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UNIQUENESS OF THE MAXIMAL FUNCTION IN THE RATIO
ERGODIC THEOREM
(PREPRINT VERSION)

ROLAND ZWEIMÜLLER

Abstract. We show that the maximal operator associated to Hopf�s ratio
ergodic theorem is injective.

1. Introduction

In a recent paper L. Ephremidze has shown that for a measure preserving trans-
formation (m.p.t.) T on a �nite measure space (X;A; �) the ergodic maximal func-
tion M(f) := supn�1 n

�1Sn(f), where Sn(f) :=
Pn�1

k=0 f � T k, n � 1, uniquely
determines f 2 L1(�), i.e. M(f) = M(g) a.e. implies f = g a.e., cf. [E]. (An
alternative short proof on this result has been given in [J].)
His article also discusses to what extent this remains true if the measure space is

in�nite (but �-�nite), proving that the conclusion still holds for nonnegative func-
tions, and showing that it does break down for some others. While this observation
certainly is of some interest, one might argue that in in�nite measure preserving
situations (see [A]), M(f) is not the "correct" object to study (there being no
nontrivial limiting behaviour of n�1Sn(f)). Instead, we are going to consider the
maximal function corresponding to the proper version of the pointwise ergodic the-
orem for in�nite measure spaces, that is, to Hopf�s ratio ergodic theorem (cf. [S],
[H]). We brie�y recall the statement of the latter (see [KK] and [Z] for short proofs):

Theorem 1.1 (Hopf�s Ratio Ergodic Theorem). Let T be a conservative m.p.t.
on the ���nite measure space (X;A; �). Let f; p 2 L1(�) with p > 0. Then there
exists a measurable function Q(f; p) : X ! R such that

Sn(f)

Sn(p)
=

Pn�1
k=0 f � T kPn�1
k=0 p � T k

�! Q(f; p) a.e. on X as n!1.

The limit function Q(f; p) is measurable w.r.t. the ��algebra I � A of T -invariant
sets and satis�es

R
I
Q(f; p) � p d� =

R
I
f d� for all I 2 I. In other words, Q(f; p) =

E�p [f=p kI ], where d�p := p d�.

Following Ephremidze�s original approach, we are going to prove:
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Theorem 1.2 (Uniqueness of Hopf�s Ergodic Maximal Function). Let T
be a conservative m.p.t. on the ���nite measure space (X;A; �). Fix p 2 L1(�)
with p > 0, and for f 2 L1(�) de�ne Hopf�s ergodic maximal function as

M(f; p) := sup
n�1

Sn(f)

Sn(p)
= sup

n�1

Pn�1
k=0 f � T kPn�1
k=0 p � T k

.

Then M(f; p) uniquely determines f , that is, M(f; p) =M(g; p) a.e. implies f = g
a.e. on X.

Notice that even in the case of �nite measure this contains a nontrivial general-
ization of the earlier result.

Remark 1.1. The question of integrability of M(f; p) has been discussed in [D].

2. Injectivity of a discrete maximal operator

The core of the argument is a discussion of injectivity properties of the discrete
maximal operator associated to a class of averaging operations on sequences of real
numbers. Let � := RN0 denote the set of realvalued sequences � = (�n)n�0. We
consider families of averaging functions An;m : � ! R such that An;m(�) only
depends on (�n; : : : ; �m), m � n � 0, and study their associated maximal operator

M : �! RN0 , M�n := sup
m�n

An;m(�), n � 0.

Its restriction to �� := f� 2 �: for every n 2 N0 there exists m � n with M�n =
An;m(�)g, which clearly maps into �, will also be denoted by M. The An;m are
assumed to satisfy the following conditions:

(}) for 0 � n � l < m and � 2 �,
An;m(�) is a nontrivial convex combination of An;l(�) and Al+1;m(�)

(which automatically extends to partitions of fn; : : : ;mg into more than two subin-
tervals), and

(~) for 0 � n � m and � 2 �,
An;m(�) and (�n+1; : : : ; �m) uniquely determine �n.

The special case relevant for our ergodic theoretical result is that of inhomogeneous
arithmetic averages:

Example 2.1. For a �xed sequence � = (�k)k�0 in (0;1) de�ne

An;m(�) :=

Pm
k=n �kPm
k=n �k

, m � n � 0.

This clearly satis�es our assumptions. The case �k � 1 was considered in [E].

We are going to prove the following generalization of proposition 2 of [E], closely
following the line of argument given there:

Proposition 2.1 (Injectivity of the restricted discrete maximal operator).
The maximal operator M is injective on ��.

A component of a set J � N0 will be understood to be a maximal �nite interval
Ip;q := fp; : : : ; qg � N0 contained in J . We abreviate An;m := An;m(�) and
fM� > �g := fn 2 N0 : M�n > �g. Whenever an expression like Ip;q, Ap;q etc.
appears, we tacitly assume that p � q.
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Lemma 2.1. Let m;n; p; q 2 N0, � 2 R, and � 2 ��.
a) If M�n = An;q, then Ap;q �M�n for all p 2 In;q.
b) If n < m and M�n >M�m, then M�n = An;q for some q 2 In;m�1.
c) If Ip;q is a component of fM� > �g, then for any n 2 Ip;q, M�n = An;m for
some m = m(n) 2 In;q.
d) If Ip;q is a component of fM� > �g, then An;q > � for all n 2 Ip;q.
e) If M�n+1 �M�n, then An;n =M�n.
f) If In+1;m is a component of fM� >M�ng, then An;m =M�n.

Proof. a) The case p = n being trivial, we suppose that Ap;q < M�n for some
p 2 In+1;q, then using An;p�1 �M�n, (}) implies An;q <M�n, which contradicts
our assumption.
b) We have M�n = An;q for some q � n, and part a) shows that q < m.
c) Fix any n 2 Ip;q. As M�n > � �M�q+1, statement b) yields our assertion.
d) Fix n 2 Ip;q. Repeatedly applying c), we obtain n = n0 < n1 < : : : < nj = q

with Ani�1;ni�1 > � (take ni+1 := m(ni) + 1), and (}) implies d).
e) Let � :=M�n, and let q � n be an integer satisfying An;q = �. If q = n we

are done. Suppose now that q > n. The trivial estimate An+1;q � M�n+1 � �,
together with (}) shows that An;n < � would imply An;q < �, contradicting our
choice of q.
f) Let � and q be as in e). Observe �rst that necessarily q � m: By statement

d), assuming the contrary implies Aq+1;m > �, and hence (due to An;q = � and
property (})) An;m > �, which is impossible.
If q = m, we are done. Suppose now that q > m. The trivial inequality Am+1;q �

M�m+1 � �, together with (}) shows that An;m < � would imply An;q < �,
contradicting our choice of q. Thus, An;m � �, and therefore An;m = �. �

Lemma 2.2. Let � 2 R, �; � 2 ��.
a) If Ip;q is a component of fM� > �g, then (M�p; : : : ;M�q) determines (�p; : : : ; �q).
b) If M�n �M�m for some m > n � 0, then �n is uniquely determined by M�.

Proof. a) Arrange the values fM�n : n 2 Ip;qg in descending order, i.e. �1 > : : : >
�j > � where Ii := fn 2 Ip;q :M�n = �ig 6= ? and

Sj
i=1 Ii = Ip;q. We are going

to identify the �n for n 2 Ii by induction on i.
For i = 1 and n 2 Ii, we have An;n = �1 by lemma 2.1 e), which due to (~)

uniquely determines �n.
Assume now that the �n have been found for n 2 I1 [ : : : [ Ii. We identify �n

for any �xed n 2 Ii+1: If M�n+1 � �i+1, then An;n = �1 by lemma 2.1 e), and
we are done. If M�n+1 > �i+1, then there exists m � q such that In+1;m is a
component of fM� > �i+1g, and lemma 2.1 f) ensures that An;m = �i+1. Since �
has already been identi�ed on fM� > �i+1g � fn + 1; : : : ;mg, we see that �n is
uniquely determined, cf. (~).
b) If � := M�n � M�n+1, then lemma 2.1 e) shows that An;n = �, which

uniquely determines �n by (~).
Otherwise, if � < M�n+1, then there is some q � m for which In+1;q is a

component of fM� > �g. According to statement a), (�n+1; : : : ; �q) is uniquely
determined, and by lemma 2.1 f), An;m = �. Consequently, cf. (~), �n is uniquely
determined as well. �

The injectivity result now follows easily:
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Proof of proposition 2.1. Due to lemma 2.2 b), it is enough to show that each � 2
�� has the following property:

for each n � 0 there is some m > n s.t. M�n �M�m.
Fix � and n. We have � := M�n = An;p for some p � n. Due to (}), existence
of some q > p with Ap+1;q > � would imply An;q > �, which is impossible. Hence,
Ap+1;q � � for all q > p, so that M�m � � where m := p+ 1. �

3. Proof of the theorem

In proving our result for Hopf�s ergodic maximal function, we will stick to ar-
guments speci�c to the ergodic theory of point transformations (rather than oper-
ators). If T is a conservative m.p.t. on the �-�nite measure space (X;A; �), and
Y 2 A with 0 < �(Y ) < 1, we let 'Y (x) := minfn � 1 : Tnx 2 Y g, x 2 Y ,
denote the �rst return time of Y , which is �nite a.e. on Y , and consider the �rst
return (or induced) map TY : Y ! Y given by TY x := T'Y (x)x. According to basic
classical results, TY is an m.p.t. of the �nite measure space (Y;A\Y; � jA\Y ), and
the invariant measures � and � jA\Y are related via

(3.1)
Z
I(Y )

F d� =

Z
Y

FY d� for F 2 L1(�),

where FY :=
P'Y �1

j=0 F � T j , and I(Y ) :=
S
n�0 T

�nY 2 I.
The one auxiliary result from ergodic theory we need for the proof of our the-

orem has long been known in the ergodic �nite measure preserving case (see e.g.
[P], p.84). It is not hard to extend it to conservative in�nite measure preserving
situations, thus obtaining the following generalization of proposition 1 in [E].

Proposition 3.1 (Zero chance of strictly constant signs). Let T be a con-
servative m.p.t. on the �-�nite measure space (X;A; �). Let F 2 L1(�) withR
I
F d� = 0 for I 2 I. Then

� (fSn(F ) < 0 for all n � 1g) = 0.

Proof. a) Assume �rst that � is �nite. For the reader�s convenience we brie�y
recall the beautiful argument given in [P]. Let Y := fSn(F ) � 0 for all n � 1g and
suppose that �(Y ) > 0 (otherwise there is nothing to prove). Then it is easy to see
that

supn�1 Sn(F ) = FY a.e. on Y .

Recalling (3.1) we obtain
R
Y
supn�1 Sn(F ) d� =

R
Y
FY d� =

R
I(Y )

F d� = 0, and as
supn�1 Sn(F ) � 0 on Y , we conclude that supn�1 Sn(F ) = 0 a.e. on Y . Since for
a.e. x 2 Y this supremum is attained, we have � (fSn(F ) < 0 for all n � 1g) = 0.
b) If � is in�nite, we show that for any Y 2 A with 0 < �(Y ) <1,

� (Y \ fSn(F ) < 0 for all n � 1g) = 0.
Fix such a set Y , and let SYm(FY ) :=

Pm�1
k=0 FY � T kY , m � 1. Since 1JFY =

(1I(J)F )Y for TY -invariant sets J , we can apply the �nite-measure version of the
proposition to the induced system and FY to obtain

�
�
Y \

�
SYm(FY ) < 0 for all m � 1

	�
= 0.

Since (SYm(FY )(x))m�1 is a subsequence of (Sn(F )(x))n�1, the result follows. �
All the tools required for proving our main result are now available.
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Proof of theorem 1.2. a) For x 2 X, we let �x 2 � be given by (�x)k := p � T k(x),
k � 0, and de�ne Ax;n;m : � ! R by Ax;n;m(�) :=

Pm
k=n �k=

Pm
k=n(�x)k for

m � n � 0, as in example 2.1. Then, for any n � 0,
(Mx�x)n = sup

m�n
Ax;n;m(�x) =M(f � Tn; p � Tn)(x),

where �x 2 � is given by (�x)n := f � Tn(x).
b) Observe �rst that since M(f � T k; p � T k) = M(f; p) � T k for k � 0, the

assumption M(f; p) =M(g; p) a.e. of the theorem immediately implies

M(f � T k; p � T k) =M(g � T k; p � T k) for all k � 0 a.e. on X,

meaning that Mx�x =Mx�x for a.e. x 2 X, where (�x)n := g � Tn(x).
c) Proposition 2.1 ensures that the sequence �x (and hence, in particular, (�x)0 =

f(x)) is uniquely determined byMx�x provided that �x 2 ��x = f� 2 �: for every
n 2 N0 there existsm � n with (Mx�)n = Ax;n;m(�)g. We claim that this holds for
a.e. x 2 X: By Hopf�s ergodic theorem, Sn(f �T k)=Sn(p�T k)! Q(f �T k; p�T k) =
Q(f; p) a.e. as n!1, and hence

M(f � T k; p � T k) � Q(f; p) for all k � 0 a.e. on X.

Applying proposition 3.1 to F := (f � T k) � Q(f; p)(p � T k), we see that for all
k � 0,

�

��
Sn(f � T k)
Sn(p � T k)

< Q(f; p) for all n � 1
��

= 0.

Consequently, for a.e. x 2 X, and any k � 0, there is some j = j(x; k) such
that Sj(f � T k)(x)=Sj(p � T k)(x) � Q(f; p)(x), and hence some index m = m(x; k)
for which supn Sn(f � T k)(x)=Sn(p � T k)(x) is attained. Therfore, �x 2 ��x as
required. �
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