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of this is of course ξ �→ Tπ·(ξ, 0). This implies that, viewing S2n+1 as the unit sphere
for the standard Hermitian inner product on Cn+1, the subbundle Hz ⊂ TzS

2n+1

is again the complex orthocomplement of z sitting inside its real orthocomplement.
But identifying Cn+1 with R2n+2, the real part of the Hermitian inner product
is the standard inner product, while its imaginary part is a nondegenerate skew
symmetric bilinear form. Hence, we obtain exactly the same subbundle H as in
1.1.4, so in particular we again have obtained a contact structure on S2n+1.

Moreover, as in 1.1.4 we obtain a contact form α, such that the restriction
of dα to H is just the imaginary part of a positive definite Hermitian form. In
the language of almost CR–structures, this means that the structure is strictly
pseudoconvex and partially integrable. In fact, viewing S2n+1 as the unit sphere
in Cn+1, the subspace Hx is the maximal complex subspace of TxS2n+1 ⊂ Cn+1.
Hence, the almost CR–structure is embeddable and thus integrable, so it is a CR–
structure. This, however, is not important for our purposes.

As in the previous examples, it follows from the existence of a canonical Cartan
connection for CR–structures that the actions of elements of SU(n+1, 1) are exactly
the CR–diffeomorphisms of the CR–structure on S2n+1. Here a CR–diffeomorphism
is a diffeomorphism which preserves the contact structure H and further has the
property that the restriction of the tangent map to the contact subbundle is complex
linear. The curved analogs of this homogeneous space are strictly pseudoconvex
partially integrable almost CR–manifolds of dimension 2n + 1. These are smooth
manifolds M of dimension 2n + 1 endowed with a rank n complex subbundle H ⊂
TM which defines a contact structure on M . In addition, one has to require
existence of local contact forms α such that the restriction of dα to H ×H is the
imaginary part of a definite Hermitian form.

1.2. Some background from differential geometry

In this section, we review some basic facts on differential geometry and analysis
on manifolds which will be necessary for further development. Our main purpose
here is to fix the notation and conventions used in the sequel, as well as to give a
more detailed collection of prerequisites for the further text. The basic reference
for this section is [KMS]. At the same time, we stress the basic concepts of frames,
natural bundles, and the role of the symmetry groups in the properties of geometric
objects. This will remain one of the main features of our exposition in the entire
book.

1.2.1. Smooth manifolds. Unless otherwise stated, all manifolds we con-
sider are finite dimensional and second countable and we assume that all con-
nected components have the same dimension. Any manifold comes equipped with
a maximal atlas, i.e. a maximal collection of open subsets Uα ⊂ M together with
homeomorphisms uα : Uα → uα(Uα) onto open subsets of Rn, such that for all
α, β with Uαβ := Uα ∩ Uβ �= ∅ the subset uα(Uαβ) is open and the composition
uαβ := uα ◦ u−1

β : uβ(Uαβ) → uα(Uαβ) is smooth (C∞). A chart on M is any
element (Uα, uα) of this maximal atlas. Such a chart gives rise to local coordinates
ui

α : Uα → R on M .
A map f : M → N between smooth manifolds is smooth, if and only if its

expression in one (or equivalently any) local coordinate system around any point
in M is smooth. A diffeomorphism is a bijective smooth map, whose inverse is
smooth, too. A local diffeomorphism f : M → N is a smooth map such that for
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each point x ∈ M there is an open neighborhood U of x in M such that f(U) ⊂ N
is open and the restriction f |U : U → f(U) is a diffeomorphism.

The space C∞(M, R) of smooth real–valued functions on M forms an algebra
under the pointwise operations. For f ∈ C∞(M, R) the support supp(f) of f is
the closure of the set of all x ∈ M such that f(x) �= 0. The concept of support
generalizes in an obvious way to smooth functions with values in a vector space and
to smooth sections of vector bundles; see 1.2.6 below.

A fundamental result is that any open covering of a smooth manifold M admits
a subordinate partition of unity. This means that if {Vi : i ∈ I} is a family of open
subsets of M such that M =

�
i∈I Vi, then there exists a family {fα} of smooth

functions on M with values in [0, 1] ⊂ R such that for any α there exists an i ∈ I
with supp(fα) ⊂ Vi, any point x ∈ M has a neighborhood which meets only finitely
many of the sets supp(fα), and

�
α fα(x) = 1 for all x ∈ M .

For a point x ∈ M , the tangent space TxM to M in the point x is defined to
be the space of all linear maps ξx : C∞(M, R) → R which are derivations at x,
i.e. which satisfy the Leibniz rule ξx(φψ) = ξx(φ)ψ(x) + φ(x)ξx(ψ). These deriva-
tions form a vector space whose dimension equals the dimension of the manifold.
Let c : I → M be a smoothly parametrized curve defined on an open interval I ⊂ R.
Then for t ∈ I and x := c(t), one obtains a tangent vector in TxM by mapping
f ∈ C∞(M, R) to (f ◦ c)�(t) ∈ R. This tangent vector will be denoted by c�(t). It
turns out that any tangent vector can be obtained in this way.

If f : M → N is a smooth map between smooth manifolds, then for x ∈ M
and ξx ∈ TxM , we define Txf · ξx : C∞(N, R) → R by (Txf · ξx)(φ) := ξx(φ ◦ f).
One immediately verifies that Txf · ξx ∈ Tf(x)N and this defines a linear map
Txf : TxM → Tf(x)N , the tangent map of f at x. The tangent map Txf is bijective
if and only if there is an open neighborhood U of x in M such that f(U) ⊂ N is open
and f restricts to a diffeomorphism from U to f(U). In particular, f : M → N is a
local diffeomorphism if and only if all tangent maps Txf are linear isomorphisms.
A smooth map f is called an immersion if all of its tangent maps are injective
and a submersion if all of its tangent maps are surjective. The images of injective
immersions are called immersed submanifolds.

A k–dimensional submanifold N ⊂ M in a smooth manifold M of dimension
n is a subset such that for each x ∈ N there is a chart (U, u) for M with x ∈ U
such that u(U ∩N) = u(U)∩Rk ⊂ Rn. Such a chart is called a submanifold chart.
Restricting submanifold charts to N and their images to Rk one obtains an atlas
for N , so N itself is a smooth manifold. The inclusion of N into M is not only an
injective immersion but also an embedding, i.e. a homeomorphism onto its image.
In view of this fact the name embedded submanifold is also used in this situation.

The union TM of all tangent spaces is called the tangent bundle of the manifold
M . For each smooth map f : M → N we get the tangent map Tf : TM → TN
of f by putting together the tangent maps at the individual points of M . The
tangent bundle is endowed with the unique smooth structure such that the obvious
projection p : TM → M and all tangent maps Tf become smooth maps. In this
picture, the chain rule just states that T is a covariant functor on the category of
smooth manifolds, i.e. T (g ◦ f) = Tg ◦ Tf . The individual tangent spaces TxM are
vector spaces and each point x ∈ M has an open neighborhood U in M such that
p−1(U) ⊂ TM is diffeomorphic to U × Rm in a way compatible with the natural
projections to U . Thus, TM is naturally a vector bundle over M and the tangent
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map to any smooth mapping is a vector bundle homomorphism; see 1.2.6 below for
the terminology of bundles.

A vector field is a smooth section ξ : M → TM of the projection p, i.e. a
smooth map such that ξ(x) ∈ TxM for all x ∈ M . The space of all smooth vector
fields on M will be denoted by X(M). It is a vector space and a module over
C∞(M, R) under pointwise operations. For ξ ∈ X(M) and f ∈ C∞(M, R), one
defines a function ξ · f : M → R by (ξ · f)(x) = (ξ(x))(f). Smoothness of ξ easily
implies that ξ · f ∈ C∞(M, R), while the fact that any ξ(x) is a derivation at x
immediately implies that ξ · (fg) = (ξ · f)g + f(ξ · g). Thus, ξ defines a derivation
C∞(M, R) → C∞(M, R) and one shows that this induces a bijection between X(M)
and the space of all derivations. Since the commutator of two derivations is again
a derivation, we may associate to two vector fields ξ, η ∈ X(M) a vector field
[ξ, η] ∈ X(M), which is called the Lie bracket of ξ and η and characterized by
[ξ, η] · f = ξ · (η · f)− η · (ξ · f).

Any local diffeomorphism f : M → N induces a pullback operator f ∗ : X(N) →
X(M) defined by f∗ξ(x) = (Txf)−1(ξ(f(x))). This pullback is compatible with the
Lie bracket, i.e. for ξ, η ∈ X(N) we obtain f ∗[ξ, η] = [f∗ξ, f∗η]. If P is another
manifold and g : N → P another local diffeomorphism, then (g ◦ f)∗ = f∗ ◦ g∗ :
X(P ) → X(M). For a diffeomorphism f : M → N , there is also a covariant action
on vector fields, i.e. an operator f∗ : X(M) → X(N), which may be simply defined
by f∗ := (f−1)∗.

Given a vector field ξ on M , we may ask for integral curves, i.e. smooth curves
c : I → M defined on open intervals in R such that c�(t) = ξ(c(t)) for all t ∈ I. The
theorem on existence and uniqueness of solutions of ordinary differential equations
implies that for each point x ∈ M there are a unique maximal interval Ix ⊂ R
and maximal integral curve cx : Ix → M such that cx(0) = x. A slightly finer
analysis also using the smooth dependence of the solution on the initial conditions
implies that the union of all Ix forms an open neighborhood D(ξ) of {0} × M in
R ×M , and Flξt (x) := cx(t) defines a smooth mapping Flξ : D(ξ) → M called the
flow of the vector field ξ. For t, s ∈ R and x ∈ M one has the basic equation
Flξt (Flξs(x)) = Flξt+s(x), which is usually referred to as the flow property or the
one–parameter group property. It is also known that under additional assumptions
existence of one side of the equation implies existence of the other side. More
precisely, if (s, x) and (t,Flξs(x)) lie in D(ξ), then (t+ s, x) ∈ D(ξ) and the opposite
implication also holds provided that t and s have the same sign. Finally, it turns
out that for any point x ∈ M and any t0 ∈ Ix there is a neighborhood U of x

in M such that the restriction of Flξt to U is a diffeomorphism onto its image for
all 0 ≤ t ≤ t0. A vector field is called complete if D(ξ) = R × M , i.e. if its flow
is defined for all times. On a compact manifold, any vector field is automatically
complete. Let us notice the obvious relation between flows and pullbacks, namely
for a local diffeomorphism f : M → N and ξ ∈ X(N) we have Flξt ◦f = f ◦ Flf

∗ξ
t .

The dual bundle to TM → M is the cotangent bundle T ∗M → M , so for x ∈ M
the cotangent space T ∗x M is the space of all linear maps TxM → R. In contrast to
the tangent functor, T ∗ only has functorial properties for local diffeomorphism, and
it can be viewed either as a contravariant or as a covariant functor. The smooth
sections of the cotangent bundle are called one–forms. We write Ω1(M) = Ω1(M, R)
for the space of all smooth real one–forms on M . The pointwise operations make
Ω1(M) into a vector space and a module over C∞(M, R) and for any smooth map
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f : M → N we obtain the pullback f∗ : Ω1(N) → Ω1(M) defined by

(f∗φ)(x)(ξx) = φ(f(x))(Txf · ξx).

A simple example of a one–form is the differential df of a real–valued function f ,
defined by df(x)(ξx) := ξx(f). One may easily generalize this and consider one–
forms with values in a (finite–dimensional) vector space V . These are smooth maps
φ which associate to each point x ∈ M a linear map TxM → V . The space of
all such forms is denoted by Ω1(M,V ). For f ∈ C∞(M,V ) one obtains as above
df ∈ Ω1(M,V ).

The antisymmetric k–linear maps α : ΛkTxM → R are the elements of the kth
exterior power ΛkT ∗M of the cotangent bundle and the sections of this bundle are
called k–forms on M . The space of all k–forms on M , which again is a vector
space and C∞(M, R)–module under pointwise operations, is denoted by Ωk(M).
By convention, Ω0(M) = C∞(M, R). Differential forms can be pulled back along
arbitrary smooth functions, by defining

(f∗α)(x)(ξ1, . . . , ξk) = α(f(x))(Txf · ξ1, . . . , Txf · ξk).

In particular, for h ∈ Ω0(M) = C∞(M, R) one has f∗h = h ◦ f . Inserting the
values of vector fields ξ1, . . . , ξk into a k–form α one obtains a smooth function
α(ξ1, . . . , ξk) ∈ C∞(M, R), so α gives rise to a k–linear, alternating map X(M)k →
C∞(M, R). One shows that such a mapping is induced by a k–form if and only if
it is linear over C∞(M, R) in one (and thus any) variable.

The differential of functions, d : C∞(M, R) → Ω1(M), is a special case of the
exterior derivative. In general, the exterior derivative d : Ωk(M) → Ωk+1(M) is
given by the formula

dω(ξ0, . . . , ξk) =
k�

i=0

(−1)iξi · (ω(ξ0, . . . , �ξi, . . . , ξk))

+
�

i<j

(−1)i+jω([ξi, ξj ], ξ0, . . . , �ξi, . . . , �ξj . . . , ξk)

for all ξi ∈ X(M), where the hats denote omission of an argument. The same
formula applies for differential forms with values in any finite–dimensional vector
space V .

The exterior derivative d is the only linear differential operator which is invari-
antly defined on all manifolds; see [KMS, Theorem 34.2]. Here invariance means
commuting with the action of local diffeomorphisms, i.e. φ∗(dω) = d(φ∗ω). One
of the goals of this book is to develop general tools for the study of such basic
operators in the realm of more specific geometric structures on manifolds.

1.2.2. Distributions and foliations. A distribution D on a manifold M is
a subset D ⊂ TM such that for each x ∈ M the subset Dx = D ∩ TxM is a vector
subspace in TxM . By elementary linear algebra, each distribution can be defined
as the kernel of a (not necessarily continuous) one–form ω with values in a suitable
vector space V . The dimension of V is at least dim M − maxx∈M{dimDx}. The
distribution D is said to be of constant rank k if dimDx = k is constant, and D is
smooth if it can be defined by a smooth form ω. Equivalently, locally there must
be smooth vector fields which span the distribution in each point. A distribution
is called regular, if it is of constant rank and is smooth. An integral manifold N of
a distribution D is an immersed submanifold such that TxN ⊂ Dx for all x ∈ N . A
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maximal integral submanifold is an integral manifold N whose dimension is equal
to the rank of D in all points x ∈ N . A distribution D is called integrable if there
is a maximal integral submanifold through each point x ∈ M .

Each vector field ξ on M spans a one–dimensional distribution whose maximal
integral submanifolds are the (unparametrized) flow lines Flξt (x). In general, there
are no maximal integral submanifolds and the obstruction to their existence is given
by the Lie bracket of vector fields lying in D. The distribution D is called involutive
if for all vector fields ξ and η ∈ X(M) with ξ(x) ∈ D, η(x) ∈ D for all x ∈ M , also
[ξ, η](x) ∈ D for all x ∈ M . The following theorem (called the Frobenius theorem)
appears in all standard textbooks on differential geometry. For a general version
for distributions of nonconstant rank see e.g. [KMS, section 3].

Theorem 1.2.2. A regular distribution D ⊂ TM is integrable if and only if it
is involutive.

Given an integrable regular distribution of rank k on M , the maximal integral
submanifolds decompose M into a union of k–dimensional immersed submanifolds.
This is called the regular foliation on M defined by the distribution and the maximal
integral submanifolds are referred to as the leaves of this foliation. On the other
hand, smooth foliations define the associated distributions (defined by the tangent
spaces to the leaves) which are integrable by construction.

An immediate and very useful consequence of the last Theorem and the above
formula for the exterior differential reformulates the involutivity of D in terms of
the defining one–form ω.

Corollary 1.2.2. Let ω ∈ Ω1(M,V ) be a smooth V –valued one–form and
assume that the dimension of ker ω(x) is constant for all x ∈ M . Then the distri-
bution D = kerω is integrable if and only if dω(x)(X, Y ) = 0 for all X, Y ∈ Dx.

Equivalently, the condition of the corollary can be stated as follows: Repre-
senting D as the intersection of the kernels of dimV many one–forms ωi ∈ Ω1(M),
the exterior derivatives dωi belong to the ideal in Ω∗(M) generated by the forms
ωi.

1.2.3. Lie groups and their Lie algebras. A Lie group G is a smooth
manifold endowed with a smooth mapping µ : G×G → G, the multiplication, which
defines a group structure on G. Using the implicit function theorem one then shows
that the inversion mapping ν : G → G is smooth, too. Given an element g ∈ G,
we define the left translation λg : G → G by λg(h) = µ(g, h) = gh, and the right
translation ρg : G → G by ρg(h) = hg. Both λg and ρg are diffeomorphisms of G

with inverses λg−1 and ρg−1
, respectively. Further, one clearly has λg ◦ λh = λgh

and ρg ◦ ρh = ρhg, which also explains the use of subscripts and superscripts.
Let G be a Lie group and let ξ ∈ X(G) be a smooth vector field on G. Then

ξ is called left invariant, if and only if (λg)∗ξ = ξ for all g ∈ G, or equivalently
ξ(gh) = Thλg ·ξ(h) for all g, h ∈ G. The latter equation shows that any left invariant
vector field ξ is uniquely determined by its value ξ(e) ∈ TeG in the unit element
e of G. Conversely, it is easy to see that any X ∈ TeG extends to a left invariant
vector field LX on G. Consequently, there is a linear isomorphism between the
space XL(G) of left invariant vector fields on G and the tangent space TeG of G at
the unit element. Since the pullback along a diffeomorphism is compatible with the
Lie bracket of vector fields, the subspace XL(G) ⊂ X(G) is a Lie subalgebra. Via
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the linear isomorphism, this gives rise to a Lie bracket on the tangent space TeG,
which is explicitly given by [X, Y ] = [LX , LY ](e) for X, Y ∈ TeG. The space TeG
together with this Lie bracket is called the Lie algebra g of the Lie group G.

Similarly, as for left invariant vector fields, one has the Lie subalgebra XR(G) of
right invariant vector fields on G. Any right invariant vector field on G is uniquely
determined by its value in e, and any X ∈ g extends uniquely to RX ∈ XR(G). It is
easy to see that RX = ν∗(L−X), where ν is the inversion on G, which, in particular,
implies that [RX , RY ] = R−[X,Y ]. Another basic result is that right invariant vector
fields commute with left invariant vector fields, i.e. [LX , RY ] = 0 for all X, Y ∈ g.

It follows from the construction of the Lie algebra of a Lie group that if G and
H are Lie groups with Lie algebras g and h, and φ : G → H is a homomorphism,
i.e. a smooth map compatible with the group structures, then the tangent map
φ� = Teφ : g → h is a homomorphism of Lie algebras. For example, if G is a Lie
group and g ∈ G is any element, then the conjugation h �→ ghg−1 by g defines an
automorphism of G, so the tangent map at zero defines an automorphism Ad(g) of
the Lie algebra g. This is called the adjoint action of g ∈ G on g.

The simplest example of a Lie group is the group GL(n, K) of linear auto-
morphisms of Kn, where K is R or C, which may be also viewed as the group of
invertible n× n–matrices with entries from K. This is a smooth manifold, since it
is an open subset of the vector space Mn(K) of all n×n–matrices with entries from
K, and clearly matrix multiplication is smooth. From this it follows that the Lie
algebra gl(n, K) of GL(n, K) equals Mn(K), and one easily shows that the adjoint
representation is given by the conjugation of matrices, while the Lie bracket is given
by the commutator of matrices.

If G is an arbitrary Lie group, then a real or complex (finite–dimensional)
representation of G is a homomorphism φ from G to some GL(n, R), respectively
GL(n, C). For such a representation φ, the tangent map at e ∈ G is a homo-
morphism φ� : g → gl(n, K) of Lie algebras, i.e. a representation of g, called the
infinitesimal representation corresponding to φ. Equivalently, one may describe a
representation of G as a smooth map φ̂ : G×Kn → Kn which is linear in the second
argument and has the property that φ̂(gh, v) = φ̂(g, φ̂(h, v)) for all g, h ∈ G and
v ∈ Kn. Slightly more generally, one may consider representations G → GL(V ) for
any finite–dimensional real or complex vector space V . The corresponding infini-
tesimal representation then has values in the space L(V, V ) of all linear mappings.
For both group and Lie algebra representations, if there is no risk of confusion,
we will often omit the name of the representation and simply use the notation
(g, v) �→ g · v or gv. The adjoint action associates to any element g ∈ G an au-
tomorphism Ad(g) : g → g, which, in particular, is a linear isomorphism, so this
defines a map Ad : G → GL(g). Since mapping g to the conjugation by g is a ho-
momorphism, Ad is a group homomorphism and it is easy to see that it is smooth,
so it defines a representation of G, the adjoint representation. The infinitesimal
representation ad = Ad� : g → L(g, g) turns out to be given by ad(X)(Y ) = [X, Y ]
for X, Y ∈ g.

For each element X in the Lie algebra g of a Lie group G, we have the corre-
sponding left invariant vector field LX on G. The invariance of LX easily implies
that the vector field LX is complete, i.e. that its flow FlLX

t is defined for all times
t. In particular, we can define the exponential mapping exp : g → G by

exp(X) := FlLX
1 (e).
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One readily verifies that exp : g → G is a smooth map, whose tangent map at 0 ∈ g
is the identity, so exp restricts to a diffeomorphism from an open neighborhood
of 0 ∈ g to an open neighborhood of e ∈ G. Further, the flows of left invariant
vector fields are given by FlLX

t (g) = g exp(tX) and for right invariant vector fields
one gets FlRX

t (g) = exp(tX)g. In particular, the flows through e of LX and RX

coincide. By the flow property, this flow defines a one–parameter subgroup of G,
i.e. a smooth homomorphism from the additive group R to G. Conversely, any such
one–parameter subgroup of G is determined by its derivative at e, so t �→ exp(tX) is
the unique curve α : R → G such that α(t+s) = α(t)α(s) and such that α�(0) = X.
For the group GL(n, K) of invertible n × n–matrices, the exponential mapping is
given by the usual exponential of matrices, i.e. exp(A) = eA =

�∞
n=0

1
n!A

n.
If φ : G → H is a homomorphism of Lie groups with Lie algebras g and h and

exponential mappings expG and expH , then the description of the exponential map
as the solution of an ordinary differential equation easily implies that φ ◦ expG =
expH ◦φ�. In particular, the values of φ on the image of expG are completely
determined by the Lie algebra homomorphism φ�. From the fact that the image of
expG contains an open neighborhood of the unit e ∈ G, one next concludes that the
subgroup generated by this image is exactly the connected component G0 of e in G,
so the restriction of φ to G0 is determined by φ�. In particular, if G is connected,
then any homomorphism from G to some Lie group is determined by its tangent
map at e. We may apply this to representations of G. For any representation
φ : G → GL(n, K) and any X ∈ g, we get

φ(exp(X)) = eφ�(X) =
∞�

n=0

1
n!

φ�(X)n.

In particular, φ�(X) = d
dt |0φ(exp(tX)), and if G is connected, then any representa-

tion is determined by the corresponding infinitesimal representation.

1.2.4. The Maurer–Cartan form. The left invariant vector fields lead to
a trivialization of the tangent bundle of any Lie group. More precisely, the map-
ping G × g → TG which is given by (g,X) �→ LX(g) is an isomorphism of vector
bundles. The inverse of this isomorphism can be conveniently encoded as a one–
form ω ∈ Ω1(G, g) on G with values in the Lie algebra g, which is defined by
ω(g)(ξ) := Tgλg−1 · ξ. This one–form is called the (left) Maurer–Cartan form on
G. From the definition of ω it is obvious that ω(LX) = X, λ∗gω = ω, and for each
g ∈ G the map ω(g) : TgG → g is a linear isomorphism. Moreover, by defini-
tion, (ρg)∗ω(h)(ξ) = ω(hg)(Tρg · ξ) = Tλg−1h−1Tρg · ξ. Since left multiplications
commute with right multiplications and λg−1 ◦ ρg is the conjugation with g−1, we
conclude that this equals Ad(g−1)(ω(h)(ξ)), and thus we get (ρg)∗ω = Ad(g−1)◦ω.
Finally, consider the exterior derivative dω of the Maurer–Cartan form. Since ω
is constant on left invariant vector fields, the standard formula for the exterior
derivative (see 1.2.1) implies dω(LX , LY ) = −ω([LX , LY ]) for X, Y ∈ g, which
equals −[X, Y ] by definition of the Lie bracket on g. Since in each point the val-
ues of left invariant vector fields exhaust the whole tangent space, this implies the
Maurer–Cartan equation 0 = dω(ξ, η) + [ω(ξ),ω(η)] for all ξ, η ∈ TG.

The Maurer–Cartan form leads to a notion of differentiation of functions with
values in a Lie group. Indeed, if G is a Lie group with Lie algebra g, M is an
arbitrary smooth manifold, and f : M → G is an arbitrary smooth map, then we
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define the left logarithmic derivative δf : TM → g by δf(ξx) = ω(f(x))(Txf · ξx).
This means that δf is obtained by composing the tangent map Tf : TM → TG with
the trivialization of TG provided by ω and projecting out the second component.
Another way to express this is δf(x) = f ∗ω(x) = Tλf(x)−1 ◦Txf and, in particular,
the Maurer–Cartan form itself equals ω = δ idG.

Let us look at some examples. If G is the additive real line G = (R,+) with
standard coordinate x, then ωG = dx ∈ Ω1(G, R) and the left logarithmic deriva-
tive is just the usual differential. The isomorphic example with the multiplicative
positive real line G = (R+, ·) leads to ω = 1

xdx and the usual logarithmic de-
rivative of real functions, f �→ f �

f dx. For the general linear group G we easily
compute ωG ∈ Ω1(GL(n, R), gl(n, R)) in the usual matrix component coordinates
g = (xij) ∈ GL(n, R), ωG(g) = g−1(dxij). For example, in dimension two,

ωGL(2,R) =
�

x22/ det(g) −x12/ det(g)
−x21/ det(g) x11/ det(g)

� �
dx11 dx12

dx21 dx22

�
.

The Maurer–Cartan form provides the infinitesimal information on the multi-
plication while the Maurer–Cartan equation gives the only local obstruction to its
integrability. The explicit local formulation is contained in the following theorem;
see [Sh97, Chapter 3] for more details.

Theorem 1.2.4. Let G be a Lie group with Lie algebra g and Maurer–Cartan
form ωG. Let M be a smooth manifold, and let ω ∈ Ω1(M, g) be a g–valued one–
form. Then for any x ∈ M there exist an open neighborhood U of x in M and a
function f : U → G such that δf = f∗ωG = ω if and only if ω satisfies dω(ξ, η) +
[ω(ξ),ω(η)] = 0 for all ξ, η ∈ X(M).

If M is connected and f1, f2 : M → G have the property that δf1 = δf2, then
there is a unique element c ∈ G (integration constant) such that f2(x) = c · f1(x)
for all x ∈ M .

Proof. A straightforward computation establishes the formulae for the actions
of the multiplication µ and inversion ν on the Maurer–Cartan form ωG; cf. [Sh97,
page 113]. For g, h ∈ G, ξ ∈ TgG and η ∈ ThG one has

(µ∗ωG)(ξ, η) = Ad(h−1)(ωG(ξ)) + ωG(η),

(ν∗ωG)(ξ) = −Ad(g)(ωG(ξ)).

We start by proving the last statement of the theorem. Consider two functions
f1, f2 : M → G such that f∗1 ωG = f∗2 ωG and define h : M → G by h(x) =
f2(x)f1(x)−1. We have to show that h is constant, for which it suffices to show
that h∗ωG = 0, since this implies that ωG ◦Th and thus Th is identically zero. But
by definition, we have h = µ ◦ (id, ν) ◦ (f2, f1) ◦Δ, where Δ(x) = (x, x). Using the
above formulae we thus compute that for ξ ∈ TxM we have

(h∗ωG)(ξ) = (µ∗ωG)(Txf2 · ξ, Tx(ν ◦ f1) · ξ)
= Ad(f1(x))(ωG(Txf2 · ξ)) + (ν∗ωG)(Txf1 · ξ)
= Ad(f1(x))(δf2(x)(ξ)− δf1(x)(ξ)) = 0.

Concerning existence, d(f∗ωG)(ξ, η) + [f∗ωG(ξ), f∗ωG(η)] clearly vanishes be-
cause of the Maurer–Cartan equation. Thus, it suffices to prove that for ω ∈
Ω1(M, g) satisfying the equation we can find a function f : M → G such that
ω = δf . To do this, we (locally) construct the graph of f as a leaf of an integrable
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distribution on M ×G. Consider Ω = π∗Mω − π∗GωG, where πM : M ×G → M and
πG : M×G → G are the natural projections. Identifying T (M×G) with TM×TG,
the kernel of Ω is given by the set of all (ξ, η) such that ω(ξ) = ωG(η). Since ωG

restricts to a linear isomorphism in each tangent space, there is a unique solution η
for this equation for any chosen tangent vector ξ, so the distribution ker(Ω) is regu-
lar, its rank equals the dimension of M , and TπM restricts to a linear isomorphism
on each fiber of ker(Ω). To check involutivity, we note that by construction

dΩ((ξ1, η1), (ξ2, η2)) = dω(ξ1, ξ2)− dωG(η1, η2)

= −[ω(ξ1),ω(ξ2)] + [ωG(η1),ωG(η2)],

and this obviously vanishes if both (ξi, ηi) lie in the kernel of Ω.
By Corollary 1.2.2 this implies integrability of the distribution ker(Ω). Given

x ∈ M and g ∈ G, there is a submanifold N ⊂ M × G containing (x, g) whose
tangent spaces are the fibers of ker(Ω). We have observed above that TπM re-
stricts to a linear isomorphism on each of these spaces, so πM : N → M is a local
diffeomorphism. Hence, we can find a neighborhood U of x ∈ M and a local in-
verse j : U → N of this projection. Defining f := πG ◦ j, we obtain a smooth
function f : U → G, and for ξ ∈ TxM we get Txj · ξ = (ξ,ω−1

G (ω(ξ))), and thus
ωG(Txf · ξ) = ω(ξ), which means ω = f∗ωG. �

If we add the requirement that ω : TxM → g is a linear isomorphism, then the
theorem implies that there is a unique group structure locally around x ∈ M which
is locally isomorphic to that of G via f , and has Maurer–Cartan form ω = f ∗ωG. A
global version of this theorem works for connected and simply connected manifolds
M , or under suitable conditions on the so–called monodromy representation; see
again [Sh97, Chapter 3] for more details.

From this theorem we may easily conclude that Lie algebra homomorphisms
integrate to local group homomorphisms. If G and H are Lie groups with Lie
algebras g and h and φ : g → h is a Lie algebra homomorphism, then consider
ω := φ ◦ ωG ∈ Ω1(G, h). Clearly, we get dω = φ ◦ dωG, which together with the
Maurer–Cartan equation for ωG and the fact that φ is a homomorphism immediately
implies that dω(ξ, η) + [ω(ξ),ω(η)] = 0 for arbitrary tangent vectors ξ and η. By
the theorem, we find an open neighborhood U of e in G and a smooth function f :
U → H such that f(e) = e and ω = f∗ωH . But then ωH(Tef ·X) = ω(X) = φ(X),
so φ = Tef . Moreover, we claim that f is a local group homomorphism. For g0 ∈ U
consider the function f ◦ λg0 , which is defined locally around e. One immediately
verifies that this function also pulls back ωH to ω = φ ◦ ωG, which implies that it
coincides with f up to a left multiplication by a fixed element of H. Looking at
the values in e, we see that we must have f = λf(g0)−1 ◦ f ◦ λg0 , which implies that
f(g0g) = f(g0)f(g) if g and g0g lie in U . The global version of the theorem, in
particular, implies that if G is simply connected, then there is a globally defined
homomorphism f : G → H such that Tef = φ.

Note that in the special case that M is an interval in R, all two–forms on M
are automatically zero, so the Maurer–Cartan equation is satisfied for any ω ∈
Ω1(M, g). In this case it is also straightforward to deduce global existence of f
from local existence. In the special case G = (R, +), one obtains the theorem
on existence of an antiderivative of any smooth function and uniqueness up to an
additive constant. Therefore, the whole theorem is referred to as the fundamental
theorem of calculus in [Sh97].
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1.2.5. Lie subgroups, homogeneous spaces, and actions. An embedded
Lie subgroup H of a Lie group G is a submanifold, which at the same time is a
subgroup. We shall omit the adjective embedded in the sequel. A Lie subgroup is
automatically a closed subset of G and, conversely, it can be shown (see [KMS,
Theorem 5.5]) that any closed subgroup of a Lie group G is an (embedded) Lie
subgroup. For a Lie subgroup H ⊂ G, the tangent space h = TeH ⊂ TeG = g is a
Lie subalgebra, i.e. the Lie bracket of two elements of h again lies in h. A connected
Lie subgroup H ⊂ G is normal if and only if the Lie algebra h ⊂ g is an ideal,
i.e. [X, Y ] ∈ h for any X ∈ h and Y ∈ g.

Given a Lie group G with Lie algebra g, there may exist Lie subalgebras h ⊂ g
for which there is no Lie subgroup H ⊂ G having h as the tangent space at the
identity. This can be seen from the case of the real torus T2 = S1 × S1. The Lie
algebra of this is R2 with the trivial Lie bracket, so a subalgebra is just a linear
subspace. Now if one takes a line of irrational slope, then it is easy to see that any
subgroup H ⊂ G, which contains a small submanifold around the unit element that
is tangent to the given line, must be dense in G, so it cannot be a Lie subgroup.
This generalizes to one–parametric subgroups exp tX : R → G, for X ∈ g in general
Lie groups. Either the image is topologically a circle or it is a line. A circle is a
(embedded) subgroup, while lines are only immersed in general.

To avoid this problem, one defines a virtual Lie subgroup of a Lie group G to
be a Lie group H together with a homomorphism i : H → G which is an injective
immersion. The derivative i� : h → g is then the inclusion of a Lie subalgebra.
Using the global version of the Frobenius theorem, one shows that for any Lie
subalgebra h ≤ g, there is a virtual Lie subgroup i : H → G with Lie algebra h;
see [KMS, Theorem 5.2]. The latter result can also be used to prove that for any
finite–dimensional Lie algebra g there is a Lie group G with Lie algebra g. For this
one uses the theorem of Ado that asserts that g admits a finite–dimensional faithful
representation and hence is isomorphic to a Lie subalgebra of gl(N, R) for some N .
For a short proof of the Ado theorem see [Ne03].

For any subgroup H in a Lie group G, one may consider the set G/H of cosets
gH with g ∈ G. In order that the topology of G/H induced by the canonical
projection p : G → G/H is Hausdorff, it is necessary that H is a closed subgroup,
so from above we know that H is even a Lie subgroup of G. In this case, one
shows that G/H is a smooth manifold and the structure is uniquely determined by
requiring that p is a smooth surjective submersion; see [KMS, 5.11]. In particular,
for any manifold M smooth maps from G/H to M are exactly the smooth maps
from G to M which are constant on each coset.

Lie groups appear often as the symmetry groups on some manifolds, i.e. as
groups of transformations on these manifolds. More explicitly, a left action of a
Lie group G on a manifold M is a smooth mapping � : G × M → M , such that
�(e, x) = x and �(g, �(h, x)) = �(gh, x). If there is no risk of confusion, we simply
write (g, x) �→ g · x for the action, so that the defining properties become e · x = x
and g · (h · x) = (gh) · x. Otherwise put, the action associates to g ∈ G a smooth
map �g : M → M , defined by �g(x) = �(g, x) such that �e = idM and �g ◦ �h = �gh.
In particular, each �g is a diffeomorphism with inverse �g−1 , so we can view the
action as a homomorphism from G into the group of diffeomorphisms of M . In the
special case of a finite–dimensional vector space V , a representation of G on V as
defined in 1.2.3 is exactly a left action such that all the maps �g are linear.
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Similarly, a right action is a smooth map r : M ×G → M such that r(x, e) = x
and r(r(x, g), h) = r(x, gh), or writing the action as a dot, x · e = x and x ·
(gh) = (x · g) · h. As above, this can be interpreted as associating to any g ∈ G a
diffeomorphism rg of M such that rgh = rh ◦ rg, so we get an anti–homomorphism
from G to the diffeomorphism group.

Given a left (or right) action of G on M and a point x ∈ M there are two
canonical objects associated to x. First, there is the orbit G · x = {g · x : g ∈ G}
through x, and second there is the isotropy subgroup Gx = {g ∈ G : g · x = x},
also called the stabilizer of x. By definition, Gx is a closed subgroup and thus
a Lie subgroup in G. The map �x : G → M , �x(g) := �(g, x) then induces a
smooth bijection G/Gx → G · x, so any orbit looks like a coset space. Clearly,
two orbits are either disjoint or equal, so M is the disjoint union of all G–orbits.
The set of all orbits is denoted by M/G. Note that for y = g · x ∈ G · x, one has
Gy = {ghg−1 : h ∈ Gx}, so along an orbit all isotropy subgroups are conjugate.

An action is called transitive if there is just one orbit, or equivalently if for
arbitrary elements x, y ∈ M there is an element g ∈ G such that g · x = y. An
action is called effective if only the neutral element e ∈ G acts as the identity of
M , or equivalently if the intersection of all isotropy subgroups consists of e only. If
all the isotropy subgroups are trivial, then the action is called free.

The coset spaces G/H are related to actions in two ways. First, right mul-
tiplication by elements of H ⊂ G defines a free right action of H on G, and by
definition G/H is exactly the space of orbits for this action. On the other hand,
the left multiplication of G on itself induces a smooth left action of G on G/H
defined by g · (g�H) = (gg�)H. Clearly, this action is transitive. In view of this,
the coset space G/H is called the homogeneous space of G corresponding to the
subgroup H.

Each left action � of a Lie group G on a manifold M defines the so–called
fundamental vector fields by the formula ζX(x) = d

dt |0�exp tX(x), for all x ∈ M
and X in the Lie algebra g of G. Similarly, we obtain fundamental vector fields
for right actions. These fundamental vector fields provide infinitesimal versions
of the Lie group actions. In particular, the left–invariant vector fields on the Lie
group G itself are obtained as the fundamental vector fields with respect to the
right multiplication by elements in G. The fundamental field mapping for right
actions yields a Lie algebra homomorphism g → X(M), while ζ[X,Y ] = −[ζX , ζY ]
for a left action. A simple computation yields Tx�g · ζX(x) = ζAd(g)X(g · x), i.e.
�∗gζX = ζAd(g−1)·X , for left actions. For each point x ∈ M , we also define the
isotropy subalgebra gx ⊂ g of elements X with ζX(x) = 0. This isotropy Lie
algebra by construction is exactly the Lie algebra of the isotropy subgroup Gx.

1.2.6. Fiber bundles, vector bundles and principal bundles. A fibered
manifold is a surjective submersion p : Y → M , a trivial fibered manifold with
fiber S is πM : M × S → M . A section of a fibered manifold p : Y → M is
a smooth map σ : M → Y such that p ◦ σ = idM . The space of all smooth
sections is denoted by Γ(Y ). Fibered morphisms φ : Y → Y � are smooth mappings
between fibered manifolds which cover a smooth mapping φ0 : M → M � between
the base manifolds, i.e. p� ◦ φ = φ0 ◦ p. A fiber bundle with base M and standard
fiber S is a fibered manifold Y → M which is locally isomorphic (via fibered
morphisms) to a trivial fibered manifold. Otherwise put, one must have a fiber
bundle atlas {(Uα,φα)}, i.e. an open covering {Uα} of M and diffeomorphisms
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φα : p−1(Uα) → Uα × S which are fibered morphisms. Each of the pairs (Uα,φα)
is called a fiber bundle chart. For two fiber bundle charts (Uα,φα) and (Uβ ,φβ)
such that Uαβ := Uα ∩ Uβ �= ∅, one has the transition function φαβ : Uαβ × S → S

defined by φα(φ−1
β (x, y)) = (x,φαβ(x, y)).

Assume next, that we have given a fiber bundle p : Y → M whose standard
fiber is a finite–dimensional vector space V . Then two fiber bundle charts are called
compatible if the corresponding transition function is linear in the second variable.
A fiber bundle atlas consisting of pairwise compatible fiber bundle charts is then
called a vector bundle atlas. There is an obvious notion of equivalence of vector
bundle atlases and a vector bundle is a fiber bundle with standard fiber a vector
space endowed with an equivalence class of vector bundle atlases. In this case,
each of the fibers p−1(x) is canonically a vector space, and one may interpret the
transition functions as smooth functions φαβ : Uαβ → GL(V ). A vector bundle
homomorphism is a fibered morphism between two vector bundles such that the
restriction to each fiber is a linear map.

The simplest example of a vector bundle is the tangent bundle TM . Its sections
are the smooth vector fields and for a smooth map f : M → N the tangent map
Tf : TM → TN is a vector bundle homomorphism. Given a vector bundle E → M ,
there is the notion of an E–valued differential form. An E–valued k–form φ is
a smooth function which associates to each x ∈ M a k–linear alternating map
(TxM)k → Ex, where Ex = p−1(x) is the fiber of E over x. The space of E–valued
k–forms is denoted by Ωk(M,E). For k = 0, one obtains the space Γ(E) of smooth
sections of E.

One of the motivating examples for a principal fiber bundle is the projection
p : G → G/H onto a homogeneous space. Since this is a surjective submersion, it
admits local smooth sections, so any point x ∈ G/H admits an open neighborhood
U such that there is a smooth function σ : U → G with σ(y)H = y for all y ∈ U .
Such a section immediately gives rise to a fiber bundle chart p−1(U) → U ×H by
mapping g ∈ p−1(U) to (p(g),σ(p(g))−1g) with inverse given by (x, h) �→ σ(x)h.
The corresponding transition functions are given by (x, h) �→ σαβ(x)h, where σαβ :
Uαβ → H is given by σαβ(x) = σα(x)−1σβ(x).

Given a general fiber bundle p : P → M with standard fiber a Lie group H, we
define a principal bundle atlas to consist of charts which are compatible in the sense
that the transition functions are given by (x, h) �→ φαβ(x)h for smooth functions
φαβ : Uαβ → H. A principal bundle is then defined as a fiber bundle p : P → M
with standard fiber a Lie group H which is endowed with an equivalence class (in
the obvious sense) of principal bundle atlases. The group H is referred to as the
structure group of the principal bundle and principal bundles with structure group
H are also called principal H–bundles. Multiplication from the right in charts
defines a smooth right action of the structure group H on the total space P of the
principal bundle. This is called the principal right action. It is by construction
free, and its orbits are exactly the fibers of p : P → M . Conversely, given a
smooth map p : P → M and a right H–action on P which is free and transitive on
each fiber, then this is a principal H–bundle if and only if p admits local smooth
sections. A morphism of principal bundles is a fibred morphism commuting with
the principal actions, i.e. φ(u · h) = φ(u) · h. There is a more general notion
of morphisms between principal bundles with different structure groups. Fixing
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a homomorphism ψ between the structure groups, one imposes the equivariancy
condition φ(u · h) = φ(u) · ψ(h).

As in the case of homogeneous spaces, a local section σ : U → P of a principal
bundle p : P → M defines a principal bundle chart φ : p−1(U) → U × H whose
inverse is given by (x, h) �→ σ(x) · h. In particular, a principal H–bundle is trivial,
i.e. isomorphic to M ×H, if and only if it admits a global smooth section.

Consider a principal bundle atlas {(Uα,φα)} for a principal H–bundle p : P →
M with transition functions φαβ : Uαβ → H. Then clearly φβα(x) = φαβ(x)−1 for
all x ∈ Uαβ and for three indices α, β, γ such that Uαβγ := Uα ∩ Uβ ∩ Uγ �= ∅,
one has the cocycle identity φαβ(x)φβγ(x) = φαγ(x) for all x ∈ Uαβγ . Conversely,
given an open covering {Uα} of M , a family φαβ : Uαβ → H of smooth functions
satisfying these two conditions is called a cocycle of transition functions. From
such a family, one constructs a principal H–bundle as an appropriate quotient of
the disjoint union of the sets Uα × H, which has the given cocycle as transition
functions. It is easy to see that the transition functions determine the bundle up
to isomorphism.

An important special case of the general concept of morphisms of principal
bundles is provided by reductions of structure group. A reduction of the principal
H–bundle p : P → M to the structure group K, where K ⊂ H is a Lie subgroup,
is given by a principal bundle R → M with structure group K, together with a
principal bundle morphism ι : R → P with respect to the inclusion i : K → H,
which covers the identity on M . The question of whether given P and K there
exists a reduction of structure group is difficult in general, but it can be reduced to
the question of existence of a smooth section of a certain bundle. Indeed, restricting
the principal action to K, we obtain a free right action of K on P, and one easily
shows that the space P/K of orbits of this action is a smooth manifold and a
fiber bundle over M with fiber H/K. A simple argument based on the cocycles of
transition functions shows the following fact:

Lemma 1.2.6. Let P → M be a principal bundle with structure group H and
let K ⊂ H be a subgroup. Then reductions of P to the structure group K are in
bijective correspondence with the set of global smooth sections of the fiber bundle
P/K → M .

In contrast to the case of vector bundles, the individual fibers of a principal
bundle p : P → M do not carry the structure of a Lie group, since left multipli-
cations are not group homomorphisms. The fibers should rather be thought of as
the Lie group analog of affine spaces. Indeed, the simplest example of a principal
bundle P → pt (with a one–point base manifold) is the space of all bases of an
m–dimensional vector space V , which in turn may be identified with the set of all
linear isomorphisms between Rm and V . Clearly, once we fix one basis (or one
isomorphism), we may identify P with GL(m, R), but there is no canonical choice
like that.

An important example of a principal bundle is the linear frame bundle P1M →
M of a smooth manifold M . Its fiber over x ∈ M is the set of all bases of the
tangent space TxM . The structure group is GL(n, R) where n is the dimension of
M . We may equivalently view the fiber P1

xM over x ∈ M as the space of all linear
isomorphisms between Rn and TxM . In analogy to this example, we shall often call
all elements in principal bundles frames. More generally, there is the linear frame
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bundle GL(V) of a vector bundle V → M with structure group GL(V ), where V is
the standard fiber of V.

1.2.7. Associated bundles. Recovering a vector bundle from its linear frame
bundle is a special case of forming an associated bundle. The idea of this process
is rather simple to understand in the toy example of all bases of a vector space V
viewed as a principal bundle over a point. Any element v ∈ V can be described by
its coordinates in any of the bases of V , and since none of the bases is preferred,
we should view v as an equivalence class of basis–coordinates–pairs. The correct
equivalence relation is easily seen in the picture of isomorphisms φ : Rm → V . The
coordinate vector of v in the basis corresponding to φ is φ−1(v), and the principal
right action of A ∈ GL(m, R) is given by composition from the right. This implies
that the pair (φ, x) with x ∈ Rn must be considered as equivalent to (φ ·A,A−1(x)).

Now assume that p : P → M is an H–principal bundle and S is a smooth
manifold endowed with a left action H×S → S. Then we define a right action of H
on the product P×S by (u, s) ·h := (u ·h, h−1 ·s). The space P×H S := (P×S)/H
is called the associated bundle to the principal bundle P with standard fiber S.
From a principal bundle atlas for P one constructs a fiber bundle atlas for P ×H S
showing that it is indeed a fiber bundle with standard fiber S. Moreover, the
obvious projection P × S → P ×H S is an H–principal bundle. For (u, s) ∈ P × S,
we write �u, s� ∈ P ×H S for the orbit of (u, s). We will sometimes write P ×� S to
emphasize the role of the left action �. If the left action is a linear representation
of the structure group on a vector space V , then the associated bundle P ×H V is
canonically a vector bundle.

Each principal bundle morphism φ : P → P � between bundles with structure
group H defines the fibered morphisms P ×H S → P � ×H S between associated
bundles, which is characterized by �u, s� �→ �φ(u), s�. Thus, the construction of
associated bundles corresponding to a fixed left action is functorial. Of course, for
linear actions this functorial construction has values in vector bundles and vector
bundle homomorphisms. On the other hand, any smooth mapping f : S → S �

commuting with given left actions defines the fibered morphism P×H S → P×H S�,
given by �u, s� �→ �u, f(s)�, which covers the identity on the base manifold M .

Let us consider a few examples in the case of the frame bundle P1M → M of an
n–dimensional smooth manifold M . The trivial representation R of H = GL(n, R)
provides the trivial associated bundle P1M ×H R = M × R, whose sections are
the smooth functions on M . For the standard representation of H on Rn we see
from above that the associated bundle P1M ×H Rn may be identified with the
tangent bundle TM by mapping �u, x� to the tangent vector with coordinates x
in the frame u. Forming associated vector bundles is compatible with natural
constructions on vector spaces. In particular, for the dual Rn∗ of the standard
representation the associated bundle is the cotangent bundle T ∗M , forming tensor
powers of the standard representation and its dual, one obtains all tensor bundles,
and so on.

Proposition 1.2.7. Let p : P → M be a principal H–bundle, and S a smooth
manifold endowed with a left H–action. Then there is a natural bijective corre-
spondence between the set Γ(P ×H S) of all smooth sections s of the associated
bundle and the set C∞(P, S)H of all smooth maps f : P → S, which are H–
equivariant, i.e. satisfy f(u ·h) = h−1 ·f(u). Explicitly, the correspondence is given
by s(p(u)) = �u, f(u)�.
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Proof. Starting from an equivariant smooth function f , equivariancy implies
that �u, f(u)� depends only on p(u), so we can use this expression to define s : M →
P ×H S. Choosing a local smooth section σ of P, we get s(x) = �σ(x), f(σ(x))�,
which immediately implies smoothness of s.

Conversely, any element in the fiber over p(u) may be uniquely written in the
form �u, y�, so given s, the equation s(p(u)) = �u, f(u)� can be used to define f .
Smoothness of f follows easily by writing this in terms of a local smooth section of
P, while equivariancy is an immediate consequence of �u·h, f(u·h)� = �u, f(u)�. �

In the case of associated vector bundles, we can generalize this result to a
description of differential forms with values in an associated bundle. Given a fibered
manifold p : Y → M and a point y ∈ Y a tangent vector ξ ∈ TyY is called vertical
if Typ · ξ = 0. The vertical tangent vectors form a subbundle V Y ⊂ TY , called the
vertical tangent bundle. This leads to the notion of a vertical vector field on Y . Now
if φ is a differential form on Y (with values in R, a vector space, or a vector bundle),
then φ is called horizontal if it vanishes upon insertion of one vertical vector field.
Suppose further that P → M is a principal bundle with structure group H. Then
for any h ∈ H we have the principal right action rh : P → P, and we can use this
to pull back differential forms with values in R or a vector space.

Corollary 1.2.7. Let p : P → M be a principal fiber bundle with structure
group H and let ρ : H → GL(V ) be a representation of H on a vector space V .
Then for each k, the space Ωk(M,P×H V ) of k–forms with values in the associated
bundle is in bijective correspondence with the space of all φ ∈ Ωk(P, V ) which are
horizontal and equivariant in the sense that (rh)∗φ = ρ(h−1) ◦ φ for all h ∈ H.

Proof. Consider a form α ∈ Ωk(M,P ×H V ). For u ∈ P, x = p(u), and
tangent vectors ξ1, . . . , ξk ∈ TuP, there is a unique element φ(u)(ξ1, . . . , ξk) ∈ V
such that

(1.1) α(p(u))(Tup · ξ1, . . . , Tup · ξk) = �u, φ(u)(ξ1, . . . , ξk)�.
This defines a k–linear alternating map φ(u) : (TuP)k → V , which evidently van-
ishes if one entry is a vertical tangent vector. One easily verifies that φ(u) depends
smoothly on u, so we have constructed a horizontal V –valued k–form on P. For
h ∈ H we get p ◦ rh = p, and hence Tp · Trh · ξi = Tp · ξi for each i. This shows
that

�u, φ(u)(ξ1, . . . , ξk)� = �u · h, φ(u · h)(Trh · ξ1, . . . , T rh · ξk)�,
from which equivariancy follows immediately.

Conversely, suppose we have given a horizontal, equivariant form φ. Then for
each x ∈ M we can choose u ∈ P such that p(u) = x, and any tangent vector at x
can be written as Tup · ξ. Fixing u we can use equation (1.1) to define α(x). This
does not depend on the choice of the lifts of the tangent vectors since φ is horizontal.
It does not depend on the choice of u either by equivariancy of φ. Finally, it is
easily verified that smoothness of φ implies smoothness of α. �

1.2.8. Natural bundles and jets. A natural bundle F on the category Mn

of n–dimensional manifolds and local diffeomorphisms is a functor assigning to any
n–manifold N a fiber bundle pN : F (N) → N and to any local diffeomorphism
f : N1 → N2 a bundle map F (f) : F (N1) → F (N2) with base map f , i.e. such
that pN2 ◦ F (f) = f ◦ pN1 . Furthermore, F has to be regular, i.e. if M is any
smooth manifold and f : M × N1 → N2 is smooth and such that for each x ∈ P
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the map fx : N1 → N2 defined by fx(y) := f(x, y) is a local diffeomorphism, then
we assume that the map M × F (N1) → F (N2) defined by (x, a) �→ F (fx)(a) is
smooth, too. Thus, regularity means that smoothly parametrized families of local
diffeomorphisms are transformed into smoothly parametrized families. Usually, one
assumes in addition that F is local, i.e. that for any inclusion i : U �→ N of an open
subset, F (i) is the inclusion p−1

N (U) �→ F (N).
Developing the general theory of natural bundles has been one of the main

aims of [KMS]. It turns out that regularity follows from functoriality and locality,
and one obtains an explicit description of all natural bundles as associated bundles.
In order to state the result, we have to recall another basic concept of differential
geometry.

Let M , N be smooth manifolds, and x ∈ M a point. Two smooth mappings f ,
g : M → N are said to have the same jet of order r (briefly r–jet) at x if f(x) = g(x)
and their partial derivatives at x up to order r in some local charts around x and
f(x) coincide. (Then this is true in all charts around these points by the chain
rule.) This defines an equivalence relation, whose classes are called r–jets at x and
denoted by jr

xf . The point x is called the source while f(x) is called the target of
the jet jr

xf . The space of all r–jets with source in M and target in N is denoted by
Jr(M,N). Similarly, we write Jr

x(M,N), Jr(M,N)y, or Jr
x(M,N)y if the source,

target or both are fixed. For s < r, we may send an r–jet to the underlying s–jet,
thus obtaining a canonical map πr

s : Jr(M,N) → Js(M,N). Putting s = 0, the
source and target map define πr

0 : Jr(M,N) → M ×N .
The chain rule immediately implies that the composition of jets in J r(M,N)y

and Jr
y (N,Q) is well defined by the formula (jr

yg) ◦ (jr
xf) = jr

x(g ◦ f). A jet jr
xf ∈

Jr
x(M,M) is called invertible if there is a jet jr

f(x)g ∈ Jr
f(x)(M,M) such that jr

x(g ◦
f) = jr

x idM and jr
f(x)(f ◦ g) = jr

f(x)idM .
Using the canonical charts on Rn and Rm and the translations, we obtain an

identification Jr(Rm, Rn) ∼= Rm × Rn × Jr
0 (Rm, Rn)0, and the Taylor coefficients

yield canonical coordinates on Jr
0 (Rm, Rn)0. This, of course, works similarly for

open subsets in Rm and Rn. The construction of the jet spaces Jr(M,N) is functo-
rial in both arguments, and via this, arbitrary charts on M and N give rise to charts
on Jr(M,N). Hence, each Jr(M,N) is a smooth manifold and by construction the
natural maps πr

s for 0 ≤ s < r from above are smooth.
For any fibered manifold p : E → M we write J r(E → M), or briefly Jr(E), for

the subset of Jr(M,E) consisting of all jets of local sections of p. This turns out to
be a smooth submanifold and a fibered manifold over M . Clearly, J r( ) is a functor
acting on locally invertible fibered morphisms, the jet prolongation functor. There
is a universal rth order differential operator jr which maps sections of E → M
to sections of Jr(E) → M and is defined by s �→ (x �→ jr

xs). For every operator
D : Γ(E → M) → Γ(E� → M), which is an rth order differential operator in local
coordinates, there exists a fibered morphism D̃ : Jr(E) → E� such that D = D̃◦jr.

Jets lead to alternative descriptions of many of the basic geometric objects on
smooth manifolds. For example, the tangent bundle TM can be naturally identified
with the space J1

0 (R,M) of first order jets of curves in M at 0 ∈ R. Similarly, the
cotangent bundle T ∗M can be naturally identified with the space J1(M, R)0. Let us
note that in this kinematic approach one naturally obtains a vector bundle structure
on the cotangent bundle. Consider the set J1

0 (Rn, Rn)inv
0 of invertible one–jets on Rn

with source and target zero. Of course, this is a group under jet composition and it
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can be naturally identified with the group GL(n, R). This leads to an interpretation
of the linear frame bundle P1M of an n–dimensional manifold M as J1

0 (Rn,M)inv

of invertible one–jets from Rn to M with source 0. In this picture, the principal
action of GL(n, R) ∼= J1

0 (Rn, Rn)inv
0 is given by jet composition from the right.

The jet interpretation leads to higher order generalizations of all the above
bundles. The rth order frame bundle PrM is defined as Jr

0 (Rn,M)inv, so it consists
of r–jets of local charts. The structure group of this bundle is the rth differential
group Gr

n := Jr
0 (Rn, Rn)inv

0 and the principal action is given by the jet composition
from the right. The rth order analog of the tangent bundle is the bundle T r

1 M =
Jr

0 (R,M). This is the associated bundle to PrM with respect to the obvious left
action of Gr

n on S = Jr
0 (R, Rn). Now the description of natural bundles is as follows.

Theorem 1.2.8 ([KMS, Theorem 22.1]). Any local natural bundle on n–di-
mensional manifolds can be obtained as an associated bundle to some PrM with
respect to a left action of the differential group Gr

n on a finite–dimensional manifold.

The lowest possible choice for r in the theorem is called the order of the natural
bundle. Notice that the composition of the jet prolongation functor with a kth order
natural bundle F is the (k + r)th order natural bundle J rF . The theorem was first
proved assuming regularity by Palais and Terng (see [PT77]), and then in full
generality by Epstein and Thurston (see [ET79]). Sharp estimates for the orders
depending on the dimensions of the base and fiber were obtained by Zajtz. See
[KMS] for further results and more bibliographic details.

1.2.9. Lie derivatives. Natural bundles also provide the right framework
for defining Lie derivatives. Let us first observe that local diffeomorphisms act
on the sections of any natural bundle F . For a section s ∈ Γ(FN) and a local
diffeomorphism f : M → N , one obtains f∗s ∈ Γ(FM) locally as Fφ ◦ s ◦ f , where
φ is a local inverse to f . The section f∗s is called the pullback of s along f . In
particular, this can be applied to the local flow of a vector field ξ ∈ X(M). Fixing
x ∈ M , we obtain a curve t �→ (Flξt )∗s(x) in the fiber FxM of FM over x, which is
defined for sufficiently small t. Regularity of F implies that this curve is smooth,
so we may consider its derivative at t = 0. If F is a natural vector bundle, then
this derivative may be interpreted as an element of the fiber FxM itself, while for
a general natural fiber bundle it has to be viewed as an element of the vertical
tangent space Vs(x)FM . Regularity of F again implies that this element depends
smoothly on x, so we obtain the Lie derivative Lξs of s along ξ defined by

Lξs = d
dt |0(Flξt )

∗s = d
dt |0F (Flξ−t) ◦ s ◦ Flξt .

This is a smooth section of FM in the case of a natural vector bundle and a smooth
section of the vertical tangent bundle V FM in the case of an arbitrary natural fiber
bundle.

An alternative way to view the Lie derivative is the following: Fixing a point
x ∈ M , the flow Flξt is defined locally around x for sufficiently small t. Hence, F (Flξt )
is a family of locally defined diffeomorphisms of FM , which depends smoothly on t
by regularity. Differentiating at t = 0, one obtains a vector field Fξ on FM , which
is pM–related to ξ, and Lξs = Ts ◦ ξ − Fξ ◦ s.

In the special case of the tangent bundle TM we obtain the standard Lie
bracket, i.e. Lξη = [ξ, η] and for all tensor bundles one recovers the classical
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approach. In particular, it is easy to deduce the Leibniz rule for general tensor
products of natural vector bundles

Lξ(s1 ⊗ s2) = (Lξs1)⊗ s2 + s1 ⊗ (Lξs2)

and compatibility with contractions. For example, for a k–times covariant tensor
field τ and ξ, η1, . . . , ηk ∈ X(M), we obtain

(Lξτ)(η1, . . . , ηk) = Lξ(τ(η1, . . . , ηk))−
k�

i=1

τ(η1, . . . ,Lξ(ηi), . . . , ηk).

In the case of k–forms, i.e. antisymmetric k–times covariant tensor–fields, this for-
mula easily leads to the formula Lξ = iξ ◦ d + d ◦ iξ for the Lie derivative in terms
of the exterior derivative d (see 1.2.1) and the insertion operator iξ defined by
(iξτ)(η2, . . . , ηk) = τ(ξ, η2, . . . , ηk).

The Lie derivative Lξ depends on derivatives of the vector field ξ up to the order
of the natural bundle. Thus, the only case in which the Lie derivative is tensorial
in the direction ξ are natural bundles of order zero, which are always trivial.

1.2.10. Complex manifolds and complex differential geometry. We
conclude this section with a brief discussion of holomorphic aspects of differential
geometry. More basic information on these issues can be found, for example, in
[KoNo69].

A complex manifold M is defined similarly to the real case discussed in 1.2.1,
but with charts having values in Cn and holomorphic transition functions. The
number n is called the complex dimension of M , and of course we can view M
also as a manifold of real dimension 2n. For functions between complex manifolds
(and in particular for functions with values in Cm) one defines holomorphicity
by requiring holomorphicity in some (or equivalently any) chart. A holomorphic
diffeomorphism whose inverse is holomorphic, too, is called a biholomorphism. Two
complex manifolds are called biholomorphic if there is a biholomorphism between
them. It happens often that complex manifolds are diffeomorphic without being
biholomorphic.

Of course, the product of two complex manifolds is canonically a complex
manifold. On the one hand, this implies that there is a well–defined notion of
a complex Lie group as a complex manifold endowed with a holomorphic group
structure. In particular, the group GL(n, C) is a complex Lie group and thus for
any complex Lie group one can talk about holomorphic representations on complex
vector spaces. On the other hand, given complex manifolds M and S, one can
define holomorphic fiber bundles over M with standard fiber S similarly as in 1.2.6.
One just has to require the total space to be a complex manifold and the fiber
bundle charts to be holomorphic. In particular, one has the subclass of holomorphic
vector bundles among complex vector bundles. For principal bundles with structure
group a complex Lie group, there is the subclass of holomorphic principal bundles.
Given any holomorphic fiber bundle, there is a natural notion of holomorphicity for
sections via holomorphicity in some (or equivalently any) fiber bundle chart. One
can then consider jets of holomorphic sections similarly as in 1.2.8, and so on.

Since functions between open subsets of Cn are holomorphic if and only if
they have complex linear derivatives, one can use the charts of a complex atlas to
make any tangent space of a complex manifold M into a complex vector space. In
this way, the tangent bundle TM becomes a complex (and even a holomorphic)
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vector bundle. The most convenient way to encode this is to consider the linear
maps on the tangent spaces of M given by multiplication by i =

√
−1. These fit

together to define a smooth bundle map J : TM → TM , which clearly satisfies
J2 = J ◦ J = −id. If M and M̃ are complex manifolds and J and J̃ are the
corresponding bundle maps, then a smooth map f : M → M̃ is holomorphic if
and only if its tangent map is complex linear, i.e. Tf ◦ J = J̃ ◦ Tf . In particular,
the underlying real manifold M and the bundle map J encode the structure of a
complex manifold on M , since one may characterize holomorphic charts u : U → Cn

using J .
Now one can turn the game around, starting with a real manifold M and a

bundle map J : TM → TM such that J2 = −id. Such a bundle map is called an
almost complex structure on M , and existence of such a structure implies that the
dimension of M is even. A manifold M endowed with an almost complex structure
J is called an almost complex manifold. The classical Newlander–Nirenberg theorem
characterizes those almost structures which are integrable, i.e. which come from the
structure of a complex manifold on M : For vector fields ξ, η ∈ X(M) consider the
expression

[ξ, η]− [Jξ, Jη] + J([Jξ, η] + [ξ, Jη]).

One immediately verifies that this expression is bilinear over smooth functions on
M , so it defines a tensor field N = NJ : TM × TM → TM , called the Nijen-
huis tensor of the almost complex structure J . From the definition one immedi-
ately verifies that NJ is skew symmetric and conjugate linear in both variables,
i.e. NJ(Jξ, η) = −J(NJ(ξ, η)), and likewise in the other variable. In particular, NJ

always vanishes if M is of real dimension two, since then a basis of each tangent
space is given by {ξ, Jξ} for some nonzero tangent vector ξ. The Newlander–
Nirenberg theorem (see [NeNi57]) states that J is induced by a complex structure
on M if and only if NJ = 0. It should be remarked that this theorem is not too dif-
ficult in the case that M and J are assumed to be real analytic; see [KoNo69]. The
hard part is to show that vanishing of the Nijenhuis tensor implies real analyticity.

One of the basic features of almost complex and complex manifolds is a natural
decomposition of the spaces of complex valued differential forms. Let (M,J) be
an almost complex manifold and V a complex vector space, and for some 0 ≤ k ≤
dimR(M) consider the space Ωk(M,V ) of real k–forms with values in V . For φ ∈
Ωk(M,V ) and x ∈ M , the value φ(x) is a map (TxM)k → V , which is R–linear in
each entry. The finer decomposition has the form Ωk(M,V ) =

�
p+q=k Ωp,q(M,V )

with p, q ≥ 0, and is often referred to as the decomposition into (p, q)–types. There
are two ways to describe this decomposition: On the one hand, one can look at
the action of multiplication by nonzero complex numbers in the real picture. From
this point of view, the subspace Ωp,q(M,V ) is formed by all φ such that for each
nonzero complex number λ and all vector fields ξ1, . . . , ξk on M , one has

φ(λξ1, . . . ,λξk) = λpλ̄qφ(ξ1, . . . , ξk).

In particular, for k = 1, the subspaces Ω1,0(M,V ) and Ω0,1(M,V ) consist of those
φ for which each of the maps φ(x) : TxM → V is complex linear, respectively,
conjugate linear. For k = 2, the subspaces Ω2,0(M,V ) and Ω0,2(M,V ) consist of
those forms whose values are complex linear, respectively, conjugate linear in both
arguments. The subspace Ω1,1(M,V ) consists of forms φ whose values are totally
real, i.e. such that φ(Jξ, Jη) = φ(ξ, η) for all vector fields ξ and η on M .
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The second approach to obtain the decomposition into (p, q)–types is via com-
plexification. Let (M,J) be an almost complex manifold and consider the com-
plexified tangent bundle TCM := TM ⊗R C. The bundle map J : TM → TM
extends to a complex linear bundle map JC : TCM → TCM such that J2

C = −id.
Since each tangent space is a complex vector space, it splits into the direct sum of
eigenspaces for JC with eigenvalues ±i, and of course, this depends smoothly on the
base point. Thus, one obtains a splitting TCM = T 1,0M ⊕T 0,1M into a direct sum
of smooth subbundles. The eigenspaces T 1,0

x M (respectively T 0,1
x M) are spanned

by all vectors of the form ξ − iJξ (respectively ξ + iJξ) with ξ ∈ TxM . Vanishing
of the Nijenhuis tensor is easily seen to be equivalent to the fact that the sections
of either (or equivalently both) these bundles are closed under the Lie bracket.

The dual space T ∗M ⊗ C of TCM splits accordingly as T ∗1,0M ⊕ T ∗0,1M , where
T ∗1,0 is the annihilator of T 0,1. Next, we get

Λk(T ∗M ⊗ C) =
�

p+q=k

ΛpT ∗1,0M ⊗ ΛqT ∗0,1M.

For a complex vector space V , one may then identify LR(ΛkT ∗M,V ) with Λk(T ∗M⊗
C)⊗C V , which leads to the decomposition into (p, q)–types.

Let us next specialize to the case V = C of complex–valued forms. Then it is
natural to look at the compatibility of the exterior derivative d (which is defined
exactly as the real counterpart) with the decomposition into (p, q)–types. For a
general almost complex structure, one can only show that for φ ∈ Ωp,q(M) :=
Ωp,q(M, C) the exterior derivative dφ can have nontrivial components only in bide-
grees (p + 2, q− 1), (p + 1, q), (p, q + 1), and (p− 1, q + 2). In the case of a complex
structure, the situation is much nicer, since in that case the nontrivial components
can only lie in degrees (p + 1, q) and (p, q + 1). Decomposing dφ into these two
parts leads to two natural first order operators ∂ : Ωp,q(M) → Ωp+1,q(M) and
∂̄ : Ωp,q(M) → Ωp,q+1(M) such that d = ∂ + ∂̄. The fact that d2 = 0 immediately
implies that ∂2 = 0, ∂̄2 = 0 and ∂̄ ◦ ∂ = −∂ ◦ ∂̄.

In the case of complex structures, the splitting into (p, q)–types and the oper-
ators ∂ and ∂̄ can be nicely described in local coordinates. Suppose that one has
local Cn–values coordinates (x1 + iy1, . . . , xn + iyn). Then from above we conclude
that we obtain local frames { ∂

∂zj : j = 1, . . . , n} for T 1,0M and { ∂
∂z̄j : j = 1, . . . , n}

for T 0,1M by defining

∂
∂zj := 1

2 ( ∂
∂xj − i ∂

∂yj ) ∂
∂z̄j := 1

2 ( ∂
∂xj + i ∂

∂yj ).

(Observe that J maps ∂
∂xj to ∂

∂yj .) The dual frames for T ∗1,0M and T ∗0,1M consist
of the elements dzj = dxj + idyj , respectively, dz̄j = dxj − idyj . Hence, the forms
dza1 ∧ · · ·∧ dzap ∧ dz̄b1 ∧ · · ·∧ dz̄bq with p + q = k, a1 < · · · < ap and b1 < · · · < bq

form a local frame for Ωk(M, C), and the splitting into (p, q)–types corresponds to
the number of unbarred and barred factors. Using the sum convention, we get for
φ = φa1...apb1...bqdza1 ∧ · · · ∧ dz̄bq the formulae

∂(φ) =
∂φa1...apb1...bq

∂zj
dzj ∧ dza1 ∧ · · · ∧ dz̄bq ,

∂̄(φ) =
∂φa1...apb1...bq

∂z̄j
dz̄j ∧ dza1 ∧ · · · ∧ dz̄bq .
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Finally, observe that by the Cauchy–Riemann equations a complex–valued function
f : M → C is holomorphic if and only if ∂f

∂z̄j = 0 for all j = 1, . . . , n. This implies
that a (p, q)–form φ ∈ Ωp,q(M) is holomorphic if and only if ∂̄φ = 0, i.e. if and
only if dφ ∈ Ωp+1,q(M). This works in the same way for forms with values in any
finite–dimensional complex vector space.

1.3. A survey on connections

This section provides background on various versions of connections. We start
from the simple idea of linear connections on vector bundles, then pass to gen-
eral connections on fiber bundles, and specialize to principal and induced connec-
tions. Finally, we discuss affine connections and, more generally, connections on
G–structures, which are the simplest special cases of Cartan connections.

1.3.1. Linear connections. The general idea of a connection is to provide a
notion of directional derivatives for sections of bundles or fibered manifolds. The
directions are given by vector fields on the base, and for real–valued smooth func-
tions, the action of vector fields provides a natural operation of this type. We have
seen two further instances of such operations already.

First, for smooth functions with values in a Lie group G, the trivialization
of the tangent bundle defined by the Maurer–Cartan form allows us to define a
derivative, which has values in the tangent space at the unit element. This is
the left logarithmic derivative defined in 1.2.4. We shall see below how to link
this derivative to the trivial principal connection on the trivial principal bundle
M ×G → M .

Second, on all natural bundles, there is the notion of Lie derivative of sections
along vector fields; cf. 1.2.9. This is, however, not an analogue of a directional
derivative, since the value of Lξs in a point does not only depend on the value of ξ
in that point but on a higher jet of the vector field. Hence, a different concept is
needed.

Let us consider an arbitrary vector bundle V → M with standard fiber V .
We wish to have derivatives of sections s ∈ Γ(V) in the direction of a vector field
ξ ∈ X(M) which are tensorial in ξ. In the other variable, one requires a Leibniz
rule with respect to the multiplication by smooth functions. Such an operation is
usually called a “connection” or a covariant derivative on the vector bundle V. It
is well known (see e.g. [KMS, Lemma 7.3]) that the requirement to be tensorial
in ξ can be equivalently formulated as being linear over C∞(M). Thus, a linear
connection on a vector bundle V → M is often defined as a bilinear operator
∇ : X(M) × Γ(V) → Γ(V), written as (ξ, s) �→ ∇ξs, such that for all ξ ∈ X(M),
s ∈ Γ(V) and f ∈ C∞(M, R) one has

(1.2)
∇ξfs = (Lξf)s + f∇ξs,

∇fξs = f∇ξs.

Choosing local charts Rn × Rk → V for M and V and using the usual summation
convention, we may write the vector field ξ as ξ = ξi ∂

∂xi , where x is the coordinate
on Rn, and the section s as spep, where {e1, . . . , ek} is the the local frame of V
corresponding to the chosen chart. From the defining properties (1.2) of ∇ we get

∇ξs = ξi∇ ∂
∂xi

(spep) = ξi ∂sp

∂xi
ep + Bp

qis
qξiep,
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for smooth functions Bp
qi characterized by ∇ ∂

∂xi

eq = Bp
qiep. This formula shows

that ∇ξs(x) depends only on j1
xs. Moreover, for each fixed target y = s(x) there

is a unique one–jet j1
xs such that ∇ξxs = 0 for all ξx ∈ TxM . Conversely, knowing

that one–jet is equivalent to knowing the functions Bp
qi and thus to knowing the

linear connection ∇.
The last observation directly leads to the definition of the horizontal distribution

H ⊂ TV associated to ∇. Given x ∈ M and y ∈ Vx, we can find a smooth section
s ∈ Γ(V ) such that s(x) = y and ∇ξs(x) = 0 for all ξ ∈ X(M) and the one–jet j1

xs is
uniquely determined by this condition. In particular, Txs is unambiguously defined,
and we put Hy := Txs(TxM). Of course, Typ is inverse to Txs, so it restricts to
a linear isomorphism between Hy and TxM . Hence, for each tangent vector ξx at
x and each point y over x, we can find a unique lift of ξx in Hy. This defines the
horizontal lift of tangent vectors on M .

In local coordinates as above, the distinguished one–jet j1
xs is characterized

by ∂sp

∂xi (x) = −Bp
qi(x)sq(x). In particular, in a point x0 the distinguished jet for

s(x0) = y can be represented by the map y−Bp
qi(x0)yq(xi−xi

0). This immediately
shows that the horizontal lift of ξi(x) ∂

∂xi is given by

ξi(x) ∂
∂xi − ξi(x)Bp

qi(x)yq ∂
∂yp .

Starting from a smooth vector field ξ ∈ X(M), the horizontal lifts fit together to
define a smooth vector field ξhor ∈ X(V), called the horizontal lift of ξ. It is the
unique projectable vector field over ξ whose value in each point lies in the horizontal
subspace. Since such horizontal lifts span the horizontal subspaces, we see that the
horizontal distribution is smooth.

Let us put this into a broader perspective. Working in local coordinates as
above, the fact that the horizontal lift in a point is a linear map implies that we
may write

ξhor(x, y) = ξi(x) ∂
∂xi + γp

i (x, y)ξi(x) ∂
∂yp ,

for some functions γp
i . We have seen that in our case γp

i (x, y) = −Bp
qi(x)yq, so this

is linear in y. This is the origin of the term “linear connection”.
Next, we show that the covariant derivative can be recovered from the horizon-

tal lift map. This will lead to the notion of a general connection, which is based on
the horizontal lift.

Lemma 1.3.1. Let ∇ be a linear connection on a vector bundle V → M . Then
for any vector field ξ ∈ X(M) and any section s ∈ Γ(V) we have

∇ξs = Ts ◦ ξ − ξhor ◦ s = d
dt |0

�
Flξ

hor

−t ◦s ◦ Flξt
�

,

where we identify the vertical tangent space to V in the point s(x) with the fiber Vx.

Proof. The first equality follows immediately from the coordinate formulae of
the covariant derivative and the horizontal lift, and the second equality is a direct
computation. �

The curvature of a linear connection ∇ on V is defined by

(1.3) R(ξ, η)(s) := ∇ξ∇ηs−∇η∇ξs−∇[ξ,η]s

for ξ, η ∈ X(M). By construction, this is skew symmetric in ξ and η, and one
easily verifies that it is linear over smooth functions in all three entries. Thus, we
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may view the curvature R as a section of the bundle Λ2T ∗M ⊗ L(V,V), i.e. as a
two–form with values in endomorphisms of V.

For later use, let us note here that a linear connection ∇ on a vector bundle
V → M induces operators on V–valued differential forms, called the covariant
exterior derivative. By definition, the space Ωk(M,V) of V–valued k–forms is the
space of smooth sections of the bundle ΛkT ∗M ⊗ V. Alternatively, Ωk(M,V) is
the space of all k–linear alternating maps (X(M))k → Γ(V) which are linear over
C∞(M, R) in one (or equivalently any) variable. Now one defines the covariant
exterior derivative d∇ : Ωk(M,V) → Ωk+1(M,V) by taking the formula for the
exterior derivative from 1.2.1 and replacing the action of a vector field on a smooth
function by a covariant derivative, i.e.

d∇ω(ξ0, . . . , ξk) =
k�

i=0

(−1)i∇ξi(ω(ξ0, . . . , �ξi, . . . , ξk))

+
�

i<j

(−1)i+jω([ξi, ξj ], ξ0, . . . , �ξi, . . . , �ξj . . . , ξk).

The verification that this is alternating and linear over C∞(M, R) is exactly as
in the case of usual differential forms. In contrast to the exterior derivative, the
covariant exterior derivative is, however, not a differential, i.e. d∇ ◦ d∇ �= 0 in
general.

1.3.2. General connections. A general connection on an arbitrary fibered
manifold p : Y → M is a smooth horizontal distribution H ⊂ TY which is comple-
mentary to the vertical tangent bundle V Y . For each y ∈ Y , Hy ⊂ TyY is called
the horizontal subspace at y of the connection.

There are three further equivalent ways to view this: First, we can consider the
induced horizontal lift of vector fields which associates ξhor ∈ X(Y ) to ξ ∈ X(M).
As in the case of linear connections, ξhor is the unique projectable vector field lying
over ξ whose value in each point is horizontal. By construction, the horizontal lift
map is linear over smooth functions, and conversely a lift map with this property
comes from a smooth horizontal distribution. Second, we have TY = V Y ⊕H and
this decomposition can be equivalently described by the smooth vertical projection
Ψ : TY → V Y with kernel H. Of course, the vertical projection also defines the
horizontal projection χ = idTY −Ψ. Finally, as in the case of linear connections,
one may view the connection as specifying a unique one–jet of sections j1

xs with
s(x) = y for each y ∈ Y , such that the horizontal lift TxM → TyY is given by
Txs. From that point of view, a connection can equivalently be viewed as a smooth
section of the first jet prolongation J1Y → Y .

The curvature of a general connection is defined by R(ξ, η) = −Ψ([χ(ξ),χ(η)])
for ξ, η ∈ X(Y ), so R(ξ, η) is minus the vertical projection of the brackets of the
horizontal projections of the vector fields. (The sign is used to obtain the usual sign
conventions for principal and linear connections.) By definition, R is horizontal,
i.e. vanishes upon insertion of one vertical vector field, and has vertical values.
Moreover, Ψ ◦ χ = 0 immediately implies that R is bilinear over C∞(Y, R), so
R ∈ Ω2

hor(Y, V Y ). Moreover, R(ξ, η) = 0 for all ξ and η if and only if the Lie
bracket of any two horizontal vector fields on Y is horizontal, too, i.e. if and only
if the horizontal distribution is involutive. By the Frobenius theorem (see 1.2.2),
a connection has vanishing curvature if and only if it is locally given by local
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trivializations s : Rm × Rn → Y . A more sophisticated definition of the curvature
of general connections is to define R as the Frölicher–Nijenhuis bracket [Ψ,Ψ] of
the vertical projection Ψ; see [KMS, section 9].

Since one–dimensional distributions are always involutive, a general connection
defines the so–called parallel transport along curves on p : Y → M : For each
interval (a, b) ⊂ R containing zero and each parametrized curve c : (a, b) → M ,
with x = c(0), and any y ∈ Y with p(y) = x, there is a unique maximal subinterval
(a�, b�) ⊂ (a, b) containing 0 and a unique curve c̃y : (a�, b�) → Y such that c̃y(0) = y,
p ◦ c̃y = c, and T c̃y has values in the horizontal distribution.

The absolute derivative ∇ξ defined by a general connection is then defined by
the formula from Lemma 1.3.1, i.e.

∇ξs = Ts ◦ ξ − ξhor ◦ s = d
dt |0

�
Flξ

hor

−t ◦s ◦ Flξt
�

.

For a section s ∈ Γ(Y ) and a vector field ξ ∈ X(M), we have ∇ξs ∈ Γ(V Y → M).
This formula may also be explained in terms of the parallel transport: Take a
section s and a direction ξx ∈ TxM . Extend ξx into a vector field ξ, consider its
flow through x and the corresponding parallel transport. Then the derivative of the
pullback of the section by the parallel transport along the flow lines of ξ is exactly
given by our formula.

There is also another concept of derivative, the exterior absolute differential
d∇ : Ωk(Y, V ) → Ωk+1(Y, V ) for any vector space V , defined by means of the
pullback with respect to the horizontal projection, i.e. by the formula d∇ = χ∗d.
We shall see some explicit relation between the last two concepts under specific
geometric assumptions, but they are completely independent in the general setting.

For fiber bundles, there is a nonlinear version of the Christoffel symbols. For
a local trivialization Rm × S → Y , the horizontal lift of vector fields is described
uniquely by the mappings γi : TM → X(S), so that the horizontal lift of ξi ∂

∂xi

equals ξi ∂
∂xi + ξiγi. Similarly, we obtain the formula for the absolute derivative in

a local trivialization.
Finally, in the special case of a vector bundle Y → M , the first jet prolongation

J1Y carries a vector bundle structure too. It is a simple exercise to verify that a
general connection σ : Y → J1Y is linear if and only if the section σ is a vector
bundle homomorphism.

1.3.3. Principal connections. In the special case of a principal bundle, it is
natural to look at connections that are compatible with the principal right action.
Let p : P → M be a principal fiber bundle. A principal connection on P is a
(general) connection whose horizontal distribution is invariant with respect to the
principal action of the structure group G, i.e. Hu·g = Trg(Hu) for all g ∈ G. Notice
that this immediately implies that the parallel transport along curves is also right
invariant. This means that for any curve c, the corresponding parallel transport c̃
satisfies c̃u·g(t) = c̃u(t) · g for all u ∈ P and g ∈ G.

There are two further equivalent ways to express the invariance condition:

(1) The horizontal lifts of vector fields are right invariant vector fields on the
principal bundle P, i.e. (rg)∗ξhor = ξhor for all g ∈ G and ξ ∈ X(M).

(2) The corresponding section σ : P → J1P is G–equivariant with respect to
the obvious induced G–action on J1P.
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In the case of a principal bundle, one may reformulate the vertical projection
defining a connection in a simple way, since the vertical bundle V P of a principal
G–bundle p : P → M is trivialized by the fundamental vector fields. This means
that any vertical tangent vector ξ ∈ TuP can be written as the value ζX(u) for a
unique element X ∈ g, the Lie algebra of the structure group G. Consequently, we
may specify the vertical projection of any general connection on P by a g–valued
one form γ ∈ Ω1(P, g), such that the vertical projection of ξ ∈ TuP equals ζγ(ξ)(u).
This is a projection if and only if γ reproduces the generators of fundamental vector
fields, i.e. γ(ζX) = X for all X ∈ g. One easily verifies that γ corresponds to a
principal connection if and only if (rg)∗γ = Ad(g−1) ◦ γ. We call the one–form γ
the principal connection form, or briefly the principal connection, on P.

The trivialization of the vertical bundle by fundamental vector fields also leads
to a nice interpretation of the curvature of any connection on a principal fiber
bundle. Since the curvature R has vertical values, there is a unique g–valued two–
form ρ ∈ Ω2(P, g) such that R(ξ, η)(u) = ζρ(ξ,η)(u)(u) for any u ∈ P. If we deal
with a principal connection, then the definition of the curvature R by means of the
horizontal lifts shows that R, viewed as an element in Ω2(P, V P), is G–equivariant,
which in turn immediately implies that (rg)∗ρ = Ad(g−1) ◦ ρ. The form ρ is called
the curvature form or often simply the curvature of the given principal connection.
Since ρ is horizontal and equivariant, it may also be viewed as a two–form on M
with values in the associated bundle P ×G g corresponding to the adjoint action of
G on g; see Corollary 1.2.7.

To compute the curvature ρ from the connection form γ, observe that by defini-
tion we have ρ(ξ, η) = −γ([ξ− ζγ(ξ), η− ζγ(η)]). Since both fields on the right–hand
side lie in the kernel of γ, this coincides with dγ(ξ − ζγ(ξ), η − ζγ(η)). Note that
this by definition means that ρ = d∇γ, where d∇ is the exterior absolute derivative
from 1.3.2. Now for X ∈ g, the flow of the fundamental vector field ζX is rexp(tX),
so differentiating the equivariancy property (rexp(tX))∗γ = Ad(exp(−tX)) ◦ γ at
t = 0, we obtain LζX

γ = − ad(X) ◦ γ. Moreover, by definition iζX
γ = X and

thus diζX
γ = 0, whence we conclude that dγ(ζX , η) = −[X, γ(η)]. Using this, we

immediately conclude from above that

ρ(ξ, η) = dγ(ξ, η) + [γ(ξ), γ(η)],

which is the usual definition of the curvature of a principal connection.
On the trivial principal bundle M ×G there is the trivial principal connection,

whose horizontal subspaces are the kernels of TπG, where πG : M ×G → G is the
projection. The connection form of this connection is the pullback of the Maurer–
Cartan form by πG, and for simplicity, we also denote this form by ωG. Note
that then the absolute differential of sections M → M × G, viewed as functions
M → G, is exactly the left logarithmic derivative. Let us further specialize to
M = Rn, which, via local trivializations, also describes the local situation for
general principal bundles. A general connection form on Rn ×G can be written as

γ = ωG − γidxi,

for g–valued one forms γi. These are called the Christoffel symbols, and they are
determined by the restriction to the distinguished section (x, e) ⊂ Rn × G. In
particular, for principal connections on the linear frame bundle P1M of a manifold
M we obtain the usual Christoffel symbols γk

ji.
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Obviously, the exterior differential of the connection form γ equals

dγ = dωG − dγi ∧ dxi

and the evaluation of dγ + 1
2 [γ, γ] yields the usual coordinate expression for the

curvature form. If we write γp
i Yp for the expression of γi(x, e) in the basis Yp of

g, ρ = ρpYp, and cp
qr for the corresponding structure constants of g, i.e. [Yq, Yr] =

cp
qrYp, we obtain the expression of ρ at the points (x, e) in M ×G,

ρp =
�

∂γp
i

∂xj
+ cp

qrγ
q
i γr

j

�
dxi ∧ dxj .

If the curvature of a principal connection γ vanishes, then locally γ is isomor-
phic to a trivial principal connection on a trivial principal bundle. There may
appear global obstructions to the product structure, however. Next, let us note
that the conditions on a general connection on a principal fiber bundle P to be
a principal connection are of affine character. Thus, we may glue together the
trivial connections with the help of a cocycle of local trivializations of P and a
subordinated partition of unity, to obtain a globally defined principal connection.
In particular, there are always smooth principal connections on any principal fiber
bundle P. Let us finally note that the difference of two principal connections γ
and γ̄ is a horizontal equivariant g–valued one–form. By Corollary 1.2.7 it may
equivalently be viewed as a one–form on M with values in the bundle P ×G g.

1.3.4. Induced connections. The main advantage of principal connections
is that a single principal connection on a principal bundle gives rise to a connection
on any associated bundle, and the connections on various associated bundles are
nicely compatible. There are at least two ways to see that this has to work: On
the one hand, from 1.2.6 and 1.2.7 we know that the elements of a G–principal
bundle P → M may be viewed as frames, which give a coordinate–like description
of elements of the associated bundles P×GS. Given a principal connection on P, we
know which local frame fields are constant to first order. We can then define sections
of P×G S to be constant to first order, if their coordinates in such frame fields have
vanishing derivatives, and this suffices to define a connection on P ×G S. On the
other hand, it is also easy to see that equivariancy of the horizontal distribution of a
principal connection implies that it can be pushed down to a horizontal distribution
on any associated bundle.

Recall from 1.2.7 that, given a principal G–bundle p : P → M and a left action
of G on a manifold S, we have the associated bundle π : P×G S → M and a natural
projection q : P×S → P×G S, which is a G–principal bundle and has the property
that π ◦ q = p ◦ pr1. Now the tangent map of the multiplication makes TG into
a Lie group, and the tangent map of the principal right action of G on P makes
TP into a TG–principal bundle. Then Tq identifies T (P ×G S) with TP ×TG TS.
Moreover, embedding P into TP and G into TG as the zero sections, the restriction
of Tq to P × TS induces an identification of the vertical bundle V (P ×G S) with
P ×G TS.

Now assume that we have given a principal connection on P with horizontal
distribution H. Then one immediately verifies that for any (u, s) ∈ P × S the
restriction of T(u,s)q to Hu×{0s} is injective, so the image of this subspace defines a
candidate for a horizontal subspace in T�u,s�(P×GS). Equivariancy of the horizontal
distribution easily implies that this subspace is independent of the choice of the
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representative (u, s), so we get a well–defined horizontal distribution HS on the
associated bundle P ×G S. Viewing T (P ×G S) as an associated bundle as above,
we have

HS(�u, s�) = {�ξ(u), 0s� ∈ TP ×TG TS, ξ(u) ∈ H(u), u ∈ P}.
Thus, any fixed principal connection γ on P yields on each associated bundle P×GS
a general connection γS , which is called the induced connection.

An induced connection is closely related to the principal connection it comes
from. We will prove this only in the case of associated vector bundles, but with
straightforward changes in the formulations and proofs, similar statements hold for
general induced connections.

Proposition 1.3.4. Let p : P → M be a G–principal bundle, λ a linear
representation of G on a vector space V and V = P×G V the corresponding induced
vector bundle. Consider a principal connection on P with connection form γ ∈
Ω1(P, g) and curvature ρ ∈ Ω2(P, g), and let γV be the induced connection on V.

(1) γV is a linear connection on V. Using TV = TP ×G TV , its horizontal lift
is given by ξ �→ Tq ◦ (ξhor, 0) = �ξhor, 0�, where ξhor ∈ X(P) is the horizontal lift of
ξ with respect to γ.

(2) Let s ∈ Γ(V) be a section corresponding to the function f ∈ C∞(P, V ),
and let ξ ∈ X(M) be a vector field. Then the covariant derivative ∇ξs ∈ Γ(V)
corresponds to the function ξhor · f : P → V .

(3) In a local trivialization Rn × G → P with γ = ωG − γidxi and the corre-
sponding local trivialization Rn × V → V, the absolute derivative is given by

∇ξs = ξi ∂s

∂xi
− λ�(γiξ

i) ◦ s,

where λ� : g → gl(V ) is the Lie algebra representation corresponding to λ.
(4) The parallel transport on V along the curve c on M is given by c̃V

�u,v�(t) =
�c̃u(t), v�, where c̃u is the parallel transport in P starting at u.

(5) Let s ∈ Γ(V) be a section corresponding to the function f : P → V , and let
ξ, η ∈ X(M) be vector fields. Then the section ∇ξ∇ηs−∇η∇ξs−∇[ξ,η]s corresponds
to the function λ�(ρ(ξhor, ηhor)) ◦ f .

Proof. The statement on the horizontal lift in (1) is obvious from the con-
struction. Given a section s corresponding to the function f : P → V , let us choose
a local smooth section σ of P, so that we can locally write s as q ◦ (σ, f ◦ σ). By
definition of the absolute derivative associated to a general connection, ∇ξs(x) is
given by

Tq · (Txσ · ξ(x)− ξhor(σ(x)), T f · Txσ · ξ(x)).
Now, we may fix a frame u ∈ P over x and choose σ in such a way that ξhor(u) =
Txσ · ξ(x) for all ξ, i.e. a section σ which represents the defining jet of γ in x with
target u. But then the above expression simplifies to Tq ·(0u, T f ·ξhor(σ(x))). Iden-
tifying the vertical tangent space in �u, f(u)� with the vector space V , this shows
that the function P → V corresponding to ∇ξs has value ξhor(σ(x)) ·f in the point
σ(x), which proves claim (2). Moreover, since the sum of two sections corresponds
to the pointwise sum of the associated functions, this immediately implies that ∇
is actually a covariant derivative on V, and thus defines a linear connection. By
construction, this linear connection has associated horizontal distribution HV , so
it coincides with γV , which completes the proof of (1).
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(3) Let σ be the local smooth section of P corresponding to the chosen trivial-
ization. Then the associated local trivialization of V is given by (x, v) �→ �σ(x), v�.
Consequently, viewing a section s as a V –valued function in this trivialization, one
obtains exactly f ◦ σ, where f : P → V is the equivariant function corresponding
to s. Now the horizontal lift of ξi ∂

∂xi is given by ξi ∂
∂xi + ζγiξi , and the claim follows

from (2) and equivariancy of f .
(4) The curve �c̃u(t), v� obviously has horizontal derivatives, covers c, and starts

at �u, v�, so the claim follows from uniqueness of the parallel transport.
(5) By (2), the section ∇ξ∇ηs −∇η∇ξs −∇[ξ,η]s corresponds to the function

([ξhor, ηhor]−[ξ, η]hor)·f and the field in the bracket by definition equals ζ−ρ(ξhor,ηhor).
Equivariancy of f now implies the claim. �

1.3.5. Affine connections on manifolds. The previous construction of in-
duced connections can be often inverted. In particular, any linear connection on a
vector bundle V over M with standard fiber V is induced by a unique principal con-
nection on the frame bundle of V, i.e. the principal bundle of all bases of the fibers
of V with structure group GL(V ). (Since a local frame for a vector bundle is made
up from local sections, we can simply declare a local frame to be constant to first
order in a point, if all the sections that constitute the frame have this property.)

In particular, linear connections on the tangent bundle TM of a smooth man-
ifold M are in one–to–one correspondence with principal connections on the linear
frame bundle P1M . The latter connections are briefly referred to as linear connec-
tions on M . Once we fix such a connection γ, then there are the induced connections
on all tensor bundles (and more generally any associated bundle to P1M). The
coordinate formula from part (3) of Proposition 1.3.4 is just the classical formula
for the covariant derivative with respect to a linear connection on a manifold.

The next ingredient which is specific to the case of the tangent bundle is the
existence of the canonical form θ ∈ Ω1(P1M, Rm), m = dim(M). The value of
this form in a frame u ∈ P1M on a tangent vector ξ ∈ TuP1M is defined to be
the coordinates of the projection Tp · ξ ∈ Tp(u)M in the frame u. Otherwise put,
viewing u as linear isomorphism Rm → TxM , we have θ(u)(ξ) := u−1(Tup · ξ). The
names solder form and soldering form for θ are often used in the literature.

By construction, the canonical form θ is GL(m, R)–equivariant with respect to
the standard action of GL(m, R) on Rm and it is strictly horizontal, i.e.

(rg)∗θ = g−1 ◦ θ for g ∈ GL(m, R),(1.4)

θ(ξ) = 0 if and only if ξ is vertical.(1.5)

The second property is obvious from the definition of θ, the first one simply follows
from the fact that viewing frames as linear isomorphisms Rm → TxM , the principal
right action of GL(m, R) is given by composition from the right.

Given a principal connection γ ∈ Ω1(P1M, gl(m, R)), we may consider the one–
form ω = θ + γ ∈ Ω1(P1M, Rm ⊕ gl(m, R)), which is equivariant with respect to
the direct sum of the standard action and the adjoint action. Moreover, since the
kernel of θ in a point is the vertical subbundle and γ is injective on the vertical
bundle, we see that for each u ∈ P1M , the restriction of ω to TuP1M is injective
and hence a linear isomorphism.

In this picture, we can nicely describe the affine m–space Am as the homoge-
neous model of such a structure. As a set, Am = Rm and the group A(m, R) of
affine motions is the group of all maps from Rm to itself, which are of the form
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x �→ Ax + b for A ∈ GL(m, R) and b ∈ Rm. Viewing Am as the affine hyperplane
x1 = 1 in Rm+1 the affine motions are exactly the elements of GL(m + 1, R) which
map this affine hyperplane to itself, i.e.

A(m, R) =
��

1 0
b A

�
, A ∈ GL(m, R), b ∈ Rm

�
⊂ GL(m + 1, R).

The group A(m, R) obviously acts transitively on Am and the isotropy subgroup
of the first unit vector is just the subgroup of all elements with b = 0, so Am ∼=
A(m, R)/GL(m, R). On the Lie algebra level, we get

a(m, R) =
��

0 0
X B

�
, B ∈ gl(m, R), X ∈ Rm

�
,

so as a vector space this is isomorphic to Rm⊕gl(m, R). Moreover, since the adjoint
action of a matrix group is given by conjugation, one immediately sees that this
splitting is invariant under the restriction of the adjoint action to GL(m, R), and
the action of this group on a(m, R) is the direct sum of the standard representation
and the adjoint action.

The natural projection p : A(m, R) → A(m, R)/GL(m, R) is a principal bundle
with structure group GL(m, R); see 1.2.6. In 1.2.4 we have introduced the Maurer–
Cartan from ω ∈ Ω1(A(m, R), a(m, R)). Now we may split ω = θ + γ according
to the splitting a(m, R) = Rm ⊕ gl(m, R), and since this splitting is GL(m, R)–
invariant, both θ and γ are GL(m, R)–equivariant forms. The form θ associates to
each element g ∈ A(m, R) a linear isomorphism Tp(g)A

m → Rm, and thus identifies
A(m, R) with the frame bundle P1Am. Hence, the component γ may be viewed as
a linear connection on Am and one immediately sees that this gives the canonical
flat connection on Am.

Returning to a general manifold M , we may now view the data defining a linear
connection on M as an analog of the homogeneous space A(m, R)/GL(m, R) = Am.
Indeed, the analog of the principal GL(m, R)–bundle A(m, R) → Am is the frame
bundle P1M → M . On the other hand, the form ω = θ+γ as considered above may
be viewed as an element of Ω1(P1M, a(m, R)), which is an analog of the Maurer–
Cartan form on A(m, R). In fact, we have already noted above that ω is GL(m, R)–
equivariant, it reproduces generators of fundamental vector fields, and defines a
trivialization of the tangent bundle. More formally, we have

(rg)∗ω = Ad(g−1) ◦ ω for all g ∈ GL(m, R),(1.6)

ω(ζX) = X for all X ∈ gl(m, R) ⊂ a(m, R),(1.7)

ω(u) : TuP1M → a(m, R) is a linear isomorphism for all u ∈ P1M.(1.8)

Here Ad denotes the adjoint action of A(m, R). These are exactly the strongest
analogs of the properties of the Maurer–Cartan form that make sense on a general
principal GL(m, R)–bundle.

To complete this interpretation of linear connections on the tangent bundle,
we need one more observation: Suppose that M is an m–dimensional manifold,
p : P → M is a principal GL(m, R)–bundle and ω ∈ Ω1(P, a(m, R)) is a one–form
which satisfies (1.6)–(1.8). Then (1.8) and (1.7) make sure that the kernel of the
Rm–component of ω in each point u ∈ P is exactly the vertical subspace VuP.
Hence, this component descends to an injective linear map TuP/VuP ∼= Tp(u)M →
Rm which must be an isomorphism by dimensional reasons. We can view this as
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defining a smooth fiber bundle map P → P1M , and condition (1.6) implies that
this must be a homomorphism and thus an isomorphism of principal bundles. By
construction, the pullback of the soldering form under this isomorphism is exactly
the Rm–component of ω. As before, we can then view the gl(m, R)–component of
ω as a principal connection on P.

This shows that a linear connection on an m–dimensional manifold M can
be equivalently described as an affine structure, i.e. a principal GL(m, R)–bundle
p : P → M , together with a one–form ω ∈ Ω1(P, a(m, R)) which has the properties
(1.6)–(1.8) from above. The basic features of linear connections on manifolds can
be nicely phrased in this picture, which motivates many developments for more
general Cartan geometries. We continue to write ω = θ + γ for the splitting into
the Rm– and the gl(m, R)–component.

There is another feature of linear connections on manifolds that we have not
discussed yet. For a linear connection γ on TM with covariant derivative∇, one can
define the torsion T by T (ξ, η) = ∇ξη−∇ηξ− [ξ, η]. This expression is visibly skew
symmetric and easily seen to be bilinear over C∞(M, R), so it defines a tensor field
T ∈ Γ(Λ2T ∗M ⊗ TM). In local coordinates we can describe the linear connection
∇ by the Christoffel symbols γi

jk (see 1.3.1), and we compute

T (ξ, η) =
�

∂ηj

∂xi
ξi − γj

ikηiξk − ∂ξj

∂xi
ηi + γj

ikξiηk − [ξ, η]
�

∂
∂xj

=
�
(γj

ik − γj
ki)ξ

iηk
�

∂
∂xj .

Hence, the torsion is given by the antisymmetrization of the Christoffel symbols,
T j

ik = γj
ik − γj

ki.
To compute the torsion in terms of ω, we observe that by definition of the

canonical form θ, for a vector field ξ ∈ X(M) the corresponding function f : P1M →
Rm can be written as θ(ξ̃), where ξ̃ is any lift of ξ to a vector field on P1M . In
particular, we may use the horizontal lift, and then the definition of the torsion
together with part (2) of Proposition 1.3.4 implies that the function P1M → Rm

corresponding to T (ξ, η) is given by

ξhor · θ(ηhor)− ηhor · θ(ξhor)− θ([ξhor, ηhor]) = dθ(ξhor, ηhor).

By definition, this is the absolute exterior derivative d∇θ. As in the case of the cur-
vature dealt with in 1.3.3, one next verifies that by equivariancy of θ, for arbitrary
vector fields ξ and η on P1M , we get

(1.9) dθ(ξ − ζγ(ξ), η − ζγ(η)) = dθ(ξ, η) + γ(ξ)(θ(η))− γ(η)(θ(ξ)).

The Lie bracket on a(m, R) is given by [(X, B), (X �, B�)] = (BX �−B�X, BB�−B�B),
so (1.9) turns out to be exactly the Rm–component of dω(ξ, η) + [ω(ξ),ω(η)]. The
gl(m, R)–component of the latter expression is dγ(ξ, η) + [γ(ξ), γ(η)], and we know
from 1.3.4 that this represents the curvature of our connection. Thus, we see
that the extent to which ω fails to satisfy the Maurer–Cartan equation is exactly
measured by the torsion and the curvature of the corresponding linear connection.
In the special case of the homogeneous model Am the Maurer–Cartan equation
expresses the fact that the canonical connection on Am is torsion free and flat.

Another feature of linear connections on TM that relates nicely to the affine
point of view is the concept of geodesics which generalize the straight lines in Am

and the related concept of normal coordinates. Given a linear connection ∇ on M
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the geodesics are characterized by the fact that ∇c�c
� = 0. (From Lemma 1.3.1

it follows that ∇ξs depends only on the restriction of s to flow lines of ξ, which
implies that the above expression makes sense although c� is only defined along
c.) In the case of Am, the geodesics are the (linearly parametrized) straight lines,
and it is easy to see that they are exactly the projections of flows of left invariant
vector fields on A(m, R). Similarly, one may describe the geodesics for arbitrary
affine structures. Indeed, for a point x ∈ M and a tangent vector ξ ∈ TxM choose a
point u ∈ Px. Then there is a unique element X ∈ Rm such that ξ = Tup·ω−1

u (X, 0),
and we consider the constant vector field X̃ := ω−1(X, 0) ∈ X(P). Then the curve
c̃(t) := FlX̃t (u) is defined for |t| sufficiently small, and c := p ◦ c̃ satisfies c(0) = x,
and c�(0) = ξ. Moreover, by construction c̃ has horizontal derivatives, so c̃�(t) is
the horizontal lift of c�(t), and θ(c̃�(t)) = X for all t, which easily implies that c is
a geodesic.

Fixing again u ∈ P with p(u) = x, we can now consider the mapping φu(X) :=
p(FlX̃1 (u)), which is defined on a neighborhood of 0 ∈ Rm. Moreover, the deriv-
ative of φu at 0 is a linear isomorphism Rm → TxM , so possibly restricting to
a smaller neighborhood of zero, φu is a diffeomorphism onto an open neighbor-
hood of x in M . We can view this as defining a local coordinate system around x,
which has the property that the straight lines through 0 exactly correspond to the
geodesics through x, whence these are exactly the normal coordinates associated
to the connection γ. Changing from u to u · g, the normal coordinates change as
φu·g = φu ◦ Ad(g), so they are unique up to linear transformations. Alternatively,
the last fact may be interpreted in such a way that the normal coordinates de-
fine a unique diffeomorphism from an open neighborhood of 0 in TxM to an open
neighborhood of x ∈ M , the affine exponential map.

1.3.6. Connections on G–structures. First order G–structures are among
the simplest examples of geometric structures. For any such structure, there is an
obvious notion of compatible connections, and these can be interpreted very simi-
larly to affine connections on manifolds. Let H ⊂ GL(m, R) be a closed subgroup
and M an m–dimensional manifold. A G–structure with structure group H (or
briefly an H–structure) on M is a reduction i : P → P1M of the frame bundle of
M to the structure group H. This means that P is a principal H–bundle and i is a
morphism of principal bundles over the inclusion H �→ GL(m, R) which covers the
identity on M . Equivalently, one may characterize this as a principal H–bundle
p : P → M together with a form Θ ∈ Ω1(P, Rm) which is strictly horizontal and
H–equivariant, i.e. satisfies the analogs of (1.4) and (1.5) from 1.3.5 for elements
g ∈ H. Given the reduction i : P → P1M , we obtain the form Θ as the pullback
i∗θ of the canonical form, while in the other direction for u ∈ P the isomorphism
TxM → Rm corresponding to the frame i(u) is Θ(u) : TuP/VuP ∼= TxM → Rm.

Slightly more generally, we also use the term G–structure with structure group
H in the case where H is not a closed subgroup of GL(m, R) but a covering of a
virtual subgroup, i.e. if there is a given homomorphism j : H → GL(m, R) such that
the derivative j� : h → gl(m, R) is injective. A well–known example of this situation
is Riemannian spin structures, corresponding to the universal covering Spin(m) →
SO(m) ⊂ GL(m, R). As before, the structure may be either characterized as a
reduction of structure group or via an Rm–valued one–form Θ. Since this one form
is essentially the same object as the canonical one–form, we will also denote it by
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θ and call it the canonical form or the soldering form of the G–structure in the
sequel.

G–structures corresponding to subgroups in GL(m, R) allow yet another simple
description. From Lemma 1.2.6 we know that reductions of the principal GL(m, R)
bundle P1M to the structure group H ⊂ GL(m, R) are in bijective correspondence
with smooth sections σ of the bundle P1M/H → M . Explicitly, the subbundle
Q ⊂ P1M associated to a section σ ∈ Γ(P1M/H) is just the preimage of σ(M)
under the natural projection P1M → P1M/H. Conversely, the images of local
smooth sections of Q under that projection are immediately seen to piece together a
global smooth section of P1M/H. Finally, the bundle P1M/H can be nicely viewed
as the associated bundle P1M ×GL(m,R) (GL(m, R)/H): Consider the map from
P1M to this associated bundle that maps u to �u, eH�. This is clearly smooth and
it is surjective since �u, gH� = �u ·g−1, eH�. On the other hand, �u, eH� = �u�, eH�
if and only if u� = u · h for some h ∈ H, so our map factors to a bijection from
P1M/H to the associated bundle and one easily verifies that this actually is a
diffeomorphism.

Example 1.3.6. There are many well–known G–structures, let us name just
a few:

(1) A Riemannian structure is the reduction of P1M to orthonormal frames, i.e.
to H = O(m, R) ⊂ GL(m, R). The group GL(m, R) acts transitively on the space
of all inner products on Rm and the isotropy group of the standard inner product
is O(m), so GL(m, R)/O(m) is the space of all inner products on Rm. Hence, the
associated bundle P1M/H is the bundle of all inner products on the tangent spaces
of M , i.e. smooth sections of this bundle are exactly Riemannian metrics on M .

Riemannian spin structures may be similarly interpreted as G–structures corre-
sponding to the homomorphism j : Spin(m, R) → GL(m, R). This is an important
example in which the structure group is not a subgroup of GL(m, R) but a covering
of such a subgroup.

(2) An almost symplectic structure on a smooth manifold M of dimension
2n is a reduction of P1M to the symplectic group H = Sp(2n, R). As in (1),
the homogeneous space GL(2n, R)/Sp(2n, R) is the space of all non–degenerate
skew symmetric bilinear maps on R2n. The bundle P1M/H is the bundle of non–
degenerate 2–forms, and its closed sections are called symplectic forms.

(3) An absolute parallelism is a reduction to the trivial subgroup {id} ⊂
GL(m, R). In this case, the G–structures are the global trivializations of TM .

A connection on a G-structure P with structure group H is a principal con-
nection on the H–principal bundle P. Notice that any such connection extends
to a principal connection on P1M by equivariancy. Given i : P → P1M and
j� : h �→ gl(m, R) and a principal connection γ ∈ Ω1(P, h), consider a point
i(u) ∈ P1M for u ∈ P. Since γ reproduces the generators of fundamental vector
fields, we get a well–defined linear map γ̃ : Ti(u)P1M → gl(m, R) which coincides
with j� ◦ γ(u) on Tui(TuP) and reproduces the generators of fundamental vector
fields. Now we can extend γ̃ to an element of Ω1(P1M, gl(m, R)) by requiring
equivariancy, i.e (rg)∗γ̃ = Ad(g−1) ◦ γ̃ for all g ∈ GL(m, R). This is well–defined
by equivariancy of γ.

Conversely, let us assume that γ is a principal connection on P1M and we have
given a reduction i : P → P1M corresponding to j : H → GL(m, R). Then visibly
γ is an equivariant extension of a principal connection as constructed above if and
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only if γ(i(u))(Tui(TuP)) ⊂ j�(h). In the case where H is a closed subgroup of
GL(m, R), there is a simple necessary condition. Namely, consider the section σ ∈
Γ(P1M/H) describing the reduction and the corresponding equivariant function
f : P1M → GL(m, R)/H. From above we see that by construction this function
is constantly equal to eH along the subbundle P ⊂ P1M . For a tangent vector ξ
on M and a point u ∈ P, choose a lift ξ̃ ∈ TuP. Then the condition on γ above
ensures that ξhor(u) ∈ TuP, whence we conclude that ξhor ·f vanishes identically on
P and thus on P1M by equivariancy. By the analog of part (2) of Proposition 1.3.4,
this means that ∇σ has to vanish identically, i.e. the section defining the reduction
must be covariantly constant. In many cases, this condition is also sufficient, e.g. for
Riemannian and almost symplectic structures.

We should also remark at this point that there are also general results con-
cerning the question whether a connection on P1M comes from some reduction to
the structure group H. These results are based on the notion of the holonomy of
a connection and are known as the Ambrose–Singer Theorem. A version of this
theorem for connections on general fiber bundles can be found in [KMS, 9.11].

Connections on G–structures can be treated in a similar style as the affine
picture for linear connections on the tangent bundle. Indeed, given j : H →
GL(m, R) such that the infinitesimal homomorphism j � is injective, consider the
affine extension B := Rm �H of H. This means that B = Rm×H as a set and the
multiplication is given by (X, g)(Y, h) = (X+j(g)(Y ), gh). If H is a closed subgroup
of GL(m, R), then B is a closed subgroup of A(m, R), in general there is an obvious
homomorphism j̃ : B → A(m, R) such that j̃� is injective. Now we can equivalently
view connections on G–structures with structure group H as principal H–bundles
P → M endowed with a one–form ω ∈ Ω1(P, b) which satisfy the analogs of (1.6)–
(1.8) from 1.3.5 with respect to elements g ∈ H. The interpretations of torsion and
curvature as well as geodesics and normal coordinates works exactly in the same
way as in 1.3.5.

As in the case of the affine space Am discussed in 1.3.5, one may look at the
homogeneous space B/H ∼= Rm, and view the Maurer–Cartan form on B as a
connection on the G–structure B → Rm with structure group H. Connections on
G–structures with structure group H can thus be thought of as “curved analogs”
of this homogeneous space. In particular, in the case H = O(m) ⊂ GL(m, R) the
affine extension B is exactly the Euclidean group Euc(n) as discussed in 1.1.2, and
from example (1) above, we see that this picture leads to viewing m–dimensional
Riemannian manifolds as curved analogs of the Euclidean space Em. This is one
of the motivating examples for the concept of Cartan connections.

1.3.7. Partial connections. The starting point for our development of con-
nections was a linear connection on a vector bundle, viewed as an analog of direc-
tional derivatives. In this picture, partial connections are operators with similar
properties, except that one may only differentiate in directions lying in a fixed
distribution D ⊂ TM . Given a vector bundle p : V → M one defines a partial
linear connection on V corresponding to the distribution D as a bilinear operator
Γ(D)×Γ(V) → Γ(V) written as (ξ, s) �→ ∇ξs which is linear over C∞(M, R) in the
first variable and satisfies the Leibniz rule in the second variable.

Most of the developments in this section can be also carried out for partial
connections. There are two ways to do this. Either one repeats the development
outlined so far, taking into account the obvious changes, or one views a partial
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connection as an equivalence class of true connections. Here two connections are
equivalent if they coincide on Γ(D) × Γ(V) ⊂ X(M) × Γ(V). In both ways, the
development is basically straightforward, so we only state a few main points.

Partial linear connections can be equivalently described by a horizontal lift,
which is now only defined on the subbundle D ⊂ TM . This leads to the notion
of a general partial connection on a fibered manifold p : Y → M , which is easiest
described as a direct sum decomposition (Tp)−1(D) ∼= V Y ⊕Dhor, or equivalently
by a vertical projection defined on (Tp)−1(D) only. In the case of a principal bundle
p : P → M with structure group G, the subbundle (Tp)−1(D) ⊂ TP is G–invariant,
so the definition of a partial principal connection is obvious. Such a partial principal
connection may be described by a connection form γ which is now a smooth section
of the bundle L((Tp)−1(D), g). The concept of induced partial connections poses
no problems and these behave similarly to true induced connections.

The notion of curvature for partial connection is slightly subtle. The problem
is that the bracket of two sections of the distribution D is not a section of D
in general. Hence, the covariant derivative in the direction of a bracket and the
vertical projection of a bracket are not defined in general. The Lie bracket of vector
fields induces a bundle map Λ2D → TM/D. If we assume that this bundle map has
constant rank, then its kernel is a subbundle Λ2

0D ⊂ Λ2D. In this case, the curvature
of a partial linear connection can be defined by the usual formula (equation (1.3)
from 1.3.1) as a section of the bundle L(Λ2

0D, L(V,V)). The curvature of partial
general connections and partial principal connections can be defined similarly.

A partial linear connection on TM is called a partial affine connection on M .
In this case, there is at least a well–defined concept of the torsion of the partial
connection which is defined by the standard formula T (ξ, η) = ∇ξη −∇ηξ − [ξ, η]
for all ξ, η ∈ Γ(D). This means that the torsion is a bundle map Λ2D → TM . One
can also use this definition of the torsion for partial connections on D.

It is worth mentioning at this point, that a part of the torsion of any (partial)
connection which preserves a distribution D depends only on D and not on the
connection. The Lie bracket of vector fields induces a tensorial map Λ2D → TM/D.
For any connection preserving D, the composition of the quotient projection TM →
TM/D with the restriction of the torsion to Λ2D is evidently given by this map.
Notice, that this tensorial map is the obstruction against integrability of D.

1.3.8. Remark. Affine connections on manifolds as treated in 1.3.5 and more
generally connections on G–structures as discussed in 1.3.6 are the simplest exam-
ples of Cartan connections. In all of these cases, there is a homogeneous space in
the background, which is simply Rm as a homogeneous space of the affine exten-
sion B = Rm � H of H in the case of G–structures with structure group H and,
in particular, affine space Am in the case of affine connections. The developments
in 1.3.5 and 1.3.6 give a first glance on the passage from the homogeneous model
to arbitrary Cartan connections, which is fundamental in the theory of Cartan ge-
ometries. Any reasonable concept for a Cartan geometry must first of all work for
the homogeneous model and many constructions for the homogeneous model carry
over to general Cartan connections. In view of this fact, we do not directly move
on to general Cartan connections, which would be the next natural item in our
chain of various notions of connections, but first study the invariant geometry of
homogeneous spaces.
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1.4. Geometry of homogeneous spaces

In F. Klein’s Erlangen program, homogeneous spaces are the basic setting for
classical geometry. Using Cartan connections, one may associate to any homo-
geneous space a differential geometric structure, called the corresponding Cartan
geometry. The given homogeneous space is then called the homogeneous model of
the Cartan geometry, and it plays a central role in the theory. On the one hand, it
provides a distinguished basic object. On the other hand, surprisingly many general
geometric properties can be read off directly from the homogeneous model. Oth-
erwise put, many questions about Cartan geometries can be answered by looking
at the homogeneous model only. Finally, there is always the subclass of locally flat
geometries, in which the relation to the homogeneous model is even closer.

The point of view we take in this chapter is that a homogeneous space G/H car-
ries a geometric structure, whose automorphisms are exactly the actions of elements
of G. There are three main directions in our study of these geometric structures
in this section. First we study homogeneous bundles and invariant sections of such
bundles, which may be viewed as simpler geometric structures underlying the given
one. Second, we take some basic steps towards the study of differential operators
which are intrinsic to such a structure, which in this setting are G–invariant dif-
ferential operators. In particular, we discuss the question of existence of invariant
connections of various types. Finally, we briefly discuss distinguished curves in ho-
mogeneous spaces, which provide generalizations of geodesics of affine connections.

1.4.1. Klein geometries. Let G be a Lie group and let H ⊂ G be a closed
subgroup. Then H is a submanifold and thus a Lie subgroup and the set G/H of all
cosets gH is canonically a smooth manifold endowed with a transitive left action of
G. Up to the choice of a base point, any transitive action is of this form; see 1.2.5.
Here we want to view G/H as carrying a geometric structure whose automorphisms
are exactly the left actions �g for g ∈ G. In this context, the pair (G, H) is referred
to as a Klein geometry. A careful geometric study of Klein geometries is available
in [Sh97, Chapter 4].

Given a Klein geometry (G,H) we may first ask whether all of G is “visible”
on G/H, i.e. whether the action � of G on G/H is effective. In this case, we call
the Klein geometry effective. The kernel K ⊂ G of the Klein geometry is defined
as the set of all elements g ∈ G such that �g = idG/H . Since this is the intersection
of all isotropy subgroups, it is a closed subgroup of G and since H is the isotropy
subgroup of eH, we see that K ⊂ H. Moreover, for k ∈ K and g ∈ G, we have
�gkg−1 = �g ◦ �k ◦ �g−1 and thus gkg−1 ∈ K, so the subgroup K is normal in G. On
the other hand, suppose that H � is a virtual Lie subgroup of H which is normal
in G. Then for h ∈ H � and g ∈ G we get g−1hgH = eH and thus hgH = gH, so
�h = idG/H and H � ⊂ K. Hence, the kernel K is the maximal normal subgroup of
G which is contained in H, and a Klein geometry is effective if and only if there is
no non–trivial normal subgroup of G which is contained in H.

Given an arbitrary Klein geometry (G, H) with kernel K, one may pass to the
effective quotient (G/K,H/K), i.e. view G/H as a homogeneous space of G/K
rather than G. Since the kernel K is a normal subgroup of G its Lie algebra k is
an ideal in g which is contained in h. If h� ≤ g is an ideal contained in h, then
the corresponding virtual Lie subgroup is normal in G and contained in H, which
implies that h� ⊂ k, so k is the maximal ideal in g that is contained in h.
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In several situations (for example to treat Spin structures), requiring effectivity
of a Klein geometry would be too much. However, one usually wants the geometry
to be infinitesimally effective, which means that the kernel K has to be discrete.
This may be equivalently characterized as the fact that there is no non–zero ideal
in the Lie algebra g which is contained in the subalgebra h.

Motivated by the examples from 1.3.5 and 1.3.6, we next define two important
subclasses of Klein geometries. Note that the adjoint action Ad of G on its Lie
algebra g may be restricted to a representation of the subgroup H on g. Of course,
the Lie subalgebra h is an H–invariant subspace of g.

(1) The Klein geometry (G,H) is called reductive if there is an H–invariant
subspace n ⊂ g which is complementary to h, i.e. such that g = n ⊕ h as an H–
module.

(2) The Klein geometry (G,H) is called split if there is a Lie subalgebra g− ⊂ g,
which is complementary to h as a vector space, i.e. such that g = g−⊕h as a vector
space.

When dealing with reductive or split Klein geometries, we will usually assume
that the complementary space n, respectively, g− is fixed as part of the geometry.

Example 1.4.1. Let H ⊂ GL(m, R) be a closed subgroup and consider the
affine extension B := Rm �H ⊂ A(m, R) as defined in 1.3.6. Representing A(m, R)
as a matrix group as in 1.3.5 we see that we may view B as the closed subgroup��

1 0
X A

�
: X ∈ Rm, A ∈ H

�
⊂ GL(m + 1, R),

with the subgroup H corresponding to elements with X = 0. Correspondingly, the
Lie algebra b is the subalgebra of gl(m+1, R) of all elements of the form ( 0 0

Y C ) with
Y ∈ Rm and C ∈ h. In particular, there is an obvious decomposition b = Rm ⊕ h
as a vector space, and using that the adjoint action of a matrix group is given
by conjugation, one immediately verifies that this decomposition is H–invariant.
Thus, any Klein geometry of the form (B,H) is reductive. On the other hand, one
immediately verifies that the subspace Rm ⊂ b is not only a Lie subalgebra but
even an abelian ideal in b, so these geometries are naturally split as well.

1.4.2. Homogeneous bundles. Let G be a Lie group, H ⊂ G a closed sub-
group, M := G/H the corresponding homogeneous space and p : G → G/H the
canonical projection, which is an H–principal bundle; see 1.2.5. By � : G×M → M
we denote the canonical left action �(g, g�H) := gg�H. The first step towards G–
invariant geometric objects on M is to get an appropriate class of fiber bundles
over the homogeneous space.

Definition 1.4.2. (1) A homogeneous bundle over M = G/H is a locally
trivial fiber bundle π : E → M together with a left G–action �̃ : G×E → E, which
lifts the action on M , i.e. which satisfies π(�̃(g, y)) = �(g,π(y)) for all g ∈ G and
y ∈ E.

(2) A homogeneous vector bundle over M is a homogeneous bundle π : E → M ,
which is a vector bundle and such that for each element g ∈ G the bundle map
�̃g : E → E is a vector bundle homomorphism, i.e. linear in each fiber.

(3) A homogeneous principal bundle is a homogeneous bundle π : E → M

which is a principal bundle and such that for each g ∈ G the bundle map �̃g is a
homomorphism of principal bundles, i.e. equivariant for the principal right action
of the structure group.
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(4) A morphism of homogeneous bundles (respectively homogeneous vector
bundles or principal bundles) is a G–equivariant bundle map (respectively G–
equivariant homomorphism of vector bundles or principal bundles) which covers
the identity on M .

If there is no risk of confusion, we will always denote all actions simply by dots,
so the definition of a homogeneous bundle simply reads as π(g · y) = g · π(y). From
the definitions it is also clear that homogeneous fiber bundles (respectively homo-
geneous vector bundles) form a category FibG(G/H) (respectively VectG(G/H)).

Example 1.4.2. There are two obvious sources of homogeneous bundles. We
shall soon see that the first one is a special case of the second one and that there
are no other homogeneous bundles, up to isomorphisms.

(1) Let n be the dimension of the homogeneous space M = G/H and suppose
that F is a natural bundle on the category Mn of n–dimensional manifolds and
local diffeomorphisms; see 1.2.8 or [KMS, section 14]. Now consider the bundle
pM : FM → M . For any g ∈ G, the left action �g : M → M of g on M is a
diffeomorphism (with inverse �g−1), so we have the induced bundle map F (�g) :
FM → FM which covers �g : M → M . Since F is a functor, F (�e) = idFM and
F (�gg�) = F (�g ◦ �g�) = F (�g) ◦ F (�g�). Hence, the map �̃ : G × FM → FM ,
�̃(g, u) := F (�g)(u) defines a left action of G on FM , which is smooth by regularity
of F . Thus, any natural bundle over a homogeneous space is a homogeneous bundle.

In particular, we can apply this line of argument to natural vector bundles,
for which each of the bundle maps F (f) is a vector bundle homomorphism, to
obtain homogeneous vector bundles. In particular, all tensor bundles over G/H are
homogeneous vector bundles.

(2) The second basic source of homogeneous bundles is the canonical H–
principal bundle p : G → G/H. By definition of the action of G on G/H, this
is a homogeneous principal bundle under the action �̃ : G × G → G which is just
given by the multiplication map. Now assume that S is any smooth manifold with
a smooth left action H × S → S. Then we can form the associated (or induced)
bundle E := G ×H S → M . By definition (see 1.2.7) this is the space of orbits
in G × S of the right action (g, s) · h = (gh, h−1 · s) of H. We continue to denote
the orbit of (g, s) by �g, s�. Since left and right translations on a Lie group always
commute, the map G×G×S → G×H S defined by (g, g�, s) �→ �gg�, s� descends to
a map G× (G×H S) → G×H S which is smooth since G×G×S → G× (G×H S)
is a surjective submersion (even an H–principal bundle). From the construction it
is clear that this defines a smooth left action of G on E, and since the projection
E → M is simply given by �g, s� �→ gH, this action extends the canonical action
of G on M . Thus, any associated bundle to the principal bundle G → G/H is
canonically a homogeneous bundle.

If we start with a representation of H on a vector space V , then the induced
bundle G×H V is a vector bundle, and the linear structure is determined by

�g, v� + t�g, w� = �g, v + tw�.
Thus, the above construction gives rise to an action of G on G ×H V by vector
bundle homomorphisms, and G×HV → G/H is a homogeneous vector bundle. This
construction evidently generalizes to arbitrary homogeneous principal bundles. Any
associated bundle (respectively vector bundle) to a homogeneous principal bundle
is canonically a homogeneous bundle (respectively homogeneous vector bundle).
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1.4.3. Classification of homogeneous bundles. Suppose that pE : E →
M is a homogeneous fiber bundle over M = G/H. Consider the base point o =
eH ∈ G/H and the fiber S := Eo of E over o. For g ∈ G and s ∈ S we get
pE(g · s) = g · o = gH by definition of a homogeneous bundle. In particular,
pE(h · s) = o for all h ∈ H, so the left G–action on E restricts to a left action of
H on S. Now consider the associated bundle G×H S → M , and consider the map
G× S → E defined by (g, s) �→ g · s, where we use the action of G on E, and view
s as an element of Eo ⊂ E. Since the action of H on S is just the restriction of
the action of G on E, this mapping factorizes to a map Φ : G×H S → E which is
smooth since the projection G×S → G×H S is a surjective submersion. Moreover,
by definition Φ(�g, s�) = g · s, which, on one hand, shows that Φ is a bundle map
covering the identity. On the other hand, it implies that Φ is G–equivariant, so
Φ : G×H S → E is a morphism of homogeneous bundles.

If e ∈ E is any element, then choose an element g ∈ G such that g · pE(e) = o.
Then pE(g · e) = o, so g · e ∈ S = Eo, and we may consider �g−1, g · e� ∈ G×H S.
This is independent of the choice of g, since for another choice g� ∈ G we must have
(g�g−1) · o = o, so g�g−1 ∈ H, and thus

�(g�)−1, g� · e� = �(g�)−1g�g−1, g(g�)−1g� · e� = �g−1, g · e�.
Thus, we get a well–defined map Ψ : E → G×H S. Choosing a local smooth section
σ of G → G/H we can locally write Ψ(e) = �σ(pE(e))−1,σ(pE(e)) · e�, which shows
that Ψ is smooth. One immediately verifies that Ψ and Φ are inverse isomorphisms
of homogeneous bundles.

If f : E → E� is a morphism of homogeneous bundles, then f(Eo) ⊂ E�
o and

the restriction f |Eo : Eo → E�
o is H–equivariant. Equivariancy of f implies that for

g ∈ G and s ∈ S = Eo, we get f(g · s) = g · f(s) which means that f(Φ(�g, s�)) =
Φ�(�g, f |Eo(s)�), so we see that identifying E and E � with G ×H Eo, respectively,
G×H E�

o, the map f is induced by id× f |Eo . Conversely, any H–equivariant map
S → S� clearly induces a morphism G×H S → G×H S� of homogeneous bundles.

Finally, note that for a homogeneous vector bundle, the above construction
clearly produces an isomorphism G×H Eo → E of homogeneous vector bundles, and
homomorphisms of homogeneous vector bundles correspond to linear H–equivariant
maps between their standard fibers. Thus, we have proved

Proposition 1.4.3. The mapping E �→ Eo and f �→ f |Eo induces equiv-
alences between the category FibG(G/H) and the category of manifolds endowed
with left H–actions and H–equivariant smooth maps, as well as between the cate-
gory VectG(G/H) and the category of finite–dimensional representations of H.

Remark 1.4.3. The proposition also implies that these equivalences of cate-
gories are compatible with various constructions. For example, the fibered product
of homogeneous fiber bundles corresponds to the product of left H–spaces, the
Whitney sum of homogeneous vector bundles corresponds to the direct sum of rep-
resentations and the tensor product of homogeneous vector bundles corresponds to
the tensor product of representations. This also works the other way around. If, for
example, we start with two homogeneous vector bundles corresponding to indecom-
posable representations of H, then the decomposition of the tensor product of these
two representations into a direct sum of indecomposable representations induces a
decomposition of the tensor product of the two homogeneous vector bundles into a
Whitney sum.
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Example 1.4.3. Let us determine the H–representations corresponding to
tensor bundles. We start by identifying the tangent bundle, so we have to determine
To(G/H) as an H–module. The projection map p : G → G/H is a submersion and
thus for each g ∈ G the tangent map Tgp : TgG → Tp(g)(G/H) is surjective.
In particular, we get a surjection Tep : g = TeG → To(G/H). Moreover, the
representation of H on To(G/H) is just obtained as the restriction of the action of
G on the homogeneous vector bundle T (G/H), so the action of h ∈ H on To(G/H)
is just To�h. By definition, the action on G/H is induced by left translations in
G, so �h ◦ p = p ◦ λh and thus To�h ◦ Tep = Thp ◦ Teλh. On the other hand, p
commutes with right multiplications by elements from h, and differentiating this,
we see that Thp = Tep ◦ Thρh−1

. Since ρh−1 ◦ λh is the conjugation by h, whose
derivative is the adjoint action, we get To�h ◦ Tep = Tep ◦Ad(h). Hence, To(G/H)
is a quotient of g, with the H–module structure defined by the restriction of the
adjoint representation Ad to the subgroup H ⊂ G. On the other hand, the kernel
of Tep is simply the subalgebra h, which is also an H–submodule by naturality of
the adjoint action.

Thus, the homogeneous vector bundle T (G/H) corresponds to the H–represen-
tation on g/h coming from the restriction to H of the adjoint representation of G.
By the proof of Proposition 1.4.3, the isomorphism G ×H (g/h) → T (G/H) maps
�g,X+h� to Tgp·Teλg ·X. The opposite isomorphism can be conveniently described
using the Maurer–Cartan form ω ∈ Ω1(G, g) of the group G. For a tangent vector
ξx ∈ Tx(G/H), we have to choose an element g ∈ G such that x = g−1H and then
view T �g · ξx ∈ To(G/H) as an element of g/h. Having chosen g, we know that
Tg−1p : Tg−1G → Tx(G/H) is surjective, so we can choose a tangent vector ξ̃ ∈ TgG

such that ξx = Tp · ξ̃. But then T �g · ξx = Tp · Tλg · ξ̃, and identifying TeG with g
and To(G/H) with g/h, the projection Tp becomes just the canonical projection to
the quotient. Since Tλg · ξ̃ by definition equals ω(ξ̃), we see that the isomorphism
T (G/H) → G×H (g/h) maps ξx to �g−1,ω(ξ̃) + h�.

By the naturality of the correspondence between homogeneous vector bundles
and H–representations, this implies that the cotangent bundle T ∗(G/H) corre-
sponds to the dual representation (g/h)∗. Note that (g/h)∗ is just the annihilator
of h in g∗, so this is a subrepresentation of the restriction of the coadjoint repre-
sentation to H. Again, by naturality, the tensor bundle ⊗kT (G/H)⊗⊗�T ∗(G/H)
corresponds to the representation ⊗k(g/h)⊗⊗�(g/h)∗.

There is an interesting way to rephrase the description of the tangent bundle
as an associated bundle, namely as a first order G–structure underlying a Klein
geometry. The representation of H on g/h induced by the restriction of the adjoint
action of G may be viewed as a homomorphism H → GL(g/h). The kernel of
this homomorphism is a closed subgroup K1 ⊂ H and we define H1 := H/K1.
Then we may consider the homogeneous space G/K1 which clearly is a principal
H1–bundle over G/H. Viewing the manifold G/H as being modelled on the vector
space g/h, we may interpret the frame bundle P1(G/H) as the bundle of linear
isomorphisms between g/h and tangent spaces of G/H. Now consider π ◦ ω ∈
Ω1(G, g/h), where ω is the Maurer–Cartan form of G and π : g → g/h is the
canonical surjection. This one–form is clearly H–equivariant (since the Maurer–
Cartan form is even G–equivariant) and its kernel in any point of G is exactly the
vertical tangent space in that point. Hence, from 1.3.6 we conclude that there is a
unique homomorphism G → P1(G/H) of principal bundles such that π ◦ ω is the
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pullback of the soldering form. This homomorphism factors to a homomorphism
G/K → P1(G/H) of principal bundles, which defines a first order H1–structure on
G/H.

There is a natural higher order analog of this construction. We can view
GL(g/h) as the group of one–jets at o = eH ∈ G/H of diffeomorphisms fixing
o. The homomorphism H → GL(g/h) from above is then given by mapping h ∈ H
to the one–jet of �h in o. Now we can replace GL(g/h) by the group of invertible
r–jets in o of diffeomorphisms fixing o. This group is clearly isomorphic to the
rth jet group Gr

n introduced in 1.2.8, where n = dim(G/H). Mapping h ∈ H to
the r–jet of �h in o defines a homomorphism. Defining Kr to be the kernel of this
homomorphism and putting Hr = H/Kr, the obvious projection G/Kr → G/H is
a principal bundle with structure group Hr. By construction, this can be viewed
as a reduction of the rth order frame bundle Pr(G/H) (see 1.2.8), i.e. as an rth
order G–structure. This point of view has been explored in [Sl96].

1.4.4. Sections of homogeneous bundles. Let pE : E → G/H be a ho-
mogeneous bundle over a homogeneous space G/H, and let Γ(E) be the set of all
sections of E, i.e. Γ(E) = {σ : G/H → E : pE ◦ σ = id}. Then we get a left action
of G on Γ(E) defined by g ·σ := �̃g ◦σ◦�g−1 , where �̃ and � are the actions on E and
G/H, respectively. Equivalently, this can be written as (g · σ)(x) = g · (σ(g−1 · x)).
In particular, if E is a homogeneous vector bundle, then Γ(E) is a vector space,
and the action of G on Γ(E) is clearly linear, and thus we get a representation of G
on the space Γ(E). In view of Proposition 1.4.3, the homogeneous vector bundle E
is completely determined by the representation of H on its standard fiber V = Eo.
The representation of G on Γ(E) is then called the induced representation of G

corresponding to the representation V of H, and denoted by IndG
H(V ).

The correspondence between sections of an associated bundle and functions of
the total space of the principal bundle (see 1.2.7) gives rise to another interpretation
of the action of G on the set of sections of a homogeneous bundle. This picture
is (in the case of homogeneous vector bundles) frequently used in representation
theory. Namely, via the isomorphism E ∼= G×H Eo from Proposition 1.4.3, we can
identify Γ(E) with Γ(G ×H Eo), which in turn by Proposition 1.2.7 is in bijective
correspondence with the set C∞(G, Eo)H = {f : G → Eo : f(gh) = h−1 · f(g)}.
Explicitly, the correspondence between a section σ and a function f is characterized
by σ(gH) = �g, f(g)� = g · f(g) or by f(g) = g−1 · σ(gH). In the case of a natural
vector bundle, this bijection clearly is a linear isomorphism.

To get the action of G on Γ(E) in the picture of equivariant functions, we only
have to notice that by definition (g · σ)(g�H) = g · σ(g−1g�H). Consequently, the
map g · f : G → Eo corresponding to g · σ ∈ Γ(E) is given by

(g · f)(g�) = (g�)−1 · (g · σ(g−1g�H)) = (g−1g�)−1 · σ(g−1g�H) = f(g−1g�).

Our next result is a first version of Frobenius reciprocity, which states that in
certain situations one can reduce questions about the (often infinite–dimensional)
space Γ(E) to questions about the finite–dimensional manifold Eo. In particular,
determining G–invariant sections of a homogeneous bundle always reduces to a
finite–dimensional problem.

Theorem 1.4.4 (Geometric version of Frobenius reciprocity). Let E → G/H
be a homogeneous bundle with standard fiber Eo (viewed as an H–space), and let
X be a smooth manifold endowed with a smooth left G–action. Then the evaluation
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at o induces a natural bijection between the set of G–equivariant maps X → Γ(E)
and the set of H–equivariant maps X → Eo. In particular, there is a natural
bijection between the set Γ(E)G of G–invariant sections of E and the set (Eo)H of
H–invariant elements in the standard fiber.

If E is the natural vector bundle induced by an H–representation W , and V is
a representation of G, then the bijections above are linear and respect the subspaces
of linear equivariant maps. Denoting by ResG

H(V ) the space V viewed as an H–
representation, this implies that we get a linear isomorphism

HomG(V, IndG
H(W )) ∼= HomH(ResG

H(V ),W ),

i.e. ResG
H and IndG

H are adjoint functors.

Proof. Suppose we have given a map X → Γ(E), which we write as x �→ σx.
This map is G–equivariant if and only if σg·x(g�H) = g ·σx(g−1g�H). In particular,
if we consider the map X → Eo defined by x �→ σx(o), then for h ∈ H, we
get σh·x(o) = h · σx(h−1 · o) = h · σx(o), so this is H–equivariant. Conversely,
if f : X → Eo is H–equivariant, then for x ∈ X we define σx : G/H → E by
σx(gH) = g · f(g−1 · x). This is well defined since f(h−1g−1 · x) = h−1 · f(g−1 · x),
and thus gh · f(h−1g−1 · x) = g · f(g−1 · x). Moreover, σx(o) = f(x) and

σg·x(g�H) = g� · f((g�)−1g · x) = g · g−1g� · f((g�)−1g · x) = g · σx(g−1g�H),

so x �→ σx is G–equivariant. Since for any G–equivariant map x �→ σx we must
have σx(gH) = g · g−1 · σx(g−1gH) = g · σg·x(o), the two constructions are inverse
bijections between the set of G–equivariant maps X → Γ(E) and the set of H–
equivariant maps X → Eo.

Taking X = {pt} a single point space with the trivial G–action, a G–equivariant
map X → Γ(E) is the same thing as a section σpt ∈ Γ(E) such that g · σpt = σpt,
i.e. a G–invariant section, and similarly an H–equivariant map X → Eo is an
H–invariant element in Eo. Thus, we get a bijection Γ(E)G → (Eo)H .

Finally, if E is a natural vector bundle induced by an H–representation W and
X is a G–representation V , then L(V,Γ(E)) and L(V,Eo) are vector spaces under
the pointwise operations, and the evaluation in o induces a linear map L(V,Γ(E)) →
L(V,Eo). If we start from a linear map f : V → Eo, the construction above
produces σv(gH) = g · f(g−1 · v). Since f is linear and G acts by linear maps, this
is linear in v. �

Example 1.4.4. The geometric version of Frobenius reciprocity immediately
allows us to reduce questions about the existence of invariant Riemannian metrics
and other invariant tensor fields to problems of finite–dimensional representation
theory: If M = G/H is a homogeneous space, then from 1.4.3 we know that the
tensor bundle ⊗kTM ⊗ ⊗�T ∗M is the associated bundle to p : G → M corre-
sponding to the representation ⊗k(g/h)⊗⊗�(g/h)∗. By Frobenius reciprocity, G–
invariant sections of this bundle are in bijective correspondence with H–invariant
elements in the representation. Since invariant elements in a representation are
the same thing as homomorphisms from the trivial representation to the given rep-
resentation, this can be rephrased in such a way that the dimension of invariant
tensor fields of type

�
k
�

�
on G/H equals the multiplicity of the trivial representa-

tion in ⊗k(g/h)⊗⊗�(g/h)∗. Moreover, the proof of Theorem 1.4.4 gives an explicit
construction of the invariant tensor field from the invariant element in the rep-
resentation. Clearly, the whole construction respects symmetries of any kind, so
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invariant tensor fields having certain symmetries are in bijective correspondence
to invariant elements in the representations having the same symmetries. Finally,
if we consider (pointwise) questions of non–degeneracy they clearly reduce to the
analogous non–degeneracy properties in the representation. In particular, the set
of G–invariant Riemannian metrics on G/H is in bijective correspondence with the
set of H–invariant positive definite inner products on the vector space g/h. Hence,
we get

Corollary 1.4.4. A homogeneous space G/H admits a G–invariant Rie-
mannian metric if and only if the image H1 ⊂ GL(g/h) of H under the map induced
by the restriction to H of the adjoint representation of G has compact closure in
GL(g/h).

Proof. From above we know that existence of an invariant Riemannian metric
is equivalent to existence of an H1–invariant positive definite inner product on g/h.
If such an inner product exists, then H1 is contained in the orthogonal group of this
inner product, which is isomorphic to O(n) for some n and thus compact. Hence,
H1 has compact closure.

Conversely, if K ⊂ GL(g/h) is a compact subgroup containing H1, then averag-
ing any inner product on g/h over K gives a K–invariant and thus an H1–invariant
inner product. �

Consider the examples from 1.1 of viewing spheres as homogeneous spaces.
In the case of the Riemannian sphere 1.1.1, we have H = O(n) and g/h ∼= Rn

as an H–representation, so the set of O(n + 1)–invariant Riemannian metrics on
Sn consists exactly of all constant positive multiples of the standard metric. The
description of invariant Riemannian metrics on Rn, viewed as a homogeneous space
of the Euclidean group Euc(n) is exactly the same. For the projective sphere from
1.1.3, we get H1 = GL(g/h), so there certainly is no SL(n + 1, R)–invariant metric
on Sn. Similarly, one shows that in the other examples from 1.1.4–1.1.6 there are
no invariant Riemannian metrics.

Finally, we remark that invariance often allows us to analyze the situation
further in a pretty elementary way. For example, applying natural operators to
invariant objects, we get invariant objects. Thus, if φ is an invariant differential
form on G/H, then the exterior derivative dφ is invariant as well. Similarly, the
curvature of an invariant Riemannian metric has to be an invariant tensor field,
and so on.

1.4.5. Homogeneous principal bundles and invariant principal con-
nections. Next we switch to the problem of invariant differential operators on a
homogeneous space G/H. A simple special case of this problems is the question
whether a given homogeneous bundle admits a connection which is compatible with
the action of G. Since connections can be viewed as sections of natural bundles,
we could reduce this to the determination of invariant sections. A direct discussion
will be easier, however. First, we classify homogeneous principal bundles as defined
in 1.4.2.

Lemma 1.4.5. Let G and K be Lie groups and let H ⊂ G be a closed subgroup.
Let P → G/H be a homogeneous principal bundle with structure group K. Then
there is a smooth homomorphism i : H → K such that P ∼= G ×H K, where the
action of H on K is given by h · k = i(h)k for h ∈ H and k ∈ K.
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The bundles corresponding to two homomorphism i, î : H → K are isomorphic
(over idG/H) if and only if i and î are conjugate, i.e. î(h) = ki(h)k−1 for some
fixed k ∈ K and all h ∈ H.

Proof. Let Po be the fiber of P over the base point o = eH ∈ G/H. As
discussed in 1.4.3 the left action of G on P restricts to a left action of H on Po,
and P ∼= G ×H Po as a homogeneous bundle. Fixing a point u0 ∈ Po, the map
k �→ u0 · k is a diffeomorphism K → P0, so it remains to describe the H–action in
this picture.

For h ∈ H, we have h · u0 ∈ Po, so there is a unique element i(h) ∈ K such
that h · u0 = u0 · i(h). By smoothness of the two actions, the map i : H → K is
smooth, and by definition i(e) = e. Since H acts by principal bundle maps, we see
that h · (u0 · k) = (h · u0) · k = u0 · i(h)k. Using this, one immediately concludes
that i(h1h2) = i(h1)i(h2), so i is a homomorphism.

Suppose that we have given an isomorphism G×i K → G×î K of homogeneous
principal bundles. Then the restriction to the fibers over o is a diffeomorphism
φ : K → K which commutes with the principal right action of K and is equivariant
for the two left actions of H. By the first property, φ(k) = k0k, where k0 = φ(e).
But then the second property reads as follows:

k0i(h)k = φ(i(h)k) = î(h)φ(k) = î(h)k0k.

In particular, î(h) = k0i(h)k−1
0 . Conversely, if i and î are related in this way, right

multiplication by k0 induces a diffeomorphism with the two equivariancy properties.
From 1.4.3 we conclude that this gives rise to an isomorphism of homogeneous
principal bundles. �

For a homogeneous principal bundle P → G/H with structure group K, we
can next study invariant principal connections. Recall from 1.3.3 that a principal
connection on P can be described by a one–form γ ∈ Ω1(P, k), where k is the
Lie algebra of K. This form has to be K–equivariant and it has to reproduce the
generators of fundamental vector fields. Denoting by rk the principal right action by
k ∈ K and by ζA the fundamental vector field generated by A ∈ k, these conditions
explicitly read as (rk)∗γ = Ad(k−1) ◦ γ and γ(ζA) = A. Denoting by �g the left
action of g ∈ G on P, we can consider the pullback (�g)∗γ. Since �g is a principal
bundle automorphism, this is again a principal connection. We call γ an invariant
principal connection if and only if (�g)∗γ = γ for all g ∈ G.

Theorem 1.4.5. Let i : H → K be a homomorphism and consider the cor-
responding homogeneous bundle P := G ×i K → G/H. Then invariant principal
connections on P are in bijective correspondence with linear maps α : g → k such
that:

(i) α|h = i� : h → k, the derivative of i.
(ii) α ◦Ad(h) = Ad(i(h)) ◦ α for all h ∈ H.

Putting î(h) = k0i(h)k−1
0 , then under the isomorphism G×i K → G×î K from the

lemma, the homogeneous principal connection on G×i K induced by α corresponds
to the one on G×î K induced by α̂ = Ad(k0) ◦ α.

Proof. Consider the point u0 = �e, e� ∈ G×i K. Given an invariant principal
connection γ on P, consider its value at u0, which is a linear map γ(u0) : Tu0P → k.
Recall from 1.2.7 that the natural projection q : G×K → G×i K is an H–principal
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bundle and, in particular, a surjective submersion. By definition u0 = q(e, e), so
we may consider γ(u0) ◦ T(e,e)q : g× k → k. Now we define α : g → k by

α(X) := γ(u0) ◦ T(e,e)q · (X, 0).

First, observe that for k ∈ K we have q(e, k) = u0 ·k. Putting k = exp(tA) for A ∈ k
and differentiating in t = 0, we see that T(e,e)q · (0, A) = ζA(u0). This shows that
γ(u0) ◦ T(e,e)q · (X, A) = α(X) + A, and hence α determines γ(u0). Equivariancy
under the principal right action then implies that γ(u0 ·k) = Ad(k−1)◦γ(u0)◦Trk−1

,
so γ is determined along the fiber over o. Further, equivariancy under the left action
of G implies

(1.10) γ(g · u0 · k) = Ad(k−1) ◦ γ(u0) ◦ Trk−1 ◦ T �g−1 ,

which shows that γ is completely determined by α.
On the other hand, for h ∈ H we have q(h, e) = q(e, i(h)). Putting h = exp(tX)

for X ∈ h and differentiating in t = 0 we obtain

T(e,e)q · (X, 0) = T(e,e)q · (0, i�(X)),

which shows that α(X) = i�(X) for X ∈ h.
For h ∈ H and g ∈ G, we next have

q(hgh−1, e) = q(hg, i(h−1)) = �h ◦ ri(h−1)q(g, e).

Putting g = exp(tX) for X ∈ g and differentiating at t = 0, we obtain

T(e,e)q · (Ad(h)(X), 0) = T �h ◦ Tri(h−1) · T(e,e)q · (X, 0).

Applying γ(u0) to the left–hand side, we obtain α(Ad(h)(X)). For the right–hand
side, we first note that G–invariance of γ implies that γ(h ·u0)◦T �h = γ(u0). Then
K–equivariancy implies that composing with Tri(h−1), one obtains

Ad(i(h)) ◦ γ(h · u0 · i(h−1)) = Ad(i(h)) ◦ γ(u0).

Therefore, the right–hand side evaluates to Ad(i(h))(α(X)) which proves property
(ii).

It remains to conversely construct an invariant principal connection γ from a
linear map α with properties (i) and (ii). The obvious way is to require

γ(u0)(T(e,e)q · (X, A)) := α(X) + A.

This is well defined if and only if (X, A) �→ α(X) + A vanishes on the kernel of
T(e,e)q. Since q−1(u0) = {(h, i(h−1)) : h ∈ H} ⊂ G × K, this kernel evidently
consists of all elements of the form (X,−i�(X)) for X ∈ h. By property (i) we
conclude that the above formula uniquely defines γ(u0) : Tu0P → k. We have seen
above that ζA(u0) = T(e,e)q · (0, A), so γ(u0)(ζA(u0)) = A. Now one extends γ to
all points using formula (1.10) from above as a definition. Since

q(g, k) = g · u0 · k = g̃ · u0 · k̃ = q(g̃, k̃)

if and only if g̃ = gh and k̃ = i(h−1)k for some h ∈ H, one easily verifies that
this is well defined using property (ii). Next, one immediately concludes that the
resulting form γ is G–invariant and K–equivariant. Finally, from the definition one
verifies that

ζA(g · u0 · k) = T �g · Trk · ζAd(k)(A)(u0)
for all A ∈ k. Then γ(ζA) = A follows from the definition, whence γ is an invariant
principal connection.
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For the last statement, observe that the isomorphism φ : G ×î K → G ×i K

from the proof of the lemma is characterized φ(q̂(g, k)) = q(g, k−1
0 k). In particular,

φ(q̂(g, e)) = q(g, k−1
0 ) = rk−1

0 (q(g, e)).

Putting g = exp(tX) and differentiating at t = 0, we obtain T(e,e)(φ ◦ q̂) · (X, 0) =
Trk−1

0 · T(e,e)q · (X, 0). Using this, we compute

α̂(X) = (φ∗γ)(û0) ◦ T(e,e)q̂ · (X, 0) = γ(u0 · k−1
0 )(T(e,e)(φ ◦ q̂) · (X, 0))

= γ(u0 · k−1
0 )(Trk−1

0 · T(e,e)q · (X, 0)) = ((rk−1
0 )∗γ)(T(e,e)q · (X, 0))

= Ad(k0)(α(X)).

�

Notice that in general, a linear map α : g → k with properties (i) and (ii) need
not exist. (We shall soon see this in an example.) If there is one such map, however,
then for any other map with properties (i) and (ii), the difference vanishes on h, and
hence defines a linear map β : g/h → k. By construction, β is equivariant for the
actions h · (X + h) := Ad(h)(X) + h on the left–hand side and h ·A = Ad(i(h))(A)
on the right–hand side. Conversely, given α with properties (i) and (ii) and an
equivariant map β, then α̂(X) = α(X) + β(X + h) also has properties (i) and (ii).
Hence, we conclude that if one invariant principal connection exists, then the space
of all such connections is an affine space modelled on the vector space HomH(g/h, k)
with actions as above.

1.4.6. The curvature of an invariant principal connection. In 1.3.3 we
have seen that the curvature ρ of a principal connection γ on a principal K–bundle
P → M can be interpreted as a two–form on M with values in the bundle P ×K k.
Here K acts on its Lie algebra k via the adjoint action. Moreover, we have seen
there that ρ is induced by the k–valued two–form (ξ, η) �→ dγ(ξ, η) + [γ(ξ), γ(η)] on
P.

Now suppose that P is a homogeneous principal K–bundle over G/H. From
1.4.5 we know that there is a homomorphism i : H → K such that P = G ×i

K. Hence, we can identify the bundle P ×K k with G ×H k where the action of
H on k is given by h · A := Ad(i(h))(A). From Example 1.4.3 we know that
T ∗(G/H) ∼= G ×H (g/h)∗, with the action induced by the adjoint action. Hence,
the curvature of any principal connection γ on P has values in the homogeneous
vector bundle corresponding to the representation Λ2(g/h)∗ ⊗ k, which consists of
all skew symmetric bilinear maps g/h× g/h → k.

Suppose further that γ is an invariant principal connection on P. Denoting
by �g : P → P the action of g ∈ G, by definition we have (�g)∗γ = γ. This
immediately implies that the k–valued two–form on P which induces the curvature
ρ is preserved by each �g. Hence, ρ ∈ Ω2(G/H, G×H k) is an invariant section. By
Theorem 1.4.4, such a section is equivalent to a bilinear map g/h× g/h → k, which
is H–equivariant. We can determine this bilinear map explicitly:

Proposition 1.4.6. Consider a homogeneous space G/H and the homogeneous
principal K–bundle P = G ×i K → G/H corresponding to a homomorphism i :
H → K. Let γ be an invariant principal connection on P and let α : g → k be the
corresponding linear map as in Theorem 1.4.5.
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Then the map g×g → k defined by (X, Y ) �→ [α(X),α(Y )]−α([X, Y ]) descends
to an H–equivariant map (g/h) × (g/h) → k. The corresponding invariant section
of the homogeneous bundle G×H (Λ2(g/h)∗ ⊗ k) is exactly the curvature of γ.

Proof. Property (ii) of α from Theorem 1.4.5 reads as α◦Ad(h) = Ad(i(h))◦α
for all h ∈ H. Using this, we compute

[α(Ad(h)(X)),α(Ad(h)(Y ))] = [Ad(i(h))(α(X)),Ad(i(h))(α(Y ))]

= Ad(i(h)) ([α(X),α(Y )]) .

In the same way, one verifies that (X, Y ) �→ α([X, Y ]) is equivariant. Further, for
X ∈ h we can apply the equation α ◦ Ad(h) = Ad(i(h)) ◦ α to h = exp(tX) and
differentiate at t = 0, to get α ◦ ad(X) = ad(i�(X)) ◦ α. By property (i) of α from
Theorem 1.4.5 we have α(X) = i�(X) for X ∈ h, and we get

[α(X),α(Y )]− α([X, Y ]) = ad(i�(X))(α(Y ))− α(ad(X)(Y )) = 0.

This implies that our bilinear map descends to an H–equivariant mapping as re-
quired. It remains to verify that the corresponding invariant section equals the
curvature of γ.

To verify this, we have to recall the definition of α. Let q : G ×K → G ×i K
be the canonical projection. Then we can form the pullback q∗γ ∈ Ω1(G ×K, k),
and from the proof of Theorem 1.4.5 we see that q∗γ(e, e)(X, A) = α(X) + A for
X ∈ g = TeG and A ∈ k = TeK. Our strategy will be to compute

(1.11) dq∗γ(ξ, η) + [q∗γ(ξ), q∗γ(η)](e, e).

Now by definition q(g, kk�) = q(g, k) · k�. Taking A ∈ k, putting k� = exp(tA) and
differentiating at t = 0, we see that Tq maps (0, LA) to the (vertical) fundamental
vector field ζA. Since dγ(ζA, ) + [A, γ( )] = 0, we conclude that it suffices to
compute (1.11) for ξ = (LX , 0) and η = (LY , 0) with X, Y ∈ g.

By definition q(gg�, k) = �g ◦ rk(q(g�, e)). Putting g� = exp(tX) and differenti-
ating at t = 0, we see that T(g,k)q · (LX , 0) = T �g ◦ Trk · T(e,e)q · (X, 0). Applying
γ and taking into account G–invariance and K–equivariance (see formula (1.10)
in 1.4.5), we conclude that q∗γ(g, k)(LX , 0) = Ad(k−1)(α(X)). In particular, this
function is independent of g, so acting on it with a vector field of the form (LY , 0)
we get zero. This shows that

dq∗γ(e, e)((LX , 0), (LY , 0)) = −q∗γ(e, e)([LX , LY ], 0)

= −q∗γ(e, e)([X, Y ]) = −α([X, Y ]).

This implies that (1.11) is given by ((X, A), (Y, B)) �→ −α([X, Y ]) + [α(X),α(Y )].
Since the composition G ×K → P → G/H is given by (g, k) �→ gH, we conclude
that (X, A) represents the tangent vector X + h ∈ g/h ∼= ToG/H, and the result
follows. �

The most fundamental example of a homogeneous principal bundle is of course
the bundle G → G/H itself. As we shall see below, the existence of an invariant
principal connection on this bundle has far reaching consequences.

Corollary 1.4.6. There exists a G–invariant principal connection on the H–
principal bundle p : G → G/H, if and only if the Klein geometry (G, H) is reductive.
If this is the case and n ⊂ g is a fixed H–invariant complement to h, then the set
of all such connections is an affine space modelled on the vector space HomH(n, h).
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The curvature of the invariant connection defined by a complement n is induced
by the map Λ2n → h given by (X, Y ) �→ −[X, Y ]h. Here the subscript denotes the
h–component with respect to the decomposition g = h⊕ n.

Proof. The bundle G → G/H of course corresponds to i = idH : H → H.
By Theorem 1.4.5 existence of an invariant principal connection is equivalent to
existence of an H–equivariant map α : g → h such that α|h = i� = idh. Putting
n = ker(α) this condition is equivalent to g = h ⊕ n as an H–module. Fixing the
choice of α (respectively n), we have n ∼= g/h as an H–module, and the remaining
claims follow from Theorem 1.4.5 and Proposition 1.4.6. �

Example 1.4.6. (1) As a more specific example, suppose that the subgroup
H ⊂ G is compact. Then averaging any positive definite inner product on g over H,
we obtain an H–invariant positive definite inner product on g. Now, the orthogonal
projection onto h with respect to such an inner product is H–equivariant, thus
giving a G–invariant principal connection on p : G → G/H. The complementary
subset n is then h⊥.

In particular, consider the case where H = O(n) and g/h ∼= n ∼= Rn as an
H–module, which occurs both in the case of the Riemannian sphere from 1.1.1
(with G = O(n + 1)) and the Euclidean space, viewed as a homogeneous space of
the group of Euclidean motions from 1.1.2. In both cases, we not only have a G–
invariant principal connection on p : G → G/H but it is also uniquely determined.
This is due to the fact that both n ∼= Rn and h ∼= o(n) are irreducible O(n)–modules
and thus the zero map is the only H–homomorphism n → h. In the case of the
Euclidean space 1.1.2, the complement n is an abelian subalgebra, so [n, n] = {0}
and the principal connection is flat.

On the other hand, in the case of the Riemannian sphere, the decomposition g =
h⊕n derived in 1.1.1 is the unique H–invariant decomposition, and one immediately
verifies that [n, n] ⊂ h, but the bracket of two elements of n is nonzero in general, so
we get nonzero curvature. More precisely, one easily computes that the curvature
is induced by the map Rn × Rn → o(n) defined by (v, w) �→ vwt − wvt. Otherwise
put, identifying o(n) with Λ2Rn, the curvature is simply induced by (v, w) �→ v∧w.
Notice that up to scale this is the unique possibility for an invariant tensor field of
this type.

(2) Consider the example of the projective sphere from 1.1.3. In this case
G = SL(n + 1, R) and H is the stabilizer of the line through the first unit vector.
The subalgebra h ⊂ g is given by

h =
��

− tr(A) Z
0 A

�
: A ∈ gl(n, R), Z ∈ Rn∗

�
.

If there were an H–invariant complement n to h in g, then, in particular, [h, n] ⊂ n.
On the other hand, in order to be a vector space complement, for any X ∈ Rn, n

would have to contain a unique element of the form
�
∗ ∗
X ∗

�
. In particular, the zero

matrix would be the only element of n, whose entry in the left lower block is zero.
But one immediately computes that for Z,W ∈ Rn∗, X ∈ Rn and A ∈ gl(n, R), we
get ��

0 Z
0 0

�
,

�
− tr(A) W

X A

��
=

�
ZX Z(A + tr(A)id)
0 −XZ

�
.
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This clearly is incompatible with the existence of an H–invariant complement n. In
particular, for the case of the projective sphere, there is no SL(n + 1, R)–invariant
connection on the H–principal bundle SL(n+1, R) → Sn. Similarly, one can show
that for the examples of the projective contact sphere, the conformal sphere and the
CR–sphere from 1.1.4–1.1.6 there never exists a G–invariant principal connection.

1.4.7. Invariant linear connections on homogeneous vector bundles.
We have already noted in Example 1.4.2 that any associated (vector) bundle to
a homogenous principal bundle is a homogeneous (vector) bundle. It is easy to
describe this correspondence in the picture of associate bundles to G → G/H
developed in 1.4.3. We restrict to the case of vector bundles here, general bundles
can be dealt with similarly. If P → G/H is a homogeneous principal K–bundle,
then P = G ×i K for some homomorphism i : H → K. If ρ : K → GL(V ) is a
representation of K on a vector space V , then of course ρ ◦ i is a representation of
H on V . From the definitions, one immediately concludes that P ×ρ V ∼= G×ρ◦i V .

Conversely, assume that E → G/H is a homogeneous vector bundle. Then we
have a representation ρ : H → GL(Eo) such that E ∼= G×H Eo. Now we can also
use the homomorphism ρ to obtain a homogeneous principal bundle P → G/H with
structure group GL(Eo). From above, we see that P ×GL(Eo) Eo

∼= G×H Eo
∼= E,

so this is exactly the frame bundle of E. Hence, the frame bundle of a homogeneous
vector bundle is a homogeneous principal bundle.

The construction of induced connections on associated bundles as described in
1.3.4 is of functorial nature, too. In particular, starting with an invariant prin-
cipal connection on a homogeneous principal bundle, all induced connections on
associated bundles (which we have just seen are homogeneous) are automatically
invariant. In particular, we get

Observation 1.4.7. An invariant principal connection on the H–principal
bundle G → G/H induces an invariant linear connection on any homogeneous
vector bundle E → G/P .

Conversely, an invariant linear connection on a homogeneous vector bundle
induces a unique principal connection on the frame bundle, which is invariant,
too. Thus, we see that there is a bijective correspondence between invariant linear
connections on a homogeneous vector bundle and invariant principal connections on
its frame bundle. Using this, we can now give a complete classification of invariant
linear connections.

Theorem 1.4.7. Let G be a Lie group, H ⊂ G a closed subgroup, ρ : H →
GL(V ) a representation of H, and consider the corresponding homogeneous vector
bundle E = G×H V → G/H.

Then G–invariant linear connections on E are in bijective correspondence with
linear maps α : g → L(V, V ) such that

(i) α|h = ρ�, the derivative of the representation ρ,
(ii) α(Ad(h)(X)) = ρ(h) ◦ α(X) ◦ ρ(h−1) for all X ∈ g and h ∈ H.

In particular, if there is one such connection, then the space of all of them is an
affine space modelled on the vector space HomH(g/h, L(V, V )).

The curvature of the invariant linear connection corresponding to α is the in-
variant section of Ω2(G/H, L(E,E)) induced by the map Λ2(g/h) → L(V, V ) defined
by

(X + h, Y + h) �→ α(X) ◦ α(Y )− α(Y ) ◦ α(X)− α([X, Y ]).
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Proof. From above we know that we have to determine all invariant principal
connections on the principal GL(V )–bundle G×ρGL(V ). The Lie algebra of GL(V )
is L(V, V ) with the commutator of endomorphisms as the Lie bracket. Moreover,
the adjoint action of GL(V ) on L(V, V ) is just given by conjugation. Now all the
claims follow from Theorem 1.4.5, Proposition 1.4.6, and the fact that the curvature
of an induced connection is induced by the principal curvature. �

Having solved the problem of existence of invariant linear connections, we want
to describe them by an explicit formula. We do this in terms of equivariant func-
tions. A linear connection on a vector bundle E → G/H can be considered as an
operator ∇ which maps sections of E to sections of T ∗(G/H) ⊗ E. If E is the
homogeneous vector bundle corresponding to a representation V of H, then the
target bundle corresponds to L(g/h, V ). Using the correspondence between sec-
tions and equivariant functions from Proposition 1.2.7, we can therefore view ∇ as
an operator C∞(G, V )H → C∞(G, L(g/h, V ))H . In these terms, there are two nice
descriptions:

Proposition 1.4.7. Let E → G/H be the homogeneous vector bundle corre-
sponding to a representation ρ : H → GL(V ), and let ∇ be the invariant linear
connection on E corresponding to a linear map α : g → L(V, V ) as in the theorem.
Let s ∈ Γ(E) be a section and let f : G → V be the corresponding equivariant
function.

(1) The equivariant function φ : G → L(g/h, V ) corresponding to ∇s is explic-
itly given by

φ(g)(X + h) = (LX · f)(g) + α(X)(f(g))

for X ∈ g with corresponding left invariant vector field LX and g ∈ G.
(2) For a vector field ξ ∈ X(G/H) let ξ̃ be a local lift to a vector field on G and

let ω ∈ Ω1(G, g) be the Maurer–Cartan form of G. Then on the domain of ξ̃ the
equivariant function G → V corresponding to ∇ξs is given by

g �→ (ξ̃ · f)(g) + α(ω(ξ̃)(g))(f(g)).

Proof. (1) First note that φ(g) is well defined, since for X ∈ h, equivariancy
of f implies that LX · f = −ρ�(X) ◦ f while α(X) = ρ�(X) by assumption on α.
Let P = G ×ρ GL(V ) be the frame bundle of E and let q : G × GL(V ) → P be
the natural projection. Recall that we can identify E either with G×H V or with
P×GL(V )V . The isomorphism between these two bundles is obtained in such a way
that the class of (q(g,A), v) in P ×GL(V ) V corresponds to the class of (g,A(v)) in
G ×H V . This immediately implies that if F : P → V is the equivariant function
representing a section s ∈ Γ(E), then f(g) = F (q(g, e)) is the equivariant function
G → V representing the same section.

In the proof of Proposition 1.4.6, we have verified that for the principal con-
nection γ determined by α, X ∈ g and the left invariant vector field LX , we have
γ(T(g,e)q · (LX , 0)) = α(X). Denoting by p : G → G/H the projection, this implies
that taking the horizontal lift of Tgp ·LX ∈ TgH(G/H) and using it to differentiate
the equivariant function F , we obtain

(T(g,e)q · (LX , 0)) · F + α(X)(F (q(g, e))) = (LX · f)(g) + α(X)(f(g)).
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Using the left action by g to transport Tgp · LX back to o, we see that this vector
corresponds to X + h ∈ g/p. Together with the description of the covariant de-
rivative induced by a principal connection from part (2) of Proposition 1.3.4, this
shows that the above formula computes φ(g)(X + h).

(2) In Example 1.4.3 we have seen that ξ(gH) = �g,ω(ξ̃(g)) + h�. This implies
that the equivariant function G → g/h corresponding to ξ is given by g �→ ω(ξ̃(g))+
h. On the other hand, it says that ξ̃(g) = Lω(ξ̃)(g)(g), and this projects onto ξ(gH).
Now the result follows from part (1). �

1.4.8. Invariant affine connections. The question of existence of invari-
ant linear connections is particularly important in the case of the tangent bundle
T (G/H) of a homogeneous space G/H. From Example 1.4.3 we know that the tan-
gent bundle corresponds to the representation Ad : H → GL(g/h) induced by the
adjoint representation. By Theorem 1.4.7, invariant linear connections on T (G/H)
are in bijective correspondence with linear maps α : g → L(g/h, g/h) such that
α|h = ad and α(Ad(h)(X)) = Ad(h) ◦ α(X) ◦Ad(h−1) for all X ∈ g and h ∈ H.

Theorem 1.4.7 also describes the map Λ2(g/h) → L(g/h, g/h) which induces
the curvature of the linear connection determined by a linear map α. For linear
connections on the tangent bundle, there is another invariant, the torsion. Recall
from 1.3.5 that this is a bundle map T : Λ2T (G/H) → T (G/H) characterized by
T (ξ, η) = ∇ξη − ∇ηξ − [ξ, η]. For an invariant linear connection ∇, the torsion is
an invariant section, so it corresponds to an H–equivariant map Λ2(g/h) → g/h.
We can easily determine this map explicitly.

Proposition 1.4.8. Let ∇ be the linear connection on the tangent bundle
T (G/H) detemined by a linear map α : g → L(g/h, g/h). Then the map τ̃ : Λ2g →
g/h defined by

τ̃(X, Y ) := α(X)(Y + h)− α(Y )(X + h)− [X, Y ] + h

factors to an H–invariant map τ : Λ2g/h → g/h. The corresponding invariant
section of Ω2(M,TM) is the torsion of ∇.

Proof. From equivariancy of α it follows immediately that τ̃ is H–equivariant.
For X ∈ h we have α(X) = ad(X), which immediately implies that τ̃(X, Y ) = 0
for all Y ∈ g. Hence, τ̃ factors to an H–equivariant map τ as claimed. For
ξ, η ∈ X(G/H) choose local lifts ξ̃ and η̃ on G defined around e. Then locally around
e, the function G → g/h representing ∇ξη is given by ξ̃ ·ω(η̃)+h+α(ω(ξ̃))(ω(η̃)+h).
Since [ξ̃, η̃] is a local lift of [ξ, η], the function describing this Lie bracket is, locally
around e, given by ω([ξ̃, η̃])+h. By definition of the exterior derivative, the section
∇ξη −∇ηξ − [ξ, η] corresponds to the function

α(ω(ξ̃))(ω(η̃) + h)− α(ω(η̃))(ω(ξ̃) + h) + dω(ξ̃, η̃) + h.

Expressing dω using the Maurer–Cartan equation, we obtain τ̃(ω(ξ̃),ω(η̃)). �

Even more special, suppose that the invariant linear connection on T (G/H) is
induced by the invariant principal connection on G → G/H corresponding to an
H–equivariant projection π : g → h; see Corollary 1.4.6. Then the corresponding
map α : g → L(g/h, g/h) is simply given by α(X) = ad(π(X)). Hence, α(X) = 0
for X ∈ n = ker(π). Identifying g/h with n, the formulae for curvature and torsion
simplify considerably. The curvature is induced by the map Λ2n → h given by
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(X, Y ) �→ −π([X, Y ]). The torsion is induced by τ : Λ2n → n, where τ(X, Y ) =
π([X, Y ]) − [X, Y ] ∈ n. Hence, the curvature and the torsion are induced by the
h–component, respectively, the n–component of the negative of the Lie bracket
Λ2n → g.

Example 1.4.8. By way of an example, we show that in general there is no
invariant linear connection on the tangent bundle of a homogeneous space. Consider
the projective sphere from 1.1.3. From there we know that for φ ∈ Rn∗, the element
h :=

�
1 φ
0 I

�
lies in H, where I denotes the n × n identity matrix. For X ∈ Rn one

gets

Ad(h) ·
�

0 0
X 0

�
=

�
φ(X) −φ(X)φ

X −X ⊗ φ

�
.

But in view of the presentation of the Lie algebras in example (2) of 1.4.6, this also
implies that Ad(h) = idg/h. In particular, if α : g → L(g/h, g/h) is H–equivariant,
then we obtain

α

�
0 0
X 0

�
= α

�
φ(X) −φ(X)φ

X −X ⊗ φ

�
.

But if α corresponds to an invariant connection, then the difference of these two
elements must be ad

�
φ(X) −φ(X)φ

0 −X⊗φ

�
. If Y ∈ Rn is another element, then we get

��
φ(X) −φ(X)φ

0 −X ⊗ φ

�
,

�
0 0
Y 0

��
=

�
−φ(X)φ(Y ) 0

−φ(Y )X − φ(X)Y φ(X)Y ⊗ φ

�
.

This shows that the difference is nonzero, which contradicts the existence of a
SL(n + 1, R)–invariant affine connection on Sn. We shall see in 3.1.4 that this
argument extends systematically to the homogeneous models of all parabolic ge-
ometries. In particular, also the projective contact, conformal, and CR–spheres
from 1.1.4–1.1.6 do not admit invariant affine connections.

1.4.9. Invariant differential operators. From the point of view of geom-
etry, invariant differential operators are the differential operators intrinsic to the
given geometric structure, so these provide basic tools for working with such struc-
tures. Questions on invariant differential operators will be the main topic of volume
two. This and the next subsection, which develop the basic background on homo-
geneous spaces, should be considered rather as a teaser for volume two, and can be
skipped at the first reading.

Consider a homogeneous space G/H and two homogeneous vector bundles E,F
over G/H. From 1.4.4 we get G–actions on the spaces Γ(E) and Γ(F ) of sections,
and an invariant differential operator is a differential operator D : Γ(E) → Γ(F )
which is equivariant for the G actions, i.e. such that D(g · s) = g · D(s) for all
s ∈ Γ(E) and g ∈ G.

The first step towards an algebraic description of invariant differential operators
is to pass to jet prolongations. If M is a smooth manifold and E → M is any vector
bundle, then for k ∈ N we have the k–jet prolongation JkE. The fiber of JkE at
x ∈ M is exactly the vector space of all k–jets at x of sections of E. From 1.2.8
we know that JkE is a vector bundle over M . If F is another vector bundle over
M , then a differential operator D : Γ(E) → Γ(F ) is of order ≤ k if and only if for
any two sections s, t ∈ Γ(E) and any point x ∈ M , the equation jk

xs = jk
xt implies

D(s)(x) = D(t)(x). If D is such an operator, then we get an induced bundle map
D̃ : JkE → F over the identity on M , defined by D̃(jk

xs) := D(s)(x). Conversely,
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this formula associates to any bundle map D̃ a differential operator D. Clearly, D
is linear if and only if D̃ is a homomorphism of vector bundles.

In the special case of a homogeneous vector bundle E → G/H, functoriality of
the construction of jets immediately implies that each JkE is again a homogeneous
vector bundle. More precisely, the action is defined by g · (jk

xs) := jk
x(g ·s). By con-

struction, a differential operator D corresponding to the bundle map D̃ : JkE → F
is invariant if and only if D̃ is a morphism of homogeneous fiber bundles, i.e. G–
equivariant. Hence, we have reduced the determination of linear invariant differen-
tial operators to the determination of homomorphisms between homogeneous vector
bundles. Since a homomorphism JkE → F of homogeneous vector bundles is the
same thing as a G–invariant section of the homogeneous vector bundle L(JkE,F ),
this reduces to representation theory of the group H by Theorem 1.4.4.

The problem with this is that even if the H–representation V which induces
the homogeneous bundle E is very simple, the representations inducing J kE tend
to become very complicated, thus making the problem unmanageable. In any case,
there is one possible simple step, namely look at the symbol of the operator. Again,
we digress and consider an arbitrary vector bundle p : E → M over a smooth
manifold M with k–jet prolongation JkE → M . Recall from 1.2.8 that for � <
k there is an obvious projection πk

� : JkE → J�E, defined by πk
� (jk

xs) = j�
xs.

Obviously, this is a vector bundle homomorphism and for � = 0 one simply gets the
projection JkE → E onto the target of a jet. The symbol of an operator of order
≤ k is then the restriction of the corresponding vector bundle homomorphism to the
kernel of πk

k−1. It is easy to see in local coordinates that this kernel is isomorphic
to SkT ∗M ⊗ E.

There is a nice description in terms of linear connections. Take a linear connec-
tion ∇ on E. For a section s ∈ Γ(E), consider ∇s(x) ∈ T ∗x M ⊗Ex. This functional
depends only on j1

xs and if, in addition, s(x) = 0, then it is independent of ∇.
Hence, it identifies kerπ1

0 with T ∗M ⊗ E. The identification of ker πk
k−1 for k > 1

admits a similar description in terms of arbitrary linear connections on E and on
the tangent bundle TM . Given these, one can define the k–fold covariant derivative
∇ks for each s ∈ Γ(E). For x ∈ M the value ∇ks(x) depends only on jk

xs, and
if jk−1

x s = 0, then ∇ks(x) is totally symmetric and independent of ∇. Hence, it
induces the required isomorphism.

If F is another vector bundle over M and D : Γ(E) → Γ(F ) is a differential
operator of order ≤ k corresponding to a bundle map D̃ : JkE → F , then the kth
order symbol of D is the vector bundle map σ(D) : SkT ∗M ⊗E → F given by the
restriction of D̃ to the kernel of πk

k−1.
Returning to the case of a homogeneous vector bundle E → G/H, the pro-

jections πk
� are by construction homomorphisms of homogeneous vector bundles,

and a moment of thought shows that also the inclusions Sk(T ∗M)⊗E → JkE are
homomorphisms of homogeneous vector bundles. In particular, for any invariant
linear differential operator D the symbol σ(D) is a homomorphism of homoge-
neous vector bundles. Hence, it corresponds to a G–invariant section of the bundle
L(SkT ∗M ⊗E,F ), which immediately restricts the possibilities for the existence of
invariant differential operators. It is crucial that the representation corresponding
to the bundle L(SkT ∗M ⊗ E,F ) is as manageable as g/h and the representations
V and W inducing E and F . If there are invariant linear connections on E and
T (G/H), then things become easy:
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Proposition 1.4.9. Let E and F be homogeneous vector bundles over a ho-
mogeneous space G/H, and suppose that there are G–invariant linear connections
on E and T (G/H). Fixing such connections, we can construct for each invari-
ant bundle map Φ : SkT ∗M ⊗ E → F a canonical invariant differential operator
DΦ : Γ(E) → Γ(F ) with symbol σ(DΦ) = Φ. Any G–invariant differential operator
D : Γ(E) → Γ(F ) can be written as a finite sum of operators obtained in that way.

Proof. Let us denote the invariant linear connections on E and T (G/H) by
∇. Then for each k ≥ 0 we get an induced invariant linear connection on the
bundle ⊗kT ∗(G/H) ⊗ E, so we can define iterated covariant derivatives ∇ks ∈
Γ(⊗iT ∗(G/H) ⊗ E). We can then symmetrize this section, to obtain a section
∇(k)s ∈ Γ(SkT ∗(G/H)⊗ E).

By construction, s �→ ∇(k)s is an invariant differential operator. Given a
homomorphism Φ : SkT ∗(G/H) ⊗ E → F of homogeneous vector bundles we put
DΦ(s) := Φ(∇(k)s). By construction, this is an invariant differential operator with
symbol σ(DΦ) = Φ.

Given a general invariant differential operator D, assume that k is the order of
D, i.e. that D has order ≤ k and the kth order symbol of D is nonzero. Putting
Φ = σ(D) we see that D−DΦ has vanishing kth order symbol and thus is of order
≤ k − 1. Now the result follows by induction. �

In the presence of invariant linear connections on E and T (G/H) we see that
each invariant symbol is realized as the symbol of an invariant differential operator.
The proposition also reduces the problem of finding invariant differential operators
to the description of possible symbols. This is as manageable as the representa-
tions g/h, V , and W . Note that the required invariant connections always exist
for reductive Klein geometries. More generally, they also exist if there exists an
invariant affine connection on G/H and E is a tensor bundle.

1.4.10. Invariant differential operators and homomorphisms of in-
duced modules. Let us now switch to a homogeneous bundle E which does not
admit an invariant linear connection. Then the considerations of the last subsec-
tion show that the H–representations inducing JkE will be complicated, and this
already occurs for k = 1: A linear connection ∇ on E is equivalent to a splitting
J1E ∼= E⊕(T ∗(G/H)⊗E) via j1

xs �→ (s(x),∇s(x)). The connection ∇ is invariant,
if and only if this is an isomorphism of homogenous vector bundles. Passing to the
corresponding representations, let V and W be the representations inducing E and
J1E. Then π1

0 corresponds to an H–equivariant surjection W → V whose kernel is
isomorphic to (g/h)∗⊗V . If this H–invariant subspace would admit an H–invariant
complement, this would give an isomorphism W ∼= V ⊕ (g/h)∗ ⊗ V of H–modules.
From above we know that this would give rise to an invariant linear connection on
E. In Example 1.4.8 we have seen that in some cases, there are very simple repre-
sentations V for which there is no invariant linear connection on the corresponding
associated bundle, so in these cases W cannot be completely reducible.

There still is a way to reformulate the classification of linear invariant differ-
ential operators as an algebraic problem, which can be solved in some cases. In
particular, this is true for the Klein geometries underlying parabolic geometries.
In these cases, the Lie group G is semisimple and the subgroup H is a parabolic
subgroup. In particular, the representation theory of the Lie algebra g is well un-
derstood, while the situation with representations of H is much more complicated.
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Completely reducible representations of H are manageable since they come from
a reductive subgroup, but from above we see that passing to jet prolongation one
leaves the realm of completely reducible representations.

The algebraic reformulation that can be successfully used in the parabolic case
is in principle available in general. However, since it is technically rather demanding
and the parabolic case is the main application, we prefer to only briefly sketch this
approach here and give a detailed treatment in the parabolic case in volume two.

The starting point is to look at the universal enveloping algebra U(g) of the
Lie algebra g; see 2.1.10. This is a unital associative algebra, endowed with an
inclusion i : g → U(g) such that i([X, Y ]) = i(X)i(Y ) − i(Y )i(X). It turns out
that representations of g are equivalent to representations of U(g). The universal
enveloping algebra of the subalgebra h ⊂ g naturally is a subalgebra in U(g). In
particular, U(g) is naturally a right U(h)–module.

Given a representation of h on a vector space V , this space is a left U(h)–module,
and one can form the induced module U(g)⊗U(h) V , which is a U(g)–module under
multiplication from the left, and thus a representation of g (of infinite dimension). If
one wants to take into account the group H, one may consider the induced module
as a (g,H)–module.

The relation to differential operators comes from looking at infinite jets. Given
a homogeneous vector bundle E → G/H, one looks at the infinite jet prolongation
J∞E, which is defined as the direct limit of the system · · ·→ JkE → Jk−1E → . . . .
By construction, this is an infinite–dimensional homogeneous vector bundle, so we
are naturally led to consider its fiber J∞Eo over the point o = eH, as an H–module.
The advantage of passing to infinite jets is that there is a canonical action of the Lie
algebra g on this fiber, which comes from differentiation by right invariant vector
fields. This makes J∞Eo into a (g,H)–module.

Next, the identification of the Lie algebra g as left invariant vector fields on G
induces an identification of the universal enveloping algebra U(g) with the space of
left invariant differential operators on C∞(G, R). This gives rise to a pairing be-
tween J∞e (G, R) and U(g) induced by applying a left invariant differential operator
to the representative of an infinite jet and evaluating the result in e. One shows
that this induces a linear isomorphism between U(g) and the set of those linear
maps J∞e (G, R) → R which factor over some Jk

e (G, R).
More generally, looking at functions with values in a finite–dimensional vector

space V , one gets an identification of U(g) ⊗ V ∗ and the space of those maps
J∞e (G, V ) → R which factor over some Jk

e (G, V ). Analyzing the action on jets of
equivariant maps, one finally obtains an identification between the induced module
U(g)⊗U(h) V

∗ and the space of those linear maps J∞o E → R which factor over some
Jk

o E. One verifies directly that this pairing is compatible with the (g,H)–module
structures on both spaces.

Now consider two homogeneous vector bundles E and F corresponding to H–
representations V and W . From the discussion in 1.4.9 we conclude that the space
of all linear invariant differential operators D : Γ(E) → Γ(F ) is isomorphic to the
space of all H–module maps J∞o E → F which factor over some Jk

o E. Using the
above pairing, such maps may be interpreted as H–invariant elements in (U(g)⊗U(h)

V ∗)⊗W , or equivalently as H–module homomorphisms W ∗ → U(g)⊗U(h)V
∗. This

also works the other way around, so one gets an isomorphism between invariant
linear differential operators and H–homomorphisms of the above type.
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The final ingredient then is an algebraic version of Frobenius reciprocity from
1.4.4, which we will prove in 2.1.10. This leads to a bijective correspondence
between H–homomorphisms W ∗ → U(g) ⊗U(h) V ∗ and (g,H)–module homomor-
phisms U(g)⊗U(h) W ∗ → U(g)⊗U(h) V ∗. Thus, we get the following description of
linear invariant differential operators:

Theorem 1.4.10. Let G be a Lie group, H ⊂ G a closed subgroup, and V and
W finite–dimensional representations of H. Let E and F denote the homogeneous
vector bundles G×H V and G×H W , respectively.

Then the space of linear invariant differential operators D : Γ(E) → Γ(F ) is
isomorphic to the space Hom(g,H)(U(g)⊗U(h)W

∗,U(g)⊗U(h)V
∗) of homomorphisms

of (g,H)–modules.

In the case of a semisimple Lie algebra g and a parabolic subalgebra h the
induced modules in question are called generalized Verma modules, and they have
been intensively studied in representation theory. In particular, a good amount of
results on homomorphisms between such modules is available. In the special case
where h is even a Borel subalgebra, one obtains Verma modules, and there is a
complete classification of homomorphisms between such modules. We will discuss
these results in more detail in volume two.

1.4.11. Distinguished curves. The final notion that we want to discuss in
this section are preferred families of curves, which lead to analogs of geodesics and
normal coordinates. Depending on the choice of homogenous space, there may be
various interesting families of distinguished curves. We will always require that a
family of distinguished curves on G/H is stable under the action of G. This implies
that the whole family is determined by the curves through the origin o = eH. For
this section, we will restrict to a specific concept of distinguished curves which is
always available.

For the purpose of motivation, suppose that there is an invariant principal con-
nection on the bundle p : G → G/H. Then we get an induced linear connection
on T (G/H) and we can use the geodesics of this linear connection as the distin-
guished curves. The principal connection on G/H is determined by the choice of
an H–invariant complement n to h in g; see Corollary 1.4.6. Now for X ∈ n we can
consider the curve t �→ p(exp(tX)) in G/H. By definition t �→ exp(tX) is a lift of
this curve on which the Maurer–Cartan form is constant, so our curve is a geodesic
through o.

This suggests a generalization. Assume that we have given a Lie group G, a
closed subgroup H ⊂ G, and fix a linear complement n of h in g. For any g ∈ G
we then have the notion of horizontal tangent vectors at g, namely ξ ∈ TgG is
horizontal if and only if ω(ξ) = Tλg−1 · ξ ∈ n, where ω is the Maurer–Cartan form
on G. In particular, for X ∈ n we have the left invariant vector field LX ∈ X(G)
which is horizontal. The projections of the flow lines of these fields are then the
basic distinguished curves.

A smooth curve c : I → G/H defined on an open interval I ⊂ R is called
distinguished if and only if there are a point t0 ∈ I and elements g ∈ G with
p(g) = c(t0) and X ∈ n such that c(t) = p(FlLX

t−t0(g)) = p(g exp((t − t0)X)) for
all t ∈ I. Note that since left invariant vector fields are always complete, any
distinguished curve can be canonically extended to a curve defined on R. Note
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further, that by the flow property, if c : I → G/H is a distinguished curve, then for
any t0 ∈ I there are g ∈ G and X ∈ n such that c(t) = p(g exp((t− t0)X)).

Proposition 1.4.11. Let G be a Lie group, H ⊂ G a closed subgroup and
n ⊂ g a linear subspace complementary to h. Then we have:

(1) If c : I → M is a distinguished curve and g ∈ G is any element, then
�g ◦ c : I → M is a distinguished curve, too.

(2) For any point x ∈ G/H and any tangent vector ξ ∈ TxG/H there is
at least one distinguished curve c : R → G/H such that c(0) = x and
c�(0) = ξ.

(3) If the complement n is H–invariant, then the curve c in (2) is uniquely
determined. It coincides with the geodesic of the linear connection on
T (G/H) induced by n.

(4) For any g ∈ G, the mapping n → G/H, X �→ p(g exp X) defines local
coordinates around p(g) in which the straight lines through the origin in n
map to distinguished curves through p(g).

Proof. (1) By definition, there are elements t0 ∈ I, g0 ∈ G and X ∈ n such
that c(t) = p(g0 exp((t − t0)X)). But then by definition of the action �g, we get
�g(c(t)) = p(gg0 exp((t− t0)X)), so �g ◦ c is distinguished, too.

(2) By (1) it suffices to consider the case x = o. Then for ξ ∈ ToG/H there is
a unique element X ∈ n such that ξ = Tep ·X. Thus, p(exp(tX)) is a distinguished
curve as required.

(3) Again, we may confine ourselves to the case x = o. As above, take X ∈ n
such that Tep ·X = ξ. Since p−1(o) = H, any other distinguished curve through o
in direction ξ is of the form p(h exp(tY )) for h in H, with Y ∈ n the unique element
such that Thp · LY (h) = ξ. But then

ξ = Thp ◦ Teλh · Y = Tep ◦ Thρh−1 ◦ Teλh · Y = Tep ·Ad(h)Y.

Thus, X −Ad(h)Y ∈ h, but since n is H–invariant, we have Ad(h)Y ∈ n and thus
Y = Ad(h−1)X. But then h exp(tAd(h−1)X) = hh−1 exp(tX)h, so p(h exp(tY )) =
p(exp(tX)).

(4) is obvious from the definitions. �
Remark 1.4.11. We may equivalently define the distinguished curves by H–

invariant data at the origin o ∈ G/H. The distinguished curves c(t) with c(0) = o
form an H–invariant set, and the entire set of the distinguished curves is obtained
from them by the left shifts.

More generally, we may fix any H-invariant subset A of curves α(t), α(0) = o
and to define the A–distinguished curves as all curves of the form �g ◦ α for g ∈ G
and α ∈ A. In particular, each choice of an H–invariant subspace a ⊂ n in the
complement n to h with respect to the induced adjoint action leads to a subclass
of distinguished curves emanating in directions contained in the distribution A ⊂
T (G/H) determined by the subspace a.

1.5. Cartan connections

Having the necessary background at hand, we can now start to investigate Car-
tan geometries. Throughout this section we will take Cartan geometries as a given
input and develop basic tools for the analysis of such structures. We will look for
simpler structures underlying a Cartan geometry, but we will not touch the question


