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Abstract

We consider S-unimodal Misiurewicz maps T with a flat critical point c
and show that they exhibit ergodic properties analogous to those of interval
maps with indifferent fixed (or periodic) points. Specifically, there is a conser-
vative ergodic absolutely continuous σ-finite invariant measure µ, exact up to
finite rotations, and in the infinite measure case the system is pointwise dual
ergodic with many uniform and Darling-Kac sets. Determining the order of
return distributions to suitable reference sets we obtain bounds on the decay
of correlations and on wandering rates. Assuming some control of the local
behaviour of T at c, we show that in most cases, e.g. whenever the postcritical
orbit has a Lyapunov exponent, the tail of the return distribution is in fact
regularly varying, which implies precise information on the mixing rate, and
various distributional limit theorems.

AMS subject classification: 28D05, 37A25, 37A40, 37E05, 60F05

1 Introduction

While the dynamics of one-dimensional dynamical systems with non-flat critical
points has been the object of intense study during the last twenty years, it seems
that little attention has been payed to the ”degenerate” limit case of flat critical
points (i.e. points where all derivatives of the map vanish). The only references I
am aware of are [BM] and [Th]. The purpose of the present note is to point out
that maps with flat tops do have some very interesting ergodic properties when
regarded as nonsingular transformations w.r.t. Lebesgue measure λ and can in fact
be interpreted as generalizations of transformations with indifferent fixed (or peri-
odic) points. The latter class of systems has recently attracted a lot of attention.
In the probability preserving situation, their slow mixing behaviour and its prob-
abilistic consequences have been investigated by several authors (see e.g. [LSV],
[Hu], [Yo], [Sa], [Ho], or [Z2]), while the infinite measure case constitutes one of
the most popular families of examples in infinite ergodic theory (cf. [A0], [A2],
[T1]-[T4], [Z1]). Here we advertize maps with flat tops as a class of systems which
considerably extends the supply of examples exhibiting these features. The reason
for their weak hyperbolicity is not as obvious as in the case of neutral fixed points,
which of course makes them even more interesting. Roughly speaking, the critical
point has a (usually nonperiodic) ”indifferent orbit” along which the expansion of
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the system is very poor.

Throughout, λ will denote one-dimensional Lebesgue measure, and B will be
the Borel-σ-field of the space under consideration. We consider S-unimodal interval
maps T : [a, b] → [a, b], i.e. C3-maps with a unique critical point c ∈ (a, b), T ′c = 0,
such that Ta = Tb = a, for which the Schwarzian derivative ST := T ′′′/T ′ −
3
2 (T ′′/T ′)2 is nonpositive (with ST (c) = −∞). The critical point is said to be flat
if T (n)(c) = 0 for all n ≥ 1. T is said to be a Misiurewicz map if there is some open
interval IM around c such that cn := Tnc /∈ IM for n ≥ 1, and T has no sinks (open
intervals homeomorphically mapped into themselves by some iterate of T ). It is well
known that full families of unimodal maps contain uncountably many Misiurewicz
maps (see e.g. the combinatorial characterization we use in section 5 below). In
the present paper we shall restrict our attention to the Misiurewicz case, which is
a natural nontrivial starting point for an investigation of finer ergodic properties
of unimodal maps with flat tops. Of course, one should expect suitably weakened
conditions on the recurrence behaviour of the critical orbit to be sufficient for the
results to follow, but it seems worthwile to expose the effects of flat tops in a setup
with limited technical difficulties.

Example 1 (A basic family of examples) Fix any p > 0, s > p + 1, and define
Ta = Ta,(p,s) : [−1, 1] → [−1, 1], a ∈ [0, 1] by

Ta(x) := 2a · (1− e
s
p (1−|x|−p))− 1.

We shall see below that the Misiurewicz maps from this family in many respects
resemble the behaviour of maps with indifferent fixed points xT of the form Tx =
x + const · (x− xT )1+p + o((x− xT )1+p) near xT .

As a warm-up, we will show in the next section that systems of this type always
have σ-finite absolutely continuous invariant measures (acims):

Theorem 1 (Invariant measures for Misiurewicz maps) Every S-unimodal
Misiurewicz map T is ergodic w.r.t. λ and has a conservative σ-finite invariant
Borel measure µ ¿ λ whose support is a finite union of intervals. The measure µ
is finite iff

∫
log | T ′ | dλ > −∞.

By ergodicity, µ is unique up to a constant factor, and Lebesgue a.e. point is
eventually mapped into the support of µ. If µ is finite, we will always assume it to
be normalized.

Remark 1 Existence and basic properties of finite absolutely continuous invari-
ant measures for (not necessarily unimodal) Misiurewicz maps with nonpositive
Schwarzian derivative, and log | T ′ |∈ L1(λ) (also shown to be a necessary con-
dition in the presence of the others) have been proved in [BM]. Needless to say,
we will repeatedly use arguments similar to those of [Mi] and [BM]. In [Th] even
a Jakobson-type result for certain families of S-unimodal maps with flat tops and
log | T ′ |∈ L1(λ) (including the falily of example 1 for p < 1/8) is established.

Example 2 (Continuation of example 1) The Misiurewicz maps T = Ta from
the family of example 1 preserve a probability measure µ ¿ λ provided that p < 1.
For p ≥ 1 the acim µ is infinite, but still conservative ergodic.

Below we are going to explore some finer ergodic properties of the measure
preserving systems thus obtained.
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2 Preliminaries on the Schwarzian derivative, piece-
wise monotonic and induced systems. Proof of
theorem 1

We recall some important concepts, and collect a few fundamental results that will
be used in the sequel. Although we use (almost) the same notations and conventions
as in [Z1], we include the relevant definitions for the reader’s convenience.

The Schwarzian derivative and the Koebe principle. Recall first that ST ≤ 0
implies S(Tn) ≤ 0 for all n ≥ 1. As observed in [Mi], a C3 function T which has no
critical point in an open interval J satisfies ST ≤ 0 on J iff 1/

√
| T ′ | is convex on

J . Let I ⊆ J be a subinterval, then J is said to contain a δ-scaled neighbourhood
of I if J \ I consists of two components, each of length at least δ λ(I). The above
characterization of ST ≤ 0 implies the all important Koebe principle providing us
with good distortion control:

Let I ⊆ J be open intervals and assume that T ∈ C3(J)
satisfies ST ≤ 0 and has no critical point in J . If T (J)

contains a δ-scaled neighbourhood of T (I), then
supx,y∈I |T ′x/T ′y| ≤ (

1+δ
δ

)2
.

(1)

Piecewise monotonic systems. A piecewise monotonic system is a triple (X,T, ξ),
where X is the disjoint union of some countable family ξ0 of open intervals, ξ is
a collection of nonempty pairwise disjoint open subintervals (the cylinders of rank
one) with λ(X\⋃

ξ) = 0, and T : X → X is a map such that T |Z is con-
tinuous and strictly monotonic for each Z ∈ ξ. Given such a system, we let ξn

denote the family of cylinders of rank n, that is, the nonempty sets of the form
Z = [Z0, . . . , Zn−1] :=

⋂n−1
i=0 T−iZi with Zi ∈ ξ. We let VZ := (Tn |Z)−1 be the

inverse of the branch Tn |Z . ∂ξ will denote the collection of endpoints of members
of ξ. The fundamental partition ξ respectively the system (X, T, ξ) are said to be
Markov if TZ ∩Z ′ 6= ∅ implies Z ′ ⊆ TZ whenever Z, Z ′ ∈ ξ. In this case the image
partition T∗ξ (i.e. the coarsest partition into intervals with respect to which each
TZ, Z ∈ ξ is measurable) is coarser than ξ. We write ξn(x) for the member of ξn

containing the point x. If x is the common endpoint of two cylinders from ξn, we
denote them by ξn(x−) and ξn(x+) respectively.

First-return maps and induced systems. Let T be a nonsingular transforma-
tion of some σ−finite measure space (X,B, λ). Consider a recurrent set Y ∈ B,
i.e. one for which Y ⊆ ⋃

n≥1 T−nY mod λ. (If in fact X =
⋃

n≥1 T−nY mod λ,
then Y is called a sweep-out set.) Then the first return time function ϕY given by
ϕY (x) := min{n ≥ 1 : Tnx ∈ Y } is finite a.e.. We define the induced or first-return
map TY : Y → Y (mod λ) by TY x := TϕY (x)x. The n−th return time on Y is then
given by ϕY,n(x) :=

∑n−1
k=0 ϕY (T k

Y x). If µ is a measure on B with 0 < µ(Y ) < ∞,
we let µY denote its normalized restriction to Y : µY (A) := µ(Y )−1µ(A∩ Y ). Gen-
erally, objects associated with the induced map will notationally be identified by
the subscript Y . We will repeatedly use the well known intimate relation between
the basic ergodic properties of T and TY , see e.g. [T2] or lemma 1 of [Z1].

Suppose that (X,T, ξ) is a piecewise monotonic system and consider some re-
current set Y ⊆ X. Assume that Y is the union of some finite family ξY,0 of disjoint
open subintervals of X, measurable ξ mod λ. We define the induced partition of ξ
on Y to be ξY :=

⋃
n≥1{{ϕ = n}∩Z ∩T−nM : Z ∈ ξn, M ∈ ξY,0}. TY is piecewise

monotonic, and ξY is its natural partition into intervals on which it is continuous
and monotonic. We shall call (Y, TY , ξY ) the system which (X, T, ξ) induces on Y .
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Some basic properties of S-unimodal maps. Henceforth T : [a, b] → [a, b] will
be some S-unimodal map with critical point c. If T has no sinks, theorem 1.2 of
[Mi] implies that

the partition ξ = {(a, c), (c, b)} generates. (2)

Also, T has good expansion properties aslong as we stay away from the critical
point: The proof of theorem 1.3 of [Mi] shows the following:

for any neighbourhood J of the critical point c there are
ρ > 1 and K > 0, such that for all x ∈ [a, b] and n ≥ 1,

x, Tx, . . . , Tn−1x /∈ J implies |(Tn)′(x)| > K · ρn.
(3)

Together with a standard distortion argument this reveals that

λ(
⋂n−1

k=0 T−kJc) is exponentially small in n, (4)

and in particular that

every neighbourhood J of c is recurrent and sweeps the space. (5)

These observations are enough to prove the existence of a unique conservative er-
godic σ-finite a.c.i.m. for Misiurewicz maps by inducing.

Definition 1 Given an S-unimodal Misiurewicz map T , we fix as a reference set
the interval Y = Y (T ) := ξn(c−) ∪ {c} ∪ ξn(c+) ⊂ IM where n ∈ N so large that
δ := dist(Y, Ic

M) > 0 and dist(TY, IM) > 0 (recall (2)).

Proof of theorem 1. By (5), it is possible to induce on Y = Y (T ), and we claim
that

the induced system (Y, TY , ξY ) is piecewise surjective and
has bounded distortion, i.e. there is some δM > 0 s.t.

sup n≥1,
x,y∈W∈ξY

∣∣∣ (T n)′(x)
(T n)′(y)

∣∣∣ ≤
(

1+δM
δM

)2

.
(6)

It is straightforward to check that (Y, TY , ξY ) is piecewise onto. Moreover, each
branch TY |W , W ∈ ξY , is the restriction to W of some branch T k |Z , Z ∈ ξk, of T
with image T kZ covering IM and hence containing a δM-scaled neighbourhood of
Y = TY W , where δM := δ/λ(Y ) does not depend on W . By the Koebe principle
(1), the induced system therefore has bounded distortion.

Hence some iterate of TY is uniformly expanding and, by folklore results, TY

is exact and preserves a probability measure µY ¿ λ with Lipschitz continuous
density hY satisfying log hY ∈ L∞(Y ). By standard results, see e.g. lemma 1 of
[Z1], or [T2], µY extends to some σ-finite T -invariant measure µ ¿ λ on X, and
since Y sweeps X, cf. (5), there are no other acims for T . The characterization
of finiteness of µ is immediate from theorems 1 and 4 of [BM], see also remark 3
below.

Remark 2 Applying the Koebe principle relative to IM to small intervals (x, y) in
Y shows that the induced system (Y, TY , ξY ) in (6) in fact has the Gibbs property
in the sense of [A0], [AD1].

3 Return distributions, decay of correlations, and
a central limit theorem

In the Misiurewicz case it is easy to determine the order of the tail of the return
distribution to our reference set Y = Y (T ) ⊂ IM. To formalize this, we need a
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few more notations. Let T be some S-unimodal Misiurewicz map and recall that
VZ0 = (T |Z0)

−1 and VZ1 = (T |Z1)
−1 denote the two inverse branches of T .

Define U(x) := c1 − T (x − c), x ∈ [a − c, b − c], and Vi : [0, c1 − a] → [0,∞) as
Vi(y) := |VZi

(c1 − y)− c|, which transforms the singularity to the origin, so that
the behaviour of the Vi at zero describes the type of the critical point. (Of course,
if T is symmetric about c, then V0 = V1.) Since ST ≤ 0, there is some δV > 0 such
that

the Vi are strictly concave on [0, δV ], (7)

compare lemma 3 of [BM]. We let V := V0 + V1.

Proposition 1 (Asymptotic order of the return distributions) Let T be an
S-unimodal Misiurewicz map. There are constants Kl,Ku > 0 and ql, qu ∈ (0, 1)
such that for n sufficiently large,

Kl · V (qn
l ) ≤ µY (Y ∩ {ϕY > n}) ≤ Ku · V (qn

u).

In particular, if c is flat, µY (Y ∩ {ϕY > n}) does not decrease exponentially fast.

Proof. We have Y ∩ {ϕY > n} = Y ∩ T−1(
⋂n−1

j=0 T−jY c), n ≥ 1. As ST ≤ 0 and
T ′(c) = 0, there is some ε > 0 such that for any set M with λ(M) < ε we have

λ(Zi ∩ T−1M) ≤ λ(Zi ∩ T−1(c1 − λ(M), c1)) = Vi(λ(M)), i ∈ {0, 1}.

Recalling (4) we therefore see that there is some qu ∈ (0, 1) such that for n suffi-
ciently large,

λ(Zi ∩ {ϕY > n}) ≤ Vi

(
λ

(⋂n−1
j=0 T−jY c

))
≤ Vi(qn

u).

Since the invariant density h = dµ/dλ is bounded away from 0 and ∞ on Y ,
the upper estimate follows. To prove the lower estimate, consider the subset of⋂n−1

j=0 T−jY c consisting of those points which closely follow the critical orbit all
along, i.e. Mn :=

⋂n−1
j=0 T−j{x :| x− cj+1 |< δ}, n ≥ 1, where δ := dist(Y, Ic

M) > 0
as in the proof of theorem 1. The Mn are intervals adjacent to c1, and therefore
λ(Zi ∩ T−1Mn) = Vi(λ(Mn)). However, as T ′ is bounded, λ(Mn) cannot decrease
faster than at some fixed exponential rate, and the argument is completed as before.
Finally, if the critical point is flat, we have xr = o(V (x)) as x → 0 for every
r ∈ (0, 1), and hence γn = o(V (qn)) as n →∞ for any γ, q ∈ (0, 1).

Remark 3 (Finiteness of the invariant measure) Since in any case we have
0 < µ(Y ) < ∞, Kac’ formula ensures that µ is finite iff the return time distribution
of Y has finite expectation, that is, iff

∑
n≥0 µY (Y ∩{ϕY > n}) < ∞. Together with

(7), lemmas 1 and 2 of [BM], and our proposition show that the latter is equivalent
to integrability of any of the functions log | T ′ | and log | T − T (c) |. We thus
recover theorem 4 of [BM] using the existence of a unique σ-finite acim rather than
their lemma 11.

Example 3 (Continuation of example 1) Fix p > 0, s > p + 1, a ∈ [0, 1], and
consider T := Ta. Then

Vi(y) =
(
−p

s
log

(
y

2ae
s
p

))− 1
p

, i ∈ {0, 1},

so that for any K > 0 and q ∈ (0, 1), Vi(Kqn) ∼ [p
s (− log q)]−αn−α as n → ∞,

where α := p−1. Consequently, µY (Y ∩ {ϕY > n}) ≈ n−α.
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Together with the observation (6), these bounds on the tail weights enable us
at once to apply the results on mixing rates for towers above well mixing trans-
formations established in [Yo]. We let P :L1(λ) → L1(λ) denote the transfer (or
Perron-Frobenius) operator of T w.r.t. λ, which is characterized by

∫
Pu · g dλ =∫

u · (g ◦ T ) dλ for u ∈ L1(λ) and g ∈ L∞(λ), and extends to quasi-integrable func-
tions u by a straightforward aproximation procedure. Given an interval I, we let
H(I) denote the family of (uniformly) Hölder continuous functions on I.

If ν is a probability measure on the measurable space (X,A) and (Rn)n≥1 is a
sequence of measurable real functions on X, distributional convergence of (Rn)n≥1

w.r.t. ν to some random variable R will be denoted by Rn
ν=⇒ R. Strong distrib-

utional convergence Rn
L(λ)
=⇒ R on the σ-finite measure space (X,A, λ) means that

Rn
ν=⇒ R for all probability measures ν ¿ λ. If T is a nonsingular ergodic transfor-

mation on (X,A, λ), compactness implies that if Rn ◦T −Rn
λ−→ 0, then Rn

L(λ)
=⇒ R

as soon as Rn
ν=⇒ R for some ν ¿ λ (compare section 3.6 of [A0] or [A1]). Specifi-

cally, this applies if T is not completely dissipative and Rn = Sn(f) =
∑n−1

k=0 f ◦T k,
n ∈ N, for some f ∈ L1(λ).

Theorem 2 (Rates of mixing, decay of correlations, and CLT) Let T be
an S-unimodal Misiurewicz map. Assume that V(t) := V (e−t) = O(t−α) for some
α > 1 (hence µ is finite). a) For any probability density u ∈ H(Y ),

‖Pnu− h‖L1(4,λ) = O(n1−α) as n →∞,

and for any f ∈ L∞(λ) and g ∈ H(Y ),
∣∣∣∣
∫

f(g ◦ Tn) dµ− µ(f)µ(g)
∣∣∣∣ = O(n1−α) as n →∞.

b) If α > 2, then for any f ∈ H(Y ),

1√
n

n−1∑

k=0

(f ◦ T k − µ(f))
L(λ)
=⇒ N (0, σ(f)),

with σ(f) > 0 iff f 6= g ◦ T − g for g measurable.

Example 4 (Continuation of example 1) Recalling example 3, we have nV(n) ∼
const · n1−α, and the CLT applies if p < 1/2.

Proof. According to our assumption on V, proposition 1 implies µY (Y ∩ {ϕY >
n}) ≈ v(t). We apply the abstract mixing theorm of [Yo]. The induced system
(Y, TY , ξY ) on our reference set Y = Y (T ) is Rényi and hence satisfies the assump-
tions on the return map FR in the abstract framework of [Yo]. The results of
this paper are formulated for the Kakutani tower (Z, S) above (Y, TY ) with height
function ϕ, i.e. Z := {(y, k) ∈ Y × N : k ≤ ϕ(y)} and S(y, k) = (y, k + 1) if
k < ϕ(y), and S(y, ϕ(y)) = (TY y, 1). As this tower is always injective outside its
roof {(y, ϕ(y)) ∈ Z}, it does not represent the general system (X,T ) with induced
map (Y, TY ) and return time ϕ. However, it is easily seen that the bounds on the
rates of mixing, and the CLT apply to any such system, since in an obvious way
(X,T ) always in a factor of (Z, S).

Remark 4 Theorem 2 of [Sa] shows that in many situations the bounds given in
[Yo] are sharp if µY (Y ∩ {ϕY > n}) ≈ n−α with α > 2. This, too, applies in our
setup, since it is easily seen that the return time function ϕ is aperiodic.

Remark 5 The extension of Young’s results to the case of slowly varying orders
given in [Ho] also applies in our situation.
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4 Tail field, pointwise dual ergodicity, uniform con-
vergence, and Darling-Kac sets

Recall that T is said to be exact w.r.t. λ if for any set A from its tail-σ-field
B∞ :=

⋂
n≥0 T−nB either A or Ac has zero Lebesgue measure. Below we shall

prove

Theorem 3 (Finite tail field and exactness) S-unimodal Misiurewicz maps T
are Lebesgue exact up to a finite rotation.

The main result of the present section, which (though not void in the finite
measure case) is mainly of interest in the infinite measure preserving situation,
concerns the asymptotic behaviour of the transfer operator. If µ is infinite, then
exactness implies that limn→∞

∫
A

Pnu dλ = 0 for all u ∈ L1(λ) and A ∈ B with
µ(A) < ∞, cf. [T3]. It is then natural to consider suitably normalized iterated
densities in order to compensate this escape of mass. Again, we obtain a result which
is analogous to what we know about transformations with indifferent fixed points,
cf. [T3] and theorem 9 of [Z1]. In the latter situation the obvious family of good sets
of finite measure consists of those which are bounded away from the neutral fixed
points. Hardly surprising, the collection E(T ) := {Y ⊆ X : dist(Y, {cn}n≥1) > 0}
plays a similar role in the present setup. Notice that by boundedness of X, any set
A ∈ E(T ) is contained in some finite union of intervals from E(T ).

Theorem 4 (Uniform convergence of averaged iterated densities) Let T
be an S-unimodal Misiurewicz map. Then the invariant density h has a version
with h ∈ D(I) ∩ L∞(λ) for all intervals I ∈ E(T ), and there is some sequence
(an(T ))n≥1 in R+ (an = n if µ is finite, and an = o(n) otherwise) such that for
any Riemann-integrable function u,

1
an(T )

n−1∑

k=0

Pku −→ λ(u) · h as n →∞,

uniformly on members of E(T ).

A conservative ergodic measure preserving transformation (c.e.m.p.t.) T on a
σ−finite space (X,B, µ) is called pointwise dual ergodic (cf. [A1] or Section 3.7 in
[A0]) if there are positive constants an(T ), n ≥ 1, such that

1
an(T )

n−1∑

k=0

Tkf −→ µ(f) a.e. as n →∞ for all f ∈ L1(µ), (8)

where T : L1(µ) → L1(µ) is the dual operator of T , that is, the transfer operator
w.r.t. the invariant measure µ, characterized by

∫
X

Tu · f dµ =
∫

X
u · f ◦ T dµ for

u ∈ L1(µ), f ∈ L∞(µ). (By Hurewicz’s ergodic theorem, cf. [A0], section 2.2, this
holds as soon as the convergence in (8) takes place for one function f ∈ L1(µ),
µ(f) 6= 0.) The sequence (an(T ))n≥1 which then is uniquely determined up to
asymptotic equivalence is called the return sequence of T . We let U(T ) denote
the family of uniform sets, i.e. those B ∈ B on which a−1

n

∑n−1
k=0 Tkf converges

uniformly (mod µ) for some f ∈ L+
1 (µ).

Whenever T is a c.e.m.p.t. of (X,B, µ), a set B ∈ B with 0 < µ(B) < ∞
is called a Darling-Kac set if for some sequence (an) in R+, a−1

n

∑n−1
k=0 Tk1B con-

verges uniformly (mod µ) on B. The mere existence of Darling-Kac sets is a rather
strong qualitative mixing property for infinite measure preserving transformations
which in particular implies pointwise dual ergodicity (with return sequence (an)),
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cf. proposition 3.7.5 of [A0].

As the invariant density h of T is bounded away from zero and infinity on
members of E(T ), and Tu = h−1P(hu), theorem 4 implies:

Corollary 1 (Pointwise dual ergodicity, uniform sets, and Darling-Kac
sets) Let T be an S-unimodal Misiurewicz map. Then T is pointwise dual ergodic
with E(T ) ⊆ U(T ), and any B ∈ E(T ) satisfying λ(∂B) = 0 is a Darling-Kac set
for T .

According to theorem 10 of [Z1], the collection of Darling-Kac sets cannot be too
large, which also shows that there is no way to extend theorem 4 to all Lebesgue-
integrable functions u.

Remark 6 (Existence of Darling-Kac sets by Aaronson’s method) Let us
point out that an alternative quick proof of (pointwise dual ergodicity and) the fact
that T has Darling-Kac sets can be given by applying lemma 3.7.4 of [A0] to our
reference set Y = Y (T ), compare also [A2]. The advantage of our approach is that
it provides us with still more uniform and Darling-Kac sets.

The main ingredient for the proof of theorems 3 and 4 are the nice ergodic
properties common to markovian piecewise monotonic systems with nonpositive
Schwarzian derivative. We are going to exploit these via suitable Markov exten-
sions.

Canonical Markov extensions. Let (X, T, ξ) be a piecewise monotonic system.
For n ≥ 0 define Mn := {T kZ : Z ∈ ξk, 0 ≤ k ≤ n} and M :=

⋃
n≥0Mn. (All

members of M thus are connected sets.) For B ∈ M, let B̂ := {(x,B) : x ∈ B},
M̂n := {B̂ : B ∈ Mn} and M̂ :=

⋃
n≥0 M̂n. Finally let X̂ :=

⋃
B∈M B̂ =

⋃M̂.
The map T̂ given by T̂ (x,B) := (Tx, T (B ∩ ξ(x))) is well defined a.e. on X̂, and
for m ≥ 1 we have

T̂m(x,B) = (Tmx, Tm(B ∩ ξm(x)))

(cf. [K1]). The natural projection π : X̂ → X, π(x,B) := x is onto and satisfies
π ◦ T̂ = T ◦π. Letting ξ̂ := M̂∨π−1ξ we obtain a system (X̂, T̂ , ξ̂) which is Markov
by construction and satisfies the definition of a piecewise monotonic system. It is
called the canonical Markov extension (C.M.E.) of (X, T, ξ). Concerning topology
and measures, X̂ will be regarded as the sum of the spaces B̂, B ∈ M. One-
dimensional Lebesgue measure thereon will again be denoted by λ. Observe that
the image partition T̂∗ξ̂ equals M̂. If M is some object (point, cylinder, or image
interval) belonging to M̂n\M̂n−1, then we say it is on level n, and write Λ(M) := n.
Notice that Λ ◦ T̂ ≤ Λ + 1.

Notice also that the construction strongly depends on the choice of ξ. It can also
change if we refine ξ0 by removing a single point from X. Therefore it is important
to always keep in mind that T̂ does not only depend on T but on the whole ensemble
(X,T, ξ). On the other hand, we can systematically exploit this flexibility to choose
particularly convenient extensions by refining the partitions ξ0 and ξ. We will do
so in section 4 below (see also section 4 of [Z1]). Given two partitions η, η′ of X,
we define η Y η′ to be the coarsest partition of X into subintervals which refines η
and η′. In general, this is finer that η ∨ η′.

The transfer operators P and P̂ respectively associated with T and T̂ are also
closely related to each other. For û : X̂ → [0,∞) measurable and (π∗û)(x) :=∑

π(bx)=x û(x̂) we have π∗(P̂û) = P(π∗û). (π∗ is just the transfer operator of π.)

Given u : X → [0,∞) we define its lift to the base of (X̂, T̂ , ξ̂) to be the function û

8



vanishing on X̂ ∩ {Λ ≥ 1} for which π∗û = u. Sometimes a convenient way to see
that an acim µ̂ for the C.M.E. projects onto an acim µ of T , is to use the fact that

if there is some Y ⊆ X s.t. µ̂(π−1Y ) < ∞,
then µ := µ̂ ◦ π−1 is a σ-finite acim for T , (9)

which is easily seen by inducing on Y and π−1Y .

Function spaces for markov systems with nonpositive Schwarzian deriva-
tive. As shown in [Mi], the transfer operator of a map with nonpositive Schwarzian
derivative preserves certain convenient function spaces. This has been exploited
systematically for markovian situations in §2 of [K2]. For an open interval J we let
D(J) denote the family of all continuous functions u : J → (0,∞) for which 1/

√
u

is concave, together with the constant function u = 0. Assume now that (X̂, T̂ , ξ̂)
is a Markov system with nonpositive Schwarzian derivative, and consider the cone
D̂ := {û ∈ C(X̂) : û | bD∈ D(D̂) for all D̂ ∈ M}, then (X̂, T̂ , ξ̂, λ, D̂) is a regular
Markov system in the sense of [K2], meaning that

û ∈ D̂ and Ẑ ∈ ξ̂k =⇒ P̂k(1bZ û) ∈ D̂, (10)

D̂ is closed in the topology of uniform convergence
on compact subsets (u.c.s. convergence),

(11)

D̂ − D̂ is dense in L1(X̂, λ), (12)

and
for all D̂ ∈M and all compact K ⊆ D̂,

the set {log û |K : û ∈ D̂} is equicontinuous.
(13)

As a consequence,

if û ∈ D̂, then P̂nû ∈ D̂ ∪ {∞} for n ≥ 0. (14)

In particular, theorem 1 of [K2] applies to our C.M.E., showing that its basic er-
godic structure is quite nice.

More distortion properties of markov systems with nonpositive Schwarzian
derivative. Let us point out that systems of this type also fit into the framework
of Markov maps with distortion properties as studied in [A0]. (This also offers an
alternative approach to the structure theorem of [K2].) Specifically,

if (X̂, T̂ , ξ̂) is a conservative Markov system with nonpositive
Schwarzian derivative, then, slightly refining ξ̂, it has the

weak distortion property in the sense of [A0], §4.3.
(15)

To see this, assume w.l.o.g. that (X̂, T̂ , ξ̂) is conservative ergodic. The higher-order
dynamical partitions ξ̂m, m ≥ 1, are also markov for T̂ , and we may choose m so
large that there is an image interval B = T̂ V , V ∈ ξ̂, which contains a δ-scaled
neighbourhood, δ > 0, of some cylinder Z ∈ ξ̂m. Refining the partition once again,
we let η̂ := ξ̂m Y T̂−1{Z, Zc}, and observe that (X̂, T̂ , η̂) again is a markov system.
Define r := {W ∈ η̂n : n ≥ 1, T̂nW = Z}, then, by ergodicity, r exhausts our space,⋃

r = X̂ mod λ, and for W ∈ r we obviously have V ∩ T̂−nW ∈ r ∪ {∅} for any
V ∈ η̂n, n ≥ 1. Together with the Koebe principle (1) this shows that r satisfies
the defining properties of a Schweiger collection for (X̂, T̂ , η̂) (cf. [A0], §4.3), whose
existence is asserted by the weak distortion property.
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Theorem 4.4.7 of [A0] now ensures that the conservative ergodic system (X̂, T̂ , η̂)
is exact if its incidence graph is aperiodic, and hence that in the general case it is
the product of an exact system and a finite rotation. It is easily seen that this
extends to systems with a dissipative part, so that we find that

any ergodic Markov system (X̂, T̂ , ξ̂) with
nonpositive Schwarzian derivative, not totally

dissipative, is exact up to a finite rotation,
(16)

which will lead to the corresponding statement for S-unimodal maps.

Below we are going to apply these observations to a C.M.E. of our S-unimodal
Misiurewicz map T . However, we won’t just take the C.M.E. of (X,T, ξ) with
ξ = {(c2, c), (c, c1)}. The following trick reveals that in the Misiurewicz case the
theorem is an easy corollary of the markovian results.

Lemma 1 (Towers trivializing Misiurewicz intervals) Let (X, T, ξ) be a piece-
wise monotonic system and assume that the open interval I ⊆ X is (contained in
some B ∈ ξ0 and) measurable w.r.t. some ξn, n ∈ N, and disjoint from the orbits
of points from ∂ξ. Refine ξ0 and ξ by letting ξ′0 := ξ0 Y {I, Ic}, X ′ :=

⋃
ξ′0, and

ξ′ := ξn Y T−1{I, Ic}, then the C.M.E. (X̂ ′, T̂ , ξ̂′) of (X ′, T, ξ′) is trivial above I in
that π−1I = π−1I ∩ {Λ = 0} = I × {I}.
Proof. Replacing ξ1 by ξn if necessary, we may assume w.l.o.g. that n(I) = 1.
ξ′0 is the collection of connected components of X ′ and contains I. Any (higher-
order) cylinder Z ′ ∈ ξ′n is of the form Z ′ =

⋂n−1
k=0 T−kZ ′k, Z ′k ∈ ξ′, n ≥ 1, with

Z ′k = Zk ∩ T−1Jk, where Zk ∈ ξ and Jk ∈ ξ′0. Since all J ∈ ξ′0 are measurable ξ′,
we see that in fact Z ′ = Z ∩ T−nJn−1 with Z :=

⋂n−1
k=0 T−kZk. By assumption,

however, TnZ either covers I or is disjoint from it, and our assertion follows.

We are now ready to prove the main results of this section.

Proof of theorems 3 and 4. Recall that by boundedness of X and the fact
that ξ generates (cf. (2)), for any M ∈ E(T ) there is a finite collection I of open
intervals I ∈ E(T ), each measurable ξn for some n ≥ 1, such that cl(M) ⊂ ⋃ I.
Therefore it is enough to consider the case where cl(M) is contained in a single
open interval I ∈ E(T ) measurable ξn. We refine ξ as in the preceding lemma,
ξ′ := ξn Y T−1{I, Ic}, and take a closer look at the C.M.E. (X̂ ′, T̂ , ξ̂′) of (X ′, T, ξ′).
Theorem 1 of [K2] applies to describe the possible types of ergodic behaviour of this
Markov extension, and the following arguments are based on its conclusions.

Assume that µ(I) > 0 (e.g. I := Y = Y (T )). By theorem 1, I is a sweep-out
set for (X,T ). In turn, Î := π−1I is a sweep-out set for the C.M.E., showing that
µ̂(Î) > 0 for any acim µ̂ of T̂ , hence ĥ := dµ̂/dλ is strictly positive on Î in this case,
since necessarily ĥ ∈ D̂ by theorem 1 of [K2]. As Î is recurrent, there is at least one
µ̂, and its restriction µ̂ |bI is an acim for the induced map T̂bI . The trivial projection
µ̂ |bI ◦π−1 therefore is an a.c.i.m. for TI and thus equals (some multiple of) µ |I .
This shows that µ̂ is unique up to a constant factor, and hence ergodic. We also
see that h ∈ D(I) for any interval I ∈ E(T ), and passing to a slightly larger one
which covers cl(I), we conclude that h is also bounded on I. According to (9), we
have µ̂ ◦ π−1 = µ on X if (from this point on) we normalize µ̂ appropriately. It is
easy to see that since π is nonsingular w.r.t. λ, exactness of T̂m implies exactness
of Tm, and applying (16) to (X̂ ′, T̂ , ξ̂′), we obtain theorem 3.

Theorem 1 in [K2] also shows that the c.e.m.p.t. T̂ on (X̂,B, µ̂) is pointwise
dual ergodic with return sequence given by âI,n := λ(Î)

∑n−1
k=0 P̂k1bI(x0), n ≥ 1,
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where x̂0 ∈ Î is fixed. Moreover, although this assertion is not made explicit in
the statement of that result, it is shown in its proof that letting Ûn :=

∑n−1
k=0 P̂kû,

n ≥ 1, we have â−1
I,nÛn → λ(û) · ĥ uniformly on compact subsets of X̂ whenever

û ∈ D̂ ∩L1(X̂, λ). Using the trivial projection Î → I this immediately implies that
â−1

I,n

∑n−1
k=0 Pku → λ(û) · h u.c.s. on I for u := π∗(û). Recalling (10), we see that

this applies in particular to P̂j û whenever û is the lift of some ξ′j-simple function u
to the base of the tower. Therefore,

1
âI,n

n−1∑

k=0

Pku → λ(u) · h u.c.s. on I

for such u, and since ξ generates, a straightforward sandwich argument enables us
to extend this to Riemann integrable functions u on X.

To check that the normalizig sequence (âI,n)n≥1 does not depend on I, we only
have to recall that proposition 3.7.6 of [A0] ensures that the factor (X, T, µ) of the
pointwise dual ergodic system (X̂ ′, T̂ , ξ̂′) is pointwise dual ergodic, too, and has the
same return sequence.

If µ(I) = 0, we consider the same type of extension (X̂ ′, T̂ , ξ̂′) as before, and
it is clear that Î = π−1I belongs to the dissipative part. Hence (as the iterated
desities are in D̂), for ξ′j-simple functions u,

∑n−1
k=0 Pku =

∑n−1
k=0 P̂kû is uniformly

summable on compact subsets of I, implying the assertion in this case.

5 More on the return distribution. Regular vari-
ation

We let T be some fixed S-unimodal Misiurewicz map and consider our reference
set Y = Y (T ) with first return (resp. entrance) time function ϕ(x) := inf{n ≥
1 : Tnx ∈ Y }, x ∈ X. We are interested in finer asymptotic properties of the
distribution of ϕ under µY . Specifically, we would like to improve the estimates of
proposition 1 and determine the asymptotics of the tail probabilities µY (Y ∩ {ϕ >
n}) rather than just their order of magnitude. Of course, the most interesting
situation is that of regularly varying tails, which is the very property leading to fine
probabilistic properties, cf. sections 7 and 8 below. Recall that a realvalued function
a is regularly varying of index ρ ∈ R at infinity if for any c > 0, limt→∞ a(ct)/a(t) =
cρ, cf. [BGT]. The collection of functions of this type will be denoted by Rρ. We
shall interpret sequences (an)n≥1 as functions via t 7−→ a[t]. Proposition 1 suggests
that we can hardly expect the tail to be regularly varying unless V (e−t) is. The
following result shows that this condition is also sufficient if the critical orbit behaves
well.

Theorem 5 (Lyapunov exponent and the tail of the return distribution)
Let T be an S-unimodal Misiurewicz map, let V(t) := V (e−t) and assume that
V ∈ R−α for some α > 0 (hence c is flat). If (n−1 log | (Tn)′(c1) |)n≥1 ∈ R0, then

µY (Y ∩ {ϕ > n}) ∼ hY (c) · V(log | (Tn)′(c1) |). (17)

as n →∞, where hY is the normalized invariant density on Y . In particular, if the
postcritical orbit has a Lyapunov exponent

λc := lim
n→∞

1
n

log | (Tn)′(c1) |∈ (0,∞),

then
µY (Y ∩ {ϕ > n}) ∼ λ−α

c hY (c) · V(n). (18)
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In the next section we will discuss in which sense existence of λc is typical for
Misiurewicz maps. Notice that if T is symmetric about c, then V = 2U−1 and
V ∈ R−α iff its inverse V−1(t) = − log U(t/2) belongs to R−1/α.

Example 5 (Continuation of example 1) For our standard example, V(t) ∼
2[pt/s]−α ∈ R−α with α = 1/p. Hence, whenever T = Ta is a Misiurewicz map for
which λc exists, then µY (Y ∩ {ϕ > n}) ∼ 2(pλc/s)−αhY (c) · n−α as n →∞.

In the proof of theorem 5 we will refine the arguments which led to proposition
1. As a preparation for this (and for the material in the next section), we introduce
a few more notations, most of them related to the image process of our system. We
let X denote the interval [a, b] which T is initially defined on (so that T (∂X) ⊆
∂X). The corresponding natural partition is ξ = {Z0, Z1} = {(a, c), (c, b)}. Define
D̃1 := X, and let

D̃n+1 =

{
T (D̃n) if c /∈ D̃n

T (Ẽn) if c ∈ D̃n

where Ẽn is the component of D̃n containing cn. Then D̃n := Tn−1ξn(c1) for n ≥ 2.
Similarly, letting D1 := (c2, c1) ⊆ D̃1 and, for n ≥ 1, define Dn+1 := (c1, cn+1) if
c ∈ Dn, and Dn+1 := T (Dn) otherwise, we have Dn ⊆ D̃n, n ≥ 1. (The D̃n form
the extended Hofbauer tower, while the ordinary Hofbauer tower is given by the
Dn.) Let J := T (Z0 ∩ IM) ∩ T (Z1 ∩ IM) which is a nondegenerate open interval,
and nJ := min{j ≥ 1 : c ∈ T jJ} < ∞. We shall use the easy observation that

if T is Misiurewicz, then each Dn ( n ≥ 1)
contains some T jJ , j ∈ {1, . . . , nJ}. (19)

The indices n for which c ∈ Dn are called cutting times, and the increasing
(and for general unimodal maps possibly terminating) sequence of integers they
form is denoted by (Sk)k≥0 (so that S0 = 1). If Sk and Sk−1 exist, the difference
Sk − Sk−1 again is a cutting time, and this leads to the definition of the kneading
map Q : N→ N ∪ {∞} via Sk−Sk−1 = SQ(k) and Q(k) := ∞ if there are less than k

cutting times. Similarly, the n for which c ∈ D̃n \Dn are the consecutive co-cutting
times S̃k, k ≥ 0, and differences S̃k − S̃k−1, if well defined, again are cutting times
S eQ(k), which defines the co-kneading map Q̃ : N → N ∪ {∞} with Q̃(k) := ∞ if
there are less than k co-cutting times. We shall use the fact (cf. [B1], p.98) that

T is a Misiurewicz map iff Q̃ (and hence also Q) is bounded. (20)

The proof of the theorem requires more information about the distortion prop-
erties of T : The map T has bounded distortion along the postcritical orbit, and V
has bounded distortion on geometric intervals.

Lemma 2 (Distortion properties of T ) a) Let T be an S-unimodal Misiurewicz
map. Then there is some δ̃ > 0 such that

(cn − 2δ̃, cn + 2δ̃) ⊆ Tnξn(c1) for n ≥ 0. (21)

In particular, the restrictions of Tn to ξn(c1) ∩ T−n(cn − δ̃, cn + δ̃) have uniformly
bounded distortion by the Koebe principle.

b) For any r ∈ (0, 1), V has uniformly bounded distortion on intervals of the
form (rt, t) with t > 0.
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Proof. a) We mentioned before (cf. (19)) that the Dn-part of D̃n has a certain
positive mimimum length, so that we need only consider the length of the other
component D̃n\Dn of D̃n\{cn}. It is enough to prove (21) along some subsequence
of N with bounded gaps, since the intermediate steps are then given by a finite
number of restricted branches of T i of bounded distortion. The subsequence we
use is that of the co-cutting times S̃k introduced above, which by (20) has bounded
gaps. At these times n = S̃k, D̃n \ Dn covers IM, and hence has some definite
minimal length.

b) It is enough to consider the Vi, i ∈ {0, 1}, separately. The distortion of a
diffeomorphism between open intervals equals that of its inverse. The inverse of Vi,
defined on some (0, η) has nonpositive Schwarzian derivative an hence uniformly
bounded distortion on intervals which map into some (rt, r), t > 0, by the Koebe
principle.

Proof of theorem 5. We are going to show that the tail probabilities are deter-
mined by the probabilities to stay close to the postcritical orbit for a long time.
Since T itself need not be expanding outside Y , we study the shadowing set of c1

under a suitable iterate T s. For ε > 0 and n ≥ 1 we let U(n, ε) := Dn∩(cn−ε, cn+ε)
be the one-sided ε-neighbourhood of cn in Dn. Take K > 0 and ρ > 1 as in (3) for
J := Y , fix some s ∈ N so large that Kρs > 2, and define δE := δ̃(supX | T ′ |)−s

with δ̃ as in lemma 2 a), w.l.o.g. δ̃ < dist(Y, Ic
M). For any n ≥ 1 then,

T iU(n, δE) ⊆ U(n + i, δ̃) if 0 ≤ i ≤ s, and (22)

U(n + s, 2δE) ⊆ T sU(n, δE) ⊆ U(n + s, δ̃).

Letting Y ∗
1 := U(1, δE) and Y ∗

n+1 := Y ∗
n ∩ T−nsU(ns, δE), n ≥ 1, we obtain a

decreasing sequence of neighbourhoods of c1 in Y ∗
0 := TY . Observe that Y ∗

n is
the n − δE-shadowing set of c1 under T s, and the first part of (22) shows that
the intermediate iterates T ks+ix, x ∈ Y ∗

n , 0 ≤ i < s, at least belong to the sets
U(ks + i, δ̃). Therefore Y ∗

0 ∩ {ϕ ≥ ns} ⊇ Y ∗
n , n ≥ 1, and hence

µY (Y ∩ {ϕ > ns}) ≥
∫

Y ∩T−1Y ∗n

hY dλ ∼ hY (c) · V (λ(Y ∗
n )) as n →∞. (23)

The upper bound for the tail probabilities requires a bit more work. We are
going to prove the following counterpart to (23): For any γ ∈ (0, 1) there are K̃ > 0
and q̃ ∈ (0, 1) such that

µY (Y ∩ {ϕ > ns}) ≤ un(γ) + K̃ · q̃n for n ≥ 1, (24)

where un(γ) := µY (Y ∩ T−1Y ∗
γn) ∼ hY (c) · V (λ(Y ∗

γn)) as n → ∞. The differences
E∗

n := Y ∗
n \Y ∗

n+1, n ≥ 0, contain the points which escape from the δE-neighbourhood
of the orbit (T ksc1)k≥1 at step n. Notice also that

TnsE∗
n ⊆ U(ns, δ̃) is an interval of length larger than δE , (25)

since by (22) it contains U(ns, 2δE)\U(ns, δE). Together with (4) this lower bound
for the lengths easily yields a uniform exponential bound on the tails of the condi-
tional entrance-distributions to Y on the TnsE∗

n: There are Kϕ > 0 and qϕ ∈ (0, 1)
such that

λT nsE∗n(TnsE∗
n ∩ {ϕ ≥ j}) ≤ Kϕ · qj

ϕ for n, j ≥ 1. (26)

Since Y ∗
0 = Y ∗

n ∪
⋃n−1

k=0 E∗
k , for n ≥ 1, we find that for any γ ∈ (0, 1),

Y ∗
0 ∩ {ϕ ≥ ns} = Y ∗

n ∪
n−1⋃

k=0

(E∗
k ∩ {ϕ ≥ ns}) (27)
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⊆ Y ∗
γn ∪

γn⋃

k=0

(E∗
k ∩ {ϕ ≥ ns}),

and we take a closer look at the righthand union of sets. Observing that E∗
k ∩{ϕ ≥

ns} = E∗
k ∩ T−ks{ϕ ≥ (n − k)s}, and recalling (25), we apply the second part of

lemma 2 a) to the restrictions T ks |E∗k , k ≥ 1, to see that there is some κ ≥ 1 such
that

λ(E∗
k ∩ {ϕ ≥ ns}) ≤ κλ(E∗

k)λT ksE∗k
(T ksE∗

k ∩ {ϕ ≥ (n− k)s})
≤ κKϕλ(E∗

k) · (qs
ϕ)n−k,

where the second step uses (26). Our construction furthermore ensures that there
is some r ∈ (0, 1) such that

each E∗
n is of the form E∗

n = (cn − t, cn − qt) or
E∗

n = (cn + qt, cn + t) with q ∈ (r, 1) and t > 0. (28)

Together with lemma 2 b), this shows that there is some κ̃ ≥ 1 such that

µ(Y ∩ T−1(E∗
k ∩ {ϕ ≥ ns})) ≤ κ̃ (sup

Y
hY ) · λ(Y ∩ T−1E∗

k) · λE∗k (E∗
k ∩ {ϕ ≥ ns})

≤ κκ̃Kϕ (sup
Y

hY ) λ(Y ) · (qs
ϕ)n−k.

Therefore, letting K̃ := κκ̃Kϕ (supY hY )λ(Y )/(1−qs
ϕ) > 0 and q̃ := q

s(1−γ)
ϕ ∈ (0, 1),

we have
γn∑

k=0

µ(Y ∩ T−1(E∗
k ∩ {ϕ ≥ ns})) ≤ K̃ · q̃n for n ≥ 1.

Combining this with (27) we obtain (24).

In view of the final statement of proposition 1, (23) and (24) show that the
asymptotic behaviour of λ(Y ∗

n ) as n → ∞ is decisive. As δE < δ̃ and Y ∗
n =

(Tns |ξns(c1))
−1U(ns, δE), the second part of lemma 2 a) shows that there is some

D > 1 such that for all n ≥ 1,

λ(Y ∗
n ) = dnλ(Y ∗

1 )/ | (Tns)′(c1) | with dn ∈ (D−1, D),

and hence

V (λ(Y ∗
n )) = V(log | (Tns)′(c1) | − log(dnλ(Y ∗

1 ))) ∼ V(log | (Tns)′(c1) |)
as n →∞ since (log(dnλ(Y ∗

1 )))n≥1 is a bounded sequence. From (3) we know that
log | (Tns)′(c1) |≈ n and hence V (λ(Y ∗

n )) ≈ V(n) in any case.

Since the regularly varying function V has an asymptotic inverse V−1 ∈ R−1/α

(cf. [BGT], theorem 1.5.12), we conclude that

(V (λ(Y ∗
n )))n≥1 ∈ R−α iff (log | (Tns)′(c1) |)n≥1 ∈ R1. (29)

(And V (λ(Y ∗
n )) cannot be regularly varying of a different order.) In this case, taking

γ arbitrarily close to 1, we find that

µY (Y ∩ {ϕ > n}) ∼ hY (c) · V(log | (Tn)′(c1) |).
(Since the contributions log | (T i)′(cns) |, 0 < i < s, of the intermediate steps are
bounded.)
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6 Existence of the postcritical Lyapunov exponent

The purpose of the present section is to show that in a reasonable sense ”most”
Misiurewicz maps from a full family posess a postcritical Lyapunov exponent λc.
Let T be a unimodal map. Recall that the itinerary of the point x is the sequence
ν(x) = (ν(x)i)i≥1 ∈ {0, C, 1}N with ν(x)i = 0 if T i−1x < c, ν(x)i = C if T i−1x = c,
and ν(x)i = 1 if T i−1x > c. Most important, the kneading invariant of T is
the itinerary of its critical value c1, ν(T ) := ν(c1). In any case, ν(T )0 = 1 and
ν(T )1 = 0 unless the dynamics is trivial. There are various characterizations of those
admissible sequences ν ∈ {0, 1}N which actually occur as the kneading invariant of
some unimodal map, and we shall use a criterion from [B1], [B2] based on the
kneading maps.

Given any symbol sequence ν = ν1ν2 . . . ∈ {0, 1}N starting with 1, there is a well
defined splitting beginning at the second digit,

ν = 1414243 . . .

where each 4j is a basic block, meaning that it agrees with an initial segment
of ν except for the last symbol, i.e. 4i = e1 . . . em−1em = ν1 . . . νm−1ν

′
m, where

ν′m = νm + 1 mod 2. Letting κ := min{i ≥ 1 : νi = 1}, we obtain the co-splitting of
ν which starts at the κ + 1st digit,

ν = 10 . . . 014̃14̃24̃3 . . .

where again the 4̃j are basic blocks. Based on this construction, we define the
cutting- and co-cutting times of ν by S0 := 1, Sk := S0 +

∑k
j=1 | 4j |, and S̃0 := κ,

S̃k := S̃0 +
∑k

j=1 | 4̃j |, where for any block 2 of symbols we let | 2 | denote its
length. Bruin’s admissibility condition now states that

ν is admissible iff differences Sk − Sk−1 and S̃k − S̃k−1 of (30)
consecutive cutting and co-cutting times again are cutting times,

in which case the kneading and co-kneading maps Q, Q̃ : N→ N of ν are well defined
by Sk − Sk−1 = SQ(k) and S̃k − S̃k−1 = S eQ(k), k ≥ 1, and agree with the (co-)
kneading maps of any unimodal map T with ν(T ) = ν (and the same is true for the
(co-) cutting times). Recalling (20), we call an admissible ν ∈ {0, 1}N a Misiurewicz
kneading sequence if Q̃ is bounded, which is equivalent to supj≥1 | 4̃j |< ∞.

Proposition 2 (For typical Misiurewicz kneadings λc exists) Let µσ be any
invariant Borel probability measure for the shift σ on {0, 1}N. If the Misiurewicz
kneading sequence ν is a typical point for µσ, then λc exists for any S-unimodal
map T with kneading invariant ν.

Proof. Fix some T with ν(T ) = ν. As ν is typical for µσ, its orbit O(ν) := (σnν)n≥0

is dense in the closed subshift Ω :=supp(µσ) ⊆ {0, 1}N. We lift the potential
log | T ′ | to Ω by first defining it on the orbit via ψ(σnν) := log | T ′(cn+1) |,
n ≥ 0. Now ψ |O(ν) is easily seen to be uniformly continuous and hence extends to
a unique uniformly continuous function ψ on Ω. Since ν is typical for µσ, we have
limn→∞ n−1

∑n−1
k=0 ψ(σnν) = limn→∞ n−1 log | (Tn)′(c1) |= µσ(ψ).

It remains to check that the concept of being typical for some shift-invariant
probability is not void inside the comparatively small collection of Misiurewicz
kneading sequences. We do so by showing that the latter essentially contains (for
example) the golden mean subshift

∑
:= {ω ∈ {0, 1}N : ω does not contain a

block of two or more zeros}, which has positive topological entropy htop(σ |Σ) =
log((1 +

√
5)/2). Hence there is a rich supply of invariant measures of positive

entropy that live on Misiurewicz sequences.

15



Proposition 3 (Golden mean subshift gives Misiurewicz kneadings) For
any ω ∈ ∑

,
ν := 100111ω

defines a Misiurewicz kneading sequence.

Proof. From the given initial block ν1 . . . ν6 = 100111 we read off that S0 = 1,
S1 = 2, S2 = 3, κ = S̃0 = 4, 41 = 42 = 0, and 43 = 4̃1 = 11, so that
ν1 . . . ν6 = 14142431 = 10014̃1 in compliance with (30). To prove our claim, we
show inductively that whenever we add blocks of the form 2 = 1 or 2 = 01 to our
initial piece (which produces all sequences in

∑
), we obtain a sequence ν whose

basic blocks 4i and 4̃j from the (co-)splitting above belong to {0, 11, 101} =: B
so that ν has bounded kneading and co-kneading maps.

Assume then that for some n ≥ 6,

ν1 . . . νn = 141 . . .4i1 = 10014̃1 . . . 4̃j (31)

with basic blocks from B. Adjoining 2 = 1 we obtain

ν1 . . . νnνn+1 = 141 . . .4i4i+1 = 10014̃1 . . . 4̃j1

with 4i+1 = 11 ∈ B. Similarly, if instead we add 2 = 01, we get

ν1 . . . νnνn+1νn+2 = 141 . . .4i4i+1 = 10014̃1 . . . 4̃j4̃j+11

with 4i+1 = 101 and 4̃j+1 = 0 both in B. In any case, we are again in the situ-
ation of (31) with the roles of splitting and co-splitting interchanged, and we can
continue with our construction.

7 More on limit distributions if µ is finite

Regular variation often is the key to questions about limit distributions and enables
us to go beyond the regime of the classical CLT. Again we consider occupation
times of the reference set Y = Y (T ), thus asking for the asymptotic distributional
behaviour of the ergodic sums Sn(1Y ) =

∑n−1
k=0 1Y ◦ T k, n ≥ 1. By now we are

prepared to expect results analogous to those we have for maps with indifferent
fixed points, and we will in fact see that the same method as in [Z2] applies to
provides us with stable limit theorems. To formulate the result, we need to recall
the limit laws we have to expect. A realvalued random variable R (respectively its
distribution) is called stable (cf. [AD1] or [IL]) if for all a, b > 0 there are c > 0 and
d ∈ R such that aR + bR∗ d= cR + d, where R∗ is an independent copy of R and
R

d= S means equality of distributions. In this case aα +bα = cα for some α ∈ (0, 2],
called the order of R. Up to translation and scaling, any stable random variable
belongs to the family (Ξα,β)α∈(0,2],β∈R of variables, indexed by the order α and the
skewness parameter β, and defined by their characteristic functions

E
[
eitΞα,β

]
=

{
e−

|t|α
2 (1−iβsgn(t) tan( απ

2 )) if α 6= 1

e−
|t|
2 +i 2βc

π t log 1
|t| if α = 1.

(32)

(For α = 2 this is the standard normal distribution N (0, 1).) The following is the
counterpart to the CLT we obtained in the case α > 2 as a consequence of the rate
of mixing (cf. theorem 2).
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Theorem 6 (Stable limit distributions for occupation times) Let T be an
S-unimodal Misiurewicz map for which λc := limn→∞ 1

n log | (Tn)′(c1) |∈ (0,∞)
exists.

a) If V(t) := V (e−t) ∈ R−2 and
∫∞
1
V(
√

t) dt = ∞, then there is some BY ∈ R1/2

such that
1

BY (n)

(
n−1∑

k=0

1Y ◦ T k − nµ(Y )

)
L(λ)
=⇒ N (0, µ(Y )), (33)

where BY is specified by t`(BY (t)) ∼ BY (t)2 with `(t) := (µ(Y )/λc)2hY (c) ·∫ t

1
V(
√

s) ds.

b) If V(t) := V (e−t) ∈ R−α for some α ∈ (1, 2), then there is some BY ∈ R1/α

such that

1
BY (n)

(
n−1∑

k=0

1Y ◦ T k − nµ(Y )

)
L(λ)
=⇒ −Γ(1− α) cos(

απ

2
)µ(Y )

1
α · Ξα,1. (34)

Here BY is specified by t`(BY (t)) ∼ BY (t)α with `(t) := (µ(Y )/λc)αhY (c) ·
tαV(t).

Example 6 (Continuation of example 1) Recall that V(t) ∼ 2[pt/s]−α as t →
∞. a) If p = 1/2, then

∫ t

1
V(
√

s) ds ∼ 2(s/p)2 log t → ∞, and the theorem applies
with `(t) = 2hY (c)[(sµ(Y ))/(pλc)]2 · log t and BY (t) = [(sµ(Y )

√
hY (c))/(pλc)] ·√

t log t. b) If p ∈ (1/2, 1), then (34) holds with BY (t) = (2hY (c))1/α[(sµ(Y ))/(pλc)]·
t1/α.

Proof. We use the same device as in [Z2] and consider the centered observable
f c := 1Y − µ(Y ) and its induced version f c

Y : Y → Y , fc
Y :=

∑ϕ−1
k=0 fc ◦ T k. Notice

that f c
Y = 1− µ(Y )ϕ, which is bounded above and by theorem 5 satisfies

µY ({fc
Y < −n}) ∼ µY ({ϕ > n/µ(Y )}) ∼ (µ(Y )/λc)αhY (c) · V(n).

By remark 2, (Y, TY , ξY ) is a Gibbs-Markov map in the sense of [A0], [AD1], and
[AD2], and clearly ϕ and f c

Y are measurable ξY .
a) Divergence of

∫∞
1
V(
√

t) dt just means that
∫

Y
ϕ2dµY = ∞, and by regular

variation of the tail, the distributions of ϕ and f c
Y are in the ”nonnormal” domain

of attraction of the normal law (cf. [IL], theorem 2.6.2). Applying the last corollary
of [AD2], we see that

BY (n)−1 ∑n−1
k=0 f c

Y ◦ T k
Y

µY=⇒ N (0, 1),

with BY as in the statement of the theorem. Proposition 2 of [Z2] now gives

BY (µ(Y )n)−1 ∑n−1
k=0 f c ◦ T k L(µ)

=⇒ N (0, 1),

which easily extends to
L(λ)
=⇒ convergence, thus proving (33).

b) Theorem 6.1 of [AD1] applies and provides us with a normalizing function
BT ∈ R1/α such that

BY (n)−1 ∑n−1
k=0 f c

Y ◦ T k
Y

µY=⇒ −Γ(1− α) cos(απ/2) · Ξα,1,

where BY is as specified. Using proposition 2 of [Z2] again, we end up with (34).

17



8 More on wandering rates and limit distributions
if µ is infinite

In the infinite measure preserving case, too, regular variation of return distributions
is crucial for strong stochastic properties to hold. First of all, it enables us to
determine the asymptotics of wandering rates and return sequences.

Recall (see e.g. section 3.8 of [A0]) that the wandering rate of a set E ∈ B,
0 < µ(E) < ∞, under a c.e.m.p.t. T is the sequence defined by wn(E) :=
µ(

⋃n−1
k=0 T−kE) =

∑n−1
k=0 µ(E ∩ {ϕE ≥ k}), n ≥ 1. The wandering rate depends

on E, and, given T , there are no sets with maximal rate. Still, T may have sets
E with minimal wandering rate, meaning that limn→∞wn(Z)/wn(E) ≥ 1 for all
Z ∈ B, 0 < µ(Z) < ∞. If this is the case, we let W(T ) ⊆ A denote the collection of
sets which have minimal wandering rate under T , and simply write (wn(T ))n≥1 for
any sequence representing the asymptotic equivalence class of such (wn(E)), which
is then referred to as the wandering rate of T .

Theorem 7 (Wandering rates and return sequences) Let T be an S-unimodal
Misiurewicz map for which λc := limn→∞ 1

n log | (Tn)′(c1) |∈ (0,∞) exists, and
assume that V(t) := V (e−t) ∈ R−α for some α ∈ (0, 1]. Then Y = Y (T ) has
minimal wandering rate, and

wn(T ) ∼ λ−α
c h(c)

n−1∑

k=0

V(k) ∈ R1−α , (35)

with
∑n−1

k=0 V(k) ∼ nV(n)/(1− α) in case α < 1. Moreover, the return sequence of
T satisfies an(T ) ∼ [Γ(2− α)Γ(1 + α)]−1 · n/wn(T ) ∈ Rα.

Example 7 (Continuation of example 1) Recalling that V(t) ∼ 2[pt/s]−α, we
find that

wn(T ) ∼ 2h(c)
(

s

pλc

)α

·
{

log n if p = 1
n1−α

1−α if p > 1,

and

an(T ) ∼ 2h(c)
Γ(2− α)Γ(1 + α)

(
s

pλc

)α

·
{ n

log n if p = 1
(1− α)n−α if p > 1.

Proof. By theorem 5, wn(Y ) =
∑n−1

k=0 µ(Y ∩ {ϕ > n}) ∼ λ−α
c h(c)

∑n−1
k=0 V(k). By

propositions 1.5.8 and 1.5.9a of [BGT], the rightmost term always belongs to R1−α,
and

∑n−1
k=0 V(k) ∼ nV(n)/(1− α) if α < 1. Since, moreover, Y is a uniform set for

T (cf. corollary 1), theorem 3.8.3 of [A0] ensures that Y has minimal wandering
rate. Proposition 3.8.7 of [A0] immediately gives the asymptotics of (an(T ))n≥1.

Without any effort, we can now apply corollary 3.7.3 of [A0] to obtain

Theorem 8 (Darling-Kac theorem) Let T be an S-unimodal Misiurewicz map
for which λc := limn→∞ 1

n log | (Tn)′(c1) |∈ (0,∞) exists, and assume that V(t) :=
V (e−t) ∈ R−α for some α ∈ (0, 1]. Then for any f ∈ L1(µ) with µ(f) 6= 0,

1
an(T )

Sn(f) =
1

an(T )

n−1∑

k=0

f ◦ T k L(λ)
=⇒ µ(f) ·W (α),

where W (α) is a random variable having the normalized Mittag-Leffler distribution
of order α, that is, E[ezW (α)

] =
∑

m≥0
Γ(1+α)m

Γ(1+mα)z
m.
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Again, this applies to the Misiurewicz maps with λc ∈ (0,∞) from the family of
example 1 (with the normalizations given in example 7), and f := 1Y , Y = Y (T ),
thus completing the picture of the asymptotic behaviour of occupation times of Y
for the whole parameter range p ∈ R+.

As another immediate probabilistic consequence of theorem 7, let us mention
that the Dynkin-Lamperti type arcsin law of theorem 1 of [T4] applies to sets
A ∈ E(T ) for any S-unimodal Misiurewicz map T for which λc ∈ (0,∞) exists and
V(t) := V (e−t) ∈ R−α for some α ∈ (0, 1].
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