Proseminar Kommutative Algebra, WS 2007/08

Christoph Baxa

1) Beweisen Sie, daß der Nullring $0 (= \{0\} \text{ mit } 0 + 0 = 0 \text{ und } 0 \cdot 0 = 0)$ der einzige kommutative Ring mit 1 ist, in dem 0 = 1 gilt.

Konvention: Auch im Proseminar bezeichnet ab sofort Ring immer einen kommutativen Ring mit Einselement, außer es wird explizit etwas anderes festgelegt.

- 2) Es seien A und B Ringe und $\varphi: A \to B$ ein Ringhomomorphismus. Zeigen Sie:
 - a) Wenn J Ideal von B ist, ist $\varphi^{-1}(J)$ Ideal von A.
 - b) Wenn I Ideal von A ist und φ surjektiv ist, ist $\varphi(I)$ Ideal von B.
- 3) Zeigen Sie an Hand eines Beispiels, daß 2b) nicht korrekt ist, wenn φ nicht als surjektiv vorausgesetzt wird.
- 4) Zeigen Sie: Ist A ein Ring, I ein Ideal von A und $\varphi: A \to A/I, \varphi(a) = a + I$, so ist durch $J \mapsto \varphi^{-1}(J)$ eine bijektive, die Ordnungsrelation \subseteq respektierende Abbildung zwischen den Idealen von A/I und denjenigen Idealen von A, die I enthalten, gegeben.
- 5) Uberprüfen Sie, daß der binomische Lehrsatz in Ringen gilt.
- 6) Finden Sie A^* , NT(A), NNT(A) und Nil(A) für

a)
$$A = \mathbb{Z}$$

a)
$$A = \mathbb{Z}$$
 b) $A = \mathbb{Z}/6\mathbb{Z}$ c) $A = \mathbb{Z}/4\mathbb{Z}$

c)
$$A = \mathbb{Z}/4\mathbb{Z}$$

d)
$$A = \mathbb{Z}/12\mathbb{Z}$$

- 7) Sei A ein Ring.
 - a) Zeigen Sie: Wenn $x \in Nil(A)$, dann ist $1 + x \in A^*$.
 - b) Leiten Sie aus Teil a) ab: Wenn $u \in A^*$ und $x \in Nil(A)$, dann ist $u + x \in A^*$.
- 8) Es sei A ein Ring und $p(X) = a_0 + a_1 X + \cdots + a_n X^n \in A[X]$. Beweisen Sie

$$p \in (A[X])^* \iff a_0 \in A^* \text{ und } a_1, \dots, a_n \in \text{Nil}(A)$$

Hinweis: Wenn $p \cdot q = 1$ mit $q(X) = b_0 + b_1 X + \cdots + b_m X^m$, zeigen Sie mit Induktion nach r, daß $a_n^{r+1}b_{m-r}=0$. Folgern Sie, daß a_n nilpotent ist und verwenden Sie das vorangegangene Beispiel.

- 9) Es sei A ein Ring und $p(X) = a_0 + a_1 X + \cdots + a_n X^n \in A[X]$. Beweisen Sie, daß pgenau dann nilpotent ist, wenn $a_0, a_1, \ldots, a_n \in Nil(A)$.
- 10) Für alle $j \in M (\neq \emptyset)$ sei I_j ein Ideal des Rings A. Zeigen Sie, daß $\sum_{i \in M} I_j$ und $\bigcap_{j \in M} I_j$ ebenfalls Ideale von A sind.
- 11) Beweisen Sie mit Hilfe eines Gegenbeispiels: Die Vereinigung $I \cup J$ zweier Ideale I und J eines Rings A ist nicht immer ein Ideal.
- 12) Es seien I, J Ideale des Rings A. Zeigen Sie:

a)
$$I \cdot J$$
 ist Ideal von A

b)
$$I \cdot J \subseteq I \cap J$$

c)
$$I \cdot A = I$$

13) Es seien I_1, I_2, I_3 Ideale des Rings A. Beweisen Sie:

a)
$$(I_1 + I_2) + I_3 = I_1 + (I_2 + I_3)$$
 b) $I_1 + I_2 = I_2 + I_1$

b)
$$I_1 + I_2 = I_2 + I_1$$

c)
$$(I_1 \cdot I_2) \cdot I_3 = I_1 \cdot (I_2 \cdot I_3)$$
 d) $I_1 \cdot I_2 = I_2 \cdot I_1$

d)
$$I_1 \cdot I_2 = I_2 \cdot I_1$$

e)
$$I_1 \cdot (I_2 + I_3) = I_1 \cdot I_2 + I_1 \cdot I_3$$
 f) $(I_1 + I_2) \cdot I_3 = I_1 \cdot I_3 + I_2 \cdot I_3$

f)
$$(I_1 + I_2) \cdot I_3 = I_1 \cdot I_3 + I_2 \cdot I_3$$

14) Beweisen Sie für den Hauptidealring \mathbb{Z} :

a)
$$a\mathbb{Z} + b\mathbb{Z} = \operatorname{ggT}(a, b)\mathbb{Z}$$
 b) $a\mathbb{Z} \cap b\mathbb{Z} = \operatorname{kgV}(a, b)\mathbb{Z}$ c) $(a\mathbb{Z}) \cdot (b\mathbb{Z}) = (a \cdot b)\mathbb{Z}$

b)
$$a\mathbb{Z} \cap b\mathbb{Z} = \text{kgV}(a, b)\mathbb{Z}$$

c)
$$(a\mathbb{Z}) \cdot (b\mathbb{Z}) = (a \cdot b)\mathbb{Z}$$

- **15)** Es sei A der Ring $A = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Z}\}$. Die Ideale P, P_1, P_2 seien durch $P := (2, 1 + i\sqrt{5}), P_1 := (3, 1 + i\sqrt{5}), P_2 := (3, 1 - i\sqrt{5})$ gegeben. Beweisen Sie:
 - a) $P^2 = (2)$ (Hinweis: Zeigen Sie zuerst $P = (2, 1 i\sqrt{5})$.)
 - b) $P_1 \cdot P_2 = (3)$
 - c) $P \cdot P_1 = (1 + i\sqrt{5})$
 - d) $P \cdot P_2 = (1 i\sqrt{5})$

e)
$$(6) = (2) \cdot (3) = (1 + i\sqrt{5}) \cdot (1 - i\sqrt{5}) = P^2 \cdot P_1 \cdot P_2$$

16) Beweisen Sie: Sind I, J Ideale des Rings A, so gelten

a)
$$I \subseteq J \Rightarrow \sqrt{I} \subseteq \sqrt{J}$$

b)
$$I \subseteq \sqrt{I}$$

b)
$$I \subseteq \sqrt{I}$$
 c) $\sqrt{\sqrt{I}} = \sqrt{I}$

17) Beweisen Sie: Sind I, J Ideale des Rings A, so gelten

a)
$$\sqrt{I \cdot J} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$
 b) $\sqrt{I} = A \Leftrightarrow I = A$ c) $\sqrt{I + J} = \sqrt{\sqrt{I} + \sqrt{J}}$

$$o) \sqrt{I} = A \Leftrightarrow I = A$$

c)
$$\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$$

18) Es seien I, J Ideale des Rings A. Zeigen Sie: Wenn \sqrt{I} und \sqrt{J} coprim sind, sind auch I und J coprim. Hinweis: Verwenden Sie Teile b) und c) des vorangegangenen Beispiels.

- 19) Es seien A_1, \ldots, A_n Ringe. Beweisen Sie:
 - a) Der Ring $\prod_{i=1}^{n} A_i$ ist genau dann Integritätsbereich, wenn es ein $j \in \{1, \ldots, n\}$ gibt, sodaß A_j Integritätsbereich ist und $A_i \cong 0$ für $1 \leq i \leq n$ und $i \neq j$.
 - b) Die Ideale von $\prod_{i=1}^{n} A_i$ sind von der Gestalt $\prod_{i=1}^{n} I_i$ wobei I_i Ideal von A_i ist (für $1 \le i \le n$). Achtung: Es handelt sich beide Male um ein kartesisches Produkt.
 - c) Beweisen Sie: Mit den Notationen von Teil b) gilt

$$\prod_{i=1}^{n} A_i / \prod_{i=1}^{n} I_i \cong \prod_{i=1}^{n} (A_i/I_i)$$

- d) Das Ideal $\prod_{i=1}^n I_i$ ist genau dann Primideal von $\prod_{i=1}^n A_i$ wenn es ein $j \in \{1, \ldots, n\}$ gibt, sodaß I_j Primideal von A_j ist und $I_i = A_i$ für $1 \le i \le n$ und $i \ne j$.
- **20)** Es sei A ein Ring und P Primideal von A. Beweisen Sie: Wenn es für ein $a \in A$ ein $n \in \mathbb{N}$ gibt, sodaß $a^n \in P$, dann gilt bereits $a \in P$.
- **21)** Beweisen Sie: Wenn P Primideal des Rings A ist, gilt $\sqrt{P^n} = P$ für alle $n \in \mathbb{N}$.
- **22)** Es seien A und B Ringe und $\varphi: A \to B$ ein Ringhomomorphismus. Zeigen Sie: Wenn P ein Primideal von B ist, ist $\varphi^{-1}(P)$ Primideal von A.
- **23)** Zeigen Sie: Ist A ein Ring, I ein Ideal von A und $\varphi: A \to A/I$, $\varphi(a) = a + I$, so ist durch $P \mapsto \varphi^{-1}(P)$ eine bijektive, die Ordnungsrelation \subseteq respektierende Abbildung zwischen den Primidealen von A/I und denjenigen Primidealen von A, die I enthalten, gegeben.
- **24)** Es sei C der Ring $C = \{f \mid f : [0,1] \to \mathbb{R}, f \text{ ist stetig}\}$. Beweisen Sie:
 - a) Ist $x_0 \in [0, 1]$, so ist $I_{x_0} = \{ f \in C \mid f(x_0) = 0 \}$ ein Ideal von C.
 - b) Jedes der Ideale I_{x_0} aus Teil a) ist maximal. Hinweis: Zeigen Sie, daß die Abbildung $\varphi_{x_0}: C \to \mathbb{R}, \ f \mapsto f(x_0)$ ein Ringhomomorphismus ist.
 - c) Besitzen $f_1, \ldots, f_n \in C$ keine gemeinsame Nullstelle, so ist $\sum_{i=1}^n f_i^2 \in C^*$.
 - d) Ist $I(\neq C)$ ein Ideal von C, so gibt es (mindestens) einen Punkt $x \in [0,1]$, der gemeinsame Nullstelle aller $f \in I$ ist.
 - Hinweis: Indirekt beweisen. Kompaktheit von [0,1] und Teil c) verwenden.
 - e) Jedes maximale Ideal von C ist von der in Teil b) angegebenen Gestalt.

- **25)** Es sei A ein Ring und I ein Ideal von A. Beweisen Sie: Es gilt genau dann $I = \sqrt{I}$ wenn sich I als Durchschnitt von Primidealen schreiben läßt.
- **26)** Es seien A, B zwei Ringe und $\varphi : A \to B$ ein surjektiver Ringhomomorphismus. Beweisen Sie:
 - a) Ist I Ideal von A, so gilt $\varphi(\sqrt{I}) \subseteq \sqrt{\varphi(I)}$.
 - b) Ist I Ideal von A und $\ker \varphi \subseteq I$, so gilt $\varphi(\sqrt{I}) = \sqrt{\varphi(I)}$.
 - c) Es gilt $\varphi(\operatorname{Jac} A) \subseteq \operatorname{Jac} B$.
- 27) Zeigen Sie: Ist A ein Ring, I ein Ideal von A und $\varphi: A \to A/I, \ \varphi(a) = a+I,$ so ist durch $P \mapsto \varphi^{-1}(P)$ eine bijektive Abbildung zwischen den maximalen Idealen von A/Iund den maximalen Idealen von A, die I enthalten, gegeben.
- 28) Bestimmen Sie die Primideale und die maximalen Ideale des Rings A und Jac A für
 - a) $A = \mathbb{Z}$

- b) $A = \mathbb{Z}/6\mathbb{Z}$ c) $A = \mathbb{Z}/4\mathbb{Z}$ d) $A = \mathbb{Z}/12\mathbb{Z}$
- **29)** Es seien I_1, I_2 und I Ideale des Rings A und $S \subseteq A$ multiplikativ. Beweisen Sie:
 - a) $S^{-1}(I_1 + I_2) = S^{-1}I_1 + S^{-1}I_2$ b) $S^{-1}(I_1 \cdot I_2) = (S^{-1}I_1) \cdot (S^{-1}I_2)$ c) $S^{-1}(I_1 \cap I_2) = (S^{-1}I_1) \cap (S^{-1}I_2)$ d) $\sqrt{S^{-1}I} = S^{-1}\sqrt{I}$
- **30)** Es sei I ein Ideal des Rings A und $S=1+I=\{1+a\mid a\in I\}$. Beweisen Sie:
 - a) Die Primideale von $S^{-1}A$ entsprechen bijektiv den Primidealen P von A, die $I + P \neq A$ erfüllen.
 - b) Es gilt $S^{-1}I \subseteq \text{Jac}(S^{-1}A)$.
- 31) Schreiben Sie den Beweis der Inclusion

$$\bigcap_{P \text{ Primideal}} P \subseteq \operatorname{Nil} A$$

aus Satz 1.11(i) um. Verwenden Sie dabei den Ring $S^{-1}A$ mit $S = \{a^n \mid n \in \mathbb{N} \cup \{0\}\}$.

- **32)** Es sei A ein Ring und S und T zwei multiplikative Teilmengen von A. Beweisen Sie, daß $ST = \{st \mid s \in S, t \in T\} (\subseteq A)$ und $i_{A,S}(T) (\subseteq S^{-1}A)$ mulitplikativ sind und daß $(ST)^{-1}A \cong (i_{A,S}(T))^{-1}(S^{-1}A).$
- **33)** Es seien $A = \mathbb{Z}$, $P = (2) = 2\mathbb{Z}$, $S = A \setminus P = \mathbb{Z} \setminus 2\mathbb{Z}$, $I = (2) = 2\mathbb{Z}$ und $J = (6) = 6\mathbb{Z}$. Zeigen Sie $S^{-1}I = S^{-1}J$ in $S^{-1}\mathbb{Z} = \mathbb{Z}_{(2)}$.

- **34)** Es sei $A \ncong 0$ ein Ring und $\Sigma = \{S \mid S \subseteq A \text{ ist multiplikativ und } 0 \notin S\}$. Zeigen Sie:
 - a) Ist $S \in \Sigma$, so gibt es ein (bezüglich der Inklusion \subseteq) maximales $T \in \Sigma$ mit $S \subseteq T$.
 - b) Es gilt: $S \in \Sigma$ ist maximal $\Leftrightarrow A \setminus S$ ist minimales Primideal von A
- **35)** Eine multiplikative Teilmenge S eines Rings A heißt saturiert, wenn für $x, y \in A$ gilt, daß aus $xy \in S$ folgt, daß $x \in S$ und $y \in S$. Beweisen Sie:
 - a) Eine multiplikative Menge $S\subseteq A$ ist genau dann saturiert wenn $A\setminus S$ Vereinigung von Primidealen von A ist.
 - b) In jedem Ring A ist NNT(A) ist saturiert.
- **36)** Es seien A, B Ringe, $\varphi : A \to B$ ein Ringhomomorphismus und M ein B-Modul. Beweisen Sie, daß M durch $A \times M \to M$, $(a, m) \mapsto \varphi(a)m$ zu einem A-Modul wird.
- **37)** Es sei A ein Ring, M ein A-Modul und I ein Ideal von A mit der Eigenschaft, daß ax = 0 für alle $a \in I$ und alle $x \in M$. Beweisen Sie:
 - a) bx = cx wenn $b \equiv c \pmod{I}$,
 - b) M wird durch $(a + I) \cdot m = \overline{a} \cdot m := a \cdot m$ ein A/I-Modul.
- **38)** Es sei A ein Ring und M_1, M_2 zwei A-Moduln. Beweisen Sie: Setzt man $(\varphi_1 + \varphi_2)(m) := \varphi_1(m) + \varphi_2(m) \text{ (für } \varphi_1, \varphi_2 \in \text{Hom}_A(M_1, M_2), m \in M_1)$ und $(a\varphi)(m) := a\varphi(m) \text{ (für } a \in A, \varphi \in \text{Hom}_A(M_1, M_2), m \in M_1),$

so wird $\operatorname{Hom}_A(M_1, M_2)$ ein A-Modul.

- **39)** Es sei A ein Ring und M_1, M_2, M_3 drei A-Moduln. Zeigen Sie: Ist $\varphi \in \text{Hom}_A(M_1, M_2)$ und $\psi \in \text{Hom}_A(M_2, M_3)$, dann ist $\psi \circ \varphi \in \text{Hom}_A(M_1, M_3)$.
- **40)** Es sei A ein Ring und $\overline{M}, M, N, \overline{N}$ vier A-Moduln. Außerdem seien zwei A-Modulnomomorphismen $\alpha \in \operatorname{Hom}_A(\overline{M}, M)$ und $\omega \in \operatorname{Hom}_A(N, \overline{N})$ gegeben. Beweisen Sie:
 - a) Die Abbildung $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(\overline{M},N), \varphi \mapsto \varphi \circ \alpha$ ist A-linear.
 - b) Die Abbildung $\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(M,\overline{N}), \ \varphi \mapsto \omega \circ \varphi \text{ ist } A\text{-linear.}$
- **41)** Es sei A ein Ring und M ein A-Modul. Beweisen Sie $\operatorname{Hom}_A(A,M) \cong M$. Hinweis: Betrachten Sie die Abbildung $\operatorname{Hom}_A(A,M) \to M, \ \varphi \mapsto \varphi(1)$.
- **42)** Es sei A ein Ring, M ein A-Modul und N ein Untermodul von M. Beweisen Sie:
 - a) Der Faktormodul M/N ist ein A-Modul.
 - b) Die Abbildung $\varphi: M \to M/N, \ \varphi(m) = m + N$ ist in $\operatorname{Hom}_A(M, M/N)$ und surjektiv.

43) Es sei V der reelle Vektorraum $V = \{f : [0,1] \to \mathbb{R} \mid f \text{ ist stetig}\}$ und

$$U = \left\{ f \in V \mid \int_0^1 f(x) \, dx = 0 \right\}.$$

Beweisen Sie $V/U \cong \mathbb{R}$ (Isomorphie von \mathbb{R} -Moduln, d.h. reellen Vektorräumen).

44) Beweisen Sie, daß die direkte Summe von Moduln durch ihre in Satz 3.14 (i) angegebene Eigenschaft charakterisiert wird, d.h. für alle $i \in I$ sei M_i ein A-Modul, S sei ein A-Modul und für alle $i \in I$ sei $\kappa_i : M_i \to S$ ein A-Modulhomomorphismus.

Zeigen Sie: Wenn S die Eigenschaft besitzt, daß es zu jedem A-Modul N und jeder Familie von A-Modulhomomorphismen $\varphi: M_i \to N \ (\text{mit } i \in I)$ einen eindeutig bestimmten A-Modulhomomorphismus $\varphi: S \to N \ \text{mit der Eigenschaft} \ \varphi \circ \kappa_i = \varphi_i \ \text{für alle} \ i \in I \ \text{gibt},$ dann gilt $S \cong \bigoplus_{i \in I} M_i$.

45) Für alle $in \in I$ sei M_i ein A-Modul. Das direkte Produkt der $(M_i)_{i \in I}$ ist als

$$\prod_{i \in I} M_i = \{ (m_i)_{i \in I} \mid m_i \in M_i \text{ für alle } i \in I \}.$$

definiert. Beweisen Sie:

- a) Durch die folgenden beiden Verknüpfungen wird $\prod_{i \in I} M_i$ ein A-Modul: $(m_i)_{i \in I} + (n_i)_{i \in I} := (m_i + n_i)_{i \in I}$ und $a(m_i)_{i \in I} := (am_i)_{i \in I}$ (mit $a \in A$)
- b) Die direkte Summe $\bigoplus_{i \in I} M_i$ ist Untermodul von $\prod_{i \in I} M_i$.
- c) Für alle $j \in I$ ist $\pi_j : \prod_{i \in I} M_i \to M_j, (m_i)_{i \in I} \mapsto m_j$ ein A-Modulhomomorphismus.
- d) Es sei N ein A-Modul und für $i \in I$ sei $\varphi_i : N \to M_i$ ein A-Modulhomomorphismus. Dann gibt es genau einen A-Modulhomomorphismus $\varphi : N \to \prod_{i \in I} M_i$, derart daß $\varphi_i = \pi_i \circ \varphi$ für alle $i \in I$.
- e) Es sei P ein A-Modul, der die Eigenschaft von $\prod_{i \in I} M_i$ aus Teil d) erfüllt (d.h. für alle $i \in I$ ist $\tau_i \in \operatorname{Hom}_A(P, M_i)$ und ist N ein A-Modul und $\varphi_i \in \operatorname{Hom}_A(N, M_i)$ so gibt es genau einen A-Modulhomomorphismus $\varphi: N \to P$ mit $\tau_i \circ \varphi = \varphi_i$ für $i \in I$). Dann gilt $P \cong \prod_{i \in I} M_i$, d.h. $\prod_{i \in I} M_i$ ist durch die Eigenschaft d) eindeutig bestimmt.
- **46)** Es sei A ein Ring, I ein Ideal von A und M ein A-Modul. Beweisen Sie:
 - a) Durch (a + I)(x + IM) := ax + IM wird M/IM ein A/I-Modul.
 - b) Ist x_1, \ldots, x_n Basis von M über A, so ist $x_1 + IM, \ldots, x_n + IM$ Basis von M/IM über A/I.

- 47) a) Es sei M ein A-Modul. Beweisen Sie: Sind x_1, \ldots, x_n und y_1, \ldots, y_m zwei Basen von M, so gilt m = n. Hinweis: Verwenden Sie ein maximales Ideal von A und das vorangegangene Beispiel, um die Frage auf die entsprechende Eigenschaft für Vektorräume zurückzuführen.
- b) Folgern Sie aus Teil a): Ist A ein Ring und $A^n \cong A^m$, so ist n = m.

Definition. Es sei M ein endlich erzeugter und freier A-Modul. Die Anzahl der Elemente einer (und nach dem vorangegangenen Beispiel damit jeder) Basis von M wird als Rang von M bezeichnet.

- 48) Es sei A ein Ring, I und J zwei Ideale von A und M ein A-Modul. Zeigen Sie:
 - a) (I + J)M = IM + JM.
 - b) I(JM) = (IJ)M.
 - c) Sind N_1 und N_2 zwei Untermoduln von M, dann gilt $I(N_1 + N_2) = IN_1 + IN_2$.
- **49)** Es sei A ein Hauptidealring. Beweisen Sie:
 - a) Ist $I \neq (0)$ Ideal von A, so ist $I \cong A$ (Isomorphie von A-Moduln).
 - b) Ist M ein A-Modul, $\varphi: M \to A$ ein A-Modulhomomorphismus mit der Eigenschaft, daß es ein $x \in M$ gibt, daß $\varphi(x) \neq 0$ erfüllt, so ist $M \cong \ker \varphi \oplus A$.
- **50)** Es sei A ein Hauptidealring und M ein freier A-Modul vom Rang $n \in \mathbb{N}$. Beweisen Sie: Jeder Untermodul N von M ist ebenfalls frei und der Rang von N ist höchstens n. Hinweis: Verwenden Sie Induktion nach n. Betrachten Sie den A-Modulhomomorphismus $\varphi: M \to A$, der folgendermaßen gegeben ist: Ist x_1, \ldots, x_n Basis von M, so sei

$$\varphi(a_1x_1+\cdots+a_nx_n)=a_n.$$

Verwenden Sie das vorangegangene Beispiel für den Induktionsschritt.

- **51)** Es seien M_1, M_2 und N Untermoduln des A-Moduls M. Beweisen Sie: Wenn die drei Bedingungen $M_1 \subseteq M_2$, $M_1 \cap N = M_2 \cap N$ und $M_1 + N = M_2 + N$ erfüllt sind, gilt $M_1 = M_2$.
- **52)** Beweisen Sie nochmals Satz 3.20, diesmal ohne die Charakterisierung aus Satz 3.19 zu verwenden. Benützen Sie stattdessen das vorangegangene Beispiel.

Hinweis: Ist $M_1 \subseteq M_2 \subseteq M_3 \subseteq \cdots$ eine aufsteigende Folge von Untermoduln von M, so betrachten Sie die beiden Folgen $(M_1 + N)/N \subseteq (M_2 + N)/N \subseteq (M_3 + N)/M \subseteq \cdots$ und $M_1 \cap N \subseteq M_2 \cap N \subseteq M_3 \cap N \subseteq \cdots$ von Untermoduln, um die Implikation (ii) \Rightarrow (i) zu beweisen.

- 53) Es sei A ein Integritätsbereich. Beweisen Sie:
 - a) Für $a, b \in A$ gilt: $a \mid b \iff (b) \subseteq (a)$
 - b) Für $a, b \in A$ gilt: $(a) = (b) \iff \exists u \in A^* : b = ua$
 - c) Ein Element $a \in A \setminus \{0\}$ ist genau dann irreduzibel wenn (a) maximal ist in der Menge der Hauptideale $\neq (1)$ von A.
- **54)** Es sei A ein noetherscher Integritätsbereich. Beweisen Sie: Jedes Element $a \in A \setminus A^*$, $a \neq 0$ kann als endliches Produkt irreduzibler Elemente von A geschrieben werden.

Definition. Ein A-Modul M heißt artinsch, wenn jede absteigende Kette

$$M_1 \supseteq M_2 \supseteq M_3 \supseteq \cdots \supseteq M_n \supseteq M_{n+1} \supseteq \cdots$$

von Untermoduln stationär wird, d.h. es gibt ein $n_0 \in \mathbb{N}$, sodaß $M_i = M_{n_0}$ für alle $i \geq n_0$. Ein Ring A heißt artinsch wenn er als A-Modul artinsch ist, d.h. wenn jede absteigende Kette von Idealen von A stationär wird.

- **55)** Beweisen Sie: Ein A-Modul M ist genau dann artinsch wenn jede nichtleere Menge von Untermoduln ein (bezüglich der Mengeninklusion) minimales Element besitzt.
- **56)** Es sei N ein Untermodul des A-Moduls M. Beweisen Sie: M ist genau dann artinsch wenn sowohl N als auch M/N artinsch sind.
- **57)** Es seien M_1, \ldots, M_n artinsche A-Moduln. Beweisen Sie, daß dann auch $\bigoplus_{i=1}^n M_i$ ein artinscher A-Modul ist.
- 58) Es sei A ein artinscher Ring und M ein endlich erzeugter A-Modul. Beweisen Sie, daß M ein artinscher A-Modul ist.
- **59)** Beweisen Sie: Ist ein Integritätsbereich A artinsch, so ist A bereits ein Körper. Hinweis: Betrachten Sie $(a) \supseteq (a^2) \supseteq (a^3) \supseteq \cdots$ für $a \in A \setminus \{0\}$.
- **60)** Beweisen Sie: Ist P Primideal des artinschen Rings A, so ist P bereits maximales Ideal von A. Hinweis: Betrachten Sie A/P.
- **61)** Beweisen Sie: Ein artinscher Ring A besitzt nur endlich viele maximale Ideale. Hinweis: Betrachten Sie die Menge $\mathcal{M} := \{P_1 \cap \cdots \cap P_n \mid P_1, \ldots, P_n \text{ maximale Ideale von } A\}$ und verwenden Sie Satz 1.15.

- **62)** Es sei A ein artinscher Ring. Beweisen Sie, daß $A/\operatorname{Jac} A$ zu einem endlichen direkten Produkt von Körpern isomorph ist.
- **63)** Welcher der folgenden Moduln ist artinsch bzw. noethersch?
 - a) Eine endliche abelsche Gruppe G (als \mathbb{Z} -Modul)
 - b) Der Ring \mathbb{Z} (als \mathbb{Z} -Modul)
 - c) Ein Körper K (also K-Modul)
 - d) Ein endlichdimensionaler K-Vektorraum V (als K-Modul)
 - e) Der Polynomring K[X] (mit K ein Körper, als K[X]-Modul)
- **64)** Es sei p eine Primzahl und

$$G := \{e^{2\pi i m/p^n} \mid m, n \in \mathbb{N} \cup \{0\}\}.$$

Beweisen Sie, daß (G, \cdot) ein artinscher aber nicht noetherscher \mathbb{Z} -Modul ist. Hinweis: Zeigen Sie, daß die Menge der echten Untergruppen von G durch $\{G_n \mid n \in \mathbb{N} \cup \{0\}\}$ gegeben ist, wobei

$$G_n = \left\{ e^{2\pi i m/p^n} \mid m \in \mathbb{N} \cup \{0\} \right\}.$$

65) Es seien M_1 und M_2 zwei A-Moduln. Beweisen Sie

$$\operatorname{Ass}_A(M_1 \oplus M_2) = \operatorname{Ass}_A(M_1) \cup \operatorname{Ass}_A(M_2).$$

Bestimmen Sie Ass $\mathbb{Z}(\mathbb{Z} \oplus (\mathbb{Z}/3\mathbb{Z}))$.

- **66)** Es sei $A = \mathbb{Z}[X]$. Beweisen Sie, daß P = (2, X) maximales Ideal von A und Q = (4, X) ein P-primäres Ideal, aber keine Potenz von P ist.
- 67) Beweisen Sie: Im Ring $A = \mathbb{R}[X, Y, Z]$ sind $P_1 = (X, Y)$ und $P_2 = (X, Z)$ Primideale und $P_3 = (X, Y, Z)$ maximales Ideal und $P_1 \cdot P_2 = P_1 \cap P_2 \cap P_3^2$ ist unverkürzbare Primärzerlegung von $P_1 \cdot P_2$.
- **68)** Es sei M ein A-Modul endlicher Länge. Beweisen Sie: Sind E und F zwei Untermoduln von M, so gilt

$$\ell_A(E) + \ell_A(F) = \ell_A(E + F) + \ell_A(E \cap F).$$