A little addendum to my paper

Invariant measures for general(ized) induced transformations.
(Proc. Amer. Math. Soc. 133 (2005), 2283-2295)
Roland Zweimüller, 14 March 2007.

Let T be a measurable map on $(X, \mathcal{A}), Y \in \mathcal{A}$, and $\tau: Y \rightarrow \mathbb{N}$ measurable such that for all $x \in Y, T^{\tau} x:=T^{\tau(x)} x \in Y$. For any measure ν on $(Y, Y \cap \mathcal{A})$,

$$
\begin{equation*}
\left(\tau \times_{T} \nu\right)(E):=\sum_{n \geq 0} \nu\left(\{\tau>n\} \cap T^{-n} E\right), \quad E \in \mathcal{A} \tag{0.1}
\end{equation*}
$$

defines a measure on (X, \mathcal{A}).
It is known that the measure $\tau \times_{T} \nu$ is T-invariant iff ν is T^{τ}-invariant. In that case one has $\left.\left(\tau \times_{T} \nu\right)\right|_{Y \cap \mathcal{A}} \ll \nu$. Moreover,

$$
\begin{equation*}
\left(\tau \times_{T} \nu\right)(X)=\int_{Y} \tau d \nu \tag{0.2}
\end{equation*}
$$

(see [T] or Prop 1.1 of [Z] for these statements). In addition, if ν is ergodic for T^{τ}, then $\tau \times{ }_{T} \nu$ is ergodic for T (cf. [T]).

The goal of the present short note is to also identify the value $\left(\tau \times{ }_{T} \nu\right)(Y)$. Note that τ can always be represented via the successive return times $\varphi_{1}<\varphi_{2}<\varphi_{3}<\ldots$ to Y, given by $\varphi_{m}:=\sum_{j=0}^{m-1} \varphi \circ T_{Y}^{j}, m \geq 1$, with T_{Y} denoting the first return map: There always is some $\rho: Y \rightarrow \mathbb{N}$ (necessarily measurable) such that $\tau=\varphi_{\rho}$, compare Remark 4.2 of $[\mathrm{Z}]$. Now we have the following counterpart to (0.2):

Proposition 1. Suppose that $\tau=\varphi_{\rho}$, then

$$
\begin{equation*}
\left(\tau \times_{T} \nu\right)(Y)=\int_{Y} \rho d \nu \tag{0.3}
\end{equation*}
$$

Proof. Starting form the def of $\tau \times{ }_{T} \nu$ decompose Y according to the value r of ρ, and then according to the values k_{1}, \ldots, k_{r} of the successive return-times $\varphi_{1}<\varphi_{2}<\ldots<\varphi_{r}$. Then use the fact that a set

$$
Y \cap\{\rho=r\} \cap\left\{\varphi_{1}=k_{1}\right\} \cap \ldots \cap\left\{\varphi_{r}=k_{r}\right\} \cap T^{-n} Y
$$

with $n<k_{r}$ ($=\tau$ on this set) can only be non-empty if $n \in\left\{0, k_{1}, \ldots, k_{r-1}\right\}$, and in this case equals

$$
Y \cap\{\rho=r\} \cap\left\{\varphi_{1}=k_{1}\right\} \cap \ldots \cap\left\{\varphi_{r}=k_{r}\right\}
$$

2

This gives

$$
\begin{aligned}
\left(\tau \times_{T} \nu\right)(Y) & =\sum_{n \geq 0} \nu\left(\{\tau>n\} \cap T^{-n} Y\right) \\
& =\sum_{r \geq 1} \sum_{1 \leq k_{1}<\ldots<k_{r}} \sum_{n=0}^{k_{r}-1} \nu\left(\{\rho=r\} \cap\left\{\varphi_{1}=k_{1}\right\} \cap \ldots \cap\left\{\varphi_{r}=k_{r}\right\} \cap T^{-n} Y\right) \\
& =\sum_{r \geq 1} \sum_{1 \leq k_{1}<\ldots<k_{r}} r \cdot \nu\left(\{\rho=r\} \cap\left\{\varphi_{1}=k_{1}\right\} \cap \ldots \cap\left\{\varphi_{r}=k_{r}\right\}\right) \\
& =\sum_{r \geq 1} r \cdot \nu(\{\rho=r\})
\end{aligned}
$$

as required.

References

[T] M. Thaler: Transformations on [0,1] with infinite invariant measures. Isr. J. Math. 46 (1983), 67-96.
[Z] R. Zweimüller: Invariant measures for general(ized) induced transformations. Proc. Amer. Math. Soc. 133 (2005), 2283-2295.

