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INVARIANT MEASURES FOR GENERAL(IZED) INDUCED
TRANSFORMATIONS

ROLAND ZWEIMÜLLER

Abstract. We show that the general(ized) induced transformation T � de-
rived from an ergodic measure preserving transformation T by means of an
inducing time � has an invariant measure canonically related to that of the
original system i¤ a suitable induced version of � is integrable. Moreover, we
prove an Abramov type entropy formula.

1. Introduction

Let T be a nonsingular transformation on the �-�nite measure space (X;A;m),
i.e. T : X ! X is a measurable map satisfying m�T�1 � m. The �rst return time
'Y (x) := minfn � 1 : Tnx 2 Y g, x 2 Y , of a set Y 2 A+(m) := fE 2 A : m(E) >
0g is a measurable function 'Y : Y ! N := N [ f1g. If 'Y <1 a.e. on Y , i.e. if
Y is a recurrent set, it gives rise to the �rst return (or induced) map TY : Y ! Y
de�ned a.e. by TY x := T'Y (x)x, which is a very useful classical construction in
ergodic theory, cf. [Ka] and [He]. Most important,

(1.1)

if �� m is T -invariant, then � := � jA\Y is TY -invariant,
and

if � � m is TY -invariant, then � = � jA\Y for the T -invariant
measure �� m given by �(E) :=

X
n�0

�(f'Y > ng \ T�nE).

Turning to a frequently used generalization of this concept, we shall call a mea-
surable function � : Y ! N an inducing time (mod m) for T on Y 2 A+(m) if
it is �nite a.e. and T �x := T �(x)x 2 Y for a.e. x 2 Y . T � then is a nonsingular
transformation on (Y;A\ Y;m jA\Y ). We call T � the transformation which T and
� induce on Y . Given such a � and any measure � on (Y;A \ Y ) (which we will
tacitly extend to (X;A) by letting �(Y c) := 0), we de�ne a new measure � �T � on
(X;A) by

(1.2) (� �T �)(E) :=
X
n�0

�(f� > ng \ T�nE), E 2 A.
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Equivalently,
R
f d(� �T �) =

R P
n�0 1f�>ng(f � Tn) d� for measurable f � 0 on

(X;A). In the special case of �rst return times � = 'Y , we always have

(1.3) ('Y �T �) jA\Y= � jA\Y for any � on (Y;A \ Y )

since f'Y > ng \ T�nY = ; for n � 1. Notice also that � �T � is linear in �, and
that for T -invariant measures � and constant � � t 2 N, we have � �T � = t � �.
The importance of this construction is due to the following fact, the �if�-part of
which is well known.

Proposition 1.1 (Invariance and absolute continuity of � �T �). Let T be
a nonsingular transformation on the �-�nite measure space (X;A;m), and � an
inducing time (mod m) for T on Y 2 A+(m). Let � be a measure on (Y;A \ Y ),
then

� �T � � m i¤ � � m,

and
� �T � is T -invariant i¤ � is T � -invariant.

Moreover,

(� �T �)(X) =
X
n�0

�(f� > ng) =
Z
Y

� d�:

Notice that we do not claim that � �T � has to be �-�nite, even if � is �nite. In
fact, � �T � may have density 1 w.r.t. m, see lemma 2.1 and example 2.2 below.

Proof. We brie�y recall the argument, compare [Th]. Since for any E 2 A,

(� �T �)(T�1E) =
X
n�1

�(f� > ng \ T�nE) +
X
n�0

�(f� = ng \ T�nE),

we have (� �T �)(T�1E) = (� �T �)(E) i¤ �(Y \ E) = �(E) =
P
n�0 �(f� =

ng \ T�nE) = �((T � )�1(Y \ E)), implying the �rst statement. The assertion
about absolute continuity follows from � �T � � � and nonsingularity of T . �

Proposition 1.1 is the standard tool for constructing an invariant measure �
for T from an invariant measure � for T � : Given a transformation T which we
wish to investigate, we may be able to �nd Y 2 A+(m) and an inducing time �
on Y such that T � is a more convenient map that T , preserving some measure
� = � � (T � )�1 � m. The proposition then provides us with an explicit formula
for an invariant measure � := � �T � � m for T , which under natural additional
assumptions inherits properties like ergodicity and conservativity from T � , cf. [Th]
(therefore � = � �T � is the proper condition to ensure that the two measure pre-
serving systems are intimately related). Examples of applications of this scheme
are abundant in the literature.

Notice, however, that the proposition does not enable us to go the other way,
it merely ensures that, given � and � , a measure � solving � = � �T � would be
T � -invariant, but it does not provide any information about the existence of such
a measure. It is this converse which most of the present note is devoted to:
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Question: Let T be a measure preserving transformation (m.p.t.)
on the �-�nite measure space (X;A; �), and � an inducing time for
T on Y . Does T � preserve some measure � � � with � = � �T � ?

Although we are going to view this question as one of abstract ergodic theory,
we emphasize that the answer turns out to be a useful tool in situations where
the analysis of speci�c dynamical systems requires the use of some general induced
transformation not a priori known to possess a suitable invariant measure. These
applications being rather technical, we are not going to discuss them in detail here,
but refer to [PS] for an interesting example.

In view of proposition 1.1, our question is equivalent to asking whether there
is any measure � on (Y;A \ Y ) solving the equation � = � �T �. In the case of
�rst return times � = 'Y , (1.1) shows that we can always take � := � jA\Y . The
only other general result I am aware of applies to the �rst passage time of a set
Y 2 A+(�), �(x) = 'Y (x) := minfn � 0 : Tnx 2 Y g + 1, x 2 X, for which T �

(the �rst passage map or jump transformation of Y ) is weakly isomorphic to TY ,
cf. chapter 19 of [Sc].

We are going to provide an answer for arbitrary inducing times. Let us state
the results for �nite � (see section 4 for comments on the in�nite measure case).
The key step will be to show (in section 3) that �-integrability of � is a su¢ cient
condition:

Theorem 1.1 (Invariant measure for T � if � is �-integrable). Let T be an
ergodic measure preserving transformation on the �nite measure space (X;A; �),
and � an inducing time (mod �) for T on Y 2 A+(�). If

R
Y
� d� < 1, then

T � : Y ! Y has an invariant measure � � � satisfying � = � �T �.

Although it turns out that �-integrability is not a necessary condition, cf. exam-
ple 2.3 below, we will see that to avoid the kind of di¢ culties encountered there, we
need only induce once more. We are going to prove the following characterization:

Theorem 1.2 (Invariant measure for T � i¤ � has a �-integrable induced
version). Let T be an ergodic m.p.t. on the �nite measure space (X;A; �), and let
� be an inducing time (mod �) for T on Y 2 A+(�). Then

� = � �T � has a solution �

i¤

there is some Z 2 A+(�), Z � Y , such that
R
Z
�(� ; Z) d� <1, where

'�Z(x) := minfn � 1 : (T � )nx 2 Zg, and �(� ; Z) :=
P'�Z�1
k=0 � � (T � )k.

Let us also point out that, formulated in probabilistic terms, our results can be
interpreted as stationary sampling theorems:

Remark 1.1 (Stationary sampling). Let � = (�n)n�0 be an ergodic stationary
sequence on the probability space (
;F ; P ) taking values in (
0;F 0), and R : 
! N
a random time measurable w.r.t. the �-�eld generated by � (but not necessarily
a stopping time). Consider the the canonical shift-space representation of �, i.e.
let (X;A; �) := (

N
n�0 


0;
N

n�0 F 0; P � ��1) where �(!) := (�n(!))n�0, so that
�n = �(Tn�(!)) with � denoting the projection from

N
n�0 


0 onto its �rst factor,
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and T is the shift on this product space, (T!0)n = !0n+1. Then R = � � � for
some inducing time � for T on X, which gives a natural way to iterate R by letting
Rn(!) := �((T � )n�(!)), n � 0.
In general, the induced process �R = (�Rn )n�0 := (�Rn)n�0 on (
;F ; P ) is not

stationary. However, theorem 1.1 ensures that �R has a stationary distribution
Q absolutely continuous w.r.t. P (and, for example, therefore satis�es a point-
wise ergodic theorem w.r.t. P ) as soon as R has �nite expectation. Theorem 1.2
completely characterizes those random times R for which the same conlusion holds.

In the �nal section, we study the relation between the entropies of an m.p.t. T
and its induced transformations T � , providing a generalized Abramov type formula.

2. Some preparations and examples

As an easy warm-up we observe the following.

Remark 2.1 (Uniqueness of solutions). Let T be a conservative ergodic (c.e.)
measure preserving transformation on the �-�nite measure space (X;A; �), Y 2
A+(�), and � an inducing time for T on Y . According to proposition 1.1, any
measure � solving � = � �T � is �-�nite and T � -invariant, which determines � up
to a constant factor provided that T � is conservative ergodic on (Y;A \ Y; � jY ),
cf. theorem 1.5.6 of [A0]. In general this need not be true, but it is in the most
important case of �rst return maps, where the fact that ('Y �T �) jY= � also
determines the normalization. Therefore, whenever � is a measure on (Y;A \ Y ),
we have

� = 'Y �T � i¤ � = � jY .
Easy counterexamples for the general case (with nonergodic T � ) can be obtained
as follows: Take any partition X = X0 [X1 with �(Xi) > 0, and de�ne � : X ! N
by requiring that � jXi= 'Xi . Then it is straightforward to check that each �i :=
� jA\Xi satis�es � �T �i = 'Xi �T �i = � (and so do all convex combinations).

Even if T � has an absolutely continuous invariant measure (a.c.i.m.) �, its action
may take place on a di¤erent time scale than that of T :

Lemma 2.1 (Dichotomy rule for ��T �). Let T be an ergodic measure preserving
transformation on the �nite measure space (X;A; �), and � an inducing time (mod
�) for T on Y 2 A+(�). Suppose that T � has a �nite invariant measure � � � on
(Y;A \ Y ). Then eitherZ

Y

� d� <1 and � = � � (� �T �) for some � > 0,

or Z
Y

� d� =1 and (� �T �)(E) =1 for all E 2 A+(�).

Proof. Assume that
R
Y
� d� < 1. By proposition 1.1, � �T � � � then is a �nite

invariant measure for T , hence ��T � = ��1� for some � > 0 by ergodicity. Suppose
then that

R
Y
� d� = 1. Since � �T � � � and

S
n�0 T

�nE = X mod � for all
E 2 A+(�), we have 0 < �(Y ) � (� �T �)(X) �

P
n�0(� �T �)(T�nE), so that

(��T �)(E) > 0 for all E 2 A+(�) due to the T -invariance of this measure. If there
is an E 2 A+(�) with (� �T �)(E) <1, we consider the induced map TE : E ! E
which preserves the two �nite measures � �T � jA\E� � jA\E . The second one
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being ergodic, we conclude that ��T � jA\E= ��1� jA\E and hence ��T � = ��1�
for some � > 0, contradicting (� �T �)(X) =1. �

While this lemma characterizes all possibilities if T � is known to have an a.c.i.m.
�, the question whether or not such a measure � exists is more intricate. The most
extreme (and most obvious) way in which T � can fail to have an invariant measure
� with � = � �T � is by being totally dissipative and admitting no a.c.i.m. at all:

Example 2.1 (A totally dissipative inducing time). Consider X := f0; 1gN0
with �-�eld A generated by the collection of cylinders of order n 2 N, i.e. of the
sets [i0; : : : ; in�1] := fx = (xj)j2N0 2 X : xj = ij for j 2 f0; : : : ; n � 1gg, and
Bernoulli ( 12 ;

1
2 )-product measure �. The shift transformation T , (Tx)j = xj+1 is

an ergodic m.p.t. on (X;A; �). De�ne � : X ! N by letting

� := '[0; : : : ; 0| {z }
m+1

] on [0; : : : ; 0| {z }
m

; 1], m 2 N0.

Then T � is easily seen to be totally dissipative, and there is no T � -invariant measure
� � � at all. Notice also that � has in�nite �-expectation:

R
X
� d� =1.

However, it can also happen that T � preserves the same �nite measure � =: �
as T , hence is conservative, and still does not satisfy � = � �T � up to a constant
factor, since

R
Y
� d� =1 (recall lemma 2.1):

Example 2.2 (A situation in which � 6= � �T �). Let (X;A; �), T , and �n be
as in example 2.1. To any (mod �) partition � �

S
n�1 �n of X into cylinder sets,

we associate an inducing time � � for T on X de�ned by

� � := n on Z 2 � \ �n, n � 1.

Then it is easy to check that T �� : X ! X which corresponds to a full shift over
the alphabet �, and hence again preserves � =: � and is ergodic. Now

R
X
� � d� =R

X
� � d�, but obviously there are many ��s for which

R
X
� � d� =1.

The fact that in both counterexamples above � has in�nite �-expectation is
consistent with theorem 1.1. On the other hand, �-integrability of � is not a
necessary condition for the existence of such an invariant measure. In fact, � �T �
may put much more mass to sets f� > ng than � does:

Example 2.3 (Inducing times admitting consistent measures need not
be �-integrable). We illustrate this phenomenon by means of discrete renewal
Markov chains. Let X := NN00 = fx = (xj)j2N0 : xj 2 N0g, �n the collection of
cylinders [i0; : : : ; in�1] := fx = (xj)j2N0 2 X : xj = ij for j 2 f0; : : : ; n � 1gg
of order n 2 N, and A the �-�eld generated by the �n. Fix � > 1, let fk :=
k�(1+�)=(

P
k�1 k

�(1+�)), k 2 N, and de�ne transition probabilities on N0 by p0;k :=
fk and pk+1;k := 1, k � 0. Then the shift transformation T preserves a Markov
probability measure � on (X;A) with �([i]) = (

P
k>i fk)=(

P
k�1 kfk), i 2 N0. Con-

sider the inducing time � on X given by � j[i]:= i + 1. Then T � corresponds to a
full shift over the alphabet � := f[i] : i 2 N0g, and it preserves the Bernoulli product
measure � � � on X with �([0]) = �([0]) and �([i]) = fi�(X n [0]), i � 1. It is
easy to verify that

R
X
� dv <1 (and hence � = const � � �T �) for all � > 1, whileR

X
� d� <1 i¤ � > 2.
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3. Integrable inducing times

Our proof of theorem 1.1 depends on the following construction: Let T be a non-
singular transformation on the �-�nite measure space (X;A;m), and � an inducing
time (mod m) for T on Y 2 A+(m). The � -separating extension of (X;A;m; T ) is
the nonsingular transformation ( bX; bA; bm; bT ) obtained as follows:
Extend the de�nition of � to all of X by letting �(x) := 0 for x 2 Y c. The

extension bT of T we are going to construct will act on a space bX � X�N0�N0, with
natural projections given by �(bx) := x, b�(bx) := t, and �(bx) := l for bx = (x; t; l).
It becomes a �-�nite measure space ( bX; bA; bm) if we regard it as a subspace of
X�N0�N0 with product (�-�eld and) measure m
 �
 �, where � denotes counting
measure on N0. We inductively de�ne the level sets bXl = bX \ f� = lg, l � 0, of
the extension: Let cM0 := ff� = tg � ftg � f0g : t 2 N0g, and bX0 :=

S cM0. GivenbXl =
S cMl, we de�ne cMl+1 := fTE �ftg� fl+1g : ; 6= E �ftg� flg 2 cMl with

l < t� 1g, and let bXl+1 :=
S cMl+1. This determines bX :=

S
l�0

bXl =
S cM, wherecM :=

S
l�0

cMl. Notice that � < b� on bX n (Y c � f0g � f0g). The map bT : bX ! bX
is given by bT (x; t; l) := � (Tx; t; l + 1) if l < t� 1

(Tx; �(Tx); 0) otherwise

which clearly is nonsingular on ( bX; bA; bm). We have
(3.1) �( bT (x; t; l)) = � l + 1 if l < t� 1

0 otherwise,

and � : bX ! X is a factor map, i.e. � � bT = T � � on bX. This projection also
provides us with natural isomorphisms bX0

�= X, and bY0 := bX0 \ ��1Y �= Y . Of
course, bY :=

S
n�0

bTn bY0 is forward invariant under bT , and we also see that bY0 is
a sweep-out set for bY , that is, bY �

S
n�1

bT�n bY0 mod b�. In fact, b� jbY0= � � � jbY0
almost surely equals the �rst return time b'bY0 of bY0 under bT , so that

(Y;A \ Y;m; T � ) �= (bY0; bA \ bY0; bm j bA\bY0 ; bTbY0)
as nonsingular transformations via the identi�cation by � jbY0 . Therefore,

(3.2)
existence of a �nite invariant measure � � m for T �

is equivalent to the existence of some bT -invariant
�-�nite measure b� � bm on bY with b�(bY0) <1.

(As bY0 is a sweep-out set, we must have b�(bY0) > 0 in this case, and hence may
take �(E) := b�(bY0 \ ��1E), E 2 A \ Y .) Notice also that the image measureb� ���1 always is an absolutely continuous invariant measure for T in this case (not
necessarily �-�nite).

We let L and bL denote the dual operators of T and bT (w.r.t. m and bm) re-
spectively, i.e. L is the positive linear operator on L1(X;A;m) (with an obvious
extension to all nonnegative measurable functions) characterized byZ

X

Lu � g dm =

Z
X

u � g � T dm for u 2 L1(X;A;m); g 2 L1(X;A;m),
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and analogously for bL. Then �� � bL = L � ��, where �� is the dual of �, that
is, ��(bu)(x) := Pbx2��1(x) bu(bx). A measurable function bh : bX ! [0;1] vanishing
outside bY is the density of some bT -invariant measure b� � bm on bY i¤ bLbh = bh. In
this case we have

1 bE bh = bLl �1(f�=tg\T�lE)�ftg�f0g � bh� for bE = E � ftg � flg 2 cM with l � 1,

since ( bT )�l bE = (f� = tg\T�lE)�ftg�f0g. Projecting bh =P bE2cM 1 bE bh onto X,
we �nd that

(3.3)
if b� � bm is bT -invariant, then b� � ��1 = � �T �,
where � := b� jbY0 ���1 � m is T � -invariant.

We are now in a position to prove that
R
Y
� d� <1 is su¢ cient:

Proof of theorem 1.1. Assume w.l.o.g. that �(Y ) = 1, and let ( bX; bA; b�; bT ) be
the � -separating extension of (X;A; �; T ). Due to ergodicity of T , (3.3) together
with our previous observations implies that

(3.4)
� = � �T � has a solution () � lifts to an a.c.i.m. of bT jbY

() bT jbY has a �nite a.c.i.m..

(i) Iterating densities on the extension. We would like to obtain an invariant prob-
ability density bh = bLbh for bT on bY as an accumulation point of the sequence of
averages bAn := n�1

Pn�1
k=0

bLk1bY0 : bX ! [0; 1], n � 1 (which vanish outside bY ).
Since � is T -invariant, we have 1X = Lk1X = ��( bLk1 bX0

) for k � 0, and hence

(3.5) 0 � bLk1bY0 � 1 bX for k � 0.
Since, for �nite measure spaces, weak sequential precompactness in L1 is equivalent
to uniform integrability (cf. [DS], corollary IV.8.11), (3.5) implies that for anybE � bX which is bounded in the sense that b�( bE) and �( bE) are bounded subsets of
N0,

( bAn j bE)n�1 is weakly sequentially precompact in L1( bE; bA \ bE; b� j bA\ bE).
As bX is the union of an increasing sequence of bounded sets, a straightforward
diagonalization argument shows that there are nk % 1 and some measurablebh : bX ! [0; 1], vanishing outside bY , such that for all bounded bE 2 bA,
(3.6) bAnk j bEweakly in L1( bE; bA\ bE;b�j bA\ bE)�!

k!1
bh j bE for all bounded bE 2 bA.

Let b� denote the �-�nite measure with density bh on ( bX; bA; b�). According to (3.6)
we have

(3.7) b�( bE) = lim
k!1

Z
bE bAnkdb� for all bounded bE 2 bA.

Recall that
R bX 1bY0db� = �(Y ) = 1 by assumption, so that the bAn are probability

densities. Hence we see that b�( bX) � 1. However, we might have b� � 0.
(ii) Obtaining an invariant density if

R
X
� d� <1. To see that b� is a nonvanishing

invariant measure for bT , we need some control of how much mass will be pushed to
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sets E�ftg� flg 2 cM with large t and l if we start with the initial density 1bY0 onbX and iterate bL. Because of � < b� on bY , and (3.1) we see that for any t; l; k 2 N0,
bLk1bY0 =

( bLl �1 bX0\fb�=tg � bLk�l1bY0� if k � l and t > l

0 otherwise

)
on bX\fb� = tg\f� = lg,

and therefore, recalling (3.5) and b� = � � � on bX0,Z
bX\fb�>t and �=lg bLk1bY0db� =

( R bX0\fb�>t_lg bLk�l1bY0db� if k � l

0 otherwise
(3.8)

�
�
�(f� > t _ lg) if k � l
0 otherwise

.

Decomposing bX \ fb� > tg =
S
l�0

bX \ fb� > t and � = lg, we end up with

(3.9)
Z
bX\fb�>tg bLk1bY0db� �

kX
l=0

�(f� > t _ lg) =
kX
l=t

�(f� > lg) + t � �(f� > tg).

Since, by assumption,
R
X
� d� <1, we conclude that there is some sequence (tj)j�1

in N such that tj %1 and

(3.10)
Z
bX\fb�>tjg bLk1bY0db� � 1

j
for all j 2 N, k 2 N0.

Now consider the bounded sets bDj :=
S bDj , where each bDj := fE � ftg � flg 2cM : t � tjg, j � 1, is a �nite collection, and bDj % bX. Since (3.10) ensures

that
R bDcj bAndb� < 1

j for all n; j 2 N, we see that b�( bX) = 1 and b�( bDc
j) � 1

j for

all j. Observe next that (3.7) remains true if we replace nk by nk + 1, and thatRbT�1 bE bAndb� = n+1
n

R bE bAn+1db� � 1
n

R bE 1bY0db� for all n � 1 and bE 2 bA. Fix any
bounded bE and j 2 N. Then

b�( bT�1 bE) = b�( bT�1 bE \ bDj) + �1 = lim
k!1

Z
bT�1 bE\ bDj bAnkdb�+ �1

= lim
k!1

Z
bT�1 bE bAnkdb�+ �1 + �2

= lim
k!1

Z
bE bAnk+1db�+ �1 + �2 = b�( bE) + �1 + �2

with j�ij � 1
j , which implies

bT -invariance of b�. �

Remark 3.1. The concept of the � -separating extension was inspired by lifting
results for Markov extensions, cf. [Ke]. Parts of our argument can also be found
there. The idea of representing certain inducing times as �rst-return times of an
extension also appears (in the special setup of interval maps and Markov extensions)
e.g. in [Br].
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4. A complete characterization

We turn to a complete characterization of those inducing times � : Y ! N
for a conservative ergodic m.p.t. on a �-�nite measure space (X;A; �) for which
� = � �T � has a solution. The proof of theorem 1.2 and the subsequent short
discussion of in�nite measure preserving situations depend on the following (hardly
surprising) observation.

Lemma 4.1 (Chain rule for �T ). Let T be a nonsingular transformation on
(X;A;m). Consider Y � Y 0 in A+(�), and assume that � and  respectively
are inducing times for T on Y and Y 0 such that � =  � :=

P��1
k=0  � (T )k for

some inducing time � for T on Y , i.e. T � = (T )�. If � � m is a measure on
(Y;A\Y ), then

� �T � =  �T (��T �).

Proof. Fix E 2 A. As l 7!  l is strictly increasing, we have f� > lg = f� >  lg,
and hence

 �T (��T �)(E)
=

X
m�0

(��T �)(f > mg \ T�mE)

=
X
m;l�0

�
�
f� > lg \ (T )�l(f > mg \ T�mE)

�
=

X
m;l;r�0

�
�
f� > lg \ f l = rg \ T�r(f > mg \ T�mE)

�
=

X
m;l;r�0

�
�
f� > rg \ f l = rg \ T�rf > mg \ T�(m+r)E

�
.

Let L(i) := maxfl � 0 :  l � ig and R(i) :=  L(i), i � 0. Then, for any t 2 N,X
m;l�0

X
0�r<t

�
�
f� = tg \ f l = rg \ T�rf > mg \ T�(m+r)E

�
=

X
m;l�0

X
0�r<t

�
�
f� = tg \ fr =  l � m+ r <  l+1g \ T�(m+r)E

�
=

X
m�0

X
0�r<t

�
�
f� = tg \ fR(m+ r) = rg \ T�(m+r)E

�
=

X
i�0

X
0�r<t

�
�
f� = tg \ fR(i) = rg \ T�iE

�
=

X
0�i<t

�
�
f� = tg \ T�iE

�
,

where the last step uses the fact that i < t on f L(i) = R(i) = r < t = � =  �g.
Since (� �T �)(E) =

P
t�1

P
0�i<t �

�
f� = tg \ T�iE

�
, the proof is complete. �

Remark 4.1. If, more speci�cally, � � m is invariant for T � , and one of � �T � and
 �T (� �T �) is known to be �nite, an alternative quick proof of the chain rule
is as follows: According to proposition 1.1, both measures are a.c.i.m.s for T . By
ergodicity it is therefore enough to show that they have the same total mass. But
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( �T (��T �))(X) =
R
 d(��T �) =

R P
n�0 1f�>ng( � (T )n) d� =

R
� d� =

(� �T �)(X) by proposition 1.1.

Proof of theorem 1.2. Notice that for any Z 2 A+(�) with Z � Y , � := �(� ; Z)
is an inducing time (mod �) for T on Z satisfying (T � )Z = T �.
(i) Assume that

R
Z
� d� < 1. By theorem 1.1, there is some invariant measure

� jZ� � on Z for T � for which � = ��T (� jA\Z). Extend � jA\Z to a T � -invariant
measure � � � on (Y;A \ Y ) by letting � := '�Z �T � (� jA\Z). According to the
chain rule,

� = � �T (� jA\Z) = � �T ('�Z �T � (� jA\Z)) = � �T �.
(ii) Conversely, assume that � = � �T � has a solution �. Take Z � Y with
�(Z) > 0. Since � = '�Z �T � (� jA\Z), we have

� = � �T � = � �T ('�Z �T � (� jA\Z)),
so that the chain rule applies to show that � = � �T (� jA\Z). In particular,R
Z
� d� = �(X) <1. Now � jA\eY� � jA\eY , where eY := f d�d� > 0g � Y , and if we

take any Z 2 Z(�) := fE 2 A+(�) : essinfE d�
d� > 0g, we have

R
Z
� d� <1. �

If T preserves an in�nite measure � in the �rst place (cf. [A0]), it is clear that
we cannot directly use integrability arguments, since for any Y with �(Y ) <1 we
have

R
Y
'Y d� =1 and hence

R
Y
� d� =1 for any inducing time � on Y . Instead,

we show that we can always pass to �rst return maps on arbitrary subsets Z � Y
without losing any information. Choosing Z to have �nite measure, the following
proposition together with theorem 1.2 yields a complete answer to our question,
even in the �(X) =1 case.

In order to state it, observe that if T is a c.e.m.p.t. on the �-�nite measure space
(X;A; �), � an inducing time for T on Y 2 A+(�), and Z 2 A+(�) \ Y , then the
�rst return map of T � to Z can be represented as (T � )Z = (TZ)# with # : Z ! N
an inducing time for TZ .

Proposition 4.1 (Passing to �rst return maps). Let T be a c.e.m.p.t. on the
�-�nite measure space (X;A; �); and � an inducing time for T on Y 2 A+(�).
Suppose that Z 2 A+(�) \ Y with (T � )Z = (TZ)#, then

� = � �T � has a solution �

i¤
� jA\Z= #�TZ e� has a solution e�.

In this case, � = '�Z �T � e�, that is, e� = � jA\Z .

Proof. Suppose that there is some measure e� on (Z;A \ Z) satisfying � jA\Z=
#�TZ e�. Then e� � � jA\Z is a �-�nite invariant measure for (T � )Z = (TZ)#, hence
� := '�Z �T � e� is a �-�nite invariant measure for T � . The chain rule implies that

� = 'Z �T � jA\Z= 'Z �T (#�TZ e�)
= � �T ('�Z �T � e�) = � �T �.

Conversely, suppose that � = ��T � for some measure � on (Y;A\Y ). By the chain
rule again, � = � �T � = � �T ('�Z�T � � jA\Z) = 'Z�T (#�TZ � jA\Z). According
to remark 2.1, this implies � jA\Z= #�TZ � jA\Z since T is a c.e.m.p.t. �
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We conclude with another observation of similar �avour.

Remark 4.2 (Factorizing through �rst-return maps). Let T be a nonsingular
transformation on the �-�nite measure space (X;A; �), and � an inducing time for
T on Y 2 A+(�) with �(X n Y ) > 0. Notice that for a.e. x 2 Y , �(x) has to be
one of the successive return times 'Y;n :=

Pn�1
k=0 'Y � T kY , n � 1 to this set, i.e.

� = 'Y;� a.e. for some � : Y ! N which is measurable since f� = kg = f� = 'Y;kg.
Hence T � factorizes through TY in that T � = (TY )�. The chain rule and (1.3) are
easily seen to imply that for any measure � on (Y;A \ Y ),

� = � �T � i¤ � jA\Y= ��TY �.
Observe that, via theorem 1.1, this shows thatZ

Y

� d� <1 implies that � = � �T � has a solution �.

This su¢ cient condition is more general than
R
Y
� d� <1 since � � � . (However,

it is not necessary, as example 2.3 shows, where Y = X and hence � = � .)

5. A generalized Abramov formula for the entropy

For (X;A; �) �-�nite and Y 2 A+(�) with �(Y ) < 1, we let �Y := �(Y )�1 �
� jA\Y , the normalized restriction of � to Y . Abramov�s classical entropy formula
for �rst return maps states that whenever (X;A; �; T ), �(X) < 1, is an ergodic
measure preserving system and Y 2 A+(�), then

(5.1) h(TY ; �Y ) =
�(X)

�(Y )
� h(T; �X) =

Z
Y

'Y d�Y � h(T; �X).

We are going to show that an analogous relation holds for general induced trans-
formations T � , even in the case of in�nite measures. In order to state the result in
full generality, we recall Krengel�s notion of entropy for conservative systems (cf.
[Kr]): For any c.e.m.p.t. T on (X;A; �), (5.1) shows that
(5.2) h(T; �) := �(Z) � h(TZ ; �Z),
where Z 2 A+(�), �(Z) < 1, does not depend on the choice of Z and therefore
de�nes the entropy of T w.r.t. � unambiguously. (Combined with other charac-
teristics like minimal wandering rates or asymptotic type, this yields rather strong
isomorphism invariants if �(X) = 1, cf. [A1] or [Th].) Notice that using this
formalism, Abramov�s classical result (5.1) simply becomes

h(TY ; � jA\Y ) = h(T; �),

if we abstain from normalizing the measures. (If � = � �T �, then � and � have
in�nite or di¤erent total mass unless � � 1.)
Theorem 5.1 (Generalized Abramov formula). Let T be a c.e.m.p.t. on �-
�nite measure space (X;A; �), and � an inducing time (mod �) for T on Y 2
A+(�). Assume that T � has an invariant measure � � � satisfying � = � �T �.
Then the respective entropies agree:

(5.3) h(T � ; �) = h(T; �).

If � and � are �nite and we normalize them, this amounts to

h(T � ; �Y ) =
�(X)

�(Y )
� h(T; �X) =

Z
Y

� d�Y � h(T; �X).



12 ROLAND ZWEIMÜLLER

Proof. (i) Consider �nite measures �; � �rst. We are goint to use the representation
of T � in terms of the � -sepaparting extension developed in section 2. By statement
(3.4) in the proof of theorem 1.1, � lifts to an a.c.i.m. b� for the nonsingular
extension ( bX; bA; b�; bT ), and �Y = (b� bY0) � ��1. By the classical Abramov formula
for the induced map bTbY0 of the tower system we have

h( bTbY0 ; b� bY0) = ZbY0 b'bY0 db� bY0 � h( bT ; b� bX).
Due to the natural isomorphism of the m.p.t.s (bY0; bA \ bY0; b� bY0 ; bTbY0) and (Y;A \
Y; �Y ; T

� ), it is clear that h( bTbY0 ; b� bY0) = h(T � ; �Y ), and since b'bY0 jbY0= � �� jbY0 , we
see that

RbY0 b'bY0 db� bY0 = RY � d�Y . Hence,
h(T � ; �Y ) =

Z
Y

� d�Y � h( bT ; b� bX).
It remains to check that h( bT ; b� bX) = h(T; �X). This, however, is automatic for any
extension with countable �bres, cf. [Bu], proposition 2.8.

(ii) Extension to possibly in�nite measures. Take any Z 2 A+(�), �(Z) < 1, so
that 0 < �(Z) <1 as well, and (5.2) applies. Then

h(T � ; �) = �(Z) � h((T � )Z ; �Z) = �(Z) � h((TZ)#; �Z),
where # is such that (T � )Z = (TZ)

#, and � jA\Z= # �TZ � jA\Z as in propo-
sition 4.1. By the �nite measure version of our theorem and proposition 1.1,
h((TZ)

#; �Z) = (�(Z)=�(Z)) � h(TZ ; �Z), and (5.3) follows. �
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