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1. Introduction

After the presentation in [20] of the basic theory of generalized smooth functions
(GSF), in the present paper, we deal with Cauchy problems for ODE in the so-called
normal form, i.e.{

y(n) = F (t, y, y′, . . . , y(n−1))

y(k)(t0) = ck k = 0, . . . , n− 1
, (1.1)

where F is a GSF (in particular F ∈ D′(Ω) is an arbitrary Schwartz distributions
or F ∈ Gs(Ω) is a Colombeau generalized function). Clearly, the classical treatment
of ODE within spaces of Sobolev-Schwartz distributions is limited to linear systems
by the very fact that distributions themselves are restricted to linear operations.
For a more general distribution F , there is no valid solution concept for (1.1) in a
classical space of distributions because, without any further regularity assumptions,
the composition on the right hand side is not defined (see e.g. [2, 1, 28]).

Features of our approach can be listed as follows: to update...

• We are going to solve problem (1.1) both for an arbitrary GSF F , and also for

singular initial conditions ck ∈ ρR̃, such as e.g. y(k)(t0) = δk(0).
• We generalize the Banach fixed point theorem, and the consequent Picard-Lindelöf

theorem for Cauchy problems of the form (1.1).
• We generalize the Picard-Lindelöf theorem to the case of an infinite number

N ∈ ρÑ (see [20, Sec. 7.2]) of iterations.
• In most cases, as in [20], the proofs of the aforementioned theorems are essentially

identical to the classical ones, but using ρR̃ instead of R as ring of scalars. This
allows the reader to have an easier approach to this new theory of generalized
functions.

• We prove classical results such as uniqueness, continuous dependence on initial
conditions, maximal set of existence, Gronwall inequalities and flow properties.

• Using suitable characterizations of distributions among GSF, we also analyze
when the generalized solution y is a distribution or not. We prove that the GSF
solution coincides with the unique smooth one in case of an ordinary smooth
ODE with standard conditions ck ∈ Rd.

• We present several non-linear examples, including a local analysis where F is an

arbitrary ρR̃-polynomial, Bernoulli’s ODE with generalized smooth coefficients,
and non-linear examples appearing in applications in impulsive physical systems.

• We give a complete approach to linear singular ODE with GSF as coefficients. In
particular, we also give a full account of the relations with classical distributional
solutions, in case of ODE with classical smooth coefficients.

Conceptual schema of the paper. We can summarize the main idea of the
paper by saying that we want to exploit at the highest level the classical idea of
regularizing the differential problem with a net of smooth differential problems.
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Anyway, this is realized with a final formalism that resemble a lot that of classical
smooth functions, not with notations full of unhandy regularizing parameters.
The idea to study GSF using a countable family of norms (each one corresponding to
an order of derivatives) could be considered a natural one. However, classically one
of the best version of the Picard-Lindelöf theorem results by considering complete
spaces of only continuous functions. Based on these motivations, in Sec. 2 we
introduce and study generalized functions of class Ck.
In Sec. 3, we recall (see [20, Def. 52]) and more extensively study the notion of func-

tionally compact set K ⊆ ρR̃n. We study ρR̃-Fréchet spaces ρGF(K, ρR̃d) of general-
ized functions defined on functionally compact sets and prove their completeness.
Even if our generalized functions always attain a maximum and a minimum value
on this type of domains, for each open set Ω ⊆ Rn we can suitably choose K so

that these Fréchet space contains all the distributions, i.e. D′(Ω) ⊆ ρGF(K, ρR̃d).
In Sec. 4, we study uniformly continuous generalized functions, a notion that is
useful in studying maximal intervals of existence of solutions of ODE.

In Sec. 5, we generalize the Banach fixed point theorem for ρR̃-Fréchet spaces, in
particular for generalized functions of class C0.
In Sec. 5.2, we prove the Picard-Lindelöf theorem for ODE with an arbitrary GSF

as right hand side and arbitrary initial conditions in ρR̃. In general, the solution
obtained in this way is defined in an infinitesimal neighborhood of the initial con-
dition, and we present simple examples where a larger domain is not possible.
In Sec. 5.3, we study the Picard-Lindelöf theorem with an infinite number of iter-
ations. This allows us to prove a general sufficient condition for the existence of a
solution in a finite and non-infinitesimal interval.
Starting from Sec. 7.3, we prove analogous of classical theorems like uniqueness
results, continuum dependence on initial data, maximal set of existence, Gronwall
inequalities and flow properties.
In Sec. 8, we consider sufficient conditions to get a distributional solution, or a
classical Ck, 1 ≤ k ≤ +∞ solution, starting from the GSF one.
We list lots of non-linear examples in Sec. 6, and in Sec. 9 we present a full treatment
of solutions of singular linear ODE. Through these examples, we present a first un-
derstanding of the differences between GSF solutions and classical or distributional
solutions in case of singular ODE. The paper needs only [20] as a prerequisite.

Currently, one of the most successful approach in finding solutions of nonlin-
ear ODE in spaces of generalized functions which embed Schwartz distributions
and having conceptual analogies with our approach is Colombeau’s theory. See
e.g. [13, 25, 39, 4] and references therein. However, in Colombeau’s approach the
composition of generalized functions is only partially possible. Moreover, this the-
ory is limited to polynomial growth in the regularizing parameter, whereas GSF do
not have this limitation. We also refer to [38, 41, 42, 43] for solutions of (nonlinear)
ODE with delta function terms through a regularizing process.

2. Generalized Ck functions and their calculus

As we already mentioned in the introduction, since GSF are infinitely differ-
entiable, it is natural to consider spaces X of these functions augmented with a

countable family (‖−‖i)i∈N of (ρR̃-valued) norms, one for each order of derivatives
i ∈ N. On the other hand, this would lead to a notion of contraction corresponding
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to the standard one in locally convex spaces (see e.g. [2]), i.e.:

‖P (u)− P (v)‖i ≤ αi · ‖u− v‖i ∀i ∈ N ∀u, v ∈ X,
and hence to consider a countable family of contraction constants. On the contrary,
one of the key features of the usual Picard-Lindelöf for ordinary smooth functions
is that it needs only one Lipschitz constant because the Banach fixed point theorem
used in its proof is a space of only continuous functions. It is the normal form (1.1)
of the ODE (in its equivalent integral form) that yields the necessary smoothness
of the solution if the initial condition has the same regularity. To understand
better this step, see [23] where in case of normal PDE each Picard iteration Pm

necessarily sees a loss L ∈ N of derivatives ‖u− v‖i+mL and we are hence forced to
consider a countable family of norms. From the technical point of view, a non trivial
problem in considering even the ordinary norms ‖f‖i = maxx∈[0,α]

h≤i

∣∣f (h)(x)
∣∣ ∈ R,

is that in general they do not satisfy
∥∥∥´ (−)

0
f(s) ds

∥∥∥
i
≤
´ α

0
‖f‖i ds if i ≥ 1. Since

this is an important step in the proof of the Picard-Lindelöf theorem, we are also
mathematically motivated to consider spaces of only continuous functions.

3. Functionally compact sets and spaces of GSF

In order to prove a general Banach fixed point theorem suitable for singular
ODE, a convenient notion of compact domain and of norm of generalized functions
is crucial. In our non-Archimedean setting, an important problem is that intervals

[a, b] ⊆ ρR̃, even for a, b ∈ R, are neither compact in the sharp nor in the Fermat
topology. This has been formally proved in [21, Thm. 25] for the case ρε = ε, but
it is already intuitively clear: using a finite number of infinitesimal balls we cannot
cover the entire interval [0, 1] (more generally, no infinite standard set U ⊆ Rn

is compact in the sharp topology). Moreover, since our “dynamical” generalized
numbers include also scalars that can discontinuously jump among a finite number
of open sets, the interval [0, 1] is also not closed in the Fermat topology. Once again,
these are necessary general results. Indeed, we already argued that set-theoretical
functions having infinite derivatives can be continuous only in topologies containing
infinitesimal neighbourhoods (see [20, Sec. 2.1]). Moreover, discontinuous jumping
representatives of generalized numbers must necessarily be considered if we want
to have a general mean value theorem (see [20, Sec. 6]).

The notion of functionally compact set ([20, Def. 52]), i.e. sets over which our
generalized functions satisfy an extreme value theorem (see [20, Cor. 51]), solves
these problems. For simplicity, we recall it here:

Definition 1. A subset K of ρR̃n is called functionally compact, denoted by K bf
ρR̃n, if there exists a net (Kε) such that

(i) K = [Kε] ⊆ ρR̃n;
(ii) (Kε) is sharply bounded;
(iii) ∀ε ∈ I : Kε b Rn.

If, in addition, K ⊆ U ⊆ ρR̃n then we write K bf U . Finally, we write [Kε] bf U if
(ii), (iii) and [Kε] ⊆ U hold.

We note that in (iii) it suffices to ask that Kε is closed since it is bounded by
(ii), at least for ε small. The name functionally compact subset is motivated by
showing, as it will be done e.g. in Theorem 3, that on this type of subsets, GSF
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have properties very close to those that ordinary smooth functions have on standard
compact sets.

Remark 2.

(i) By [20, Thm. 10], any internal set K = [Kε] is closed in the sharp topology.

In particular, the open interval (0, 1) ⊆ ρR̃ is not functionally compact since
it is not closed.

(ii) If H b Rn is a non-empty ordinary compact set, then the internal set [H] is
functionally compact. In particular, [0, 1] = [[0, 1]R] is functionally compact.

(iii) The empty set ∅ = [∅] bf
ρR̃.

(iv) ρR̃n is not functionally compact since it is not sharply bounded.
(v) The set of compactly supported points c(R) is not functionally compact be-

cause the GSF f(x) = x does not satisfy the conclusion of the extreme value
theorem [20, Cor. 51].

For functionally compact sets, it is easy to prove the following generalizations of
theorems from classical analysis:

Theorem 3.

(i) Let K ⊆ X ⊆ ρR̃n, f ∈ ρGC∞(X, ρR̃d). Then K bf
ρR̃n implies f(K) bf

ρR̃d.

(ii) If a, b ∈ ρR̃ and a ≤ b, then [a, b] bf
ρR̃. Let us note explicitly that a, b ∈ ρR̃

can also be infinite numbers, e.g. a = −dρ−N , b = dρ−M or a = dρ−N ,
b = dρ−M with M > N .

(iii) Let K, H bf
ρR̃n. If K ∪ H is an internal set, then it is a functionally

compact set. If K ∩ H is an internal set, then it is a functionally compact
set.

(iv) Let H ⊆ K bf
ρR̃n, then if H is an internal set, then H bf

ρR̃n.

(v) Let K bf
ρR̃n and H bf

ρR̃d, then K ×H bf
ρR̃n+d. In particular, if ai ≤ bi

for i = 1, . . . , n, then
∏n
i=1[ai, bi] bf

ρR̃n.

Both in the Banach fixed point theorem and in the Picard-Lindelöf theorem, we

want to consider spaces of GSF of the type K −→ ρR̃d, where K bf
ρR̃n. In order to

set natural ρR̃-valued norms in these spaces, we need to talk of partial derivatives
∂αf(x) at every x ∈ K. This cannot be performed using only the Fermat-Reyes
[20, Thm. 33], since it requires the point x to be an internal one. For this reason,
we consider only sets K that satisfy the following

Definition 4. We say that K is a solid set in ρR̃n if int(K) is dense in K (in the
sharp topology).

For example, [20, Lem. 38] and Thm. 3.(v) show that n-dimensional intervals are
solid functionally compact sets. Trivially, every sharply open set is solid.

For this type of sets we have:

Lemma 5. Let K be a solid set in ρR̃n, and f ∈ ρGC∞(K, ρR̃d) be a GSF. Then for
all α ∈ Nn and all x ∈ K the following limit exists in the sharp topology

lim
y→x

y∈int(K)

∂αf(y) =: ∂αf(x).

Moreover, if the net fε ∈ C∞(Ωε,Rd) defines f , then ∂αf(x) = [∂αfε(xε)] and

hence ∂αf ∈ ρGC∞(K, ρR̃d).
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Proof. We have

lim
y→x

y∈int(K)

∂αf(y) = lim
y→x

y∈int(K)

[∂αfε(yε)] = [∂αfε(xε)]

the last equality following by the sharp continuity of the GSF [∂αfε(−)] at every
point x ∈ K ⊆ 〈Ωε〉 (see [20, Thm. 17.3]). �

From the extreme value property, it is natural to expect that the following gen-

eralized numbers could serve as non-Archimedean ρR̃-valued norms.

Definition 6. Let ∅ 6= K bf
ρR̃n be a solid set. Let m ∈ N and f ∈ ρGC∞(K, ρR̃d).

Then

‖f‖m := max
|α|≤m
1≤i≤d

(∣∣∂αf i(Mαi)
∣∣) ∈ ρR̃,

where Mαi ∈ K satisfy

∀x ∈ K :
∣∣∂αf i(x)

∣∣ ≤ ∣∣∂αf i(Mαi)
∣∣ .

Note that the notation ‖f‖m depends on K through the function f since K is its
domain.

The following result allows the calculation of the (generalized) norm ‖f‖m using
any net (fε) that defines f .

Theorem 7. Under the assumptions of Def. 6, let the set K = [Kε] bf
ρR̃n. If the

net (fε) defines f , then

‖f‖m =

max
|α|≤m
1≤i≤d

sup
x∈Kε

∣∣∂αf iε(x)
∣∣ ∈ ρR̃. (3.1)

Proof. In proving (3.1), we will also prove that the norm ‖f‖m is well-defined, i.e. it
does not depend on the particular choice of point Mαi as in Def. 6. As in the proof
of the extreme value theorem [20, Lem. 50], we get the existence of M̄αiε ∈ Kε such
that

∀x ∈ Kε :
∣∣∂αf iε(x)

∣∣ ≤ ∣∣∂αf iε(M̄αiε)
∣∣ .

Thus

max
|α|≤m
1≤i≤d

sup
x∈Kε

∣∣∂αf iε(x)
∣∣ ≤ max

|α|≤m
1≤i≤d

∣∣∂αf iε(M̄αiε)
∣∣ .

But M̄αiε ∈ Kε, somax
|α|≤m
1≤i≤d

sup
x∈Kε

∣∣∂αf iε(x)
∣∣ =

max
|α|≤m
1≤i≤d

∣∣∂αf iε(M̄αiε)
∣∣ =

= max
|α|≤m
1≤i≤d

∣∣∂αf i(M̄αi)
∣∣ .

From this, both the fact that the norm ‖f‖m is well-defined and claim (3.1) follow.
�

Even though ‖f‖m ∈ ρR̃, using an innocuous abuse of language, in the following
we will simply call ‖f‖m a norm. This use of the term “norm” is justified by the
following
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Theorem 8. Let ∅ 6= K bf
ρR̃n be a solid set. Let f , g ∈ ρGC∞(K, ρR̃d) and m ∈ N.

Then

(i) ‖f‖m ≥ 0;
(ii) ‖f‖m = 0 if and only if f = 0;

(iii) ∀c ∈ ρR̃ : ‖c · f‖m = |c| · ‖f‖m;
(iv) ‖f + g‖m ≤ ‖f‖m + ‖g‖m;
(v) ‖f · g‖m ≤ 2m · ‖f‖m · ‖g‖m.

Proof. (i), (iii) and (iv) follow directly from Thm. 7, as does (v), using the Leibniz
rule. The ‘only if’-part of property (ii) follows from (3.1). �

Using our ρR̃-valued norms, it is now natural to define

Definition 9. Let ∅ 6= K bf
ρR̃n be a solid set. Let f ∈ ρGC∞(K, ρR̃d), m ∈ N,

r ∈ ρR̃>0, then

(i) ρGF(K, ρR̃d) :=
(
ρGC∞(K, ρR̃d), (‖ − ‖m)m∈N

)
. We write f ∈ ρGF(K, ρR̃d)

to denote f ∈ ρGC∞(K, ρR̃d).

(ii) Bmr (f) :=
{
g ∈ ρGC∞(K, ρR̃d) | ‖f − g‖m < r

}
.

(iii) If V ⊆ ρGC∞(K, ρR̃d), then we say that V is a sharply open set in ρGF(K, ρR̃d)
if

∀v ∈ V ∃m ∈ N ∃r ∈ ρR̃>0 : Bmr (v) ⊆ V.
Moreover, we say that V is a large (or Fermat) open set in ρGF(K, ρR̃d) if

∀v ∈ V ∃m ∈ N ∃r ∈ R>0 : Bmr (v) ⊆ V.

A trivial generalization of the classical proofs, though using [20, Cor. 51], shows
that

Theorem 10. Let ∅ 6= K bf
ρR̃ be a solid set. Then we have:

(i) Sharply open sets, as well as large open sets in ρGF(K, ρR̃d) form topologies

on ρGC∞(K, ρR̃d).
(ii) Pointwise addition and multiplication by ρR̃-scalar in ρGF(K, ρR̃d) are contin-

uous in the sharp topology. Therefore, ρGF(K, ρR̃d) is a topological ρR̃-module

and ρGF(K, ρR̃) is an ρR̃-algebra.

(iii) ρGF(K, ρR̃d) with the sharp topology is separated.
(iv) If f , g ∈ Bmr (0) and t ∈ [0, 1], then tf + (1− t)g ∈ Bmr (0). We can therefore

say that every ball Bmr (0) is ρR̃-convex.

(v) If t ∈ ρR̃ and |t| ≤ 1, then t · Bmr (0) ⊆ Bmr (0). We can therefore say that

every ball Bmr (0) is ρR̃-balanced.

(vi) For all f ∈ ρGC∞(K, ρR̃d) there exists t ∈ ρR̃>0 such that f ∈ t · Bmr (0|K).

We can therefore say that every ball Bmr (0|K) is ρR̃-absorbent.

Because of these properties, we will call the space ρGF(K, ρR̃d) an ρR̃-Fréchet mod-
ule. It is worth noting that the natural properties stated in the previous the-
orem do not hold if we take the large topology instead of the sharp one, or if

we consider the field R instead of the ring ρR̃. For example, since there exist

GSF having infinite norms ‖f‖m ∈ ρR̃, the multiplication by standard real scalar

(r, f) ∈ R × ρGC∞(K, ρR̃) 7→ r · f ∈ ρGC∞(K, ρR̃) is clearly not continuous with
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respect to the standard Euclidean topology on R because r · ‖f‖ 6→ 0 if r → 0
in this topology. See [18, Sec. 5.1] for general abstract theorems corresponding
to this necessity of using a non-Archimedean topology in dealing with generalized
functions.

The spaces ρGF(K, ρR̃d) are very rich of examples and convenient properties
which are well fitted for the aims of the present work. For example, let ϕ ∈ DK(Ω),
K b Ω ⊆ Rn, be an ordinary compactly supported smooth function; we can consider
Kε := K and fε(x) := ϕ(x) if x ∈ Ω and fε(x) := 0 otherwise to have that

ϕ|K ∈ ρGF(K, ρR̃). Moreover, Thm. 7 implies that ‖ϕ|K‖m = ‖ϕ‖m ∈ R is the
usual m-norm of ϕ.

The following result allows the inclusion of infinite meaningful examples and to

understand that every f ∈ ρGF(K, ρR̃d) can be extended to the whole ρR̃n:

Theorem 11. Let ∅ 6= K = [Kε] bf
ρR̃n be a solid set, then

∀f ∈ ρGC∞(K, ρR̃d)∃f̄ ∈ ρGC∞(ρR̃n, ρR̃d) : f̄ |K = f. (3.2)

Moreover, let Ω be an open subset of Rn and J = [Jε] ∈ ρR̃ be a positive infinite
generalized number. Set Kε := {x ∈ Ω | |x| ≤ Jε} and K := [Kε]. Then for all

f ∈ ρGC∞(c(Ω), ρR̃d) (in particular, if f is the embedding of a Schwartz distribution)

there exists f̄ ∈ ρGC∞(K, ρR̃d) defined by (f̄ε) such that f̄ |c(Ω) = f , f̄ε|Rn\Kε = 0
for all ε.

Proof. We start to prove the second conclusion. We set Vε := {x ∈ Ω | |x| <
1
2Jε} so that Vε ⊆ Kε for ε small. Let χε ∈ C∞(Rn,R) be such that χ|Vε = 1

and supp(χε) ⊆ Kε. Let f ∈ ρGC∞(c(Ω), ρR̃d) be represented by (fε), with fε ∈
C∞(Rn,Rd), and set f̄ε := χε · fε. Then each f̄ε is compactly supported in Kε

and any x = [xε] ∈ c(Ω) satisfies xε ∈ Vε for ε small because limε→0+ Jε = +∞.

Therefore f̄ := [f̄ε(−)]|K ∈ ρGC∞(K, ρR̃d), and if xε ∈ Vε then f̄ε(xε) = fε(xε), so
f̄ |c(Ω) = f . To prove (3.2), we can proceed similarly by considering χε ∈ C∞(Rn,R)
such that χε|Kε = 1 and supp(χε) ⊆

⋃
x∈Kε B

E
1 (x). �

We recall that ρGC∞(c(Ω), ρR̃d) can be identified with the space Gs(Ω) ⊇ D′(Ω)
of Colombeau generalized functions on Ω (see [20, Rem. 26.5]). Therefore, Thm. 11

yields an infinity of non-trivial examples of GSF in spaces of the type ρGF(K, ρR̃d).
In fact, even though f̄ depends on the fixed infinite number J ∈ ρR̃, each such f̄
contains all the information of the original generalized function f because f̄ |c(Ω) =

f . Finally, note that (3.2) trivially yields
∥∥f̄ |K∥∥m = ‖f‖m for all m ∈ N because

the norm ‖−‖m is well defined (Thm. 7). Ultimately, this is a consequence of the
Fermat-Reyes [20, Thm. 33] and of Thm. 5, which state that every partial derivative
depends only on the values of the generalized function f at interior points of the
solid set K.

In the following result, we prove that the generalized Fréchet space ρGF(K, ρR̃d)
is complete with respect to the sharp topology.

Theorem 12. Let ∅ 6= K bf
ρR̃n be a solid set. Then

(i) The space ρGF(K, ρR̃d) with the sharp topology is Cauchy complete, in the
sense that any Cauchy sequence (un)n∈N in this topology, i.e. which satisfies

∀i ∈ N ∀q ∈ R>0 ∃N ∈ N ∀m,n ≥ N : ‖un − um‖i < dρq (3.3)
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converges in ρGF(K, ρR̃d) in the sharp topology.

(ii) Any sharply closed subset of ρGF(K, ρR̃d) is also Cauchy complete.

(iii) If H ⊆ ρR̃d is a sharply closed set, then
{
f ∈ ρGC∞(K, ρR̃d) | f(K) ⊆ H

}
is

sharply closed in ρGF(K, ρR̃d).

Proof. It is only essential to prove the case d = 1. To show (i), let us consider
a Cauchy sequence (un)n∈N in the sharp topology, i.e. we assume (3.3). Setting
i = q = k ∈ N>0, this implies the existence of a strictly increasing sequence
(nk)k∈N in N such that ‖unk+1

− unk‖k < dρk. Hence, picking any representative
(unε) of un by Thm. 7 we have[

max
|α|≤k

sup
x∈Kε

∣∣∂αunk+1,ε(x)− ∂αunk,ε(x)
∣∣] < [ρkε] ∀k ∈ N>0.

By [20, Lem. 8], this yields that for each k ∈ N>0 there exists an εk such that εk ↓ 0
and

∀ε ∈ (0, εk) : max
|α|≤k

sup
x∈Kε

∣∣∂αunk+1,ε(x)− ∂αunk,ε(x)
∣∣ < ρkε . (3.4)

Now set

hk,ε :=

{
unk+1,ε − unk,ε ∈ C

∞(Rn,R) if ε ∈ (0, εk)

0 ∈ C∞(Rn,R) if ε ∈ [εk, 1)
(3.5)

uε := un0,ε +

∞∑
k=0

hk,ε ∀ε ∈ I.

Since εk ↓ 0, for all ε ∈ I there exists a sufficiently large k such that we have
ε /∈ (0, εk) for all k ≥ k̄. Therefore, uε = unk̄+1,ε ∈ C

∞(Rn,R). In order to prove

that (uε) defines a GSF of the type K → ρR̃, take [xε] ∈ K and α ∈ N. We claim
that (∂αuε(xε)) ∈ Rρ. Now, for all p ∈ N and for any x ∈ Rn we have that, for
ε ≤ εp

|∂αuε(x)| ≤
∣∣∂αunp+1,ε(x)

∣∣+

∞∑
k=p+1

|∂αhk,ε(x)| .

If p satisfies |α| ≤ p, then from (3.4) and (3.5), we get that |∂αhk,ε(x)| ≤ ρkε for all
k ≥ p+ 1, x ∈ Kε and all ε ∈ (0, 1]. Hence for ε ∈ (0, εp), |α| ≤ p and all x ∈ Kε,
we obtain

|∂αuε(x)| ≤
∣∣∂αunp+1,ε(x)

∣∣+
ρp+1
ε

1− ρε
. (3.6)

Inserting x = xε and noting that (∂αunp+1,ε(xε)) ∈ Rρ proves our claim.

Moreover, ‖u − unp‖i < dρp−1 for all p ∈ N>1 and all i ≤ p. This yields that
(unk)k tends to u in the sharp topology, and hence so does (un).

If C ⊆ ρGC∞(K, ρR̃) is closed in the sharp topology and (un)n∈N is a Cauchy

sequence of C, then it converges to a function u ∈ ρGC∞(K, ρR̃). We cannot have

u ∈ Cc because otherwise un ∈ Bmr (u) ⊆ Cc for some r ∈ ρR̃>0, m ∈ N, and for all
n ∈ N sufficiently big, which is a contradiction. This shows (ii).

Finally, let (un)n∈N be a convergent sequence of ρGC∞(K, ρR̃d) such that un(K) ⊆
H for all n ∈ N. Set u := limn→+∞ un ∈ ρGC∞(K, ρR̃d), then ‖un − u‖0 =[
supx∈Kε |un,ε(x)− uε(x)|

]
→ 0 in the sharp topology. If x ∈ K = [Kε], then xε ∈

Kε for some representative [xε] = x and for ε small. Therefore, |un(x)− u(x)| ≤
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‖un − u‖0 and hence the sequence (un(x))n∈N of H tends to u(x) in the sharp
topology. Hence u(x) ∈ H because we assumed that H is sharply closed. �

For a complete theory of (functionally) compactly supported GSF in the case

ρε = ε, see [18]. In the same particular case, for an Archimedean theory of ρR̃-
modules, see [14, 15, 16].

4. Uniformly continuous GSF

In this section, we will present a few basic results about uniformly continuous
GSF that will be later used in Section 7.3. Our goal is to study the possibility

of extending GSF from open intervals (a, b) (for a < b ∈ ρR̃) to their closure

(a, b) = [a, b]. We start by noting that if X ⊆ ρR̃n is a solid set, then

f |int(X) = g|int(X) ⇒ f = g (4.1)

because int(X) is dense in X and GSF are sharply continuous.
The definition of uniformly continuous GSF is as one might expect:

Definition 13. Let X ⊆ ρR̃n, Y ⊆ ρR̃m and let f ∈ ρGC∞ (X,Y ). We say that f

is uniformly continuous on X if for every η ∈ ρR̃>0 there exists δ ∈ ρR̃>0 such that
for every x, y ∈ X

|x− y| < δ ⇒ |f(x)− f(y)| < η.

All the basic properties of uniformly continuous functions that we will need in
this paper are listed in the following theorem. Notably, almost all the proofs are
identical to their classical counterparts:

Theorem 14. Let X ⊆ ρR̃i, Y ⊆ ρR̃j, Z ⊆ ρR̃k. Then:

(i) If f ∈ ρGC∞ (X,Y ) and g ∈ ρGC∞ (Y, Z) are uniformly continuous then g◦f ∈
ρGC∞ (X,Z) is uniformly continuous;

(ii) If f ∈ ρGC∞ (X,Y ) is uniformly continuous then f maps Cauchy sequences
in X (in the sharp topology) into Cauchy sequences in Y ;

(iii) Let X be a solid set and let f ∈ ρGC∞ (X,Y ). Assume that for every multi-
index α ∈ Ni the partial derivative ∂αf ∈ ρGC∞ (X,Yα) is uniformly con-

tinuous on X, where Yα ⊆ ρR̃j is a sharply closed set. Then f can be ex-
tended to the sharp closure X in a unique way, i.e. there exist a unique GSF
f̄ ∈ ρGC∞

(
X,Y

)
such that f̄ |X = f . Moreover, this extension operator (−)

preserves partial derivative, i.e. ∂αf = ∂αf̄ for all α ∈ Ni.

Finally, if i = 1 and X is a sharply open set such that for every a, b ∈ X we have
[a, a∨ b] ⊆ X (e.g. if X is an interval; we recall that [xε]∨ [yε] := [max(xε, yε)], see
[20]) then:

(iv) If f ∈ ρGC∞ (X,Y ) and f ′ is sharply bounded on X then f is uniformly
continuous on X;

(v) If X is functionally compact, then f (n) is uniformly continuous on X for all
n ∈ N.

Proof. The proofs of (i) and (ii) are identical to the classical one for metric spaces.
Proof of (iii): Let x̄ ∈ X, and let (xn)n∈N be a sequence in X such that x̄ =
limn∈N xn in the sharp topology. Set

f̄(x̄) := lim
n∈N

f (xn) . (4.2)
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The existence of this limit follows from the fact that (f (xn))n∈N is a Cauchy se-
quence in Yα by (ii), and Yα is closed by assumption. Moreover, the uniform
continuity of f on X guarantees that (4.2) does not depend on the choice of the
net (xn)n∈N. In particular, this shows that

∂αf(x̄) = lim
x→x̄
x∈X

∂αf (x) = lim
x→x̄

x∈int(X)

∂αf(x). (4.3)

Hence, from Lem. 5 we deduce that every ∂αf ∈ ρGC∞
(
X,Y

)
. Moreover, since

every GSF is continuous, we notice that from Lem. 5, we also get that

∀α ∈ Ni : ∂αf̄ = ∂αf.

In fact, for every x ∈ X we have

∂αf̄(x) = lim
y→x

y∈int(X)

∂αf(y) = lim
y→x
y∈X

∂αf(y) = ∂αf(x).

Proof of (iv): Let us assume that |f ′(x)| < M for every x ∈ X, where M ∈ ρR̃>0.

Let η ∈ ρR̃>0, and set δ := η
4M . Let a, b ∈ X be such that |a− b| < δ. There are a

few cases to consider:

(a) If a < b, by the mean value theorem (that can be applied as, by assumption,
[a, b] = [a, a∨b] ⊆ X) there exists c ∈ [a, b] such that |f(a)−f(b)| = |f ′(c)||a−
b| < M · δ = η

4 < η. The situation is similar if a > b.
(b) If a ≤ b, let (an)n∈N be a sequence of the sharply open set (−∞, a) ∩X that

converges to a. As |a− b| < δ, there exists n ∈ N such that |b− am| < δ for all
m > n. Arguing as in the previous point, we can show that |f (am)− f(b)| <
M · δ = η

4 for all m > n, namely f (am) ∈ BM ·δ(f(b)). Hence

f(a) = limm∈Nf (am) ∈ BM ·δ(f(b)) ⊂ B η
2

(f(b)) ,

as η
2 > M · δ. The case b ≥ a can be handled similarly.

(c) It remains to study the case when |a− b| < δ but a, b are incomparable, i.e. if
none of the previous cases hold. Let us consider a∨ b. As |a− b| < δ, we have
that |a − a ∨ b| < δ and |b − a ∨ b| < δ (in fact, e.g. |a − a ∨ b| ≤ |a − b|).
Notice that a ≤ a ∨ b and b ≤ a ∨ b, hence by the previous point we get that
|f(a)− f(a ∨ b)| < η

2 and |f(b)− f(a ∨ b)| < η
2 . We hence conclude as follows

|f(a)− f(b)| = |f(a)− f(a ∨ b) + f(a ∨ b)− f(b)| ≤
(d)

|f(a)− f(a ∨ b)|+ |f(a ∨ b)− f(b)| < η

2
+
η

2
= η.

Proof of (v): If X functionally compact, by the extreme value theorem [20, Cor. 51],
we get that ∂nf is sharply bounded on X for every n ∈ N, and we can conclude by
(iv). �

5. Banach fixed point and Picard-Lindelöf theorems for GSF

In this section, we introduce finite sharp contractions for GSF and we prove a
corresponding Banach-like fixed point theorem in spaces of GSF. To motivate our
general approach in this section, let us consider the following simple example. Let

0 ≤ α < 1, α ∈ ρR̃, and let Tα : ρR̃→ ρR̃ be such that

∀x ∈ ρR̃ : Tα(x) = α · x.
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As 0 ≤ α < 1, one might expect Tα to be a contraction on ρR̃, since for every x,

y ∈ ρR̃ and n ∈ N we have that

|Tnα (x)− Tnα (y)| = αn |x− y| < |x− y| . (5.1)

However, the set of radii of the sharp topology is ρR̃>0, so for the left hand side of
(5.1) to go to zero in this topology as n→ +∞, we need the property

∀r ∈ ρR̃>0 ∃n ∈ N : αn < r. (5.2)

If α < dρk for some k ∈ N>0, this property holds, and a similar property will
be used in Section 5.1 to develop a first theory of contractions for GSF which is
very close to the classical one. However, in many natural cases this property does
not hold. For example, if we want that the function T 1

2
(x) respects our intuition

of contraction in the sharp topology, we need to generalize our approach, because(
1
2

)n
> dρ for all n ∈ N. This will be solved in Sec. 5.3 by exploiting the idea of

iterating the function Tα an infinite amount of times, namely of considering objects

like TNα where N is a hyperfinite number in ρR̃ (see [20, Sec. 7.2]):

N ∈ ρÑ =
{

[nε] ∈ ρR̃ | nε ∈ N ∀ε
}
.

5.1. Banach fixed point theorem for finite contractions. The notion of fi-
nite contraction we are going to introduce corresponds to the standard idea of
contraction in locally convex spaces, see e.g. [2].

Definition 15. Let ∅ 6= K bf
ρR̃n be a solid set, and let X ⊆ ρGC∞

(
K, ρR̃d

)
. We

say that T is a finite (sharp) contraction on X if

(i) T : X −→ X is a set-theoretical map.

(ii) ∀i ∈ N ∃αi ∈ ρR̃>0 ∀u, v ∈ X : ‖T (u)− T (v)‖i ≤ αi · ‖u− v‖i .
(iii) For all i ∈ N, we have limn→+∞ αni = 0, where the limit is taken in the sharp

topology.

For every i ∈ N, such an αi ∈ ρR̃>0 will be called an i-th contraction constant for
T .

The adjective finite is motivated by condition (iii), where we consider the limit

for finite n ∈ N and not the hyperlimit for infinite n ∈ ρÑ. This implies that for all
i, k ∈ N we must have αni < dρk for n ∈ N sufficiently large, and hence αi < dρa

for some a ∈ R>0, which is stronger than αi ≈ 0 (and it is equivalent to (5.2)).
For finite sharp contractions, we can proceed as in the classical case, as we

are now going to show. The proof of the following lemma is a straightforward
generalization of the classical one.

Lemma 16. Let ∅ 6= K bf
ρR̃n be a solid set, and let X ⊆ ρGC∞

(
K, ρR̃d

)
. Then

every finite sharp contraction on X is sharply continuous.

We are now able to prove a Banach fixed point theorem for finite contractions
which is analogous, both in the statement and in the proof, to the classical one.

Theorem 17. Let ∅ 6= K bf
ρR̃n be a solid set, and let X be a nonempty closed

subset of ρGF
(
K, ρR̃d

)
. Let T : X −→ X be a finite sharp contraction. Then there

exists a unique fixed point u of T in X. Moreover, for every u ∈ X the sequence
{Tn(u)}n∈N converges to u in the sharp topology.
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Proof. Let u ∈ X. For every i ∈ N, let αi be an i-th contraction constant for T
on X. We claim that {Tn(u)}n∈N is a Cauchy sequence with respect to the sharp
topology. By induction, it is easily checked that∥∥Tn+1(u)− Tn(u)

∥∥
i
≤ αni ‖T (u)− u‖i ,

so for every n, m ∈ N, n < m, we have

‖Tm(u)− Tn(u)‖i ≤
∥∥Tm(u)− Tm−1(u)

∥∥
i
+ · · ·+

∥∥Tn+1(u)− Tn(u)
∥∥
i
≤

≤ αni ‖T (u)− u‖i ·
m−1−n∑
j=0

αji =

= αni ‖T (u)− u‖i ·
1− αm−ni

1− αi
=

=
αni − αmi

1− αi
· ‖T (u)− u‖i .

The conclusion follows by condition (iii) of Def. 15. Thm. 12 therefore yields that
the sequence {Tn(u)}n∈N has a limit u ∈ X. As T is sharply continuous, we have
that

T (u) = T

(
lim
n∈N

Tn(u)

)
= lim
n∈N

Tn+1(u) = u,

so u is a fixed point of T. Finally, let us suppose that v is another fixed point of T.
Then

‖u− v‖0 = ‖T (u)− T (v)‖0 ≤ α0 ‖u− v‖0
and, since 0 ≈ α0 < 1, this is possible only if ‖u− v‖0 ≤ 0, and hence u = v by
Thm. 8. �

5.2. A Picard-Lindelöf Theorem for finite iterations. We first note that,
exactly as in the classical case and thanks to the closure of GSF with respect to
composition [17, Sec. 3.0.3], the higher order Cauchy problem (1.1) can be reduced
to a system of first order equations. Secondly, we introduce the notion of uniformly
Lipschitz function with the following

Definition 18. Let ∅ 6= K bf
ρR̃ be a solid set and let H ⊆ ρR̃d and F ∈

ρGC∞
(
K ×H, ρR̃d

)
. Let Y ⊆ ρGC∞(K, ρR̃d) be such that y(t) ∈ H for all y ∈ Y

and all t ∈ K. If y ∈ Y , we simply denote by F (t, y) the composition t ∈
K 7→ F (t, y(t)) ∈ ρR̃d. We say that F is uniformly Lipschitz on Y with constants

(Li)i∈N ∈ ρR̃N if

∀i ∈ N ∀x, y ∈ Y : ‖F (t, x)− F (t, y)‖i ≤ Li · ‖x− y‖i . (5.3)

Note that condition (5.3) is formulated in the Fréchet space of GSF ρGF(K, ρR̃d),
because of the use of the norms ‖−‖i. In other words, condition (5.3) involves all
the derivatives of t ∈ K 7→ F (t, x(t)) − F (t, y(t)) of any order i. It is therefore
stronger than the usual uniformly Lipschitz condition on F , which involves only

values |F (t, x)− F (t, y)| at points x, y ∈ ρR̃d and t ∈ K. Moreover, we also note
that the bigger is Y the stronger is condition (5.3), and hence the smaller is the
class of functions F that satisfy it.

On the other hand, as with ordinary smooth functions, Def. 18 is not restrictive:
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Theorem 19. Let ∅ 6= K bf
ρR̃ be a solid set. Let H bf

ρR̃d, and consider the

generalized smooth function F ∈ ρGC∞
(
K ×H, ρR̃d

)
, the radii ri ∈ ρR̃>0 for all

i ∈ N and y0 ∈ ρR̃d. Then F is uniformly Lipschitz on the set

{y ∈ ρGC∞(K,H) | ‖y − y0‖i ≤ ri ∀i ∈ N} . (5.4)

Moreover, if we use the symbols (Li(K))i∈N to underscore the dependence of these
Lipschitz constants by the solid functionally compact set K, then the following prop-

erty holds: if ∅ 6= K ′ bf
ρR̃ is another solid set, then

K ⊆ K ′ =⇒ Li(K) ≤ Li(K ′) ∀i ∈ N. (5.5)

To prove this result, we first need the classical Faà di Bruno formula for GSF:

Lemma 20. Let f ∈ ρGC∞(U, ρR̃d), where U ⊆ ρR̃m is a solid set. Let g ∈
ρGC∞(V,U), x ∈ V ⊆ ρR̃l be a solid set and i ∈ Nl, with |i| ≥ 1. For a, b ∈ Nl, we
write a ≺ b if |a| < |b| or |a| = |b| and aj = bj for all j = 1, . . . , k but ak+1 < bk+1

for some k < l. Note that this relation generalizes the usual strict order on N
if l = 1. For α ∈ Nm and for s = 1, . . . , |i|, set (k, n) ∈ ps(i, α) if and only if

(k, n) ∈ (Nm)
s ×

(
Nl
)s

, |kj | > 0 for all j = 1, . . . , s,
∑s
j=1 kj = α,

∑s
j=1 |kj |nj = i

and 0 ≺ n1 ≺ . . . ≺ ns. Finally, set

p(i, α) :=
{

(0, |i|−s. . . . . . , 0, k, 0, |i|−s. . . . . . , 0, n) ∈ (Nm)
|i| ×

(
Nl
)|i| | (k, n) ∈ ps(i, α)

}
.

Then, we have

∂i(f ◦ g)(x) =
∑

1≤|α|≤|i|

∂αf (g(x)) ·
∑

(k,n)∈p(i,α)

i!

|i|∏
j=1

[∂njg(x)]
kj

kj !(nj !)|kj |
. (5.6)

In this formula, the second factor highlights the polynomial

q(i, α) :=
{
n ∈

(
Nl
)|i| | ∃k : (k, n) ∈ p(i, α)

}
Bi,α :

{(
zn1

, . . . , zn[i|

)
n∈q(i,α)

| znj ∈ Rm ∀j = 1, . . . , |i|
}
−→ R

Bi,α

[(
zn1

, . . . , zn[i|

)
n∈q(i,α)

]
:=

∑
(k,n)∈p(i,α)

i!

|i|∏
j=1

[
znj
]kj

kj !(nj !)|kj |

which is called (multivariate) Bell polynomial.

Proof. We can proceed as in the classical smooth case (see e.g. [3]), or simply noting
that the formula holds true ε−wise, i.e. for all nets (fε) and (gε) that define f and
g. �

We are now ready to prove Thm. 19.È meglio ricontrollare insieme questa di-
mostrazione perché continuo a trovarci errori stupidi (non concettuali)...

Proof of Thm. 19. If i = 0, the mean value theorem gives |F (t, x(t))− F (t, y(t))| ≤
‖F |K×H‖1 · ‖x− y‖0. For i ≥ 1, we need to apply (5.6) with F : K ×H −→ ρR̃d,

m = 1 + d, l = 1, and g(t) = (t, y(t)) for all t ∈ K, to evaluate di

dtiF (t, y(t)).
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Therefore, Bell polynomials become

Bi,α

(δ1,nj , dnjy1

dtnj
(t), . . . ,

dnjyd

dtnj
(t)

)
n∈q(i,α)
j=1,...,i

 =

=
∑

(k,n)∈p(i,α)

i!

i∏
j=1

[
δ1,nj ,

dnj y1

dtnj
(t), . . . , d

nj yd

dtnj
(t)
]kj

kj !(nj !)|kj |
=

=
∑

(k,n)∈p(i,α)

i!

i∏
j=1

(
δ1,nj

)kj,1 · (dnj y1

dtnj
(t)
)kj,2

· . . . ·
(
dnj yd

dtnj
(t)
)kj,d+1

kj !(nj !)|kj |
.

Introducing a simplified notation, we can therefore write

di

dti
F (t, y(t)) =

∑
1≤|α|≤i

∂αF (t, y(t)) ·Bi,α

[(
δ1,nj ,

dnjy1

dtnj
(t), . . . ,

dnjyd

dtnj
(t)

)
0 6=nj≤i

]

=:
∑

1≤|α|≤i

∂αF (t, y(t)) ·Qi,α [y(t)] .

This yields the following evaluations∣∣∣∣ didtiF (t, x(t))− di

dti
F (t, y(t))

∣∣∣∣ =∣∣∣∣∣∣
∑

1≤|α|≤i

∂αF (t, x(t)) ·Qi,α [x(t)]−
∑

1≤|α|≤i

∂αF (t, y(t)) ·Qi,α [y(t)]

∣∣∣∣∣∣ ≤∣∣∣∣∣∣
∑

1≤|α|≤i

∂αF (t, x(t)) ·Qi,α [x(t)]−
∑

1≤|α|≤i

∂αF (t, x(t)) ·Qi,α [y(t)]

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∑

1≤|α|≤i

∂αF (t, x(t)) ·Qi,α [y(t)]−
∑

1≤|α|≤i

∂αF (t, y(t)) ·Qi,α [y(t)]

∣∣∣∣∣∣ . (5.7)

The first summand in (5.7) gives

|∂αF (t, x(t)) ·Qi,α [x(t)]− ∂αF (t, x(t)) ·Qi,α [y(t)]| ≤
‖F‖i+1 · |Qi,α [x(t)]−Qi,α [y(t)]| ≤ ‖F‖i+1 · Li,α · ‖x− y‖i ,

where Li,α ∈ ρR̃ satisfies the following Lipschitz-like condition for the polynomial
Bi,α:∥∥∥∥∥Bi,α

[(
δ1,nj ,

dnjx1

dtnj
(t), . . . ,

dnjxd

dtnj
(t)

)
06=nj≤i

]
−

− Bi,α

[(
δ1,nj ,

dnjy1

dtnj
(t), . . . ,

dnjyd

dtnj
(t)

)
06=nj≤i

]∥∥∥∥∥
0

≤ Li,α · ‖x− y‖i .
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The second summand in (5.7) gives

|∂αF (t, x(t)) ·Qi,α [y(t)]− ∂αF (t, y(t)) ·Qi,α [y(t)]| ≤
≤ |∂αF (t, x(t))− ∂αF (t, y(t))| · |Qi,α [y(t)]| ≤

≤ ‖F‖i+1 · ‖x− y‖i · |Qi,α [y(t)]| .

Now

|Qi,α [y(t)]| ≤
∑

(k,n)∈p(i,α)

i!

i∏
j=1

∣∣∣dnj y1

dtnj
(t)
∣∣∣kj,2 · . . . · ∣∣∣dnj yddtnj

(t)
∣∣∣kj,d+1

kj !(nj !)|kj |
≤

≤
∑

(k,n)∈p(i,α)

i!

i∏
j=1

r
kj,2
nj · . . . · r

kj,d+1
nj

kj !(nj !)|kj |
= (5.8)

= Bi,α

[(
1, rnj , . . . , rnj

)
n∈q(i,α)
j=1,...,i

]
(5.9)

=: B̄i,α(r1, . . . , ri).

because y ∈ {y ∈ ρGC∞(K,H) | ‖y − y0‖i ≤ ri ∀i ∈ N} and hence
∣∣∣dnj ydtnj

(t)
∣∣∣ ≤ rnj

because nj > 0. This shows the stated conclusion with

Li(K) =
∑

1≤|α|≤i

{
Li,α + B̄i,α(r1, . . . , ri)

}
· ‖F‖i+1 if i ≥ 0,

We finally give an estimate of the Lipschitz constants Li,α:

|Qi,α [x(t)]−Qi,α [y(t)]| ≤

≤
∑

(k,n)∈p(i,α)

i!

i∏
j=1

1

kj !(nj !)|kj |
·

∣∣∣∣∣∣∣
d+1∏
a=2
kj,a≥1

(
dnjxa−1

dtnj
(t)

)kj,a
−

d+1∏
a=2
kj,a≥1

(
dnjya−1

dtnj
(t)

)kj,a∣∣∣∣∣∣∣ .
But the mean value theorem in several variables yields∣∣∣∣∣∣∣

d+1∏
a=2
kj,a≥1

(
dnjxa−1

dtnj
(t)

)kj,a
−

d+1∏
a=2
kj,a≥1

(
dnjya−1

dtnj
(t)

)kj,a∣∣∣∣∣∣∣ ≤
≤ max
a=2,...,d+1
kj,a≥1

kj,ar
kj,a−1
nj

∏
b6=a

kj,br
kj,b
nj · ‖x− y‖i

so that we can set

Li,α =: Li,α (r1, . . . , ri) = (5.10)

=
∑

(k,n)∈p(i,α)

i!

i∏
j=1

1

kj ! (nj !) |kj |
· max
a=2,...,d+1
kj,a≥1

kj,ar
kj,a−1
nj

∏
b6=a

kj,br
kj,b
nj . (5.11)

To prove property (5.5), it suffices to note that the constants (Li(K))i∈N depend
on K only through the norms ‖F‖i. �
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The key ideas of the proof of Thm. 19 can be summarized by saying that all the
Lipschitz constants for the Cauchy problem (1.1) can be effectively computed using
the multivariate Faà di Bruno formula, the inequalities ‖y − y0‖i ≤ ri that define
the space of functions (5.4), the Lipschitz properties of Bell polynomials and the
norms ‖F‖i. Let us also notice that in the proof of Thm. 19 we computed possible
values of the Lipschitz constants of F , proving the following

Corollary 21. In the same notations of Thm. 19, values for the Lipschitz constants
of F on

{y ∈ ρGC∞(K,H) | ‖y − y0‖i ≤ ri ∀i ∈ N}
are given for all i ∈ N by

Li =: Li (r1, . . . , ri) =

=
∑

1≤|α|≤i

{
Li,α (r1, . . . , ri) + B̄i,α (r1, . . . , ri)

}
· ‖F‖i+1 (5.12)

where

Li,α (r1, . . . , ri) =
∑

(k,n)∈p(i,α)

i!

i∏
j=1

1

kj ! (nj !) |kj |
· max
a=2,...,d+1
kj,a≥1

kj,ar
kj,a−1
nj

∏
b 6=a

kj,br
kj,b
nj .

B̄i,α (r1, . . . , ri) =
∑

(k,n)∈p(i,α)

i!

i∏
j=1

r
kj,2
nj · . . . · r

kj,d+1
nj

kj !(nj !)|kj |
.

Note that L0 = ‖F‖1 by (5.12). Finally, for all i ∈ N>0, we have

lim
(r1,...,ri)→0+

Li(r1, . . . , ri) = 0,

therefore for all i ∈ N>0 there exists Ri ∈ R>0 such that for all r1, . . . , ri ∈ R>0, if
|rn| < Ri for n = 1, . . . , i, then

Li(r1, . . . , ri) ≤ ‖F‖i .

Notice that the values for the Lipschitz constants given in Cor. 21 are not necessarily
optimal.

One could ask whether the first factor of (5.12) when i ≥ 1, which does not
depend on the function F , were bounded for i→ +∞ or not. The following result
states that, in general, the answer is unfortunately negative.

Corollary 22. In the notations of Cor. 21, let S(i, k) be the Stirling number of
second kind of a set of i ∈ N>0 elements into k ∈ N>0 nonempty sets. Let Bi be the
complete (univariate) Bell polynomial. If all the radii satisfy rj ≤ 1 for all j ∈ N,
then ∑

1≤|α|≤i

B̄i,α(r1, . . . , ri) ≤
i∑

k=1

(1 + d)k · S(i, k) = Bi(1 + d, . . . , 1 + d). (5.13)

Moreover ∑
1≤|α|≤i

{
Li,α (1, . . . , 1) + B̄i,α (1, . . . , 1)

}
≥ Bi(1 + d, . . . , 1 + d).

Note that the left-hand side of this inequality depends on the dimension d through
the set p(i, α) (see Lem. 20).
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Proof. For α ∈ Nd+1, let

S(i, α) :=
∑

(k,n)∈p(i,α)

i!

i∏
j=1

1

kj !(nj !)|kj |

be the multivariate Stirling number of second kind. If rj ≤ 1, then

B̄i,α(r1, . . . , ri) ≤ S(i, α). (5.14)

To compute S(i, α), in the Faà di Bruno formula (Lem. 20) we recall that l = 1, m =
1 + d and we set g(x) := (ex, 1+d. . . . . . , ex) for all x ∈ (−1, 1) and f(y1, . . . , y1+d) :=
(ey1−1 · . . . · ey1+d−1, d. . . . . . , ey1−1 · . . . · ey1+d−1). Therefore, each component of the
composition (f ◦ g)j(x) = e(1+d)(ex−1). By induction on i, like in the classical
univariate case, we have

∂i(f ◦ g)j(0) = Bi(1 + d, . . . , 1 + d) =
i∑

k=1

(1 + d)k · S(i, k). (5.15)

On the other hand, Lem. 20 yields

∂i(f ◦ g)j(0) =
∑

1≤|α|≤i

S(i, α).

From this equality and (5.15), (5.14), the conclusion (5.13) follows.
Now, let us consider the particular case where rj = 1 for all j ∈ N. Then, we

have Li,α(1, . . . , 1) ≥ S(i, α), because

max
a=2,...,d+1
kj,a≥1

kj,a
∏
b 6=a

kj,b ≥ 1,

and B̄i,α(1, . . . , 1) = S(i, α). Therefore∑
1≤|α|≤i

Li,α(1, . . . , 1) + B̄i,α(1, . . . , 1) ≥
∑

1≤|α|≤i

S(i, α) =

= ∂i(f ◦ g)j(0) = Bi(1 + d, . . . , 1 + d).

�

Remark 23. In the majorization (5.13) there are two terms that goes to +∞ as
i→ +∞: one of order (1 + d)i, and the other of order ii from the Stirling number
S(i, i). One can easily avoid the first one by considering the following equivalent

Cauchy problem, where c ∈ ρR̃∗ is a fixed suitable invertible constant:{
z′(t) = F

(
t
c ,
z(t)
c

)
z(ct0) = y0

c .
(5.16)

In fact, y ∈ ρGC∞([t0−α, t0 +α], ρR̃d) is a solution of y′(t) = F (t, y(t)), y(t0) = y0 if
and only if z(t) = cy

(
t
c

)
solves (5.16) on the interval [c(t0−α), c(t0 +α)]. Moreover

if Fc(t, z) := F
(
t
c ,
z
c

)
for all (t, z) ∈ cK × cH, then

‖Fc‖i =
1

ci
‖F‖i ∀i ∈ N≥1.

Therefore, setting c = 1 + d, we have the desired result.

We can now state and prove our main result of this section.
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Theorem 24. Let t0 ∈ ρR̃, y0 ∈ ρR̃d, α, ri ∈ ρR̃>0 for all i ∈ N. Let H ⊆ ρR̃d be a

sharply closed set such that Br0(y0) ⊆ H and let F ∈ ρGC∞([t0−α, t0 +α]×H, ρR̃d).
Set Mi := max

t0−α≤t≤t0+α
|y−y0|≤ri,y∈H

‖F (t, y)‖i and assume that α and (Li)i∈N ∈ ρR̃N satisfies

α ·Mi ≤ ri,

lim
n→+∞

αnLni = 0 ∀i ∈ N. (5.17)

Set

Yα := {y ∈ ρGC∞ ([t0 − α, t0 + α], H) | ‖y − y0‖i ≤ ri ∀i ∈ N},
and assume that F is uniformly Lipschitz on Yα with constants (Li)i∈N. Then there

exists a unique solution y ∈ ρGC∞
(

[t0 − α, t0 + α], ρR̃d
)

of the Cauchy problem{
y′(t) = F (t, y(t))

y(t0) = y0

(5.18)

We note explicitly that a faithful reformulation of the classical Picard-Lindelöf
theorem would involve the set

Xα := {y ∈ ρGC∞([t0 − α, t0 + α], H) | ‖y − y0‖ ≤ r0} . (5.19)

The use of Yα instead of Xα lies on our Def. 18 of uniformly Lipschitz GSF and
hence on Thm. 19. Anyway, since Yα ⊆ Xα, if F is uniformly Lipschitz on Xα, it
also satisfies the same property on Yα.

Lemma 25. In the assumptions of Thm. 24, Yα is a sharply closed subset of
ρGF([t0 − α, t0 + α], ρR̃d).

Proof. Let y be an adherent point of Yα, so that for all i ∈ N and all s ∈ ρR̃>0,
there exists a point in Yα ∩ Bis(y). Setting s = dρn, we get a sequence (yn)n∈N of
Yα such that ‖yn − y‖i → 0 in the sharp topology. But

‖y − y0‖i ≤ ‖y − yn‖i + ‖yn − y0‖i ≤ ‖y − yn‖i + ri. (5.20)

By Thm. ??, [0,+∞) = [[0,+∞)R] is sharply closed, so that taking in (5.20) the
limit for n→ +∞ we obtain ‖y − y0‖i ≤ ri. To show that y([t0 − α, t0 + α]) ⊆ H,
we can proceed as in Thm. 12. �

We can now prove Thm. 24:

Proof. We first note that Bri(y0) is functionally compact by (??). The previous
lemma and Thm. 12 yield that Yα is Cauchy complete. For simplicity, set Kα :=
[t0−α, t0 +α]. The constant function t ∈ Kα 7→ y0 ∈ H shows that Yα is not empty.

Now let T : Yα → ρGC∞(Kα,
ρR̃d) be the operator such that, for every y ∈ Yα

T (y)(t) := y0 +

ˆ t

t0

F (s, y(s))ds ∀t ∈ Kα.

Let us note that Thm. ?? and Thm. ?? imply T (y) ∈ ρGC∞
(
Kα,

ρR̃d
)

for all

y ∈ ρGC∞
(
Kα,

ρR̃d
)

. Our goal is to show that our assumption on α allow to prove
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that T is a finite contraction, and hence to find a solution of equation (5.18) as a
fixed point of T . Let us observe that, for every y ∈ Yα, we have

‖T (y)− y0‖i =

∥∥∥∥ˆ t

t0

F (s, y(s))ds

∥∥∥∥
i

≤

≤ max
t∈Kα

ˆ t

t0

‖F (s, y(s))‖i ds ≤ α ·Mi ≤ ri.

Note that the existence of this maximum is guaranteed by Lem. ??. Moreover, for all
t ∈ Kα we have |T (y)(t)− y0| ≤ ‖T (y)− y0‖0 ≤ r0, hence T (y)(t) ∈ Br0(y0) ⊆ H.
Therefore, T : Yα −→ Yα. To prove that T is a finite contraction on Yα, let x,
y ∈ Yα, i ∈ N, and compute ‖T (y)− T (x)‖i:

‖T (y)− T (x)‖i =

∥∥∥∥ˆ t

t0

[F (s, y(s))− F (s, x(s))] ds

∥∥∥∥
i

≤

≤ max
t∈Kα

ˆ t

t0

‖F (s, y)− F (s, x)‖i ds ≤

≤ max
t∈Kα

ˆ t

t0

Li · ‖x− y‖i ds ≤ α · Li · ‖x− y‖i . (5.21)

Therefore T : Yα −→ Yα is a finite contraction because of our assumptions. The
existence part of the conclusion follows from Banach theorem 17 (which yields

existence and uniqueness in Yα). To prove uniqueness in ρGC∞
(
Kα,

ρR̃d
)

, let z ∈
ρGC∞

(
Kα,

ρR̃d
)

be another solution of (5.18). As in (5.21), we have (1− α · L0) ·
‖y − z‖0 ≤ 0. But assumption (5.17) implies α · L0 ≈ 0, so that 0 < 1− α · L0 and
hence ‖y − z‖0 ≤ 0. Thm. 8 gives hence y = z. �

Now, we can connect Thm. 24 and Cor. 21 to obtain clearer conditions for the
existence of α.

Corollary 26. Let t0 ∈ ρR̃, y0 ∈ ρR̃d, β, ri ∈ ρR̃>0 for all i ∈ N. Set K :=

[t0 − β, t0 + β], H ⊇ Br0(y0) and let F ∈ ρGC∞(K ×H, ρR̃d). Set

Mi := max
(t,y)∈K×(Bri (y0)∩H)

|F (t, y)| > 0.

Assume that F is uniformly Lipschitz on

Yα := {y ∈ ρGC∞([t0 − α, t0 + α], H) | ‖y − y0‖i ≤ ri ∀i ∈ N}
with constants (Liα)i∈N, and that

∃R ∈ ρR̃>0 ∀i ∈ N : Liα ≤ R. (5.22)

Take α ∈ (0, β] such that

∃a ∈ R>0 : α ≤ min

(
dρa

R
,
ri
Mi

)
. (5.23)

Then there exists a unique solution y ∈ ρGC∞
(

[t0 − α, t0 + α], ρR̃d
)

of the Cauchy

problem (5.18). In particular, if R is infinite or R ∈ R>0, then α ≈ 0; if R ≤ dρb for

some b ∈ R>0 and β, ri
Mi
∈ R, then any standard real number 0 < α ≤ min

(
β, riMi

)
satisfies (5.23).
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Proof. Set

Kα : = [t0 − α, t0 + α]

Miα : = max
(t,y)∈Kα×(Bri (y0)∩H)

|F (t, y)| ,

Since α satisfies (5.23) and Kα ⊆ K, we have α ·Miα ≤ α ·Mi ≤ ri, so

0 ≤ αn · Lniα ≤ αn ·Rn ≤ dρan.

Therefore limn→+∞ αn · Lniα = 0 and Thm. 24 yields existence and uniqueness of

the solution in ρGC∞(Kα,
ρR̃d).

Finally, if R is infinite or R ∈ R>0, then 0 < α ≤ dρa

R ≈ 0. If R ≤ dρb and

0 < α ≤ min
(
β, riMi

)
is a standard real number, then setting e.g. a := b

2 , we also

get α ≤ dρ−b/2 ≤ dρa

R . �

It is well known that, for classical ODE on the real field R, the semi-amplitude
α can be estimated independently on the Lipschitz constant L, see e.g. [50]. For
two reasons this result seems not repeatable in a simple way in this generalized
framework: first, the classical proof uses terms of the form eαL which find a cor-

responding in ρR̃ only assuming strong limitations on the product αL; second, to

generalize the use of series from R to ρR̃, e.g. to prove the analogous of Weissinger

theorem [50, Thm. 2.4], we need the notion of hyperseries in the ring ρR̃, see [20].
For these reasons, we present only Thm. 24, which is simpler and seems more gen-
eral (we do not need to assume logarithmic conditions that guarantee the existence
of terms like eαL), postponing the use of hyperfinite methods to a subsequent pa-
per. An undesired consequence of this is that in each ODE we want to solve, we
need to estimate the Lipschitz constants Li for all i ∈ N. We finally recall that the
necessity to have a countable family of these constants is tied to the same definition
of GSF, which involves all the derivatives.

5.3. Infinite iterations.

6. A first list of general examples

riprendere alcuni di questi esempi dopo i risultati sugli intervalli massimali di
esistenza

In all the following examples, we use the same notations of Cor. 26, Cor. 21 and
Thm. 24.

6.1. Relationship with classical solutions.

6.2. An ODE with a non-extensible infinitesimal solution interval. The
fact that, in general, the semi-amplitude α of the time interval is only infinitesimal
could be considered as a deficiency of this approach. On the contrary, this is a
general fact of every non-Archimedean theory having at least one positive and
invertible infinitesimal h. If fact, the Cauchy problem{

y′ = − t
1+y ·

1
h

y(0) = 0
(6.1)

has solution y(t) = −1 +
√

1− t2

h which is defined and smooth only in the infini-

tesimal interval (−
√
h,
√
h). Moreover, we have that limt→±

√
h y
′(t) = +∞ (in the
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sharp topology) and this clearly shows that the solution cannot be extended (see
also Thm. 36).
We recall that a non-Archimedean theory is a necessary consequence of describing
generalized functions as set-theoretical functions, so that their free composition can

be easily defined. If h ∈ ρR̃>0, h ≈ 0, and F (t, y) = − t
1+y ·

1
h , then it is easy to

see that, due to the presence of the infinite term 1
h , each norm

∥∥∥F |[−a,a]×Br(0)

∥∥∥
i

is

infinite, so that the constant R of (5.22) is necessarily infinite as well.
This simple example yields another general remark: On the basis of Cor. 22, a
possible simple way to avoid the first factor in (5.12) is to consider sufficiently
small radii rj . For example, we can always trivially take infinitesimal radii rj ≈ 0.
However, this would necessarily imply that the semi-amplitude α ≈ 0 because the
radii rj measure how much the solution is far from the initial condition y0. Even if
example (6.1) shows that in general a better result is not possible, in specific cases
we can obtain better estimates both of the Lipschitz constants and of the radii rj ,
as shown below.

6.3. How to apply the local existence results. Mainly in order to understand
how to apply the previous Cor. 26 of local existence, let us consider the following
ρR̃-linear Cauchy problem: {

y′(t) = A(t) · y(t);

y(t0) = c,
(6.2)

where A ∈ ρGC∞([t0 − β, t0 + β], ρR̃d×d) and c ∈ ρR̃d. Since GSF are closed with
respect to composition, and x 7→ x− t0 is always a GSF, even when t0 is an infinite
number (e.g., this does not hold using Colombeau generalized functions), without
loss of generality, we can assume that t0 = 0. using the notations of Cor. 26, we

have F (t, y) = A(t) · y and K = [−β, β], H = ρR̃d, Mi = max−β≤t≤β
|y−c|≤ri

|A(t) · y|.

The basic condition we need to satisfy is (5.23). We therefore start by estimating

Mi and by accordingly choosing the radii ri ∈ ρR̃>0, in order to simplify the analysis

of (5.23). If y ∈ Bri(c) and t ∈ K, we have

|A(t) · y| ≤ |A(t) · y −A(t) · c)|+
+ |A(t) · c| ≤
≤ ‖A‖0 ri + |c| · ‖A‖0 = ‖A‖0 (ri + |c|) (6.3)

where the norms ‖−‖0 are evaluated on the functionally compact set K = [−β, β].
We assume that ‖A‖0 > 0, Mi > 0, so that Mi ≤ ‖A‖0 (ri + |c|) and setting
ri := max(|c|, 1) > 0, from (6.3) we get ri

Mi
≥ 1

2‖A‖0
, which will be useful to

evaluate (5.23).
In the second step, we compute the Lipschitz constants for our particular prob-

lem, hoping to obtain better values with respect to the general estimates of Cor. 21.
In our case, a direct calculations gives

di

dti
F (t, y(t)) =

di

dti
(A(t)y(t)) + b(i)(t) =

=

i∑
k=0

(
i

k

)
A(i−k)(t)y(k)(t) + b(i)(t).
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Therefore ∣∣∣∣ didtiF (t, y(t))− di

dti
F (t, x(t))

∣∣∣∣ ≤ i∑
k=0

(
i

k

)
‖A‖i · ‖y − x‖i =

= 2i ‖A‖i · ‖y − x‖i .

So, we can set Li = 2i ‖A‖i and we can fully analyze the following cases:

(i) At least one norm ‖A‖i is infinite, i.e.,

∃ni ∈ N>1 : dρ−ni+1 ≤ ‖A‖i < dρ−ni (6.4)

but all the exponents ni are bounded, i.e.

∃n ∈ N0 ∀i ∈ N : ni < n. (6.5)

Since ‖A‖i ≤ ‖A‖i+1, without loss of generality we can assume that (6.4)

holds for all i ∈ N sufficiently large. Therefore Li = 2i ‖A‖i ≤ 2idρ−ni <
dρ−n =: R. We are thus in the first case of Cor. 26, and for any a ∈ R>0

we can take α = min
(

dρn+a, 1
2‖A‖0

)
≈ 0 to satisfy (5.23). In general this

infinitesimal solutions cannot be enlarged to a greater symmetric interval, as
shown by the trivial ODE y′ = 1

dρy, y(0) = 1, whose maximal domain is

{t ∈ ρR̃ | ∃N ∈ N : t ≥ Ndρ log dρ} ⊇ [−dρ1+a,dρ1+a] for all a ∈ R>0.
(ii) All the norms ‖A‖i are finite i.e.

∃S ∈ R>0 ∀i ∈ N : ‖A‖i ≤ S. (6.6)

We are hence in the second case of Cor. 26. We can take, e.g., R := dρ−r

where r ∈ R>0 so that Li = 2i ‖A‖i ≤ 2iS ≤ R = dρ−r. Condition (5.23)

is thus satisfied for all a ∈ R>0 and taking α = min
(

dρr+a, 1
2‖A‖0

)
=

dρr+a because of (6.6). The solution is therefore defined on the union⋃
b∈R>0

[−dρb,+dρb]. As shown in Rem. 23, we can easily switch to an equiv-

alent Cauchy problem in order to avoid the term 2i, which really forces us
to take an infinite R. Without loss of generality, we can hence assume that
(6.2) is locally Lipschitz with Li = ‖A(2 · −)‖i. This shows that the solution
of this sub-example is very unsatisfactory because for α ∈ R>0 sufficiently
small, we can get αLi < 1. As mentioned at the beginning of Sec. 5, this can
be better solved using the notion of hyperfinite contraction, or the results of
Sec. 7.3 about maximals sets of existence, see e.g. example 40.

(iii) The norms ‖A‖i are all uniformly infinitesimals, i.e.

∃n ∈ N>0 ∀i ∈ N : ‖A‖i ≤ dρn. (6.7)

This is clearly a subcase of the previous one, which is therefore meaningfully
different from the present one only if ‖A‖j = S for some j ∈ N. Taking any

0 < h < n, we have Li = 2i ‖A‖i ≤ 2idρn < dρn−h =: R. We are thus in the

third case of Cor. 26 and hence any 0 < α ≤ min
(
β, 1

2‖A‖0

)
satisfies (5.23).

Finally note that for any finite β, equation (6.7) yields min
(
β, 1

2‖A‖0

)
= β

and hence the solution y ∈ ρGC∞([−β, β], ρR̃d).
(iv) For all i sufficiently large, all the norms ‖A‖i are infinite, i.e. (6.4) holds,

but the exponents ni are unbounded, i.e. (6.5) is false. This is the case,
for example, of the Cauchy problem: y′ = δ′ · y, y(0) = 1. More precisely,
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using the notations for the embeddings of Schwartz distributions of Thm. ??,
the ODE y′(t) = ιbR (δ′) (t) · y(t) would necessarily have the solution y(t) =

eι
b
R(δ)(t) +c for some c ∈ ρR̃. If we want that ιb|C∞ coincides with the inclusion

of sheaf C∞(Ω) ⊆ ρGC∞Ω,R), then we must take b ≥ dρ−a for some a ∈ R>0

(see Thm. ??.??). But then y(0) = eι
b
R(δ)(0) + c = ebµ(0) + c = edρ−a +

c /∈ ρR̃, where µ is the fixed Colombeau mollifier. Note that the function
F (t, y) = ιbR(δ′)(t) · y is uniformly locally Lipschitz with constants Li =
b(1 + b)i. Therefore, if we take b ≥ dρ−a, it is easy to prove that

∀b ∈ R>0 ∃i ∈ N : dρbn · Lni 6→ 0.

Therefore, condition (5.17) never holds for any α ∈ ρR̃>0.
All this implies that we only have two possibilities: either we negate the
sheaf inclusion of smooth functions (and we thus remain with the inclusion of
analytic functions, see Thm. ??.??, and only the inclusion up to infinitesimal
of smooth functions, see Thm. ??.??), or we take another gauge σ such that

edρ−a ∈ σR̃, e.g. σε := e−e
1/ρε

. The second choice would imply that we are
indeed able to locally solve y′(t) = δ′b(t) · y(t), but where δb(t) := bµ(bt) is
not the σ-embedding (preserving the inclusion of smooth functions) of δ in
σGC∞(R,R), which would instead be e.g. ιdσ

−1

R (δ). These are unavoidable
limitations of this approach.
(i) Can we say that the previous cases exhaust all the possible instances?

Since in ρR̃ we can have generalized numbers like
[
sin
(

1
ρε

)]
, at a first

sight the answer seems to be negative. On the other hand, by recall-
ing the interpretation of Robinson-Colombeau generalized numbers as
dynamical numbers in ε (see introductions to Sec. ?? and Sec. 3), the
following notion of sample of a point can be of help in the analysis of
the remaining instances:

Definition 27.
(i) Let x, x′ ∈ ρR̃n, then we say that x′ is a sample of x if there exist

representatives x = [xε] and x′ = [x′ε] such that

∀ε∃ε̂ ≤ ε : x′ε = xε̂. (6.8)

(ii) We say that X ⊆ ρR̃n contains all the samples of its points if for all

x ∈ X, x′ ∈ ρR̃n, if x′ is a sample of x, then also x′ ∈ X.

Note that, as a consequence of the condition ε̄ ≤ ε in 6.8, we can define
ε̄(ε) := sup {0 < ε̂ ≤ ε | x′ε = xε̂} so that we get

∀ε ∈ I : 0 < ε̄(ε) ≤ ε
ε̄ : I −→ I

ε̄→ 0+

x′ε = xε̄(ε) ∀ε ∈ I,
therefore, we can roughly state that “being a sample of a point is a property
for ε→ 0+”.

This notion has interesting properties. For example, it can be easily proved
(see [20]) that if X contains all the samples of its points, then the GSF
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f ∈ ρGC∞(X,Y ) is zero if and only if f(x) = 0 for all near-standard and for
all infinite points x ∈ X. It is important to note that the set c(Ω) of compactly
supported points in Ω ⊆ Rn (see (??)) always contains all the samples of its
points, therefore every equality between Schwartz distributions can be tested
in this way. Analogously, Def. ?? needs to be tested only at all near-standard
and all infinite points x ∈ X (see [20]). Moreover, from Lem. ?? we can also

easily derive the following partial replace of the trichotomy law: for all x ∈ ρR̃
there exist x1, x2, x3 samples of x such that

x1 = 0 or x2 < 0 or x3 > 0,

and the inequality x > 0 holds if and only if for all x′ sample of x we have

x′ is near-standard or x′ is infinite =⇒ x′ > 0.

Since from every bounded ε-net we can always extract a convergent subnet,
we can say that the previous cases exhaust all the possible instances, in the

following weak sense: for all ε̄ there exist a sample A′ of ‖A‖i = [‖Aε‖i] ∈
ρR̃

such that ‖Aε̄‖i = A′ε̄ and

A′ is near-standard or A′ is infinite.

We can therefore roughly state that all the remaining instances of (6.2) are
ε-mixing of some of the previously analyzed cases.

6.4. First order scalar ODEs by quadrature. Clearly, the calculus of GSF
is sufficiently reach to reformulate the usual proof of existence and uniqueness of
solutions of first order 1-dimentional affine ODEs. In fact, we have the following

Theorem 28. Let z ∈ ρGC∞([t0−α, t0 +α], ρR̃) be the solution of the linear Cauchy
problem {

z′(t) = −A(t) · z(t);
z(t0) = k,

(6.9)

where A ∈ ρGC∞([t0−α, t0 +α], ρR̃) and k ∈ ρR̃. Assume that y ∈ ρGC∞([t0−α, t0 +

α], ρR̃) solves the problem {
y′(t) = A(t) · y(t) + b(t);

y(t0) = c,
(6.10)

where b ∈ ρGC∞([t0 − α, t0 + α], ρR̃) and c ∈ ρR̃. Then it results

z(t) · y(t) = kc+

ˆ t

t0

z · b ∀t ∈ [t0 − α, t0 + α]. (6.11)

In particular, if for all t ∈ [t0 − α, t0 + α] there exists N ∈ N such thatˆ t

t0

A ≥ N log dρ

then the GSF

z(t) = k exp

(
−
ˆ t

t0

A

)
t ∈ [t0 − α, t0 + α],

satisfies 6.9, and hence, if k is invertible, we have

y(t) =
1

z(t)
·
[
kc+

ˆ t

t0

z · b
]
∀t ∈ [t0 − α, t0 + α].
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Proof. By multiplying (6.10) by z(t) and using the Leibniz rule for GSF, we get
(z ·y)′ = z ·b. Integrating between t0 and t and using Thm. ?? we obtain (6.11). �

6.5. Polynomial singular ODEs by local existence results. Let us now con-
sider an arbitrary first order scalar polynomial ODE{

y′(t) =
∑n
i=0 ai(t) · y(t)i

y(0) = y0

(6.12)

where n ∈ N>0, ai ∈ ρGC∞([−β, β], ρR̃) and |y0| ∈ ρR̃ is invertible. Without loss of

generality, we can always assume |y0| = 1. In fact, if c ∈ ρR̃ is invertible, and we can

solve z′(t) =
∑n
i=0 ai(t)z(t)

i, z(0) = y0

c , then y := c·z solves y′(t) =
∑n
i=0

ai(t)
ci−1 y(t)i,

y(0) = y0. Therefore, it suffices to set c = |y0| to reduce to the case |y0| = 1. Using

the notations of Cor. 26, we set K := [−β, β], H := ρR̃d, F (t, y) :=
∑n
i=0 ai(t) ·yi so

that F ∈ ρGC∞(K × ρR̃, ρR̃), and Mi := max −β≤t≤β
y∈Bri (y0)

|F (t, y)|. In order to properly

choose the radii ri, we start by estimating Mi. For t ∈ K and y ∈ Bri(y0), we have

|F (t, y)| ≤
n∑
i=0

|ai(t)| |y|i.

We set N0 :=
∑n
j=0 ‖aj‖0, so that using |y0| = 1 we get

|F (t, y)| ≤ N0 ·
n∑
i=0

(|y + y0|+ |y0|)i =

= N0 ·
n∑
i=0

i∑
k=0

(
i

k

)
|y − y0|k ≤

≤ N0 ·
n∑
i=0

i∑
k=0

(
i

k

)
rki = N0 ·

n∑
i=0

(ri + 1)i.

Therefore, if we choose r0 = ri = 1 for all i ∈ N, we obtain

|F (t, y)| ≤ N0
(r0 + 1)n+1 − 1

r0

ri
Mi
≥ 1

N0(2n+1 − 1)
.

Now, we estimate Lipschitz constants:

di

dti
F (t, y(t)) =

n∑
k=0

i∑
j=0

(
i

j

)
a

(i−j)
k (t)

dj

dtj
[
y(t)k

]
.

We estimate the j-th derivative of y(t)k by using univariate Faà di Bruno formula.

Since dj

dtj

(
zk
)

= k(k−1) · . . . ·(k−j+1)zk−j =
(
k
j

)
j!zk−j for j ≤ k and 0 otherwise,

we get

dj

dtj
[
y(t)k

]
=
∑
m

j!

m!

(
k

|m|

)
|m|! · y(t)k−|m| ·

j∏
p=1

(
y(p)(t)

p!

)mp
,
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where the sum is extended to all multi-indices (m1, . . . ,mj) ∈ Nj such that 1 ·m1 +
2 ·m2 + . . .+ j ·mj = j and |m| ≤ k. Simplifying the notations, we can write

dj

dtj
[
y(t)k

]
=
∑
m

y(t)k−|m| ·
j∏
p=1

Ajmp · y(p)(t)mp ,

Ajmp : =

[
j!

m!

(
k

|m|

)
|m|!

]1/j

· 1

(p!)
mp ∈ R>0,

and hence∣∣∣∣ djdtj [y(t)k
]
− dj

dtj
[
x(t)k

]∣∣∣∣ ≤
∑
m

j∏
p=1

Ajmp ·

∣∣∣∣∣y(t)k−|m| ·
j∏
p=1

y(p)(t)mp − x(t)k−|m| ·
j∏
p=1

x(p)(t)mp

∣∣∣∣∣ .
But

∣∣y(p)(t)c
∣∣ ≤ ‖y‖cp ≤ (‖y − y0‖p + |y0|

)c
≤ (rp + |y0|)c = 2c for all c ∈ R≥0 and

p ∈ N because the function y belongs to the set defined in (5.4). By the mean value
theorem for several variables, we have∣∣∣∣∣y(t)k−|m| ·

j∏
p=1

y(p)(t)mp − x(t)k−|m| ·
j∏
p=1

x(p)(t)mp

∣∣∣∣∣ ≤
≤
[
(k − |m|)2k−|m|−12|m| + 2k−|m||m|2|m|−1

]
·
(
‖y − x‖0 + ‖x− y‖p

)
≤

≤ k2k · ‖x− y‖p
And finally this yields∣∣∣∣ djdtj [y(t)k

]
− dj

dtj
[
x(t)k

]∣∣∣∣ ≤
≤ ‖y − x‖j ·

∑
m

kj2jk
j∏
p=1

Ajmp =:

=: ‖y − x‖j · Cjk∣∣∣∣ didtiF (t, y(t))− di

dti
F (t, x(t))

∣∣∣∣ ≤ n∑
k=0

i∑
j=0

(
i

j

)
‖ak‖i−j Cjk ‖y − x‖j ≤

≤ ‖y − x‖i
n∑
k=0

‖ak‖i 2iDik ≤

≤ ‖y − x‖i 2iNiDi,

where Dik :=
∑i
j=0 Cjk ∈ R>0, Di :=

∑n
k=0Dik ∈ R>0 and Ni :=

∑n
k=0 ‖ak‖i ∈

ρR̃≥0.
Now, we can proceed by analyzing the following main cases:

(i) At least one Ni is infinite, i.e.,

∃ni ∈ N>1 : dρ−ni+1 ≤ Ni < dρ−ni (6.13)
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but all the exponents ni are bounded, i.e.

∃n ∈ N0 ∀i ∈ N : ni < n.

Setting R := dρ−n, we are in the first case of Cor. 26, and for any a ∈ R>0

we can take α = min
(

dρn+a, 1
N0(2n+1−1)

)
≈ 0 to satisfy (5.23).

(ii) All the terms Ni are finite i.e.

∃S ∈ R>0 ∀i ∈ N : Ni ≤ S. (6.14)

We are hence in the second case of Cor. 26. We can take, e.g., R := dρ−r

where r ∈ R>0. Condition (5.23) is thus satisfied for all a ∈ R>0 and taking

α = min
(

dρr+a, 1
N0(2n+1−1)

)
= dρr+a because of (6.14). The solution is

therefore defined on the union
⋃
b∈R>0

[−dρb,+dρb].

(iii) The terms Ni are all uniformly infinitesimals, i.e.

∃n ∈ N>0 ∀i ∈ N : Ni ≤ dρn. (6.15)

Taking any 0 < h < n, we can set R := dρn−h. We are in the third case

of Cor. 26 and hence any 0 < α ≤ min
(
β, 1

N0(2n+1−1)

)
satisfies (5.23). For

any finite β, equation (6.15) yields min
(
β, 1

N0(2n+1−1)

)
= β and hence the

solution y ∈ ρGC∞([−β, β], ρR̃d).
(iv) For all i sufficiently large, all the terms Ni are infinite, i.e. (6.13) holds, but

the exponents ni are unbounded, i.e. (6.5) is false. As seen above in the linear
case, this leads to an ODE which is solvable only changing the gauge ρ, but
at the price of problems related to the embedding of smooth functions.

6.6. Polynomial singular ODEs by quadrature: Bernoulli equation. A
Bernoulli ODE {

y′(t) = a1(t)y(t) + an(t)y(t)n

y(0) = y0

∀t ∈ [−α, α] (6.16)

is classically reduced to a linear ODE. The possibility to extend to ρR̃ these trivial

steps, depends on the invertibility of the values y(t) ∈ ρR̃ for t belonging to a sharp

neighbourhood of y0. If we assume that y0 ∈ ρR̃ is invertible, it is plausible to
expect the following

Theorem 29. Let α ∈ ρR̃>0 and f ∈ ρGC∞([t0−α, t0 +α], ρR̃) be a GSF such that
f(t0) is invertible, then there exists β ∈ (0, α] such that f(t) is invertible for all
t ∈ [t0 − β, t0 + β].

Proof. By contradiction, let us assume that

∀β ∈ (0, α]∃t ∈ [t0 − β, t0 + β] : f(t) is not invertible.

Then setting β = min(α,dρn), n ∈ N>0, we obtain the existence of a sequence
(tn)n∈N such that tn ∈ [t0 − dρn, t0 + dρn] and f(tn) is not invertible for n ∈ N>0

sufficiently large. Therefore, (??) and continuity of GSF (Thm. ??.??), yield

lim
n→+∞

|f(tn)| = |f(t0)| > dρq

for some q ∈ R>0, because of Lem. ??. For n sufficiently large, we thus get

1

2
dρq < |f(t0)| − 1

2
dρq < |f(tn)| < |f(t0)|+ 1

2
dρq.
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Once again, Lem. ?? implies then that f(tn) must be invertible, and this yields a
contradiction. �

Therefore, if (6.16) holds and y0 is invertible, then for some β ∈ (0, α], y(t) is
invertible for all t ∈ [−β, β]. Since n ∈ N>1, we can hence set w(t) := y(t)1−n for
all t ∈ [−β, β]. The GSF w satisfies the linear Cauchy problem{

w′(t) = (1− n)a1(t)w(t) + (1− n)an(t)

w(0) = y1−n
0

∀t ∈ [−β, β].

This can be locally solved using the results of Sec. 6.3. Otherwise, assuming that
for all t ∈ [−β, β] there exists N ∈ N such thatˆ t

t0

a1 ≥ N log dρ,

then

z(t) = y1−n
0 exp

(ˆ t

0

(n− 1)a1(s)ds

)
y(t) = z(t)

1
n−1

[
y2−n

0 + (1− n)

ˆ t

0

z(s)an(s)ds

] 1
1−n

∀t ∈ [−β, β]

solve (6.16).

6.7. Nonlinear ODEs which are not solvable in any gauge. Examples of
nonlinear ODEs that are not solvable using the present approach and, at the same
time, preserving good properties of the embedding of smooth functions, are{

y′(t) = δ (y(t))

y(0) = 0

{
y′(t) = eδ(0)y(t)

y(0) = c.
(6.17)

Let us start with the former by showing that Thm. 24 cannot be applied. With

the usual notations, we have F (y) = δ(y) for all y ∈ ρR̃, K := [−α, α], H := ρR̃.

If we use the embedding determined by the infinite generalized number b ∈ ρR̃ and
by the Colombeau mollifier µ, then δ(t) = bµ(bt) and hence δ(i)(0) = bi+1µ(i)(0).
Since µ is an even function (see Lem. ??), we have

δ(2i+1)(0) = 0

δ(2i)(0) = b2i+1µ(2i)(0). (6.18)

We assume to have chosen µ so that µ(2i)(0) is not eventually zero. We have

di

dti
F [y(t)] =

∑
m

i!

m!
δ(|m|)(y(t))

i∏
j=1

(
y(j)(t)

j!

)mj
=:,

=:
∑
m

δ(|m|)(y(t))

i∏
j=1

y(j)(t)mjCijm, (6.19)

where the sum is extended to all multi-indices (m1, . . . ,mi) such that 1m1 + 2m2 +

. . . + imi = i and Cijm :=
(
i!
m!

)1/i 1
(j!)mj

. Let us assume that F is uniformly

Lipschitz on the space

Y = {y ∈ ρGC∞(K,H) | ‖y‖i ≤ ri ∀i ∈ N}
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with Lipschitz constant (Li)i∈N. Assume that β, ri and α satisfy

0 < βb ≤ ri (6.20)

0 < α ≤ 1,

and set y(t) := βbt, x(t) := 0 for all t ∈ K. We want to choose β so as to show that
condition (5.17) never hold. We have |y(t)| ≤ αβb ≤ βb ≤ r0 because of (6.20).
Therefore, ‖y‖0 ≤ r0. Similarly, we have ‖y‖i ≤ ri for all i ∈ N. This shows that x,
y ∈ Y and that ‖y − x‖i = ‖y − x‖0 = βb. Lipschitz condition and (6.19) for i ≥ 1
yield

βbLi ≥

∣∣∣∣∣∣
∑
m

δ(|m|)(0)

i∏
j=1

y(j)(0)Cijm

∣∣∣∣∣∣ =

=

∣∣∣∣∣∑
m

δ(|m|)(0)βm1bm1Ci1m1

∣∣∣∣∣ ≥
≥ δ(i)(0)βibi.

This inequality and (6.18) finally show that

L2i ≥ b4iβ2i−1µ(2i)(0).

Now, since α, β > 0, we can consider a, c ∈ R>0 such that α ≥ dρa and β ≥ dρc.
Moreover, we analyse only the case b = dρ−1. We thus get

αn · Lni ≥ dρandρ−4nidρ2cni−cnµ(2i)(0)n.

Take i ∈ N so that 4i > a, then 4i − a > 0 > −c and hence an − 4ni − cn < 0. If
we take c < 4i−a

2i−1 we have that an− 4ni+ 2cni− cn < 0 and therefore αn ·Lni 6→ 0.
Finally, for i sufficiently large, the exponent c can be taken close to 2 and hence
βb = dρcdρ−1 ≈ 0, which gives a lower bound to ri since we assumed (6.20). We
therefore proved that

∀a ∈ R>0 : α ≥ dρa ⇒ ∃c, i : αnLni ≥ dρan−4ni+2cni−cnµ(2i)(0) 6→ 0.

This shows that Thm. 24 cannot be applied.
It can be easily proved that the GSF F is locally Lipschitz with constants Li =
Didρ

−2i, Di ∈ R>0. We can thus note that, once again, changing the gauge by

using e.g. σε := e−
1
ρε and taking dρ2i > α ≥ dσ > 0, we have that αnLni → 0 in σR̃

and hence the equation y′(t) = ιdρ
−1

R (δ)(y(t)) is solvable in the interval [−α, α] ⊆
σR̃. However, the embedding ιdρ

−1

R preserves analytic functions with respect to the

equality in σR̃, but smooth functions only up to infinitesimal of the form C ·dρn for
C ∈ R>0 and for all n ∈ N (see Thm. ??), which does not correspond to equality

in σR̃.
Analogously, we can deal with the second example in (6.17), where for sim-

plicity we consider the embedding ιdρ
−1

R . In that case we have F (t, y) := eδ(0)y

which is hence defined on X :=
{
y ∈ ρR̃ | ∃N ∈ N : y ≤ −Ndρ log dρ

}
. Since

X ⊇ [−dρ1+a,dρ1+a] for all a ∈ R>0, we can set K := [−β, β] and H := Bdρ1+a(0),
r0 := dρ1+a. Using once again the previous methods, it is not hard to show that F
is uniformly Lipschitz with constants Li := dρ−iCi, where Ci ∈ R>0. We can hence
proceed as in the previous example to show that Thm. 24 cannot be applied, even
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if the ODE can be solved considering another gauge, as we have seen above for the
previous example.

6.8. Application to physical systems governed by nonlinear ODE with
step input. In the applications, e.g. in the research about viscoelastic materials,
one needs to study the response of spring–dashpot systems to a step input, which
can be e.g. a step loading or a step deformation or the response of an electrical
circuit to a sudden voltage change. The behaviour of these systems is described by
an ODE, and the response of nonlinear systems to step inputs can hence be framed
in the context of GSF. As shown by [44, 45, 46], in this problem we are interested
in the solutions y of Cauchy problems of the type{

a(I, y)y + y′ = b(I, y)I + c(t, y)I ′

y(0) = ỹ(0)
(6.21)

where I(t) = H(t) · Ĩ(t), H is the Heaviside function, and a, b, c, ỹ, Ĩ are fixed
smooth functions (see e.g. [44, Thm. 10]). Due to the term

c(t, y)I ′ = c(t, y)
[
δ(t) · Ĩ(t) +H(t) · Ĩ ′(t)

]
=

= c(t, y)
[
ιbR(δ)(t) · Ĩ(t) + ιbR(H)(t) · Ĩ ′(t)

]
,

and using the methods we have already seen above, it is possible to prove that the
Lipschitz constants for this problems are Li = Cib

i, where Ci ∈ R>0. Therefore,

the only way to solve (6.21) is to change the gauge, e.g. considering σε := e−
1
ε . In

this case, there exists α ∈ σR̃>0 and a solution y ∈ σGC∞([−α, α], σR̃). Note that

using the new gauge we now have b = [bε] ∈ σR̃, which is still an infinite number

in the ring σR̃. Therefore the GSF ιbR(δ) = [bεµ(bε · −)] = ιbR(H)′ is still a good
model for a unit impulse generalized function. Analogously, one can deal with the
second order ODE y + a(I, t)y′ + by′′ = 2c(I, y)I ′ + 2dI ′′, which is also considered
in [44, 45, 46].

6.9. A classically non-Lipschitz ODE and the problem of uniqueness. Let
us consider the following classical ODE:{

y′(t) =
√
|y(t)|,

y(0) = 0.
(6.22)

By Peano theorem, we know that Equation 6.22 has a solution; however, this so-
lution is not unique. As the continuous function

√
| − | : y ∈ R 7→

√
|y| can

be identified with an element of D′(R), in the GSF setting equation 6.22 can be
interpreted as {

y′(t) = ιbR

(√
|−|
)

(y(t)),

y(0) = 0.
(6.23)

However, due to the infinite derivatives of the square root at the origin, Thm. 24

cannot be applied to (6.23). To prove this, take an infinite b ∈ ρR̃ such that b ≥ dρ−a

for some a ∈ R>0. Apply Thm. ??.?? to any open set Ω ⊆ R such that 0 /∈ Ω and
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Thm. ??.?? obtaining that

ιbR

(
di

dyi

√
|y|
)∣∣∣∣

c(Ω)

= ιbΩ

(
di

dyi

√
|y|
∣∣∣
Ω

)
=

di

dyi

√
|y|
∣∣∣
Ω

=

= (−1)i+12−iy
1
2−i ∀i ∈ N>0. (6.24)

Therefore,
∣∣∣ιbR ( di

dyi

√
|y|
)

(dρa)
∣∣∣ = 2−idρ

a
2 dρ−ia ≥ dρ−(i+1)a for all i ≥ 2. Now, as-

sume that F (y) = ιbR

(√
| − |

)
(y) were uniformly Lipschitz with constants (Li)i∈N,

then for all c, d ∈ R>0 with c > d, and i ≥ 2 we get

Li(dρ
c − dρd) ≥

∥∥F (dρc)− F (dρd)
∥∥
i
≥ dρ−(i+1)c − dρ−(i+1)d ≥ dρ−(i+1)c,

where the i-norm is calculated on any closed interval containing dρc. Hence, Li ≥
dρ−(i+1)c

dρc−dρd ≥ dρ−ic. Therefore, condition (5.17) holds only for α = 0 and hence

Thm. 24 cannot be applied. Note that this estimate of the Lipschitz constants is
worst than in the examples listed above because of the arbitrariness of the constant
c ∈ R>0. We also note that if y ∈ C1(R,R) is a classical solution of (6.22), and we set

z := ιbR(y) ∈ ρGC∞(c(R), ρR̃), then z′(t) =
[
ιbR(y)

]′
(t) = ιbR(y′)(t) = ιbR

(√
|y|
)

(t) ≈√∣∣ιbR(y)(t)
∣∣ =

√
|z(t)| and z(0) = ιbR(y)(0) ≈ y(0) = 0. Therefore the GSF z

satisfies (6.23) only up to infinitesimals. To help intuition, in Fig. 6.1 we represent

the function
√
| − | with a grey dash-dot line and its regularization ιbR

(√
| − |

)
with a black line.

It is also not hard to prove that no GSF satisfies (6.23). We have to proceed
along the following schema:

(i) We prove that ιbR

(√
| − |

)
(0) 6= 0 by contradiction: using (6.24), we prove

that there exists y ∈ [0, 1] such that ιbR

(√
| − |

)
(y) is greater than the max-

imum value of ιbR

(√
| − |

)
on the functionally compact set [0, 1].

(ii) Therefore the constant map y(t) = 0 is not a solution of (6.23), not even for
t ≥ 0.

(iii) So, if y ∈ ρGC∞([−α, α], ρR̃) were a solution of (6.23), we must have that
y(t0) 6= 0 for some t0 > 0.

(iv) Therefore, there must exist a sample t1 of t0 (see Def. 27) such that y(t1) > 0
or y(t1) < 0. Both cases can be treated in the same way, so we assume that
y(t1) > 0.sbagliata: esiste un sample di y(t0) e quindi un’altra soluzione ȳ,
sample di y, e un sample t1 (con gli stessi ε̄) tali che ȳ(t1) > 0 or ȳ(t1) < 0.
Si continua considerando ȳ invece di y

(v) By the intermediate value theorem (see [20]), the function y assumes all the
values between y(t1) > 0 and y(0) = 0.

(vi) Therefore, proceeding as in (6.24), we can prove that the second derivative
y′′ is not ρ-moderate at some point y ∈ [0, t1].

This example clearly shows that in this non-Archimedean theory, we can easily

have infinite derivatives corresponding to an infinite number in the ring ρR̃, but we
cannot have functions with vertical tangent straight lines.
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Figure 6.1. A representation of the function
√
| − | (grey dash-

dot line) and its regularization ιbR

(√
| − |

)
(black line).

6.10. Relations with previous studies of local solutions of singular non-
linear ODEs. In [13] E. Erlacher and M. Grosser established a local existence
and uniqueness theorem for ODEs in the special Colombeau algebra of generalized
functions. While theirs and ours approach have certainly some similarities, they
differs in the following aspects:

• Composition of GSF is always defined while, in general, the composition of
Colombeau generalized function is not. To avoid this issue, the authors in
[13] based the composition of generalized functions, and hence the concept
of solution, on the notion of c-boundedness, see [13, 25].
• The domain of existence of the local solution in [13] has a positive standard

real radius α ∈ R>0, while, in general, the domain of existence of the local
solution given by Thm. 24 might have an infinitesimal radius α ≈ 0. This
is due to the more restrictive hypotheses considered in [13]. Therefore, in
some cases the result in [13] is better since, in general, it gives existence
and uniqueness on larger domains; on the other side, Thm. 24 allows the
studying of a wider range of problems such as those of sections 6.2, 6.3,
6.5. However, we will see how to obtain similar results in our context in the
following Section 7.3 about maximal sets of existence. A large existence
interval is a necessary consequence of the fact that Colombeau generalized
function must be defined on domain of the type c(Ω), which always contains
finite points and large neighbourhoods. In other words, the definition of
Colombeau generalized function does not allow to have functions defined
only on infinitesimal intervals (or on domains which contain infinite points).
• One of the more restrictive hypotheses considered in [13] is that F is

bounded by some real number on some neighborhood of (t0, y0). We do
not have to assume such a condition. This boundedness assumption on F
does not allow to solve problems such as those of sections 6.3, 6.5, 6.6.
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• In [13], the restriction to neighborhoods having a real positive radius forced
the authors to assume a logarithmic growth condition on the Lipschitz
constant of the function F (t, y) with respect to y in order to prove the
uniqueness of solutions. In contrast with their result, Thm. 24 ensures
uniqueness under milder hypotheses. This logarithmic assumption does
not allow to solve problems such as those of sections 6.8, 6.3, 6.5, 6.6.
• In [13], the gauge is fixed to ρε = ε. This does not allow to solve problems

such as those of sections 6.8, 6.7. In particular, we note that [44, Thm. 10]
assume to have a Colombeau generalized function as a solution of the con-
sidered ODE (6.21), but unfortunately no existence theorem in Colombeau
theory allows us to prove the existence of such a solution.

dobbiamo aggiungere qualcosa su altri articoli di ODE singolari, soprattutto quelli
di Lions.

7. Classical results for singular nonlinear ODEs

7.1. Uniqueness results of solutions.

7.2. Continuous dependence on initial data. Comparison theorem:

Theorem 30. Let H ⊆ ρR̃d, F ∈ ρGC∞([t0−α, t0 +α]×H, ρR̃d), u, v ∈ ρGC∞([t0−
α, t0 + α], H) be such that

∀t ∈ [t0 − α, t0 + α] : u′(t) ≤ F (t, u(t)) ≤ v′(t)
u(t0) ≤ v(t0).

Then u(t) ≤ v(t) for all t ∈ [t0 − α, t0 + α].

Proof. By contradiction, assume that u(T ) >L v(T ) for some T ∈ [t0 − α, t0 + α]
and some L ⊆0 I . �

7.3. Maximal sets of existence. Properties of the maximal interval of existence
of an ODE are some of the most well known results in the classical theory of ODEs.
In this section we want to study analogous properties in our generalized framework.
As we will show, most of the classical properties have their generalized counterparts.

Crucial for our approach is a sheaf property for GSF proved by Hans Vernaeve

in [53], which is based on the concept of interleave of a subset of ρR̃:

Definition 31. Let A ⊆ ρR̃. We let

interl(A) :=


m∑
j=1

eSjxj | m ∈ N, S1, . . . , Sm partition of (0, 1), xj ∈ A

 ,

where esj =
[
ISj
]

and ISj is the characteristic function of Sj .

The sheaf property that we will use is the following:

Theorem 32 (H.Vernaeve). For each m ∈ N, let Ωm ⊆ ρR̃d be a union of an in-
creasing sequence (Am,n)n∈N of internal sets with Am,n+1 neighborhood of Am,n ∀n ∈
N. Let um ∈ ρGC∞

(
Ωm,

ρR̃h
)
∀m ∈ N be such that um|Ωm∩Ω′m

= um′ |Ωm∩Ω′m
∀m,m′.

Let Ω = interl (∪m∈NΩm). Then there exists a unique u ∈ ρGC∞
(

Ω, ρR̃h
)

such that

u|Ωm = um ∀m ∈ N.
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An useful result about interleaves of finite unions of sets of intervals is the fol-
lowing:

Lemma 33. Let n ∈ N, α1, . . . , αn ∈ ρR̃>0. Then:

(i) interl([0, α1] ∪ · · · ∪ [0, αn]) = [0, α1 ∨ · · · ∨ αn];
(ii) ∃c1, . . . , cn ∈ [0, 1], with

∑n
i=1 ci = 1 and c2i = ci for all i = 1, . . . , n such that

for every x ∈ [0, α1∨· · ·∨αn] we have that cix ∈ [0, αi] for every i = 1, . . . , n;
(iii) let x =

∑n
i=1 cixi be the decomposition of x ∈ [0, α1 ∨ · · · ∨ αn], where c1, . . . , cn

are the constants given in ((ii)); if x ∈ [0, αi] then cjx ∈ [0, αi] ∩ [0, αj ] for
every i, j ≤ n;

(iv) for every i = 1, . . . , n let uαi ∈
ρGC∞

(
[0, αi],

ρR̃
)

be such that for every

i, j ≤ n
uαi |[0,αi]∩[0,αj ] = uαj |[0,αi]∩[0,αj ].

Then the unique common extension u ∈ ρGC∞
(

[0, α1 ∨ · · · ∨ αn], ρR̃
)

of uαi , . . . , uαn

satisfies the following property: for every x ∈ [0, α1 ∨ · · · ∨ αn]

u(x) =

n∑
i=1

ciuαi (cix) , (7.1)

where c1, . . . , cn are the constants given in ((ii)).

Proof. We will prove all the results for n = 2, as the general cases can be easily
proven by induction on n.

((i)) By definition, all the elements in interl([0, α1] ∪ [0, α2]) can be written as
eSx1 + eScx2 for S ⊆ (0, 1), x1 ∈ [0, α1], x2 ∈ [0, α2].
⊆: Let eSx1 + eScx2 = x. Let x1 = [x1,ε] , x2 = [x2,ε]. Assume that 0 ≤ x1,ε ≤

α1,ε and 0 ≤ x2,ε ≤ α2,ε for every ε ∈ I. Then ∀ε ∈ I xε ≤ max(x1,ε, x2,ε) ≤
max(α1,ε, α2,ε), hence 0 ≤ xε ≤ α1,ε ∨ α2,ε, and so x ∈ [0, α1 ∨ α2].
⊇: Let x = [xε] ∈ [0, α1∨α2], and let us assume that 0 ≤ xε ≤ α1,ε∨α2,ε ∀ε ∈ I.

Let S = {ε ∈ I | α1,ε ∨ α2,ε = α1,ε} . Let x1,ε = IS(ε) · xε, x2,ε = ISx · xε. Then,
clearly, x1 ∈ [0, α1], x2 ∈ [0, α2] and x = eSx1 + eScx2 ∈ interl([0, α1] ∪ [0, α2]).
Notice that by letting c1 = eS and c2 = eSc we have also proven ((ii)).

((iii)) Just set x1 = c1x and x2 = c2x. As c1 = eS and c2 = eSc with S =
{ε ∈ I | α1,ε ∨ α2,ε = α1,ε}, it follows that x1 ∈ [0, α1] and x2 ∈ [0, α2]. Moreover
(since c21 = c1 and c22 = c2) we have

c1x1 + c2x2 = c21x+ c22x = (c1 + c2)x = 1 · x = x.

((iv)) The existence of a unique extension of uα, uβ to [0, α1∨α2] is a consequence
of Theorem 32 together with the fact that interl([0, α1] ∪ [0, α2]) = [0, α1 ∨ α2].
Therefore to conclude it is sufficient to show that the function u given in equation
7.1 is a GSF that extends uα1 , uα2 . And this is trivial: u is a GSF as, for every
n ∈ N, by its definition it is immediate to notice that

||u||n,[0,α1∨α2] ≤ ||uα1
||n,[0,α1] + ||uα2

||n,[0,α2],

which proves the existence of polynomial bounds for u as both uα1 and uα2 are
GSF. To prove that u extends uα1

let x ∈ [0, α1]. Then by ((iii)) we have that
c2x ∈ [0, α1] and, as uα2

|[0,α1] = uα1
|[0,α1], we have

u(x) = c1uα1
(c1x) + c2uα2

(c2x) = c1uα1
(c1x) + c2uα1

(c2x) .
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To conclude, we show that c1uα1
(c1x) + c2uα1

(c2x) = uα1
(x). We do this ε-wise:

let uα1 = [uα1,ε], x = [xε]. Then

c1uα1
(c1x) + c2uα1

(c2x) = [IS(ε)uα1,ε (IS(ε)xε) + ISc(ε)uα1,ε (ISc(ε)xε)] .

If ε ∈ S then IS(ε)u1,ε (IS(ε)xε) = uα1,ε (xε) whilst ISc(ε)uα1,ε (ISc(ε)xε) = 0;
if ε ∈ Sc then IS(ε)uα1,ε (IS(ε)xε) = 0 whilst ISc(ε)uα1,ε (ISc(ε)xε) = uα1,ε (xε).
Therefore ∀ε ∈ I we have

IS(ε)uα1,ε (IS(ε)xε) + ISc(ε)uα1,ε (ISc(ε)xε) = uα1,ε (xε) ,

and so c1uα1
(c1x) + c2uα1

(c2x) = [uα1,ε (xε)] = uα1
(x) as desired. The case

x ∈ [0, α2] can be done similarly. �

From now on, we let {
y′(t) = F (t, y(t))

y(0) = y0

(7.2)

be a generalized ODE satisfying the hypotheses of Corollary 26. To avoid unnec-

essary complications, we assume that F (x, y) ∈ ρGC∞
(
ρR̃>0 × ρR̃n, ρR̃

)
and that

∀t ∈ ρR̃>0 ∃L ∈ ρR̃ ∃K bf ρR̃≥0 neighborhood of t such that all the Lipschitz con-

stants of F (x, y) on K × ρR̃n are bounded by L. In this way, by Corollary 26 we

deduce that for every t0 ∈ ρR̃≥0, for every y0 ∈ ρR̃n the problem{
y′(t) = F (t, y(t))

y(0) = y0

(7.3)

has a unique solution in a neighborhood of t0. We set

T =
{
α ∈ ρR̃>0 | ∃! solution of the problem 7.2 in ρGC∞

(
[0, α], ρR̃

)}
and M =

⋃
α∈T [0, α].

Theorem 34. M is the maximal set of existence of a unique solution u of Problem

7.2 in the sense that ∀α ∈ ρR̃>0 if [0, α] ⊆ dom(u) then [0, α] ⊆M . Moreover:

(i) M ∩ ρR̃>0 is open;
(ii) ∀α, β ∈M α ∨ β ∈M ;
(iii) interl(M) = M ;

(iv) if α ∈ ρR̃>0 is such that γ ∈ T for every γ ∈ (0, α) then [0, α) ⊆M .

Proof. The maximality of M is trivial.
((i)) As discussed above, this follows from the fact that, under our hypotheses

on F , Problem 7.3 has always a unique solution.
((ii)) Let uα, uβ be the unique solutions of Problem 7.2 respectively on [0, α], [0, β].

From Theorem 32 we deduce the existence of a unique u defined on interl([0, α] ∪
[0, β]) = [0, α∨β] such that u|[0,α] = uα, u|[0,β] = uβ . We claim that u is the unique
solution of Problem 7.2 on [0, α ∨ β]. Let α = [αε] , β = [βε]. By Lemma 33.((iv)),
we have that ∀t ∈ [0, α ∨ β] u(t) = c1u (c1t) + c2u (c2t), where c1 = [IS ] , c2 = [ISc ]
and S = {ε ∈ I | αε ∨ βε = αε}. Hence

u′(t) = c21u
′ (c1t) + c22u

′ (c2t) =

c1u
′ (c1t) + c2u

′ (c2t) (as c21 = c1, c
2
2 = c2)=

c1f (c1t, u (c1t)) + c2f (c2t, u (c2t)) = f(t, u(t)),
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where the last equality can be proved ε-wise as follows: if f = [fε], u = [uε] and
t = [tε] then ∀ε ∈ I

c1f (c1t, u (c1t)) + c2f (c2t, u (c2t)) =

[IS(ε)fε (IS(ε)tε, uε (IS(ε)tε)) + ISc(ε)fε (ISc(ε)tε, uε (ISctε))] ,

and we conclude as ∀ε ∈ I
IS(ε)fε (IS(ε)tε, uε (IS(ε)tε)) + ISc(ε)fε (ISc(ε)tε, uε (ISctε)) = fε (tε, uε (tε)) ,

namely

[IS(ε)fε (IS(ε)tε, uε (IS(ε)tε)) + ISc(ε)fε (ISc(ε)tε, uε (ISctε))] =

[fε (tε, uε (tε))] = f(t, u(t)).

To prove that u is the unique solution of Problem 7.2 on [0, α ∨ β], let v be
another such solution. Then necessarily v|[0,α] = uα and v|[0,β] = uβ , therefore by
Theorem 32 v = u, as u is the unique common extension of uα, uβ to [0, α ∨ β].

((iii)) Let x =
∑m
i=1 eSixi ∈ interl(M). Then x1, . . . , xm ∈M , hence ∃α1, . . . , αm ∈

T such that xi ∈ [0, αi] ∀i = 1, . . . ,m. And so x ∈ [0, α1∨· · ·∨αm] ⊆M by Lemma
33.

((iv)) Let n ∈ N be such that α > dρn. For every m ∈ N let γm := (α− dρm) ∨
dρn. Notice that

⋃
m∈N [0, γm] = [0, α) and that interl

(⋃
m∈N [0, γm]

)
= interl ([0, α)) =

[0, α). Our thesis follows from Theorem 32 by setting Ωm := [0, γm] and um the
unique solution of Problem 7.2 on Ωm. �

In general, as we will show in Example 40, the set M has not the form [0, α)

for some α ∈ ρR̃>0 ∪ {∞}. However, M can be considered as an “initial interval in
ρR̃≥0” in the following sense: for every α ∈ ρR̃>0, if α ∈M then [0, α] ⊆M .

In the classical theory of ODE it is well known that the boundedness of the
maximal interval of existence of the unique solution of an ODE is related with the
so-called “blow up” of the solution. In our generalized setting, the situation is
similar:

Theorem 35. Let α ∈ ρR̃>0 and let us assume that u is the unique solution of
Problem 7.2 on [0, α). Then TFAE:

(i) α ∈ T , i.e. [0, α] ⊆M ;
(ii) u can be extended, namely there exists α′ > α with α′ ∈ T ;

(iii) ∀n ∈ N ∂nu
∂tn is uniformly continuous on [0, α) and there exists Hn bf

ρR̃ with
∂nu
∂tn ([0, α)) ⊆ Hn.

Proof. The implication ((i))⇒((ii)) holds as M is open, whilst the converse is im-
mediate. To conclude we will prove that ((i)) and ((iii)) are equivalent.

((i))⇒((iii)) If α ∈ T then there exists a unique solution u of Problem 7.2

defined on [0, α]. As u ∈ ρGC∞
(

[0, α], ρR̃
)

, by Theorem 14.((v)) we get that u and

all its derivatives are uniformly continuous on [0, α]. Hence they are also uniformly

continuous on [0, α), so we deduce that ∀n ∈ N ∂nu
∂tn is uniformly continuous on [0, α).

Moreover, as [0, α] is functionally compact, for every n ∈ N the set Hn = ∂nu
∂tn ([0, α])

is functionally compact, and ∂nu
∂tn ([0, α)) ⊆ ∂nu

∂tn ([0, α]) ⊆ Hn.

((iii))⇒((i)) By Theorem 14.((iii)) there exists a unique u ∈ ρGC∞
(

[0, α], ρR̃
)

such that u|[0,α) = u. The fact that u is the unique solution of Problem 7.2 in
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ρGC∞
(

[0, α], ρR̃
)

follows from Lemma ??: in fact, for every t ∈ (0, α) = int([0, α])

u′(t) = u′(t) = f(t, u(t)) = f(t, u(t)), and so the same equality holds on (0, α) =

[0, α]. Moreover, if v ∈ ρGC∞
(

[0, α], ρR̃
)

is another solution of Problem 7.2 then

u = v on (0, α), and once again from Lemma ?? we deduce that then u = v on

(0, α) = [0, α]. �

Corollary 36. Let M be the maximal set of existence of the unique solution
u of Problem 7.2. Then for every α ∈ M \ M there exists n ∈ N such that
limt→α− |u(n)(t)| = +∞.

Proof. By Theorem 34,(iv) we have that [0, α) ⊆M . As α ∈M \M , we have that
condition (i) of Theorem 35 is not fulfilled, and the thesis hence follows by Theorem
35. �

In the classical case, the implication ((iii))⇒((i)) holds even if we replace ((iii))
with the much weaker condition “u([0, α)) is bounded”. In fact, this condition,
together with the fact that u, being a solution of Problem 7.2 on [0, α), satisfies the
integral equation

u(t) = y0 +

ˆ t

0

f(s, u(s))ds,

is sufficient to ensure the uniform continuity of u on [0, α) (and this remains true
also for GSF). In our setting, we had to strenghten this condition for the reasons
explained in Section 4: in the GSF setting, we always have to take into account all
the derivatives of u. In any case, a simple Corollary of Theorem 35 is the following
sufficient condition for the non-extendability of solutions:

Corollary 37. Let α ∈ ρR̃ and let us assume that u is the unique solution of
Problem 7.2 on [0, α). If there exists n ∈ N such that ∂nu

∂tn ([0, α)) is unbounded then
α /∈M .

We will show some examples of maximal intervals of existence in the next Section.

7.4. Gronwall Inequalities and sufficient conditions for global solutions.
In the classical theory of ODE there are various versions of Gronwall inequalities,
the most widely used being the differential and the integral form. In this section,
we want to prove the analogues of these two results for generalized ODE. As we will
see, the smoothness of GSF will allow to relax the regularity assumptions needed in
the classical case; however, the polynomial asymptotic bounds used to define GSF
will force us to assume certain logarithmic bounds similar to those of the previous
sections. Notably, our proofs are substantially identical to the classical ones.

Theorem 38 (Gronwall inequality for GSF, differential form). Let α ∈ ρR̃>0. Let

u, a ∈ ρGC∞
(

[0, α], ρR̃
)

. If u′(t) ≤ a(t)u(t) for every t ∈ (0, α) and ‖a‖[0,α],0 · α <
N · log

(
dρ−1

)
for some finite N ∈ N then

∀t ∈ [0, α]u(t) ≤ u(0) · e
´ t
0
a(s)ds.

Proof. Let v(t) = e
´ t
0
a(s)ds. Our assumption ‖a‖[0,α],0 · α < N · log

(
dρ−1

)
ensures

that v ∈ ρGC∞
(

[0.α], ρR̃
)

, as

∀t ∈ [0, α] 0 ≤ e
´ t
0
a(s)ds ≤ e

´ t
0
‖a‖[0,α],0ds ≤ eα·‖a‖[0,α],0 < eN ·log(dρ−1) = dρ−N
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(the estimates for higher order derivatives can be checked similarly). Notice that
∀t ∈ [0, α] we have

v(t) = e
´ t
0
a(s)ds ≥ e−α·‖a‖[0,α],0 ≥

e−N log(dρ−1) = dρN > 0,

hence also 1
v ∈

ρGC∞
(

[0, α], ρR̃
)

. Moreover, v′(t) = a(t)v(t) and v(0) = 1. By the

quotient rule (which is satisfied by GSF) we have that

∀t ∈ [0, α]
d

dt

u(t)

v(t)
=
u′v − v′u

v2
=
u′ − au

v
≤ 0.

By applying Corollary ?? to −uv we deduce that

∀t ∈ [0, α]
u(t)

v(t)
≤ u(0)

v(0)
= u(0),

namely u(t) ≤ u(0)e
´ t
0
a(s)ds. �

It is important to notice that the condition ‖a‖[0,α],0 · α < N · log
(
dρ−1

)
can

always be satisfied, provided that we take a sufficiently small α; henceforth the
following is a trivial Corollary of our previous result.

Corollary 39. Let α ∈ ρR̃>0. Let u, a ∈ ρGC∞
(

[0, α], ρR̃
)

. Let β ∈ (0, α] be such

that u′(t) ≤ a(t)u(t) for every t ∈ (0, β). Then there exists γ ∈ (0, β) such that

∀t ∈ [0, γ]u(t) ≤ u(0) · e
´ t
0
a(s)ds.

Example 40. Let us consider the generalized ODE{
y′(t) = 2y(t);

y(0) = 1.
(7.4)

For every N ∈ N, e2t is a solution of Problem 7.4 on
[
0, N log

(
dρ−1

)]
. We claim

that it is the unique solution: let u(t) be another solution, and let v(t) := e2t−u(t).
Notice that v(0) = 0. For every t ∈

[
0, N log

(
dρ−1

)]
we have

v′(t) ≤ 2v(t),

therefore, as a(t) ≡ 2 and 2 · N log
(
dρ−1

)
< (2N + 1) log

(
dρ−1

)
, we can apply

Theorem 38 to get that, for every t ∈
[
0, N log

(
dρ−1

)]
v(t) ≤ v(0)e2t = 0,

namely v(t) = e2t. Combining this fact with Theorem 34 we also get that the
maximal set of existence of the unique solution of Problem 7.4 is

M =
⋃
n∈N

[
0, N

(
log dρ−1

)]
,

as if t ≥ 0 is such that t /∈ M then e2t is not a GSF (since it is not polynomially
bounded by dρ−1). Notice that this provides an example of a maximal set of
existence of a solution of a generalized ODE which is not of the form [0, α) for any

α ∈ ρR̃≥0.

We now prove to the integral form of Gronwall inequality which, once again, is
completely analogue (in the statement and the proof) to the classical one:
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Theorem 41 (Gronwall inequality for GSF, integral form). Let α ∈ ρR̃>0. Let

u, a, b ∈ ρGC∞
(

[0.α], ρR̃
)

and assume that ‖a‖[0,α],0 · α < N · log
(
dρ−1

)
for some

finite N ∈ N. Assume that a(t) ≥ 0 ∀t ∈ [0, α] and that u(t) ≤ b(t) +
´ t

0
a(s)u(s)ds.

Then:

(i) for every t ∈ [0, α] we have

u(t) ≤ b(t) +

ˆ t

0

a(s)b(s)e
´ t
s
a(r)drds;

(ii) if b(t) is non-decreasing, for every t ∈ [0, α] we have

u(t) ≤ b(t)e
´ t
0
a(s)ds;

(iii) in particular, if b(t) ≡ b ∈ ρR̃ then for every t ∈ [0, α] we have

u(t) ≤ b · e
´ t
0
a(s)ds.

Proof. As in Theorem 38, the assumption ‖a‖[0,α],0 ·α < N · log
(
dρ−1

)
is sufficient

to prove that for every s ∈ [0, α] the function e
´ t
s
a(r)dr ∈ ρGC∞

(
[0, α], ρR̃

)
.

Notice that ((iii)) is a particular case of ((ii)) which is a particular case of ((i)):
in fact, as b(t) is non-decreasing then

b(t) +

ˆ t

0

a(s)b(s)e
´ t
s
a(r)drds ≤ b(t) ·

(
1 +

ˆ t

0

a(s)e
´ t
s
a(r)drds

)
=

b(t)·
(

1 +

ˆ t

0

a(s)e
´ t
0
a(r)dre−

´ s
0
a(r)drds

)
= b(t)·

(
1 + e

´ t
0
a(r)dr ·

(
−e
´ s
0
a(r)dr|s=ts=0

))
=

b(t)e
´ t
0
a(r)dr.

We are left to prove ((i)). Let

v(t) = e−
´ t
0
a(s)ds ·

ˆ t

0

a(s)u(s)ds ∈ ρGC∞
(

[0, α], ρR̃
)
. (7.5)

As GSF satisfy the fundamental theorem of calculus, as well as product and
chain rules for derivation, we get that

v′(t) =

(
u(t)−

ˆ t

0

u(s)a(s)ds

)
a(t)e−

´ t
0
a(s)ds ≤

b(t)a(t)e−
´ t
0
a(s)ds,

since, by assumption, for every t ∈ [0, α] a(t) ≥ 0 and u(t) ≤ b(t)+
´ t

0
u(s)a(s)ds.

By integrating in t, since v(0) = 0 from Theorem ?? we get

v(t) ≤
ˆ t

0

b(s)a(s)e−
´ s
0
a(r)drds

hence by equation (7.5) we obtain

e−
´ t
0
a(s)ds ·

ˆ t

0

a(s)u(s)ds ≤
ˆ t

0

b(s)a(s)e−
´ s
0
a(r)drds,

namely ˆ t

0

a(s)u(s)ds ≤ e
´ t
0
a(s)ds

ˆ t

0

b(s)a(s)e−
´ s
0
a(r)drds ≤
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ˆ t

0

b(s)a(s)e(
´ t
0
a(r)dr−

´ s
0
a(r)dr)ds =

ˆ t

0

b(s)a(s)e
´ t
s
a(r)drds,

and so u(t) ≤ b(t) +
´ t

0
a(s)u(s)ds ≤ b(t) +

´ t
0
a(s)b(s)e

´ t
s
a(r)drds. �

Example 42. Let us consider the generalized ODE{
u′(t) = (1 + δ)u(t);

u(0) = 1.
(7.6)

By the embedding properties we know that δ has its max in 0 and that (1+δ)(t) ≥
0 for every t ∈ ρR̃. Let α ∈ ρR̃≥0 be such that (1 + δ(0)) ·α < N log

(
dρ−1

)
for some

N ∈ N and let u(t) be a solution of Problem 7.6 in [0, α]. Then u(t) satisfies the
integral equation

u(t) = 1 +

ˆ t

0

(1 + δ(s))u(s)ds ≤ 1 +

ˆ t

0

(1 + δ(0))u(s)ds.

Therefore we can apply Theorem 41 to deduce that

u(t) ≤ (1 + δ(0)) e(1+δ(0))t

for every t ∈ [0, α].

Classically, one of the consequences of Gronwall’s Lemma is that if f(t, x) satisfies
the inequality

|f(t, x)| ≤ a(t)|x|+ b(t) (7.7)

with a, b positive functions then the ODE

u′ = f(t, u)

admits a unique global solution for every initial condition (see e.g. [50, Theorem
2.17]). As Example 40 shows, this result is false in the GSF setting due to the fact
exponential bounds of the form eg(t) are not sufficient to prove boundedness in the
GSF setting. Moreover, the Fréchet structure of GSF spaces forces to extend the
control given by condition 7.7 to all derivatives. Nevertheless, an analogue of the
classical global existence theorem given by the estimate 7.7 is the following:

Theorem 43. Let α ∈ ρR̃>0, let f ∈ ρGC∞
(

[0, α]× ρR̃, ρR̃
)
, let u0 ∈ ρR̃ and let M

be the maximal set of existence of the unique solution u of the initial value problem{
u′ = f(t, u);

u(0) = u0.
(7.8)

Moreover, let us assume that ∀n ∈ N there exists positive functions An(t), Bn(t) ∈
ρGC∞

(
[0, α], ρR̃

)
such that:

(i) ‖An‖[0,α],0 · α < N · log
(
dρ−1

)
for some N ∈ N;

(ii) for every t ∈M
∣∣ ∂n
∂tnu(t)

∣∣ ≤ An(t) |u(t)|+Bn(t).

Then [0, α) ⊆M .

Proof. If β ∈ M for every β < α then the thesis follows from Theorem 34,(iv).
Hence let us assume, by contrast, that there exists β < α with β ∈ M \M . As u
solves the initial value problem 7.8, by condition ((ii)) with n = 0 we deduce that

|u(t)| =
∣∣∣∣u0 +

ˆ t

0

f(s, u(s))ds

∣∣∣∣ ≤ |u0|+
ˆ t

0

|f(s, u(s))| ds ≤
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|u0|+
ˆ t

0

B0(s)ds+

ˆ t

0

A0(s) |u(s)| ds,

so by our assumptions ((i)) we can apply Theorem 41 with a(t) ≡ A0(t) and b(t) ≡
|u0|+

´ t
t0
B0(s)ds to get

|u(t)| ≤ b(t)e
´ t
0
A0(r)dr.

In particular, limt→β− b(t)e
´ t
0
A0(r)dr ∈ ρR̃ by condition ((i)). Therefore by condti-

tion ((ii)) it follows that limt→β−
∣∣ ∂n
∂tnu(t)

∣∣ ∈ ρR̃ for every n ∈ N, and this contradicts

that β ∈M \M by Corollary 36. �

Remark 44. Notice that Condition (ii) in Theorem 43 could be substitued with the

weaker condition
∣∣∣ ∂n+1

∂tn+1u(t)
∣∣∣ ≤ An(t)

∣∣ ∂n
∂tnu(t)

∣∣ + Bn(t), which is sometimes easier

to prove.

We will study the structure of the space of solutions of linear generalized ODEs in
Section ??. However, let us show an interesting particular consequence of Theorem
43 for GSF solutions of classical linear smooth problems:

Corollary 45. Let a(t), b(t) ∈ C∞(R). Then for every u0 ∈ ρR̃ the initial value
problem {

u′ = ιbR(a)u+ ιbR(b);

u(0) = u0,
(7.9)

has a unique solution in ρGC∞
(
ρR̃fin ∩ ρR̃>0,

ρR̃
)

.

Proof. Let γ = log
(
log
(
dρ−1

))
and let α ∈ R>0.

Claim 46. For every n ∈ N there exist pn(x), qn(x) ∈ R(x) such that
∣∣∣ ∂n+1

∂tn+1u(t)
∣∣∣ ≤

pn(γ) |u(t)|+ qn(γ).

Let us prove the claim by induction on n: for n = 0, since ιbR(a)(t) ≤ γ, ιbR(b)(t) ≤
γ for every t ∈ [0, α), we have

|u′(t)| = |ιbR(a)(t)u(t) + ιbR(b)(t)| ≤ γ|u(t)|+ γ.

Now assume the claim proven for every j ≤ n, and let us prove it for n+ 1 :∣∣∣∣ ∂n+1

∂tn+1
u(t)

∣∣∣∣ =

∣∣∣∣ ∂n∂tn (ιbR(a)(t)u(t) + ιbR(b)(t)
)∣∣∣∣ =∣∣∣∣∣

n∑
i=0

(
n

i

)
∂i

∂ti
(
ιbR(a)(t)

) ∂n−i
∂tn−i

u(t) +
∂n

∂tn
ιbR(b)(t)

∣∣∣∣∣ =∣∣∣∣∣
n∑
i=0

(
n

i

)
ιbR

(
∂i

∂ti
a

)
(t)

∂n−i

∂tn−i
u(t) + ιbR

(
∂n

∂tn
b

)
(t)

∣∣∣∣∣ ≤
n∑
i=0

(
n

i

) ∣∣∣∣ιbR( ∂i

∂ti
a

)
(t)

∣∣∣∣ ∣∣∣∣ ∂n−i∂tn−i
u(t)

∣∣∣∣+

∣∣∣∣ιbR( ∂n

∂tn
b

)
(t)

∣∣∣∣
For every t ∈ ρR̃≤α we have that

∣∣∣ιbR ( ∂i

∂ti a
)

(t)
∣∣∣ < γ and

∣∣ιbR ( ∂n∂tn b) (t)
∣∣ < γ,

hence ∣∣∣∣ ∂n+1

∂tn+1
u(t)

∣∣∣∣ ≤ n∑
i=0

(
n

i

)
γ

∣∣∣∣ ∂n−i∂tn−i
u(t)

∣∣∣∣+ γ;
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to conclude, we use the inductive hypothesis to get∣∣∣∣∂n+1

∂tn
u(t)

∣∣∣∣ ≤ n∑
i=0

(
n

i

)
γ (pn−1(γ) |u(t)|+ qn(γ)) + γ,

which is an expression of the desired form.
Having proven the claim, we now let An = pn and Bn = qn. Conditions

((i)), ((ii)) of Theorem 43 are immediately proven, and this shows that [0, α) ∈M
for every α ∈ R>0. Therefore ρR̃fin ∩ ρR̃>0 ⊆M and our thesis is proven. �

Remark 47. More in general, assume that we are given the initial value problem{
u′ = A(t)u+B(t);

u(0) = u0,
(7.10)

and assume that A(t), B(t) ∈ ρGC∞
(
ρR̃, ρR̃

)
are “logarithmic in all derivatives

in a Fermat neighborhood of 0” (namely ∀n ∈ N ∃r ∈ R>0, N ∈ N such that
||A||n,[−r.r] < N · log

(
dρ−1

)
, ||B||n,[−r.r] < N · log

(
dρ−1

)
). Then with a very

similar proof to that of Corollary 45 it is possible to show that the maximal set of
existence of the unique solution of the initial value problem 7.10 contains a Fermat
neighborhood of 0.

Of course, the converse of Remark 47 does not hold true, as the following example
shows:Questo esempio va ricontrollato nei dettagli

Example 48. Consider the initial value problem{
u′ = ιbR (δ) · u;

u(0) = 1.
(7.11)

This problem has a global solution, namely u(t) = eι
b
R(H)(t). Observe that,

in the notations of Remark 47, we have A(t) = δ(t), B(t) = 0, and A(t) is not
logarithmically bounded on any Fermat neighborhood of 0, as δ(0) > N · log

(
dρ−1

)
for every N ∈ N. However, notice that whilst the initial value problem 7.11 has a
unique solution, the seemingly similar problem{

u′ = ιbR (δ′) · u;

u(0) = 1,

has no solutions, as its solution would have the form eι
b
R(δ)(t), which is not a GSF

in any sharp neighborhood of 0.

7.5. The flow of a generalized ODE. Flow for weak solutions/Mardsen/Spornberger
thesis

Theorem 49. Let ∅ 6= K bf
ρR̃ be a solid set and let F ∈ ρGC∞

(
K × ρR̃d, ρR̃d

)
.

Let us assume CHECK. Then there exists a unique GSF Φ(t, x) : M̃ × ρR̃
d
→ ρR̃

such that

(i) ∂
∂tΦ(t, x) = f (t,Φ(t, x)) ;

(ii) Φ(0, ·) = id;
(iii) Φ(t+ s, ·) = Φ (t,Φ(s, ·)) .
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Proof. First of all, let us notice that in such a function Φ (which, in analogy with

the classical case, we will call “flux of the ODE”) exists, then for every x ∈ ρR̃d we
have that ux(t) := Φ (t, x) is the unique solution of the initial value problem{

u′ = F (t, u);

u(0) = x,
(7.12)

hence the uniqueness of Φ is an immediate consequence of Theorem 24.

Regarding the existence, for every (t, x) ∈ M̃ × ρR̃
d

we let Φ (t, x) be the unique
solution of the initial value problem 7.12. It remains to prove that (t, x)→ Φ(t, x)
is a GSF. Va fatta ε wise, copiare Sporneberg sistemando solo la cosa sulle derivate.

�

8. Characterization of distributions among GSF

8.1. Embedded distributions. In this section we want to characterize those GSF
that are obtained as embedding of distributions with respect to an abstract embed-
ding ιbΩ

ιbΩ : D′ → ρGC∞(Ω•, ρR̃)

defined by using an infinite b ∈ ρR̃ and a Colombeau mollifier µ, where

Ω• = {x ∈ c(Ω) | ∃x◦ ∈ Ω}
(see Section ?? for details).

Remark 50. By Theorem 18 of [20], we have that if f ∈ ρGC∞(c(Ω), ρR̃) is such
that f |Ω• = 0 then f = 0, and by Theorem 21 of [20] we have that ιbΩ is injective.
Thus also

T ∈ D′(Ω) 7−→ ιbΩ(T )|Ω• ∈ ρGC∞(Ω•, ρR̃)

is injective. We identify a distribution T ∈ D′(Ω) with a function g ∈ Ck(Ω) if
T (f) =

´
Ω
f(x)g(x)dx for every f ∈ D(Ω).

Definition 51. Let V ⊆ Ω•, f ∈ ρGC∞(V, ρR̃) and F ⊆ D′(Ω). Then we say that:

(i) f is an embedded F -function (relatively to ιbΩ) if V = Ω• and there exists
T ∈ F such that f = ιbΩ(T ); if the distribution T corresponds to g ∈ Ck(Ω)
we will say that f is an embedded Ck(Ω) function;

(ii) f is a restricted embedded F -function (relatively to ι) if ∃T ∈ F such that
f = ιbΩ(T )|V .

Remark 52. Let us notice that from the definition it easily follows that f is a

restricted embedded F -function iff ∃f̂ ∈ ρGC∞(Ω•, ρR̃) such that f̂ is an embedded

F -function with f̂ |V = f .

In this section we want to characterize which GSF are embedded distributions.
The main technical result involving embedded GSF that we will use is the following
localization Lemma.

Lemma 53. Let f ∈ GC∞
(

Ω•, ρR̃
)
. Assume that F ⊆ D′ be a subsheaf such that

∀W ∈ τRn ιW |F (W ) : F (W )� ρGC∞(Ω•, ρR̃)

and (
ιW |F (W )

)
: F → ρGC∞((−)•, ρR̃)
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is a natural transformation. Then the following facts are equivalent:

(i) f is an embedded F (Ω)-function;
(ii) ∀x ∈ Ω∃W ∈ τRn such that x ∈ W ⊆ Ω and f |W• is an embedded F (W )-

function;
(iii) ∀x ∈ Ω ∃W ∈ τRn such that x ∈ W ⊆ Ω, W is relatively compact in Ω and

f |W• is an embedded F (W )-function

Proof. (i)⇒(ii) It sufficies to set W := Ω, so f |ρΩ̃′
is an embedded distribution.

(ii) ⇒(i) For every x ∈ Ω let Wx be an open subset of Ω with x ∈ Ω, and let
gx ∈ F (Wx) be such that

f |ρW̃x
= ιbWx

(gx).

C = {Wx | x ∈ Ω} is an open covering of Ω and {gx | x ∈ Ω} is a coherent family
of distributions with respect to C, since for every x, y ∈ Ω we have

ιbWx∩Wy

(
gx|Wx∩Wy

)
= ιbWx

(gx)|
ρ ˜(Wx∩Wy)

= f |
ρ ˜(Wx∩Wy)

=

ιbWy
(gy)|

ρ ˜(Wx∩Wy)
= ιbWx∩Wy

(
gy|Wx∩Wy

)
,

and as ιbΩx∩Ωy
is injective by hypothesis, we get that gx|Ωx∩Ωy = gy|Ωx∩Ωy .

By the sheaf properties of F we get that there exists g ∈ F such that for every
x ∈ Ω g|W•x = gx = f |W•x . In particular, for every y ∈ Ω• we have that y ∈ W •y◦ ,
hence we deduce that ∀y ∈ Ω• g(y) = f(y), and we conclude by using Remark 50.

(iii)⇒(ii) is trivial.
(ii)⇒(iii) Let x ∈ W =

⋃
{A ⊆ W | A is relatively compact inW}. Hence there

exists a relatively compact set A such that x ∈ A ⊆ W ⊆ Ω. In particular,
Ω• ⊆W •. Let T ∈ F (W ) be such that f |W• = ιbW (T ). Then

f |A• = (f |W•) |A• = ιbW (T )|A• = ιbA (T |A) ,

and we conclude as T |A ∈ F by hypothesis. �

Our characterization relies on the notion of “standard part” of a GSF.

Definition 54. Let f ∈ ρGC∞(Ω•, ρR̃). Then we say that:

(i) f is near standard if and only if ∀x ∈ Ω f(x) ∈ ρR̃•;
(ii) f is strongly near standard if and only if ∀x ∈ Ω• f(x) ∈ ρR̃•;
(iii) if f is near standard, then we will denote by f◦ : Ω → R the function such

that ∀x ∈ Ω f◦(x) = (f(x))◦ ∈ R;
(iv) f is standard if and only if there exists g ∈ C0(Ω,R) such that f = ιbΩ(g).

Remark 55. If f is near standard then ∀x ∈ Ω f◦(x) = (f(x))
◦ ∼ f(x) exactly as if

x ∈ Ω• then x◦ ∼ x. This justifies the names in Definition 54.

The following result is a modification of Theorem controllare nella versione defini-
tiva del vostro lavoro in [20].

Lemma 56. Let g ∈ C0(Ω,R). Then:

(i) ιbΩ(g) is strongly near standard;

(ii) ∀x ∈ Ω•
(
ιbΩ(g)(x)

)◦
= g(x◦). In particular

(
ιbΩ(g)

)◦
= g.

Therefore, every standard GSF is strongly near standard.
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Proof. (i) Let x = [xε] ∈ Ω• with y = x◦ ∈ Ω. Let r, s ∈ R>0 be such that
∀◦ε d(xε,Ω

c) ≥ r, |xε| ≤ s. Then χε (xε) = 1, and so

ιbΩ(g)(x) =
[(
g ∗ µbε

)
(xε)

]
.

As x◦ ∈ Ω, there exists a relatively compact set K ⊂ Ω such that for ε sufficiently
small xε ∈ K. But

(
g ∗ µbε

)
→ g as ε→ 0+ on compact subsets of Ω, therefore∣∣(g ∗ µbε) (xε)− g(x◦)
∣∣ ≤ ∣∣(g ∗ µbε) (xε)− g(xε)

∣∣+ |g(xε)− g(x◦)|∥∥(g ∗ µbε)− g∥∥∞K + |g(xε)− g(x◦)| → 0.

Then f(x) =
[(

(χε · g) ∗ µbε
)

(xε)
]
. Then

(f(x))◦ = lim
ε→0+

fε(xε) = lim
ε→0+

(
(χε · g) ∗ µbε

)
(xε) = g(y)

as g is continuous. Hence f strongly admits a standard part, and f◦ = g, so
f = ιbΩ(g) = ιbΩ (f◦) .

(ii) is an immediate consequence of (i). �

Remark 57. Notice that Lemma 56 is easily generalizable to all ι that satisfy the
following property: ∀g ∈ C0(Ω) ∃ (gε) ∈ C∞(Ω)I :

• (gε) defines ιΩ(g);
• (gε)→ g as ε→ 0+ uniformly on compact subsets of Ω.

Together with Lemma 53, the following result will provide a characterization of
all embedded distributions.

Theorem 58. Let f ∈ ρGC∞(Ω•, ρR̃), F (Ω) ⊆ C0(Ω), and let ιbΩ satisfy the prop-
erties of Remark 57. The following properties are equivalent:

(i) f is an embedded F (Ω)-function;
(ii) f is near standard, f◦ ∈ F (Ω), f = ιbΩ (f◦) ;
(iii) f is strongly near standard, f◦ ∈ F (Ω), f = ιbΩ(f◦).

Proof. (i)⇒(ii) Let g ∈ F (Ω) be such that f = ιbΩ(g). As F (Ω) ⊆ C0(Ω), by
applying Lemma 56 we get that ιbΩ(g) = f is near standard. But then f◦ =(
ιbΩ(g)

)◦
= g ∈ F (Ω), and so f = ιbΩ(f◦) as desired.

(ii)⇒(iii) As f◦ ∈ F (Ω) ⊆ C0(Ω), by Lemma 56 we get that ιbΩ(f◦) = f is
strongly near standard.

(iii)⇒(i) This is trivial. �

As an immediate corollary we obtain the following characterization of embedded
Cα(Ω) functions.

Corollary 59. Let α ∈ Nnand let f ∈ ρGC∞(Ω•, ρR̃). The following properties are
equivalent:

(i) there exists g ∈ Cα(Ω) such that f = ιbΩ(g);
(ii) f is near standard, f◦ ∈ Cα(Ω), f = ιbΩ(f◦);
(iii) f strongly admits a standard part f◦ ∈ Cα(Ω) and f = ιbΩ(f◦).

Both requests in Condition (iii) of Theorem 58 are needed to prove that f is an
embedded continuous function.

Example 60. Let f be the GSF such that for every x ∈ Ω• f(x) = b−1. Then f
strongly admits 0 as its standard part; however, ibΩ(0) = 0 6= b−1.
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Definition 61. Let F ⊆ D′(Ω) be a subpresheaf, and let α ∈ Nn. We set

F−α(Ω) = {DαT | T ∈ F} .

Theorem 62. Let α ∈ Nn and let f ∈ ρGC∞(Ω•, ρR̃). Let F ⊆ D′ be a subpresheaf.
The following properties are equivalent:

(i) f is an embedded F−α(Ω)-function;

(ii) there exists g ∈ ρGC∞(Ω•, ρR̃) which is an embedded F (Ω)-function such that
∂αg = f .

Proof. (i)⇒(ii) Let T ∈ F−α(Ω) be such that f = ιbΩ(T ). Let g ∈ F be such that
T = Dαg. Then ∂α

(
ιbΩ (g)

)
= ιbΩ (Dα(g)) = ibΩ(T ) = f .

(ii)⇒(i) Let g ∈ ρGC∞(Ω•, ρR̃) be such that f = ∂αg, and let g = ιbΩ(T ) for
T ∈ F . Then f = ∂α (g) =

(
ιbΩD

α(T )
)

= ∂α(ιbΩ(g)). �

The characterization of embedded distributions can be deduced from Theorem
?? and Lemma 53 by applying the local characterization theorem of distributions
as weak derivatives of continuous functions (see e.g. [49], Chapter 6):

Theorem 63. Let f ∈ ρGC∞(Ω•, ρR̃). The following properties are equivalent:

(i) there exists T ∈ D′(Ω) such that f = ιbΩ(T );
(ii) for every x ∈ Ω there exists K b Ω, a multi-index α and a continuous

function g ∈ C(K) such that x ∈
◦
K and f| ◦

K

= ∂α
(
ιb◦
K

(g)

)
.

Proof. (i)⇒(ii) Let x ∈ Ω and let K b Ω be such that x ∈
◦
K. By the sheaf

properties of ibΩ (see Theorem ??) we have that f| ◦
K

= ιb◦
K

(
T|K
)
. T|K is a compactly

supported distribution, hence there exists g ∈ C(Ω) and a multi-index α such that

T|K = ∂α(g). Hence f| ◦
K

= ιb◦
K

(
T|K
)

= ιb◦
K

(∂α(g)) = ∂α
(
ιb◦
K

(g)

)
.

(ii)⇒(ii) For every x ∈ Ω let Kx b Ω, α, gx ∈ C(K) be such that x ∈
◦
Kx and

f| ◦
Kx

= ∂α
(
ιb◦
Kx

(gx)

)
. In particular, this shows that for every x ∈ Ω there exists

Tx ∈ D′
(
◦
Kx

)
such that f| ◦

K

= ιb◦
K

(Tx). The family {Ωx | x ∈ Ω} gives an open

covering of Ω; moreover, for every x, y ∈ Ω we have that

(Tx)| ◦
Kx∩

◦
Ky

= (Tx)| ◦
Kx∩

◦
Ky

.

By the sheaf properties of D′(Ω) hence there is T ∈ D′(Ω) such that for every
x ∈ Ω T| ◦

Kx

= Tx, and hence by Lemma 53 we deduce that f = ιbΩ(T ). �

Example 64. Let
(
e(

1
ε )
)

= O(ρε) and let f(x) = e[
1
ε ]t. Let b ∈ ρR̃ be positive

infinite and let Ω be an open neighborhood of 0. Is f(x) an embedded distribution

in ρGC∞(Ω•, ρR̃) w.r.t ιbΩ? The answer is no: no primitive of f(x) strongly admits a
standard part on any Fermat neighborhood of zero, hence we conclude by applying
Theorem 63.

Condition (ii) in Theorem 63 can be summarized by saying that f , to be an
embedded distributions, needs to have locally standard Ck-primitives. As in the
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classical setting, two different primitives of a GSF differ by a polynomial (which,

in the GSF case, has coefficients in ρR̃). Hence, for applications, it is important to
know two things: when a generalized polynomial admits a standard part, and when
it is an embedded distribution.

Lemma 65. Let P (x) ∈ ρR̃[x]. Then P (x) admits a standard part if and only if
all its coefficients are near standard.

Proof. Let P (x) =
∑n
i=1 cix

i. If ci is near standard for every i ≤ n then P ◦(x) =∑n
i=1 c

◦
i x
i, so P (x) admits a standard part.

Conversely: let us assume that P (x) admits a standard part and, by contrast, let
us assume that at least one of the coefficients ci is not near standard. Let ci = [ci,ε]
for every i ≤ n. There are two possible cases:

Case 1: all the nets (ci,ε) are bounded. Let cj be a coefficient that does not
admit a standard part; as cj does not admit a standard part, there are two se-
quences (δm)m∈N , (δ′m)m∈N such that limm→+∞ δm = limm→+∞ δ′m = 0, and
limm→+∞ cj,δm and limm→+∞ cj,δ′mexist finite with limm→+∞ cj,δm 6= limm→+∞ cj,δ′m .
By using a classical diagonal argument, as all the nets (ci,ε) are bounded we can
extract subsequences (εm) ⊂ (δm), (ε′m) ⊂ (δ′m) such that for every i ≤ n the limits
limm→+∞ ci,εm and limm→+∞ ci,ε′m exist finite. As P (x) admits a standard part,
for every x ∈ Ω we have that

P ◦(x) = lim
m→+∞

(
n∑
i=1

ci,εmx
i

)
= lim
m→+∞

(
n∑
i=1

ci,ε′mx
i

)
.

Since the limits limm→+∞ ci,εm and limm→+∞ ci,ε′m exist finite, we also have that

lim
m→+∞

(
n∑
i=1

ci,εmx
i

)
=

n∑
i=1

(
lim

m→+∞
ci,εm

)
xi

and

lim
m→+∞

(
n∑
i=1

ci,ε′mx
i

)
=

n∑
i=1

(
lim

m→+∞
ci,ε′m

)
xi.

In particular, we have that

∀x ∈ Ω

n∑
i=1

(
lim

m→+∞
ci,εm

)
xi =

n∑
i=1

(
lim

m→+∞
ci,ε′m

)
xi,

and this is possible if and only if ∀i ≤ n limm→+∞ ci,εm = limm→+∞ ci,ε′m , which
is false for i = j. Hence we have an absurd.

Case 2: There exists an index j ≤ n and a subsequence (εm) s.t. limm→+∞ εm =
0 and limm→+∞ cj,εm = ±∞. By the usual diagonal arguments, it is possible
to extract a subsequence (ε′m) ⊆ (εm) such that limm→+∞ ci,ε′m exists (finite or

infinite) for every i ≤ n. We set I =
{
i = 0, . . . , n | limm→+∞ ci,ε′m ∈ {+∞,−∞}

}
.

For every i ∈ I we let

Mi =
{
m ∈ N |

∣∣ci,ε′m ∣∣ ≥ ∣∣cj,ε′m ∣∣ ∀j ∈ {0, . . . , n}} .
As N =

⋃n
i=1Mi, there exists an index i such that Mi is infinite. For every

m ∈ N let f(m) be the m-th element of Mi and let δm = ε′f(m). By construction,

there are sequecences (r0,δm) , . . . , (rn,δm) such that

• ∀i = 0, . . . , n, ∀m ∈ N |ri,δm | ≤ 1;
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• ∀i = 0, . . . , n, ∀m ∈ N ci,δm = ri,δm · ci,δm .

For every x ∈ Ω we have that cn,δmx
n+ · · ·+ c0,δm = ci,δm · (rn,δmx

n + · · ·+ r0,δm) .

As P (x) has a standard part and limm→+∞ ci,δm = ±∞, it must be

lim
m→+∞

(rn,δmx
n + · · ·+ r0,δm) = 0.

By extracting a subsequence (δ′m) ⊆ (δm) we can suppose that for every i =
0, . . . , n limm→+∞ ri,δmexists finite. Then for every x ∈ Ω

0 = lim
m→+∞

(
rn,δ′mx

n + · · ·+ r0,δ′m

)
=

n∑
i=0

(
lim

m→+∞
ri,δ′m

)
xi,

and this is possible if and only if limm→+∞ ri,δ′m = 0 for every i ≤ n, which is
absurd as limm→+∞ ri,δ′m = 1. �

Theorem 66. Let P (x) =
∑n
i=0 cix

i ∈ ρR̃(x). Then P (x) is an embedded distribu-
tion if and only if ci ∈ R for every i = 0, . . . , n.

Proof. If P (x) ∈ R(x) then P (x) ∈ C∞(Ω), and so ιbΩ(P (x)) = P (x), which shows
that P (x) is an embedded distribution.

Conversely, let us assume that P (x) ∈ ρR̃(x) is an embedded distribution. Let
x ∈ Ω. By Theorem 63 locally P (x) is the derivative of an embedded continuous
function, namely there exists k ∈ N such that locally a k-th primitive of P (x) is an
embedded continuous function. The k-th primitives of P (x) have the form

P−k(x) =

n∑
i=0

cix
i+k +Q(x),

where Q(x) ∈ ρR̃(x) is a generalized polynomial with degree smaller than k. Let

Q(x) =
∑k−1
j=0 qjx

j . As P−k(x) is an embedded continuous function, it must have
a standard part, so by Lemma 65 we deduce that ∀i = 0, . . . , n ci is near standard
and ∀j = 0, . . . , k − 1 qj is near standard. Hence

(
P−k

)◦
(x) =

n∑
i=0

(ci)
◦
xi +

k−1∑
j=0

(qj)
◦
xj ∈ C∞(Ω),

so, as by Theorem 58 it must be P−k(x) = ibΩ

((
P−k

)◦
(x)
)

, we deduce that

P−k(x) =
∑n
i=0 (ci)

◦
xi +

∑k−1
j=0 (qj)

◦
xj . Therefore ∀i = 0, . . . , n ci = c◦i ∈ R. �

Example 67. Let Ω ⊆ R be open, and let r ∈ R̃. Let f ∈ ρGC∞(Ω•, ρR̃) be such
that f(x) = r for every x ∈ Ω•. Is f(x) an embedded distribution? Let x ∈ Ω,
and let us assume that f is an embedded distribution. By Theorem ?? we find a
Fermat open neighborhood Ω′ of x, a natural number k and a continuous function
g ∈ C0(Ω) such that

Fk = ibΩ′(g)|ρΩ̃′
,

where Fk is a k-th primitive of f . As f is constant, this k-th primitive has the form
Fk(x) = rxk +P (x), where P (x) is a polynomial whose degree is less than k. From
Theorem ?? we get that Fk has to have a standard part F ◦k and Fk = ibΩ(F ◦k ). As
Fk has to be equal to the embedding of its standard part, which is a polynomial,
we also deduce from Theorem 66 that it must be r = r◦, and this happens if and
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only if r ∈ R. Therefore we have that f is an embedded distribution if and only if
r ∈ R, in which case f is actually an embedded C∞-function.

Example 68. Let Ω ⊆ R be open, let h ∈ D(Ω), h 6= 0 and let J ∈ ρR̃ be infinite.
Let f(x) = J · h(x) for every x ∈ Ω• (we identify h(x) with its embedding). Let
us assume that f is an embedded distribution. Let x ∈ Ω. As usual, by applying
Theorem ?? we find a Fermat neighborhood Ω′ of x, a natural number k and a
continuous function g such that

Fk = ibΩ′(g)

on Ω′, where Fk is a k-th primitive of f . The k-th primitives of f have the
following expression:

Fk = J · (Hk(x) + P (x)) ,

where Hk(x) is (the embedding of) a (classical) k-th primitive of h, and P (x) ∈
ρR̃[x] is a polynomial whose degree is less than k. From Theorem ?? we get that
Fk must have a standard part. As J is infinite, this entails that Hk(x) + P (x)
must have the function constantly equal to 0 as its standard part. In particular, as
(Hk)

◦
= Hk, we deduce that P has to have a standard part, and so Hk = P ◦. As

degP < k we deduce that degP ◦ < k, namely Hk is a polynomial whose degree is
less than k. But then h = ∂kHk = 0, and this is absurd. Hence we have that f(x)
is not an embedded distribution on Ω.

Example 69. Let Ω, h and J be as in Example 68. Let f(x) = J · h(J · x)
(notice that f(x) has some similarities with ιbΩ(δ)). Let us assume that f(x) is an
embedded distribution, and let x ∈ Ω. By applying Theorem ?? we find a Fermat
neighborhood Ω′ of x, a natural number k and a continuous function g such that

Fk = ibΩ′(g)

on Ω′, where Fk is a k-th primitive of f . The k-th primitives of f have the
following expression:

Fk = J1−kHk(J · x) + P (x),

whereHk(x) is (the embedding of) a (classical) k-th primitive of h, and P (x) ∈ ρR̃[x]
is a polynomial whose degree is less than k. From Theorem ?? we get that Fk must
have a standard part. But, as Hk(x) ∈ D(Ω), we have that

F ◦k (x) =

{
P ◦(x), ifx 6= 0;

J1−kHk(0) + P ◦(0), ifx = 0.

In particular, this means that P ◦ exists, and so P ◦(0) ∈ R. Therefore, as J is
infinite, if k = 0 and Hk(0) 6= 0 we have an absurd. If k = 0 and Hk(0) = 0 we
have that F ◦k is a polynomial with degree less than k and, since Fk = iΩ′(F

◦
k ), we

deduce that Fk is a polynomial with degree less than k and so f = DkFk = 0,
and this entails h ≡ 0, which is absurd. So we can assume that k > 0. It must
be J1−kHk(0) + P (0) ∈ R•. If k > 1 then

(
J1−kHk(0)

)◦
= 0, hence F ◦k = P ◦ and

we can argue as before. And this concludes the proof as, if F1 is an embedded
C0-function then also F2 is (for some P (x)), and we showed that this is impossible.
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8.2. Association. In Colombeau theory it has been also considered a weaker cor-
respondence between distributions and generalized functions, called association (see
e.g. REFERENCES). An analogous notion can be introduced also for GSF:

Definition 70. Let Ω ⊆ Rn be open, and let f, g ∈ ρGC∞(ρΩ̃, ρR̃). We say that
f, g are associated (notation: f ∼ g) if for every h ∈ D(Ω) we have thatˆ

Ω̃

(f − g)hdx ≈ 0.

A straightforward consequence of Definition 70 is that, for every GSF f, g, if
f ∼ g then Df ∼ Dg.

In Section 8.1 we showed that not all the functions that have a continuous
standard part are embedded distributions. However, they are always associated
to the embedding of their standard part:

Theorem 71. Let f ∈ ρGC∞(c(Ω), ρR̃). If f strongly admits a continuous standard
part f◦ then f ∼ ιbΩ (f◦).

To prove Theorem 71 we will use the following Lemma

Lemma 72. Let f, g ∈ ρGC∞(c(Ω), ρR̃). If f(x) ≈ g(x) for every near standard
point x ∈ c(Ω) then f(x) ≈ g(x) for every x ∈ c(Ω).

Proof. By contrast, let x = [xε] ∈ c(Ω) be such that f(x) 6≈ g(x). Hence there
exists a sequence (εm)m∈N and a real number r > 0 such that limm→+∞ εm = 0 and
limm→+∞ |fεm (xεm)− gεm (xεm)| > r. As x ∈ c(Ω), we can extract a subsequence
(δm) ⊂ (εm) such limm→+∞ δm exists finite. For every ε ∈ (0, 1] let m(ε) :=
min {m ∈ N | δm < ε}. Let y =

[
ym(ε)

]
. Then y is near standard but |f(y)−g(y)| >

r, which is absurd. �

We can now prove Theorem 71.

Proof. f strongly admits a standard part f◦, hence for every near standard point
x ∈ c(Ω) we have that f(x) ≈ f◦ (x◦). By hypothesis, f is continuous, therefore for
every near standard point x ∈ c(Ω) f◦ (x◦) ≈ ιbΩ (f◦) (x). Therefore for every near
standard point x ∈ c(Ω) we have that f(x) ≈ ιbΩ (f◦) (x), and hence by Lemma 72
we get that f(x) ≈ ιbΩ (f◦) (x) for every x ∈ c(Ω). Now let ϕ ∈ D(Ω). As ϕ has a
compact support, we have thatˆ

ρΩ̃

(
f − ιbΩ (f◦)

)
· ϕdx =

ˆ
ρ ˜supp(ϕ)

(
f − ιbΩ (f◦)

)
· ϕdx.

Let M = max |ϕ|. Then∣∣∣∣∣
ˆ
ρ ˜supp(ϕ)

(
f − ιbΩ (f◦)

)
· ϕdx

∣∣∣∣∣ ≤
ˆ
ρ ˜supp(ϕ)

∣∣f − ιbΩ (f◦)
∣∣ · |ϕ| dx ≤

M ·max
∣∣f − ιbΩ (f◦)

∣∣ · µ(supp(ϕ))

which is infinitesimal as M ∈ R, µ(stsupp(ϕ)) ∈ R and max
∣∣f − ιbΩ (f◦)

∣∣ ≈ 0 as

ρ ˜stsupp(ϕ) ⊂ c(Ω). �

As a consequence we get a criterion to test if a given GSF is associated with a
distribution.
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Theorem 73. Let Ω ⊆ Rn be an open set, and let f ∈ ρGC∞(Ω•, ρR̃) be a GSF that
strongly admits a continuous standard part g on Ω. Then f ∼ g.

Proof. f strongly admits a standard part, therefore

∀x ∈ Ω•f(x)≈g(x◦).

As g is continuous, by Lemma 72 we have that g(x◦)≈ιbΩ(g)(x) for every x ∈ Ω•..
Hence we have that

∀x ∈ Ω• f(x)≈ιbΩ(g)(x).

From Lemma 72 we get that

∀x ∈ c(Ω) f(x)≈ιbΩ(g)(x). (8.1)

Now let ϕ ∈ D(Ω). As supp(ϕ) = K is a compact subset of Ω, we get thatˆ
ρΩ̃

(
f(x)− ιbΩ(g)(x)

)
· ϕ(x)dx =

ˆ
ρK̃

(
f(x)− ιbΩ(g)(x)

)
· ϕ(x)dx.

Now let M = maxx∈K |ϕ(x)|. We have that∣∣∣∣ˆ
ρK̃

(
f(x)− ιbΩ(g)(x)

)
· ϕ(x)dx

∣∣∣∣ ≤ ˆ
ρK̃

∣∣f(x)− ιbΩ(g)(x)
∣∣ · |ϕ(x)| dx ≤

M ·
ˆ
ρK̃

∣∣f(x)− ιbΩ(g)(x)
∣∣ dx.

But K is compact (hence it has a finite measure) and, as an immediate consequence

of equation 8.1, we have that ∀x ∈ ρK̃ f(x)≈ιbΩ(g)(x), so the integralˆ
ρK̃

∣∣f(x)− ιbΩ(g)(x)
∣∣ dx

is infinitesimal. As M is finite, we deduce that
∣∣´
ρK̃

(
f(x)− ιbΩ(g)(x)

)
· ϕ(x)dx

∣∣
is infinitesimal, which entails that f ∼ ιbΩ(g) as claimed. �

Example 74. Let c 6= b be two infinite positive numbers and let h ∈ C(Ω) be
such that ιbΩ(h) 6= ιcΩ(h). The standard part of ιcΩ(h) is h, so we deduce from
Theorem 71 that ιcΩ(h) ∼ ιbΩ(h), even if ιcΩ(h) is not associated with a distribution
with respect to ιbΩ: in fact, let T be such a distribution. Then we would have
ιbΩ(h) ∼ ιcΩ(h) = ιbΩ(T ), and so ιbΩ(h) = ιbΩ(T ), hence h = T , which is absurd as we
assumed that ιbΩ(h) 6= ιcΩ(h).

We want to prove that Theorem 73 gives a sufficient condition for a GSF to
be associated with a distribution. To prove this result we will need the following
technical Lemma:

Lemma 75. Let n ∈ N, let Ω ⊆ Rn be open and let f ∈ ρGC∞(Ω•, ρR̃). Let
{Ωi | i ∈ I} be an open covering of Ω such that for every i ∈ I f |ρΩ̃i

is associated

with a distribution Ti ∈ D′(Ωi). Then f is associated with a distribution T ∈ D′(Ω).

Proof. The hypotheses of the Lemma ensures that {Ti | i ∈ I} is a coherent family of
distributions with respect to the open covering {Ωi | i ∈ I} (this can be proved as in
Lemma 53). Hence there exists T ∈ D′(Ω) that is a gluing of the family {Ti | i ∈ I}.
We claim that f ∼ T . To prove the claim, let ϕ ∈ D(Ω). Let K = supp(ϕ); as K
is compact, there is a finite subfamily {Ω1, . . . ,Ωn} ⊆ {Ωi | i ∈ I} that covers K.
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For every i = 1, . . . , n let ψi ∈ C∞(Ωi) be such that
∑n
i=1 ψi ≡ 1 on K. Moreover,

let ϕi := ϕ · ψi ∈ D(Ωi). Then∣∣∣∣ˆ
ρΩ̃

(f − T )(x)ϕ(x)dx

∣∣∣∣ =

∣∣∣∣ˆ
ρK̃

(f − T )(x)ϕ(x)dx

∣∣∣∣ ≤
n∑
i=1

∣∣∣∣ˆ
ρΩ̃i

(f − T )(x)ϕi(x)dx

∣∣∣∣ =

n∑
i=1

∣∣∣∣ˆ
ρΩ̃i

(f − Ti)(x)ϕi(x)dx

∣∣∣∣ .
As f |ρΩ̃i

∼ Ti for every i = 1, . . . , n, we have that
∑n
i=1

∣∣∣´ρΩ̃i
(f − Ti)(x)ϕi(x)dx

∣∣∣
is a finite sum of infinitesimals. Hence it is an infinitesimal, and so∣∣∣∣ˆ

ρΩ̃

(f − T )(x)ϕ(x)dx

∣∣∣∣≈0

for every ϕ ∈ D′(Ω), namely f ∼ T . �

Theorem 76. Let n ∈ N, let Ω ⊆ Rn be open and let f ∈ ρGC∞(Ω•, ρR̃). Let
us suppose that for every point p ∈ Ω there exists a bounded open subset Ω′p of Ω

that contains p, with Ω′p ⊆ Ω, a GSF Fp ∈ ρGC∞(Ω•, ρR̃) that is associated with a
distribution gp and a multi-index αp ∈ Nn0 such that f |

Ω̃′
= Dαp (Fp) |Ω̃′ . Then f

is associated with a distribution.

Proof. For every p ∈ Ω, let Ωp, Fp, gp and αp be given as in the statement of
the Theorem. From Theorem 73 we deduce that Fp ∼ gp for every p ∈ Ω, and
hence f

Ω̃p
∼ ∂αpgp for every p ∈ Ω. As ∂αpgp ∈ D′ (Ωp) for every p ∈ Ω, and as

{Ωp | p ∈ Ω} is an open covering of Ω, we deduce our thesis as a consequence of
Lemma 75. �

Let us notice that, in the hypotheses of Theorem 76, Lemma 75 gives a procedure
to find the distribution associated with f by means of a gluing procedure involving
the continuous standard parts gp. Moreover, by mixing Theorem 76 with Theorem
73 we directly deduce the following result:

Theorem 77. Let n ∈ N, let Ω ⊆ Rn be open and let f ∈ GC∞
(

Ω̃, R̃
)

. Let us

suppose that for every point p ∈ Ω there exists a bounded open subset Ω′p of Ω

that contains p, with Ω′p ⊆ Ω, a GSF Fp ∈ GC∞
(

Ω̃, R̃
)

that strongly admits a

continuous standard part and a multi-index αp ∈ Nn0 such that f |
Ω̃′

= Dαp (Fp) |Ω̃′ .
Then f is associated with a distribution.

Notice that the converse of this result does not hold: there are GSF associated
to continuous functions that does not admit a continuous standard part

We conclude this section by proving for GSF a very well known fact in Colombeau
theory regarding the product of embedded smooth functions with embedded distri-
butions.

Theorem 78. Let T ∈ D′(Ω), f ∈ C∞(Ω). Then in general ιρΩ (f · T ) 6= ιρΩ (f) ·
ιρΩ (T ) ; however, ιρΩ (f · T ) ≈ ιρΩ (f) · ιρΩ (T ).

Proof. To prove the first claim just let f(x) = x, T = δ. As x · δ = 0 in D′(Ω), we
have that ιρΩ(x · δ) = 0. However, ιρΩ(x) = x, hence ιρΩ (x) · ιρΩ (δ) 6= 0 on any sharp
open neighborhood of 0.
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To prove the second claim, let ψ ∈ D(Ω). Thenˆ
f(x)ιρΩ(T )(x)ψ(x)dx =

ˆ
ιρΩ(T )(x) (f · ψ) (x)dx ∼

〈T, f · ψ〉 = 〈f · T, ψ〉 ∼
ˆ
ιρΩ (f · T ) · ψdx.

�

9. The classical theory of linear ODEs for GSF

In this section we want to give a few simple examples involving linear (homo-
geneous and non homogeneous) ODEs. As we already discussed, in Colombeau
Theory (see e.g. [13, 22]) existence and uniqueness results for generalized ODEs
need some additional hypotheses involving, usually, certain “logε” growth condi-
tions for the coefficients. On the contrary, the following analogue of the classical
theory holds also for GSF (where we have to talk about “modules” instead of “vec-

tor spaces” as ρR̃ is not, in general, a field).

Theorem 79. Let a0, . . . , aN ∈ ρGC∞(Ω•, ρR̃), aN = 1. Then:

(i) the space S of local solutions of the linear homogeneous ODE

N∑
i=0

aiy
(i) = 0 (9.1)

is an ρR̃-module of dimension N ;

(ii) let f ∈ ρGC∞(Ω•, ρR̃) and let yp ∈ ρGC∞(Ω•, ρR̃) be a solution of the equation

N∑
i=0

aiy
(i) = f. (9.2)

Then the set of all solutions of equation 9.2 is yp + S.

Proof. (i) It is immediate to prove that the set of local solutions S of equation 9.1

is an ρR̃-module. To prove that its dimension is N , as in the classical case we first
rewrite equation 9.1 as a system z′ = F (x, z) (this can be done as aN = 1). For
every j = 1, . . . , N consider the Cauchy problem

z′ = F (x, z),

zi = 1,

zj = 0, ∀j 6= i.

Let z̃i be its local solution, whose existence is ensured by Theorem 24. We claim
that {z̃1, . . . , z̃N} is a basis for S. Obviously, z̃1, . . . , z̃N are linearly indipendent.
Now assume that y ∈ S. For every i = 1, . . . , N let yi = y(i)(0). Then y and

z =
∑M
i=1 yiz̃i both solve the Cauchy problem{

z′ = F (x, z),

zi = yi,

hence by Theorem 24 we have that y = z.
(ii) is a trivial consequence of the linearity of the problem. �

The following result is an immediate consequence of Theorem 79.
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Corollary 80. Let a0, . . . , aN ∈ C∞(Ω), with aN = 1. Let f1, . . . , fN ∈ C∞(Ω)
be a basis of the vector space of solutions of the classical homogeneous equation∑N
i=0 aiy

(i) = 0. Then ιρΩ (f1) , . . . , ιρΩ (fN ) is a basis of the ρR̃-module of solutions

of the problem
∑N
i=0 ι

ρ
Ω (ai) y

(i) = 0 in ρGC∞(Ω•, ρR̃).

Proof. The only nontrivial point to prove is that ιρΩ (f1) , . . . , ιρΩ (fN ) are linearly

indipendent on ρR̃. Assume, by contrast, that there are constants c1, . . . , cN ∈ ρR̃
such that

∑N
i=0 ciι

ρ
Ω (fi) = 0. Following the same ideas of the proof of Lemma 65,

without loss of generality we can assume that c1, . . . , cN are near standard, and
that there exists j ≤ N such that cj = 1. Then

0 = st(0) = st

(
N∑
i=0

ciι
ρ
Ω (fi)

)
=

N∑
i=0

st (ciι
ρ
Ω (fi)) =

N∑
i=0

st (ci) ι
ρ
Ω (fi) = fj(x) +

N∑
i=0,i6=j

st (ci) fi(x),

and this is absurd as f1, . . . , fN are linearly indipendent. �

For the non homogeneous case we have the following result, whose proof is trivial
due to the linearity of the problem and the fact that ιρΩ is a differential embedding.

Theorem 81. Let T ∈ D′(Ω) and let a0, . . . , aN ∈ R. Let y ∈ D′(Ω) be such that∑N
i=0 aiy

(i) = T . Then ιρΩ(T ) solves the ODE
∑N
i=0 aiy

(i) = ιρΩ(T ) in ρGC∞(Ω•, ρR̃).

Example 82. Let us consider the equation(
d

dx
+ a

)
y = δ, (9.3)

where a 6= 0 ∈ R. In [28] it is shown that the weak solutions of equation 9.3 are
H(x)e−ax + Ce−ax. Hence, by Theorem 81 we have that the GSF solutions of

equation 9.3 are ιρΩ (H(x)e−ax) + C̃ (e−ax), where C̃ ∈ ρR̃.

Let us notice that Theorem 81 does not hold true if we let a0, . . . aN ∈ C∞(Ω),
as the following examples show. In, particular, this means that in GSF theory we
are able to detect certain infinitesimal differences between weak and GSF solutions.

Example 83. Let m ∈ N, m ≥ 1 and consider the equation

xmy′ = 0. (9.4)

It is known (see e.g. [28]) that for every c1, . . . , cm ∈ R

y = c1 + c2H + · · ·+ cm+1δ
(m−1)

is a weak solution of equation 9.4. However iρΩ(y) is not a solution of equation 9.4

in ρGC∞(Ω•, ρR̃) if some of the coefficients c1, . . . , cm+1 is nonzero. In fact,

xm ·

(
d
(
ιρΩ(c1 + c2H + · · ·+ cm+1δ

(m−1)
)

dx

)
=

xm · ιρΩ

(
d
(
c1 + c2H + · · ·+ cm+1δ

(m−1)
)

dx

)
6= 0,
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as ιρΩ

(
d(c1+c2H+···+cm+1δ

(m−1))
dx

)
= 0 if and only if

d(c1+c2H+···+cm+1δ
(m−1))

dx = 0,

which is not the case.
Nevertheless, as a consequence of Theorem 78, we have that

xm · ιρΩ

(
d
(
c1 + c2H + · · ·+ cm+1δ

(m−1)
)

dx

)
≈ 0.

Finally, it is immediate to prove that the unique local solutions of equation 9.4

in ρGC∞(Ω•, ρR̃) are the constant GSF. In fact, let y ∈ GC∞(Ω•, ρR̃) be a solution.
Let O be a sharp open neighborhood of 0, and assume that xm ·y′ = 0 on O. Hence
y′ = 0 on every invertible internal point in O and, as this is a dense subset of O,
this means that y′ = 0 on O, hence y is constant on O.

Example 84. Consider the equation

xy′ = 1. (9.5)

In [28] it is shown that the weak solutions of equation 9.5 are y = c1 + c2H+ log|x|.
However,

x ·
d (ιρΩ (c1 + c2H + log|x|))

dx
= x · ιρΩ

(
c2H + Pfin

(
1

|x|

))
6= 1

(but x · ιρΩ
(
c2H + Pfin

(
1
|x|

))
≈ 1 by Theorem 78). Finally, let us observe that

equation 9.5 has no GSF solution in any neighborhood of 0: in fact, if y solves this
equation then y(x) = 1

x on every invertible point x, and this is absurd as 1
x is not

a GSF.

10. Conclusions and future developments

(i) GSF as a framework very similar to smooth functions. Differences
(ii) The theory resembles the classical one
(iii) Considerations about solutions on infinitesimal intervals. Hyperfinite con-

tractions
(iv) application of the theory using only real numbers and using the ε-definitions
(v) replication of these results for another set of indices by using our intrinsic

proofs. Axiomatic approach
(vi) a general transfer theorem using the notion of sample of points and restricting

only to properties of near-standard or infinite points
(vii) Similar approach using NSA
(viii) morphisms of gauges and ε-wise solutions
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