Wallis” Product and Stirling’s Formula

Theorem 1. The Wallis™ product W, := 1,323?‘245:1()227();”“) tends to 5 as m — oo.

Proof. Let S, := foﬂ(sin x)"dx. Then Sy = m, S; =2 and in general S, 1 < S, < Sp—1.
Integration by parts gives:
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We get by induction
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Taking the limit n — oo gives the result. O

Theorem 2. Stirling®’s formula: n! ~ n"e~"/2mn.
Proof. First take the logarithm:

logn! = log H k= Z log k =pecause log 1=0 Z log k.
k=1 k=1 k=2

By the trapezium rule of integration, see Figure 1:
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where the error terms Ej € (0,C/k?), in fact By < %ﬁ In particular, the error terms are summable.

1John Wallis (1606-1703, British mathematician and clergyman, also gave us the symbol co
2 James Stirling (1692-1770) was a Scottish mathematician, working in Venice, London and eventually becoming an industrial
in Glasgow.
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Figure 1: Approximating log k& by an integral + error terms

Now
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Therefore, if we take the e-power again:
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and this converges because the Ej’s are a summable sequence of positive terms.
Set « := lim,, o uy,. Then
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because the square-root of the Wallis product tends to /5.



