chern-Simons invariants. Here we realize g as a
Lie subalgebra of a bigger Lie algebra g̃ and consider ⟨ , ⟩ on g̃
such that the restriction to g is non-degenerate.

This implies that g̃ = g⊕ g⊥ and this decomposition is g-invariant.
Hence g̃-valued forms decompose as α = α⊤ + α⊥ according to
their values and G -equivariancy properties are preserved. Note that
if in addition [g⊥, g⊥] ⊂ g, then (g̃, g) is a symmetric pair.

Using ⟨ , ⟩ to define CS for both g-valued and g̃-valued forms, a
computation leads to the following key lemma

Lemma

For θ ∈ Ω1(N, g̃), θ = θ⊤ + θ⊥ with curvature Θ = Θ⊤ +Θ⊥, we
get CS(θ) = CS(θ⊤) + ⟨θ⊥,Θ⊥⟩. In particular, if θ satisfies the
Maurer-Cartan equation, then CS(θ) = CS(θ⊤).
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Starting from G ⊂ G̃ , this first implies that if ⟨ , ⟩ is chosen such
that [CS(µG̃ )] ∈ H3(G̃ ,Z), then [CS(µG )] ∈ H3(G ,Z).

For Lie subalgebras of gl(n,R), one can obtain invariant bilinear
forms from the trace-form on gl(n,R). In particular, this provides
⟨ , ⟩ for so(n) ⊂ sl(n,R) as well as for so(n) ⊂ so(n + 1) and
sl(n,R) ⊂ sl(n + 1,R). For this choice, one obtains the familiar
expression CS(θ) = tr(θ ∧ dθ + 2

3θ ∧ θ ∧ θ).

Now let p : P → M be a principal P-bundle and let θ ∈ Ω1(P, g)
be a principal connection. Then a flat extension of type (G , G̃ ) is a
G -equivariant smooth map F : P → G̃ such that θ = F ∗(µ⊤

G̃
).

Theorem

Suppose that θ ∈ Ω1(P, g) as above admits a flat extension F of
type (G , G̃ ) such that [F ∗(µ⊥

G̃
),F ∗(µ⊥

G̃
)] ∈ Ω2(P, g). If CS(µG̃ ) is

exact then cσ = 0 and [CS(µG̃ )] ∈ H3(G̃ ,Z) implies cσ(θ) ∈ Z.
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The basic examples of flat extensions are obtained from lifting the
Gauss map of a flat immersion to a frame bundle. In the
Riemannian case, G = SO(3) and G̃ = SO(4) and we use an
isometric immersion f : M → R4. Viewing a point u ∈ P, the
ON-frame bundle, as u : R3 → TxM, we can add the oriented unit
normal to Tx f ◦ u to obtain an orthogonal map R4 → R4. This
defines F : P → SO(4) and since (g̃, g) is a symmetric pair, the
theorem implies vanishing of the Chern-Simons invariant.

In the Lorentzian case, there are two cases with G̃ = SO0(3, 1) and
G̃ = SO0(2, 2), respectively. As above, flat extensions are obtained
from isometric immersions into R3,1 respectively into R2,2 and
(g̃, g) is a symmetric pair in both cases. In the first case, the
theorem implies integrality, in the second case vanishing of the
Chern-Simons invariant (which is R-valued here).

Both in the Riemannian and the Lorentzian case, F ∗(µ⊥
G̃
)

equivalently encodes the second fundamental form.
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The case G = SL(3,R) of volume preserving connections with
G̃ = SL(4,R) is a bit more difficult, but ties in nicely with the
classical notion of an equiaffine immersion of (M,∇). In addition
to an immersion f : M → R4 one has to choose ℓ : M → RP3,
such that ℓ(x) is transversal to Tx f (TxM) for any x ∈ M.

Given (f , ℓ) and x ∈ M, we can decompose R4 = Tf (x)R4 as
Tx f (TxM)⊕ ℓ(x). Hence we can decompose the restriction of the
flat connection ∇̃ into a tangential and a transversal component.
The immersion is called equiaffine iff f ∗(∇̃⊤) = ∇.

The pair (f , ℓ) determines a lift of the Gauss map to a map F from
the volume preserving frame bundle of M to SO(4), which then
defines a flat extension. Again, F ∗(µ⊥

G̃
) admits an interpretation as

the second fundamental form and the shape operator (which are
independent objects here). Using that ∇ is volume preserving, one
proves that [F ∗(µ⊥

G̃
),F ∗(µ⊥

G̃
)] is g-valued and the theorem implies

vanishing of the Chern-Simons invariant.
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