S-unimodal Misiurewicz maps with flat critical points

(preprint version)

Roland Zweimüller Institut für Mathematik, Universität Salzburg Hellbrunnerstraße 34, A-5020 Salzburg, Austria

27 September 2002

Abstract

We consider S-unimodal Misiurewicz maps T with a flat critical point cand show that they exhibit ergodic properties analogous to those of interval maps with indifferent fixed (or periodic) points. Specifically, there is a conservative ergodic absolutely continuous σ -finite invariant measure μ , exact up to finite rotations, and in the infinite measure case the system is pointwise dual ergodic with many uniform and Darling-Kac sets. Determining the order of return distributions to suitable reference sets we obtain bounds on the decay of correlations and on wandering rates. Assuming some control of the local behaviour of T at c, we show that in most cases, e.g. whenever the postcritical orbit has a Lyapunov exponent, the tail of the return distribution is in fact regularly varying, which implies precise information on the mixing rate, and various distributional limit theorems.

AMS subject classification: 28D05, 37A25, 37A40, 37E05, 60F05

1 Introduction

While the dynamics of one-dimensional dynamical systems with non-flat critical points has been the object of intense study during the last twenty years, it seems that little attention has been payed to the "degenerate" limit case of flat critical points (i.e. points where all derivatives of the map vanish). The only references I am aware of are [BM] and [Th]. The purpose of the present note is to point out that maps with flat tops do have some very interesting ergodic properties when regarded as nonsingular transformations w.r.t. Lebesgue measure λ and can in fact be interpreted as generalizations of transformations with indifferent fixed (or periodic) points. The latter class of systems has recently attracted a lot of attention. In the probability preserving situation, their slow mixing behaviour and its probabilistic consequences have been investigated by several authors (see e.g. [LSV], [Hu], [Yo], [Sa], [Ho], or [Z2]), while the infinite measure case constitutes one of the most popular families of examples in infinite ergodic theory (cf. [A0], [A2], [T1]-[T4], [Z1]). Here we advertize maps with flat tops as a class of systems which considerably extends the supply of examples exhibiting these features. The reason for their weak hyperbolicity is not as obvious as in the case of neutral fixed points, which of course makes them even more interesting. Roughly speaking, the critical point has a (usually nonperiodic) "indifferent orbit" along which the expansion of the system is very poor.

Throughout, λ will denote one-dimensional Lebesgue measure, and \mathcal{B} will be the Borel- σ -field of the space under consideration. We consider S-unimodal interval maps $T: [a, b] \to [a, b]$, i.e. \mathcal{C}^3 -maps with a unique critical point $c \in (a, b)$, T'c = 0, such that Ta = Tb = a, for which the Schwarzian derivative ST := T'''/T' – $\frac{3}{2}(T''/T')^2$ is nonpositive (with $ST(c) = -\infty$). The critical point is said to be flat if $T^{(n)}(c) = 0$ for all $n \ge 1$. T is said to be a *Misiurewicz map* if there is some open interval $I_{\mathcal{M}}$ around c such that $c_n := T^n c \notin I_{\mathcal{M}}$ for $n \geq 1$, and T has no sinks (open intervals homeomorphically mapped into themselves by some iterate of T). It is well known that full families of unimodal maps contain uncountably many Misiurewicz maps (see e.g. the combinatorial characterization we use in section 5 below). In the present paper we shall restrict our attention to the Misiurewicz case, which is a natural nontrivial starting point for an investigation of finer ergodic properties of unimodal maps with flat tops. Of course, one should expect suitably weakened conditions on the recurrence behaviour of the critical orbit to be sufficient for the results to follow, but it seems worthwile to expose the effects of flat tops in a setup with limited technical difficulties.

Example 1 (A basic family of examples) Fix any p > 0, s > p+1, and define $T_a = T_{a,(p,s)} : [-1,1] \rightarrow [-1,1]$, $a \in [0,1]$ by

$$T_a(x) := 2a \cdot (1 - e^{\frac{s}{p}(1 - |x|^{-p})}) - 1.$$

We shall see below that the Misiurewicz maps from this family in many respects resemble the behaviour of maps with indifferent fixed points x_T of the form $Tx = x + const \cdot (x - x_T)^{1+p} + o((x - x_T)^{1+p})$ near x_T .

As a warm-up, we will show in the next section that systems of this type always have σ -finite absolutely continuous invariant measures (*acims*):

Theorem 1 (Invariant measures for Misiurewicz maps) Every S-unimodal Misiurewicz map T is ergodic w.r.t. λ and has a conservative σ -finite invariant Borel measure $\mu \ll \lambda$ whose support is a finite union of intervals. The measure μ is finite iff $\int \log |T'| d\lambda > -\infty$.

By ergodicity, μ is unique up to a constant factor, and Lebesgue a.e. point is eventually mapped into the support of μ . If μ is finite, we will always assume it to be normalized.

Remark 1 Existence and basic properties of finite absolutely continuous invariant measures for (not necessarily unimodal) Misiurewicz maps with nonpositive Schwarzian derivative, and $\log |T'| \in L_1(\lambda)$ (also shown to be a necessary condition in the presence of the others) have been proved in [BM]. Needless to say, we will repeatedly use arguments similar to those of [Mi] and [BM]. In [Th] even a Jakobson-type result for certain families of S-unimodal maps with flat tops and $\log |T'| \in L_1(\lambda)$ (including the fally of example 1 for p < 1/8) is established.

Example 2 (Continuation of example 1) The Misiurewicz maps $T = T_a$ from the family of example 1 preserve a probability measure $\mu \ll \lambda$ provided that p < 1. For $p \ge 1$ the acim μ is infinite, but still conservative ergodic.

Below we are going to explore some finer ergodic properties of the measure preserving systems thus obtained.

2 Preliminaries on the Schwarzian derivative, piecewise monotonic and induced systems. Proof of theorem 1

We recall some important concepts, and collect a few fundamental results that will be used in the sequel. Although we use (almost) the same notations and conventions as in [Z1], we include the relevant definitions for the reader's convenience.

The Schwarzian derivative and the Koebe principle. Recall first that $ST \leq 0$ implies $S(T^n) \leq 0$ for all $n \geq 1$. As observed in [Mi], a C^3 function T which has no critical point in an open interval J satisfies $ST \leq 0$ on J iff $1/\sqrt{|T'|}$ is convex on J. Let $I \subseteq J$ be a subinterval, then J is said to contain a δ -scaled neighbourhood of I if $J \setminus I$ consists of two components, each of length at least $\delta \lambda(I)$. The above characterization of $ST \leq 0$ implies the all important Koebe principle providing us with good distortion control:

Let
$$I \subseteq J$$
 be open intervals and assume that $T \in \mathcal{C}^{3}(J)$
satisfies $ST \leq 0$ and has no critical point in J . If $T(J)$
contains a δ -scaled neighbourhood of $T(I)$, then
 $\sup_{x,y \in I} |T'x/T'y| \leq \left(\frac{1+\delta}{\delta}\right)^{2}$. (1)

Piecewise monotonic systems. A piecewise monotonic system is a triple (X, T, ξ) , where X is the disjoint union of some countable family ξ_0 of open intervals, ξ is a collection of nonempty pairwise disjoint open subintervals (the *cylinders of rank one*) with $\lambda(X \setminus \bigcup \xi) = 0$, and $T : X \to X$ is a map such that $T \mid_Z$ is continuous and strictly monotonic for each $Z \in \xi$. Given such a system, we let ξ_n denote the family of *cylinders of rank* n, that is, the nonempty sets of the form $Z = [Z_0, \ldots, Z_{n-1}] := \bigcap_{i=0}^{n-1} T^{-i} Z_i$ with $Z_i \in \xi$. We let $V_Z := (T^n \mid_Z)^{-1}$ be the inverse of the branch $T^n \mid_Z$. $\partial \xi$ will denote the collection of endpoints of members of ξ . The fundamental partition ξ respectively the system (X, T, ξ) are said to be *Markov* if $TZ \cap Z' \neq \emptyset$ implies $Z' \subseteq TZ$ whenever $Z, Z' \in \xi$. In this case the *image partition* $T_*\xi$ (i.e. the coarsest partition into intervals with respect to which each $TZ, Z \in \xi$ is measurable) is coarser than ξ . We write $\xi_n(x)$ for the member of ξ_n containing the point x. If x is the common endpoint of two cylinders from ξ_n , we denote them by $\xi_n(x^-)$ and $\xi_n(x^+)$ respectively.

First-return maps and induced systems. Let T be a nonsingular transformation of some σ -finite measure space $(X, \mathcal{B}, \lambda)$. Consider a *recurrent set* $Y \in \mathcal{B}$, i.e. one for which $Y \subseteq \bigcup_{n\geq 1} T^{-n}Y \mod \lambda$. (If in fact $X = \bigcup_{n\geq 1} T^{-n}Y \mod \lambda$, then Y is called a *sweep-out set*.) Then the *first return time function* φ_Y given by $\varphi_Y(x) := \min\{n \geq 1 : T^n x \in Y\}$ is finite a.e.. We define the *induced or first-return* $map T_Y : Y \to Y \pmod{\lambda}$ by $T_Y x := T^{\varphi_Y(x)}x$. The *n*-th return time on Y is then given by $\varphi_{Y,n}(x) := \sum_{k=0}^{n-1} \varphi_Y(T_Y^k x)$. If μ is a measure on \mathcal{B} with $0 < \mu(Y) < \infty$, we let μ_Y denote its normalized restriction to $Y : \mu_Y(A) := \mu(Y)^{-1}\mu(A \cap Y)$. Generally, objects associated with the induced map will notationally be identified by the subscript Y. We will repeatedly use the well known intimate relation between the basic ergodic properties of T and T_Y , see e.g. [T2] or lemma 1 of [Z1].

Suppose that (X, T, ξ) is a piecewise monotonic system and consider some recurrent set $Y \subseteq X$. Assume that Y is the union of some finite family $\xi_{Y,0}$ of disjoint open subintervals of X, measurable $\xi \mod \lambda$. We define the *induced partition of* ξ on Y to be $\xi_Y := \bigcup_{n\geq 1} \{ \varphi = n \} \cap Z \cap T^{-n}M : Z \in \xi_n, M \in \xi_{Y,0} \}$. T_Y is piecewise monotonic, and ξ_Y is its natural partition into intervals on which it is continuous and monotonic. We shall call (Y, T_Y, ξ_Y) the system which (X, T, ξ) *induces* on Y. Some basic properties of S-unimodal maps. Henceforth $T : [a, b] \rightarrow [a, b]$ will be some S-unimodal map with critical point c. If T has no sinks, theorem 1.2 of [Mi] implies that

the partition
$$\xi = \{(a, c), (c, b)\}$$
 generates. (2)

Also, T has good expansion properties aslong as we stay away from the critical point: The proof of theorem 1.3 of [Mi] shows the following:

for any neighbourhood
$$J$$
 of the critical point c there are
 $\rho > 1$ and $K > 0$, such that for all $x \in [a, b]$ and $n \ge 1$, (3)
 $x, Tx, \dots, T^{n-1}x \notin J$ implies $|(T^n)'(x)| > K \cdot \rho^n$.

Together with a standard distortion argument this reveals that

$$\lambda(\bigcap_{k=0}^{n-1} T^{-k} J^c) \text{ is exponentially small in } n, \tag{4}$$

and in particular that

every neighbourhood J of c is recurrent and sweeps the space. (5)

These observations are enough to prove the existence of a unique conservative ergodic σ -finite a.c.i.m. for Misiurewicz maps by inducing.

Definition 1 Given an S-unimodal Misiurewicz map T, we fix as a reference set the interval $Y = Y(T) := \xi_{\overline{n}}(c^-) \cup \{c\} \cup \xi_{\overline{n}}(c^+) \subset I_{\mathcal{M}}$ where $\overline{n} \in \mathbb{N}$ so large that $\overline{\delta} := \operatorname{dist}(Y, I^c_{\mathcal{M}}) > 0$ and $\operatorname{dist}(TY, I_{\mathcal{M}}) > 0$ (recall (2)).

Proof of theorem 1. By (5), it is possible to induce on Y = Y(T), and we claim that the induced system $(Y T_{i,r}, f_{i,r})$ is piecewise surjective and

the induced system
$$(Y, T_Y, \xi_Y)$$
 is piecewise surjective and
has bounded distortion, i.e. there is some $\delta_{\mathcal{M}} > 0$ s.t.
$$\sup_{x,y \in W \in \xi_Y} \left| \frac{(T^n)'(x)}{(T^n)'(y)} \right| \le \left(\frac{1+\delta_{\mathcal{M}}}{\delta_{\mathcal{M}}} \right)^2.$$
(6)

It is straightforward to check that (Y, T_Y, ξ_Y) is piecewise onto. Moreover, each branch $T_Y \mid_W, W \in \xi_Y$, is the restriction to W of some branch $T^k \mid_Z, Z \in \xi_k$, of Twith image $T^k Z$ covering $I_{\mathcal{M}}$ and hence containing a $\delta_{\mathcal{M}}$ -scaled neighbourhood of $Y = T_Y W$, where $\delta_{\mathcal{M}} := \overline{\delta}/\lambda(Y)$ does not depend on W. By the Koebe principle (1), the induced system therefore has bounded distortion.

Hence some iterate of T_Y is uniformly expanding and, by folklore results, T_Y is exact and preserves a probability measure $\mu_Y \ll \lambda$ with Lipschitz continuous density h_Y satisfying $\log h_Y \in L_{\infty}(Y)$. By standard results, see e.g. lemma 1 of [Z1], or [T2], μ_Y extends to some σ -finite *T*-invariant measure $\mu \ll \lambda$ on *X*, and since *Y* sweeps *X*, cf. (5), there are no other acims for *T*. The characterization of finiteness of μ is immediate from theorems 1 and 4 of [BM], see also remark 3 below.

Remark 2 Applying the Koebe principle relative to $I_{\mathcal{M}}$ to small intervals (x, y) in Y shows that the induced system (Y, T_Y, ξ_Y) in (6) in fact has the Gibbs property in the sense of [A0], [AD1].

3 Return distributions, decay of correlations, and a central limit theorem

In the Misiurewicz case it is easy to determine the order of the tail of the return distribution to our reference set $Y = Y(T) \subset I_{\mathcal{M}}$. To formalize this, we need a few more notations. Let T be some S-unimodal Misiurewicz map and recall that $V_{Z_0} = (T \mid_{Z_0})^{-1}$ and $V_{Z_1} = (T \mid_{Z_1})^{-1}$ denote the two inverse branches of T. Define $U(x) := c_1 - T(x - c), x \in [a - c, b - c]$, and $V_i : [0, c_1 - a] \to [0, \infty)$ as $V_i(y) := |V_{Z_i}(c_1 - y) - c|$, which transforms the singularity to the origin, so that the behaviour of the V_i at zero describes the type of the critical point. (Of course, if T is symmetric about c, then $V_0 = V_1$.) Since $ST \leq 0$, there is some $\delta_V > 0$ such that

the
$$V_i$$
 are strictly concave on $[0, \delta_V]$, (7)

compare lemma 3 of [BM]. We let $V := V_0 + V_1$.

Proposition 1 (Asymptotic order of the return distributions) Let T be an S-unimodal Misiurewicz map. There are constants $K_l, K_u > 0$ and $q_l, q_u \in (0, 1)$ such that for n sufficiently large,

$$K_l \cdot V(q_l^n) \le \mu_Y(Y \cap \{\varphi_Y > n\}) \le K_u \cdot V(q_u^n).$$

In particular, if c is flat, $\mu_Y(Y \cap \{\varphi_Y > n\})$ does not decrease exponentially fast.

Proof. We have $Y \cap \{\varphi_Y > n\} = Y \cap T^{-1}(\bigcap_{j=0}^{n-1} T^{-j}Y^c), n \ge 1$. As $ST \le 0$ and T'(c) = 0, there is some $\varepsilon > 0$ such that for any set M with $\lambda(M) < \varepsilon$ we have

$$\lambda(Z_i \cap T^{-1}M) \le \lambda(Z_i \cap T^{-1}(c_1 - \lambda(M), c_1)) = V_i(\lambda(M)), \ i \in \{0, 1\}.$$

Recalling (4) we therefore see that there is some $q_u \in (0, 1)$ such that for n sufficiently large,

$$\lambda(Z_i \cap \{\varphi_Y > n\}) \le V_i\left(\lambda\left(\bigcap_{j=0}^{n-1} T^{-j} Y^c\right)\right) \le V_i(q_u^n).$$

Since the invariant density $h = d\mu/d\lambda$ is bounded away from 0 and ∞ on Y, the upper estimate follows. To prove the lower estimate, consider the subset of $\bigcap_{j=0}^{n-1} T^{-j}Y^c$ consisting of those points which closely follow the critical orbit all along, i.e. $M_n := \bigcap_{j=0}^{n-1} T^{-j}\{x : | x - c_{j+1} | < \overline{\delta}\}, n \ge 1$, where $\overline{\delta} := \operatorname{dist}(Y, I_{\mathcal{M}}^c) > 0$ as in the proof of theorem 1. The M_n are intervals adjacent to c_1 , and therefore $\lambda(Z_i \cap T^{-1}M_n) = V_i(\lambda(M_n))$. However, as T' is bounded, $\lambda(M_n)$ cannot decrease faster than at some fixed exponential rate, and the argument is completed as before. Finally, if the critical point is flat, we have $x^r = o(V(x))$ as $x \to 0$ for every $r \in (0, 1)$, and hence $\gamma^n = o(V(q^n))$ as $n \to \infty$ for any $\gamma, q \in (0, 1)$.

Remark 3 (Finiteness of the invariant measure) Since in any case we have $0 < \mu(Y) < \infty$, Kac' formula ensures that μ is finite iff the return time distribution of Y has finite expectation, that is, iff $\sum_{n\geq 0} \mu_Y(Y \cap \{\varphi_Y > n\}) < \infty$. Together with (7), lemmas 1 and 2 of [BM], and our proposition show that the latter is equivalent to integrability of any of the functions $\log |T'|$ and $\log |T - T(c)|$. We thus recover theorem 4 of [BM] using the existence of a unique σ -finite acim rather than their lemma 11.

Example 3 (Continuation of example 1) Fix p > 0, s > p + 1, $a \in [0, 1]$, and consider $T := T_a$. Then

$$V_{i}(y) = \left(-\frac{p}{s}\log\left(\frac{y}{2ae^{\frac{s}{p}}}\right)\right)^{-\frac{1}{p}}, \ i \in \{0, 1\},$$

so that for any K > 0 and $q \in (0,1)$, $V_i(Kq^n) \sim [\frac{p}{s}(-\log q)]^{-\alpha}n^{-\alpha}$ as $n \to \infty$, where $\alpha := p^{-1}$. Consequently, $\mu_Y(Y \cap \{\varphi_Y > n\}) \approx n^{-\alpha}$. Together with the observation (6), these bounds on the tail weights enable us at once to apply the results on mixing rates for towers above well mixing transformations established in [Yo]. We let $\mathbf{P}: L_1(\lambda) \to L_1(\lambda)$ denote the transfer (or *Perron-Frobenius*) operator of T w.r.t. λ , which is characterized by $\int \mathbf{P}u \cdot g \, d\lambda =$ $\int u \cdot (g \circ T) \, d\lambda$ for $u \in L_1(\lambda)$ and $g \in L_\infty(\lambda)$, and extends to quasi-integrable functions u by a straightforward approximation procedure. Given an interval I, we let $\mathcal{H}(I)$ denote the family of (uniformly) Hölder continuous functions on I.

If ν is a probability measure on the measurable space (X, \mathcal{A}) and $(R_n)_{n\geq 1}$ is a sequence of measurable real functions on X, distributional convergence of $(R_n)_{n\geq 1}$ w.r.t. ν to some random variable R will be denoted by $R_n \stackrel{\nu}{\Longrightarrow} R$. Strong distributional convergence $R_n \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} R$ on the σ -finite measure space $(X, \mathcal{A}, \lambda)$ means that $R_n \stackrel{\nu}{\Longrightarrow} R$ for all probability measures $\nu \ll \lambda$. If T is a nonsingular ergodic transformation on $(X, \mathcal{A}, \lambda)$, compactness implies that if $R_n \circ T - R_n \stackrel{\lambda}{\longrightarrow} 0$, then $R_n \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} R$ as soon as $R_n \stackrel{\nu}{\Longrightarrow} R$ for some $\nu \ll \lambda$ (compare section 3.6 of [A0] or [A1]). Specifically, this applies if T is not completely dissipative and $R_n = \mathbf{S}_n(f) = \sum_{k=0}^{n-1} f \circ T^k$, $n \in \mathbb{N}$, for some $f \in L_1(\lambda)$.

Theorem 2 (Rates of mixing, decay of correlations, and CLT) Let T be an S-unimodal Misiurewicz map. Assume that $\mathcal{V}(t) := V(e^{-t}) = O(t^{-\alpha})$ for some $\alpha > 1$ (hence μ is finite). **a)** For any probability density $u \in \mathcal{H}(Y)$,

$$\|\mathbf{P}^n u - h\|_{L_1(\Delta,\lambda)} = O(n^{1-\alpha}) \quad \text{as } n \to \infty,$$

and for any $f \in L_{\infty}(\lambda)$ and $g \in \mathcal{H}(Y)$,

$$\left|\int f(g \circ T^n) \, d\mu - \mu(f)\mu(g)\right| = O(n^{1-\alpha}) \quad \text{as } n \to \infty.$$

b) If $\alpha > 2$, then for any $f \in \mathcal{H}(Y)$,

$$\frac{1}{\sqrt{n}}\sum_{k=0}^{n-1} (f \circ T^k - \mu(f)) \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} \mathcal{N}(0, \sigma(f)),$$

with $\sigma(f) > 0$ iff $f \neq g \circ T - g$ for g measurable.

Example 4 (Continuation of example 1) Recalling example 3, we have $n\mathcal{V}(n) \sim const \cdot n^{1-\alpha}$, and the CLT applies if p < 1/2.

Proof. According to our assumption on \mathcal{V} , proposition 1 implies $\mu_Y(Y \cap \{\varphi_Y > n\}) \approx v(t)$. We apply the abstract mixing theorm of [Yo]. The induced system (Y, T_Y, ξ_Y) on our reference set Y = Y(T) is Rényi and hence satisfies the assumptions on the return map F^R in the abstract framework of [Yo]. The results of this paper are formulated for the Kakutani tower (Z, S) above (Y, T_Y) with height function φ , i.e. $Z := \{(y, k) \in Y \times \mathbb{N} : k \leq \varphi(y)\}$ and S(y, k) = (y, k + 1) if $k < \varphi(y)$, and $S(y, \varphi(y)) = (T_Y y, 1)$. As this tower is always injective outside its roof $\{(y, \varphi(y)) \in Z\}$, it does not represent the general system (X, T) with induced map (Y, T_Y) and return time φ . However, it is easily seen that the bounds on the rates of mixing, and the CLT apply to any such system, since in an obvious way (X, T) always in a factor of (Z, S).

Remark 4 Theorem 2 of [Sa] shows that in many situations the bounds given in [Yo] are sharp if $\mu_Y(Y \cap \{\varphi_Y > n\}) \approx n^{-\alpha}$ with $\alpha > 2$. This, too, applies in our setup, since it is easily seen that the return time function φ is aperiodic.

Remark 5 The extension of Young's results to the case of slowly varying orders given in [Ho] also applies in our situation.

4 Tail field, pointwise dual ergodicity, uniform convergence, and Darling-Kac sets

Recall that T is said to be *exact* w.r.t. λ if for any set A from its *tail-\sigma-field* $\mathcal{B}_{\infty} := \bigcap_{n \geq 0} T^{-n} \mathcal{B}$ either A or A^c has zero Lebesgue measure. Below we shall prove

Theorem 3 (Finite tail field and exactness) S-unimodal Misiurewicz maps T are Lebesgue exact up to a finite rotation.

The main result of the present section, which (though not void in the finite measure case) is mainly of interest in the infinite measure preserving situation, concerns the asymptotic behaviour of the transfer operator. If μ is infinite, then exactness implies that $\lim_{n\to\infty} \int_A \mathbf{P}^n u \, d\lambda = 0$ for all $u \in L_1(\lambda)$ and $A \in \mathcal{B}$ with $\mu(A) < \infty$, cf. [T3]. It is then natural to consider suitably normalized iterated densities in order to compensate this escape of mass. Again, we obtain a result which is analogous to what we know about transformations with indifferent fixed points, cf. [T3] and theorem 9 of [Z1]. In the latter situation the obvious family of good sets of finite measure consists of those which are bounded away from the neutral fixed points. Hardly surprising, the collection $\mathcal{E}(T) := \{Y \subseteq X : \operatorname{dist}(Y, \{c_n\}_{n\geq 1}) > 0\}$ plays a similar role in the present setup. Notice that by boundedness of X, any set $A \in \mathcal{E}(T)$ is contained in some finite union of intervals from $\mathcal{E}(T)$.

Theorem 4 (Uniform convergence of averaged iterated densities) Let T be an S-unimodal Misiurewicz map. Then the invariant density h has a version with $h \in \mathcal{D}(I) \cap L_{\infty}(\lambda)$ for all intervals $I \in \mathcal{E}(T)$, and there is some sequence $(a_n(T))_{n\geq 1}$ in \mathbb{R}_+ $(a_n = n \text{ if } \mu \text{ is finite, and } a_n = o(n) \text{ otherwise})$ such that for any Riemann-integrable function u,

$$\frac{1}{a_n(T)}\sum_{k=0}^{n-1} \mathbf{P}^k u \longrightarrow \lambda(u) \cdot h \quad \text{ as } n \to \infty,$$

uniformly on members of $\mathcal{E}(T)$.

A conservative ergodic measure preserving transformation (*c.e.m.p.t.*) T on a σ -finite space (X, \mathcal{B}, μ) is called *pointwise dual ergodic* (cf. [A1] or Section 3.7 in [A0]) if there are positive constants $a_n(T), n \geq 1$, such that

$$\frac{1}{a_n(T)} \sum_{k=0}^{n-1} \mathbf{T}^k f \longrightarrow \mu(f) \quad \text{a.e. as } n \to \infty \text{ for all } f \in L_1(\mu),$$
(8)

where $\mathbf{T}: L_1(\mu) \to L_1(\mu)$ is the *dual operator* of T, that is, the transfer operator w.r.t. the invariant measure μ , characterized by $\int_X \mathbf{T} u \cdot f \, d\mu = \int_X u \cdot f \circ T \, d\mu$ for $u \in L_1(\mu), f \in L_\infty(\mu)$. (By Hurewicz's ergodic theorem, cf. [A0], section 2.2, this holds as soon as the convergence in (8) takes place for one function $f \in L_1(\mu)$, $\mu(f) \neq 0$.) The sequence $(a_n(T))_{n\geq 1}$ which then is uniquely determined up to asymptotic equivalence is called the *return sequence* of T. We let $\mathcal{U}(T)$ denote the family of *uniform sets*, i.e. those $B \in \mathcal{B}$ on which $a_n^{-1} \sum_{k=0}^{n-1} \mathbf{T}^k f$ converges uniformly (mod μ) for some $f \in L_1^+(\mu)$.

Whenever T is a c.e.m.p.t. of (X, \mathcal{B}, μ) , a set $B \in \mathcal{B}$ with $0 < \mu(B) < \infty$ is called a *Darling-Kac set* if for some sequence (a_n) in \mathbb{R}_+ , $a_n^{-1} \sum_{k=0}^{n-1} \mathbf{T}^k \mathbf{1}_B$ converges uniformly (mod μ) on B. The mere existence of Darling-Kac sets is a rather strong qualitative mixing property for infinite measure preserving transformations which in particular implies pointwise dual ergodicity (with return sequence (a_n)), cf. proposition 3.7.5 of [A0].

As the invariant density h of T is bounded away from zero and infinity on members of $\mathcal{E}(T)$, and $\mathbf{T}u = h^{-1}\mathbf{P}(h u)$, theorem 4 implies:

Corollary 1 (Pointwise dual ergodicity, uniform sets, and Darling-Kac sets) Let T be an S-unimodal Misiurewicz map. Then T is pointwise dual ergodic with $\mathcal{E}(T) \subseteq \mathcal{U}(T)$, and any $B \in \mathcal{E}(T)$ satisfying $\lambda(\partial B) = 0$ is a Darling-Kac set for T.

According to theorem 10 of [Z1], the collection of Darling-Kac sets cannot be too large, which also shows that there is no way to extend theorem 4 to all Lebesgue-integrable functions u.

Remark 6 (Existence of Darling-Kac sets by Aaronson's method) Let us point out that an alternative quick proof of (pointwise dual ergodicity and) the fact that T has Darling-Kac sets can be given by applying lemma 3.7.4 of [A0] to our reference set Y = Y(T), compare also [A2]. The advantage of our approach is that it provides us with still more uniform and Darling-Kac sets.

The main ingredient for the proof of theorems 3 and 4 are the nice ergodic properties common to markovian piecewise monotonic systems with nonpositive Schwarzian derivative. We are going to exploit these via suitable Markov extensions.

Canonical Markov extensions. Let (X, T, ξ) be a piecewise monotonic system. For $n \ge 0$ define $\mathcal{M}_n := \{T^k Z : Z \in \xi_k, 0 \le k \le n\}$ and $\mathcal{M} := \bigcup_{n\ge 0} \mathcal{M}_n$. (All members of \mathcal{M} thus are connected sets.) For $B \in \mathcal{M}$, let $\widehat{B} := \{(x, B) : x \in B\}$, $\widehat{\mathcal{M}_n} := \{\widehat{B} : B \in \mathcal{M}_n\}$ and $\widehat{\mathcal{M}} := \bigcup_{n\ge 0} \widehat{\mathcal{M}_n}$. Finally let $\widehat{X} := \bigcup_{B \in \mathcal{M}} \widehat{B} = \bigcup \widehat{\mathcal{M}}$. The map \widehat{T} given by $\widehat{T}(x, B) := (Tx, T(B \cap \xi(x)))$ is well defined a.e. on \widehat{X} , and for $m \ge 1$ we have

$$T^m(x,B) = (T^m x, T^m(B \cap \xi_m(x)))$$

(cf. [K1]). The natural projection $\pi : \hat{X} \to X$, $\pi(x, B) := x$ is onto and satisfies $\pi \circ \hat{T} = T \circ \pi$. Letting $\hat{\xi} := \widehat{\mathcal{M}} \vee \pi^{-1} \xi$ we obtain a system $(\hat{X}, \hat{T}, \hat{\xi})$ which is Markov by construction and satisfies the definition of a piecewise monotonic system. It is called the *canonical Markov extension* (*C.M.E.*) of (*X*, *T*, ξ). Concerning topology and measures, \hat{X} will be regarded as the sum of the spaces $\hat{B}, B \in \mathcal{M}$. One-dimensional Lebesgue measure thereon will again be denoted by λ . Observe that the image partition $\hat{T}_*\hat{\xi}$ equals $\widehat{\mathcal{M}}$. If *M* is some object (point, cylinder, or image interval) belonging to $\widehat{\mathcal{M}}_n \setminus \widehat{\mathcal{M}}_{n-1}$, then we say it is on *level n*, and write $\Lambda(M) := n$. Notice that $\Lambda \circ \hat{T} \leq \Lambda + 1$.

Notice also that the construction strongly depends on the choice of ξ . It can also change if we refine ξ_0 by removing a single point from X. Therefore it is important to always keep in mind that \hat{T} does not only depend on T but on the whole ensemble (X, T, ξ) . On the other hand, we can systematically exploit this flexibility to choose particularly convenient extensions by refining the partitions ξ_0 and ξ . We will do so in section 4 below (see also section 4 of [Z1]). Given two partitions η, η' of X, we define $\eta \leq \eta'$ to be the coarsest partition of X into subintervals which refines η and η' . In general, this is finer that $\eta \vee \eta'$.

The transfer operators \mathbf{P} and $\widehat{\mathbf{P}}$ respectively associated with T and \widehat{T} are also closely related to each other. For $\widehat{u} : \widehat{X} \to [0, \infty)$ measurable and $(\pi_* \widehat{u})(x) :=$ $\sum_{\pi(\widehat{x})=x} \widehat{u}(\widehat{x})$ we have $\pi_*(\widehat{\mathbf{P}}\widehat{u}) = \mathbf{P}(\pi_*\widehat{u})$. $(\pi_* \text{ is just the transfer operator of } \pi$.) Given $u : X \to [0, \infty)$ we define its *lift to the base of* $(\widehat{X}, \widehat{T}, \widehat{\xi})$ to be the function \widehat{u} vanishing on $\widehat{X} \cap \{\Lambda \ge 1\}$ for which $\pi_* \widehat{u} = u$. Sometimes a convenient way to see that an acim $\widehat{\mu}$ for the C.M.E. projects onto an acim μ of T, is to use the fact that

if there is some
$$Y \subseteq X$$
 s.t. $\hat{\mu}(\pi^{-1}Y) < \infty$,
then $\mu := \hat{\mu} \circ \pi^{-1}$ is a σ -finite acim for T , (9)

which is easily seen by inducing on Y and $\pi^{-1}Y$.

Function spaces for markov systems with nonpositive Schwarzian derivative. As shown in [Mi], the transfer operator of a map with nonpositive Schwarzian derivative preserves certain convenient function spaces. This has been exploited systematically for markovian situations in §2 of [K2]. For an open interval J we let $\mathcal{D}(J)$ denote the family of all continuous functions $u: J \to (0, \infty)$ for which $1/\sqrt{u}$ is concave, together with the constant function u = 0. Assume now that $(\hat{X}, \hat{T}, \hat{\xi})$ is a Markov system with nonpositive Schwarzian derivative, and consider the cone $\hat{\mathcal{D}} := \{\hat{u} \in \mathcal{C}(\hat{X}) : \hat{u} \mid_{\hat{D}} \in \mathcal{D}(\hat{D}) \text{ for all } \hat{D} \in \mathcal{M}\}$, then $(\hat{X}, \hat{T}, \hat{\xi}, \lambda, \hat{\mathcal{D}})$ is a regular Markov system in the sense of [K2], meaning that

$$\widehat{u} \in \widehat{\mathcal{D}} \text{ and } \widehat{Z} \in \widehat{\xi}_k \implies \widehat{\mathbf{P}}^k(1_{\widehat{Z}} \,\widehat{u}) \in \widehat{\mathcal{D}},$$
 (10)

 $\widehat{\mathcal{D}}$ is closed in the topology of uniform convergence on compact subsets (u.c.s. convergence), (11)

$$\widehat{\mathcal{D}} - \widehat{\mathcal{D}}$$
 is dense in $L_1(\widehat{X}, \lambda),$ (12)

and

for all
$$\widehat{D} \in \mathcal{M}$$
 and all compact $K \subseteq \widehat{D}$,
the set $\{\log \widehat{u} \mid_{K} : \widehat{u} \in \widehat{\mathcal{D}}\}$ is equicontinuous. (13)

As a consequence,

if
$$\widehat{u} \in \widehat{\mathcal{D}}$$
, then $\widehat{\mathbf{P}}^n \widehat{u} \in \widehat{\mathcal{D}} \cup \{\infty\}$ for $n \ge 0$. (14)

In particular, theorem 1 of [K2] applies to our C.M.E., showing that its basic ergodic structure is quite nice.

More distortion properties of markov systems with nonpositive Schwarzian derivative. Let us point out that systems of this type also fit into the framework of Markov maps with distortion properties as studied in [A0]. (This also offers an alternative approach to the structure theorem of [K2].) Specifically,

if
$$(X, T, \xi)$$
 is a conservative Markov system with nonpositive
Schwarzian derivative, then, slightly refining $\hat{\xi}$, it has the
weak distortion property in the sense of [A0], §4.3. (15)

To see this, assume w.l.o.g. that $(\hat{X}, \hat{T}, \hat{\xi})$ is conservative ergodic. The higher-order dynamical partitions $\hat{\xi}_m$, $m \ge 1$, are also markov for \hat{T} , and we may choose m so large that there is an image interval $B = \hat{T}V$, $V \in \hat{\xi}$, which contains a δ -scaled neighbourhood, $\delta > 0$, of some cylinder $Z \in \hat{\xi}_m$. Refining the partition once again, we let $\hat{\eta} := \hat{\xi}_m \buildrel \hat{T}^{-1}\{Z, Z^c\}$, and observe that $(\hat{X}, \hat{T}, \hat{\eta})$ again is a markov system. Define $\mathfrak{r} := \{W \in \hat{\eta}_n : n \ge 1, \hat{T}^n W = Z\}$, then, by ergodicity, \mathfrak{r} exhausts our space, $\bigcup \mathfrak{r} = \hat{X} \mod \lambda$, and for $W \in \mathfrak{r}$ we obviously have $V \cap \hat{T}^{-n} W \in \mathfrak{r} \cup \{\emptyset\}$ for any $V \in \hat{\eta}_n$, $n \ge 1$. Together with the Koebe principle (1) this shows that \mathfrak{r} satisfies the defining properties of a *Schweiger collection* for $(\hat{X}, \hat{T}, \hat{\eta})$ (cf. [A0], §4.3), whose existence is asserted by the weak distortion property. Theorem 4.4.7 of [A0] now ensures that the conservative ergodic system $(\widehat{X}, \widehat{T}, \widehat{\eta})$ is exact if its incidence graph is aperiodic, and hence that in the general case it is the product of an exact system and a finite rotation. It is easily seen that this extends to systems with a dissipative part, so that we find that

any ergodic Markov system
$$(\widehat{X}, \widehat{T}, \widehat{\xi})$$
 with
nonpositive Schwarzian derivative, not totally
dissipative, is exact up to a finite rotation, (16)

which will lead to the corresponding statement for S-unimodal maps.

Below we are going to apply these observations to a C.M.E. of our S-unimodal Misiurewicz map T. However, we won't just take the C.M.E. of (X, T, ξ) with $\xi = \{(c_2, c), (c, c_1)\}$. The following trick reveals that in the Misiurewicz case the theorem is an easy corollary of the markovian results.

Lemma 1 (Towers trivializing Misiurewicz intervals) Let (X, T, ξ) be a piecewise monotonic system and assume that the open interval $I \subseteq X$ is (contained in some $B \in \xi_0$ and) measurable w.r.t. some ξ_n , $n \in \mathbb{N}$, and disjoint from the orbits of points from $\partial \xi$. Refine ξ_0 and ξ by letting $\xi'_0 := \xi_0 \vee \{I, I^c\}, X' := \bigcup \xi'_0$, and $\xi' := \xi_n \vee T^{-1}\{I, I^c\}$, then the C.M.E. $(\widehat{X'}, \widehat{T}, \widehat{\xi'})$ of (X', T, ξ') is trivial above I in that $\pi^{-1}I = \pi^{-1}I \cap \{\Lambda = 0\} = I \times \{I\}$.

Proof. Replacing ξ_1 by ξ_n if necessary, we may assume w.l.o.g. that n(I) = 1. ξ'_0 is the collection of connected components of X' and contains I. Any (higherorder) cylinder $Z' \in \xi'_n$ is of the form $Z' = \bigcap_{k=0}^{n-1} T^{-k} Z'_k$, $Z'_k \in \xi'$, $n \ge 1$, with $Z'_k = Z_k \cap T^{-1} J_k$, where $Z_k \in \xi$ and $J_k \in \xi'_0$. Since all $J \in \xi'_0$ are measurable ξ' , we see that in fact $Z' = Z \cap T^{-n} J_{n-1}$ with $Z := \bigcap_{k=0}^{n-1} T^{-k} Z_k$. By assumption, however, $T^n Z$ either covers I or is disjoint from it, and our assertion follows.

We are now ready to prove the main results of this section.

Proof of theorems 3 and 4. Recall that by boundedness of X and the fact that ξ generates (cf. (2)), for any $M \in \mathcal{E}(T)$ there is a finite collection \mathcal{I} of open intervals $I \in \mathcal{E}(T)$, each measurable ξ_n for some $n \geq 1$, such that $cl(M) \subset \bigcup \mathcal{I}$. Therefore it is enough to consider the case where cl(M) is contained in a single open interval $I \in \mathcal{E}(T)$ measurable ξ_n . We refine ξ as in the preceding lemma, $\xi' := \xi_n \, \forall \, T^{-1}\{I, I^c\}$, and take a closer look at the C.M.E. $(\widehat{X'}, \widehat{T}, \widehat{\xi'})$ of (X', T, ξ') . Theorem 1 of [K2] applies to describe the possible types of ergodic behaviour of this Markov extension, and the following arguments are based on its conclusions.

Assume that $\mu(I) > 0$ (e.g. I := Y = Y(T)). By theorem 1, I is a sweep-out set for (X,T). In turn, $\widehat{I} := \pi^{-1}I$ is a sweep-out set for the C.M.E., showing that $\widehat{\mu}(\widehat{I}) > 0$ for any acim $\widehat{\mu}$ of \widehat{T} , hence $\widehat{h} := d\widehat{\mu}/d\lambda$ is strictly positive on \widehat{I} in this case, since necessarily $\widehat{h} \in \widehat{\mathcal{D}}$ by theorem 1 of [K2]. As \widehat{I} is recurrent, there is at least one $\widehat{\mu}$, and its restriction $\widehat{\mu} \mid_{\widehat{I}}$ is an acim for the induced map $\widehat{T}_{\widehat{I}}$. The trivial projection $\widehat{\mu} \mid_{\widehat{I}} \circ \pi^{-1}$ therefore is an a.c.i.m. for T_I and thus equals (some multiple of) $\mu \mid_{I}$. This shows that $\widehat{\mu}$ is unique up to a constant factor, and hence ergodic. We also see that $h \in \mathcal{D}(I)$ for any interval $I \in \mathcal{E}(T)$, and passing to a slightly larger one which covers cl(I), we conclude that h is also bounded on I. According to (9), we have $\widehat{\mu} \circ \pi^{-1} = \mu$ on X if (from this point on) we normalize $\widehat{\mu}$ appropriately. It is easy to see that since π is nonsingular w.r.t. λ , exactness of \widehat{T}^m implies exactness of T^m , and applying (16) to $(\widehat{X'}, \widehat{T}, \widehat{\xi'})$, we obtain theorem 3.

Theorem 1 in [K2] also shows that the c.e.m.p.t. \widehat{T} on $(\widehat{X}, \mathcal{B}, \widehat{\mu})$ is pointwise dual ergodic with return sequence given by $\widehat{a}_{I,n} := \lambda(\widehat{I}) \sum_{k=0}^{n-1} \widehat{\mathbf{P}}^k \mathbf{1}_{\widehat{I}}(x_0), n \geq 1$, where $\hat{x}_0 \in \hat{I}$ is fixed. Moreover, although this assertion is not made explicit in the statement of that result, it is shown in its proof that letting $\hat{U}_n := \sum_{k=0}^{n-1} \hat{\mathbf{P}}^k \hat{u},$ $n \geq 1$, we have $\hat{a}_{I,n}^{-1} \hat{U}_n \to \lambda(\hat{u}) \cdot \hat{h}$ uniformly on compact subsets of \hat{X} whenever $\hat{u} \in \hat{\mathcal{D}} \cap L_1(\hat{X}, \lambda)$. Using the trivial projection $\hat{I} \to I$ this immediately implies that $\hat{a}_{I,n}^{-1} \sum_{k=0}^{n-1} \mathbf{P}^k u \to \lambda(\hat{u}) \cdot h$ u.c.s. on I for $u := \pi_*(\hat{u})$. Recalling (10), we see that this applies in particular to $\hat{\mathbf{P}}^j \hat{u}$ whenever \hat{u} is the lift of some ξ'_j -simple function uto the base of the tower. Therefore,

$$\frac{1}{\widehat{a}_{I,n}}\sum_{k=0}^{n-1}\mathbf{P}^k u \to \lambda(u)\cdot h \quad \text{ u.c.s. on } I$$

for such u, and since ξ generates, a straightforward sandwich argument enables us to extend this to Riemann integrable functions u on X.

To check that the normalizing sequence $(\hat{a}_{I,n})_{n\geq 1}$ does not depend on I, we only have to recall that proposition 3.7.6 of [A0] ensures that the factor (X, T, μ) of the pointwise dual ergodic system $(\widehat{X'}, \widehat{T}, \widehat{\xi'})$ is pointwise dual ergodic, too, and has the same return sequence.

If $\mu(I) = 0$, we consider the same type of extension $(\widehat{X'}, \widehat{T}, \widehat{\xi'})$ as before, and it is clear that $\widehat{I} = \pi^{-1}I$ belongs to the dissipative part. Hence (as the iterated desities are in $\widehat{\mathcal{D}}$), for ξ'_j -simple functions u, $\sum_{k=0}^{n-1} \mathbf{P}^k u = \sum_{k=0}^{n-1} \widehat{\mathbf{P}}^k \widehat{u}$ is uniformly summable on compact subsets of I, implying the assertion in this case.

5 More on the return distribution. Regular variation

We let T be some fixed S-unimodal Misiurewicz map and consider our reference set Y = Y(T) with first return (resp. entrance) time function $\varphi(x) := \inf\{n \ge 1 : T^n x \in Y\}$, $x \in X$. We are interested in finer asymptotic properties of the distribution of φ under μ_Y . Specifically, we would like to improve the estimates of proposition 1 and determine the asymptotics of the tail probabilities $\mu_Y(Y \cap \{\varphi > n\})$ rather than just their order of magnitude. Of course, the most interesting situation is that of regularly varying tails, which is the very property leading to fine probabilistic properties, cf. sections 7 and 8 below. Recall that a realvalued function a is regularly varying of index $\rho \in \mathbb{R}$ at infinity if for any c > 0, $\lim_{t\to\infty} a(ct)/a(t) = c^{\rho}$, cf. [BGT]. The collection of functions of this type will be denoted by \mathcal{R}_{ρ} . We shall interpret sequences $(a_n)_{n\geq 1}$ as functions via $t \longmapsto a_{[t]}$. Proposition 1 suggests that we can hardly expect the tail to be regularly varying unless $V(e^{-t})$ is. The following result shows that this condition is also sufficient if the critical orbit behaves well.

Theorem 5 (Lyapunov exponent and the tail of the return distribution) Let T be an S-unimodal Misiurewicz map, let $\mathcal{V}(t) := V(e^{-t})$ and assume that $\mathcal{V} \in \mathcal{R}_{-\alpha}$ for some $\alpha > 0$ (hence c is flat). If $(n^{-1} \log | (T^n)'(c_1) |)_{n \ge 1} \in \mathcal{R}_0$, then

$$\mu_Y(Y \cap \{\varphi > n\}) \sim h_Y(c) \cdot \mathcal{V}(\log \mid (T^n)'(c_1) \mid).$$
(17)

as $n \to \infty$, where h_Y is the normalized invariant density on Y. In particular, if the postcritical orbit has a Lyapunov exponent

$$\boldsymbol{\lambda}_c := \lim_{n \to \infty} \frac{1}{n} \log \mid (T^n)'(c_1) \mid \in (0, \infty),$$

then

$$\mu_Y(Y \cap \{\varphi > n\}) \sim \lambda_c^{-\alpha} h_Y(c) \cdot \mathcal{V}(n).$$
(18)

In the next section we will discuss in which sense existence of λ_c is typical for Misiurewicz maps. Notice that if T is symmetric about c, then $V = 2U^{-1}$ and $\mathcal{V} \in \mathcal{R}_{-\alpha}$ iff its inverse $\mathcal{V}^{-1}(t) = -\log U(t/2)$ belongs to $\mathcal{R}_{-1/\alpha}$.

Example 5 (Continuation of example 1) For our standard example, $\mathcal{V}(t) \sim 2[pt/s]^{-\alpha} \in \mathcal{R}_{-\alpha}$ with $\alpha = 1/p$. Hence, whenever $T = T_a$ is a Misiurewicz map for which λ_c exists, then $\mu_Y(Y \cap \{\varphi > n\}) \sim 2(p\lambda_c/s)^{-\alpha}h_Y(c) \cdot n^{-\alpha}$ as $n \to \infty$.

In the proof of theorem 5 we will refine the arguments which led to proposition 1. As a preparation for this (and for the material in the next section), we introduce a few more notations, most of them related to the image process of our system. We let X denote the interval [a, b] which T is initially defined on (so that $T(\partial X) \subseteq$ ∂X). The corresponding natural partition is $\xi = \{Z_0, Z_1\} = \{(a, c), (c, b)\}$. Define $\widetilde{D}_1 := X$, and let

$$\widetilde{D}_{n+1} = \begin{cases} T(\widetilde{D}_n) & \text{if } c \notin \widetilde{D}_n \\ T(\widetilde{E}_n) & \text{if } c \in \widetilde{D}_n \end{cases}$$

where \widetilde{E}_n is the component of \widetilde{D}_n containing c_n . Then $\widetilde{D}_n := T^{n-1}\xi_n(c_1)$ for $n \geq 2$. Similarly, letting $D_1 := (c_2, c_1) \subseteq \widetilde{D}_1$ and, for $n \geq 1$, define $D_{n+1} := (c_1, c_{n+1})$ if $c \in D_n$, and $D_{n+1} := T(D_n)$ otherwise, we have $D_n \subseteq \widetilde{D}_n$, $n \geq 1$. (The \widetilde{D}_n form the extended Hofbauer tower, while the ordinary Hofbauer tower is given by the D_n .) Let $J := T(Z_0 \cap I_{\mathcal{M}}) \cap T(Z_1 \cap I_{\mathcal{M}})$ which is a nondegenerate open interval, and $n_J := \min\{j \geq 1 : c \in T^j J\} < \infty$. We shall use the easy observation that

if T is Misiurewicz, then each
$$D_n$$
 ($n \ge 1$)
contains some $T^j J, j \in \{1, \dots, n_J\}.$ (19)

The indices n for which $c \in D_n$ are called *cutting times*, and the increasing (and for general unimodal maps possibly terminating) sequence of integers they form is denoted by $(S_k)_{k\geq 0}$ (so that $S_0 = 1$). If S_k and S_{k-1} exist, the difference $S_k - S_{k-1}$ again is a cutting time, and this leads to the definition of the *kneading* $map Q : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ via $S_k - S_{k-1} = S_{Q(k)}$ and $Q(k) := \infty$ if there are less than kcutting times. Similarly, the n for which $c \in \widetilde{D}_n \setminus D_n$ are the consecutive *co-cutting times* \widetilde{S}_k , $k \geq 0$, and differences $\widetilde{S}_k - \widetilde{S}_{k-1}$, if well defined, again are cutting times $S_{\widetilde{Q}(k)}$, which defines the *co-kneading* map $\widetilde{Q} : \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ with $\widetilde{Q}(k) := \infty$ if there are less than k co-cutting times. We shall use the fact (cf. [B1], p.98) that

T is a Misiurewicz map iff \tilde{Q} (and hence also Q) is bounded. (20)

The proof of the theorem requires more information about the distortion properties of T: The map T has bounded distortion along the postcritical orbit, and V has bounded distortion on geometric intervals.

Lemma 2 (Distortion properties of T) a) Let T be an S-unimodal Misiurewicz map. Then there is some $\tilde{\delta} > 0$ such that

$$(c_n - 2\delta, c_n + 2\delta) \subseteq T^n \xi_n(c_1) \quad \text{for } n \ge 0.$$
(21)

In particular, the restrictions of T^n to $\xi_n(c_1) \cap T^{-n}(c_n - \tilde{\delta}, c_n + \tilde{\delta})$ have uniformly bounded distortion by the Koebe principle.

b) For any $r \in (0,1)$, V has uniformly bounded distortion on intervals of the form (rt,t) with t > 0.

Proof. a) We mentioned before (cf. (19)) that the D_n -part of \widetilde{D}_n has a certain positive minimum length, so that we need only consider the length of the other component $\widetilde{D}_n \setminus D_n$ of $\widetilde{D}_n \setminus \{c_n\}$. It is enough to prove (21) along some subsequence of N with bounded gaps, since the intermediate steps are then given by a finite number of restricted branches of T^i of bounded distortion. The subsequence we use is that of the co-cutting times \widetilde{S}_k introduced above, which by (20) has bounded gaps. At these times $n = \widetilde{S}_k$, $\widetilde{D}_n \setminus D_n$ covers $I_{\mathcal{M}}$, and hence has some definite minimal length.

b) It is enough to consider the V_i , $i \in \{0, 1\}$, separately. The distortion of a diffeomorphism between open intervals equals that of its inverse. The inverse of V_i , defined on some $(0, \eta)$ has nonpositive Schwarzian derivative an hence uniformly bounded distortion on intervals which map into some (rt, r), t > 0, by the Koebe principle.

Proof of theorem 5. We are going to show that the tail probabilities are determined by the probabilities to stay close to the postcritical orbit for a long time. Since *T* itself need not be expanding outside *Y*, we study the shadowing set of c_1 under a suitable iterate T^s . For $\varepsilon > 0$ and $n \ge 1$ we let $U(n, \varepsilon) := D_n \cap (c_n - \varepsilon, c_n + \varepsilon)$ be the one-sided ε -neighbourhood of c_n in D_n . Take K > 0 and $\rho > 1$ as in (3) for J := Y, fix some $s \in \mathbb{N}$ so large that $K\rho^s > 2$, and define $\delta_E := \tilde{\delta}(\sup_X |T'|)^{-s}$ with $\tilde{\delta}$ as in lemma 2 a), w.l.o.g. $\tilde{\delta} < \operatorname{dist}(Y, I^c_{\mathcal{M}})$. For any $n \ge 1$ then,

$$T^{i}U(n,\delta_{E}) \subseteq U(n+i,\widetilde{\delta}) \text{ if } 0 \leq i \leq s, \text{ and}$$

$$U(n+s,2\delta_{E}) \subseteq T^{s}U(n,\delta_{E}) \subseteq U(n+s,\widetilde{\delta}).$$

$$(22)$$

Letting $Y_1^* := U(1, \delta_E)$ and $Y_{n+1}^* := Y_n^* \cap T^{-ns}U(ns, \delta_E)$, $n \ge 1$, we obtain a decreasing sequence of neighbourhoods of c_1 in $Y_0^* := TY$. Observe that Y_n^* is the $n - \delta_E$ -shadowing set of c_1 under T^s , and the first part of (22) shows that the intermediate iterates $T^{ks+i}x$, $x \in Y_n^*$, $0 \le i < s$, at least belong to the sets $U(ks + i, \tilde{\delta})$. Therefore $Y_0^* \cap \{\varphi \ge ns\} \supseteq Y_n^*$, $n \ge 1$, and hence

$$\mu_Y(Y \cap \{\varphi > ns\}) \ge \int_{Y \cap T^{-1}Y_n^*} h_Y \, d\lambda \sim h_Y(c) \cdot V(\lambda(Y_n^*)) \quad \text{as } n \to \infty.$$
(23)

The upper bound for the tail probabilities requires a bit more work. We are going to prove the following counterpart to (23): For any $\gamma \in (0, 1)$ there are $\widetilde{K} > 0$ and $\widetilde{q} \in (0, 1)$ such that

$$\mu_Y(Y \cap \{\varphi > ns\}) \le u_n(\gamma) + K \cdot \tilde{q}^n \quad \text{for } n \ge 1,$$
(24)

where $u_n(\gamma) := \mu_Y(Y \cap T^{-1}Y_{\gamma n}^*) \sim h_Y(c) \cdot V(\lambda(Y_{\gamma n}^*))$ as $n \to \infty$. The differences $E_n^* := Y_n^* \setminus Y_{n+1}^*$, $n \ge 0$, contain the points which escape from the δ_E -neighbourhood of the orbit $(T^{ks}c_1)_{k\ge 1}$ at step n. Notice also that

$$\Gamma^{ns} E_n^* \subseteq U(ns, \delta)$$
 is an interval of length larger than δ_E , (25)

since by (22) it contains $U(ns, 2\delta_E) \setminus U(ns, \delta_E)$. Together with (4) this lower bound for the lengths easily yields a uniform exponential bound on the tails of the conditional entrance-distributions to Y on the $T^{ns}E_n^*$: There are $K_{\varphi} > 0$ and $q_{\varphi} \in (0, 1)$ such that

$$\lambda_{T^{ns}E_n^*}(T^{ns}E_n^* \cap \{\varphi \ge j\}) \le K_{\varphi} \cdot q_{\varphi}^j \quad \text{for } n, j \ge 1.$$
(26)

Since $Y_0^* = Y_n^* \cup \bigcup_{k=0}^{n-1} E_k^*$, for $n \ge 1$, we find that for any $\gamma \in (0,1)$,

$$Y_0^* \cap \{\varphi \ge ns\} = Y_n^* \cup \bigcup_{k=0}^{n-1} (E_k^* \cap \{\varphi \ge ns\})$$

$$(27)$$

$$\subseteq \quad Y^*_{\gamma n} \cup \bigcup_{k=0}^{\gamma n} (E^*_k \cap \{\varphi \ge ns\}),$$

and we take a closer look at the righthand union of sets. Observing that $E_k^* \cap \{\varphi \ge ns\} = E_k^* \cap T^{-ks} \{\varphi \ge (n-k)s\}$, and recalling (25), we apply the second part of lemma 2 a) to the restrictions $T^{ks} |_{E_k^*}, k \ge 1$, to see that there is some $\kappa \ge 1$ such that

$$\begin{split} \lambda(E_k^* \cap \{\varphi \geq ns\}) &\leq \kappa \lambda(E_k^*) \lambda_{T^{ks} E_k^*}(T^{ks} E_k^* \cap \{\varphi \geq (n-k)s\}) \\ &\leq \kappa K_{\varphi} \lambda(E_k^*) \cdot (q_{\varphi}^s)^{n-k}, \end{split}$$

where the second step uses (26). Our construction furthermore ensures that there is some $r \in (0, 1)$ such that

each
$$E_n^*$$
 is of the form $E_n^* = (c_n - t, c_n - qt)$ or
 $E_n^* = (c_n + qt, c_n + t)$ with $q \in (r, 1)$ and $t > 0$.
$$(28)$$

Together with lemma 2 b), this shows that there is some $\tilde{\kappa} \geq 1$ such that

$$\mu(Y \cap T^{-1}(E_k^* \cap \{\varphi \ge ns\})) \le \widetilde{\kappa} \left(\sup_Y h_Y\right) \cdot \lambda(Y \cap T^{-1}E_k^*) \cdot \lambda_{E_k^*}(E_k^* \cap \{\varphi \ge ns\})$$
$$\le \kappa \widetilde{\kappa} K_{\varphi} \left(\sup_Y h_Y\right) \lambda(Y) \cdot (q_{\varphi}^s)^{n-k}.$$

Therefore, letting $\widetilde{K} := \kappa \widetilde{\kappa} K_{\varphi} \left(\sup_{Y} h_{Y} \right) \lambda(Y) / (1 - q_{\varphi}^{s}) > 0$ and $\widetilde{q} := q_{\varphi}^{s(1 - \gamma)} \in (0, 1)$, we have

$$\sum_{k=0}^{n} \mu(Y \cap T^{-1}(E_k^* \cap \{\varphi \ge ns\})) \le \widetilde{K} \cdot \widetilde{q}^n \quad \text{for } n \ge 1.$$

Combining this with (27) we obtain (24).

In view of the final statement of proposition 1, (23) and (24) show that the asymptotic behaviour of $\lambda(Y_n^*)$ as $n \to \infty$ is decisive. As $\delta_E < \tilde{\delta}$ and $Y_n^* = (T^{ns}|_{\xi_{ns}(c_1)})^{-1}U(ns, \delta_E)$, the second part of lemma 2 a) shows that there is some D > 1 such that for all $n \ge 1$,

$$\lambda(Y_n^*) = d_n \lambda(Y_1^*) / | (T^{ns})'(c_1) | \quad \text{with } d_n \in (D^{-1}, D),$$

and hence

$$V(\lambda(Y_n^*)) = \mathcal{V}(\log | (T^{ns})'(c_1) | - \log(d_n \lambda(Y_1^*))) \sim \mathcal{V}(\log | (T^{ns})'(c_1) |)$$

as $n \to \infty$ since $(\log(d_n\lambda(Y_1^*)))_{n\geq 1}$ is a bounded sequence. From (3) we know that $\log |(T^{ns})'(c_1)| \approx n$ and hence $V(\lambda(Y_n^*)) \approx \mathcal{V}(n)$ in any case.

Since the regularly varying function \mathcal{V} has an asymptotic inverse $\mathcal{V}^{-1} \in \mathcal{R}_{-1/\alpha}$ (cf. [BGT], theorem 1.5.12), we conclude that

$$(V(\lambda(Y_n^*)))_{n\geq 1} \in \mathcal{R}_{-\alpha} \text{ iff } (\log \mid (T^{ns})'(c_1) \mid)_{n\geq 1} \in \mathcal{R}_1.$$

$$(29)$$

(And $V(\lambda(Y_n^*))$ cannot be regularly varying of a different order.) In this case, taking γ arbitrarily close to 1, we find that

$$\mu_Y(Y \cap \{\varphi > n\}) \sim h_Y(c) \cdot \mathcal{V}(\log \mid (T^n)'(c_1) \mid).$$

(Since the contributions log $|(T^i)'(c_{ns})|, 0 < i < s$, of the intermediate steps are bounded.)

6 Existence of the postcritical Lyapunov exponent

The purpose of the present section is to show that in a reasonable sense "most" Misiurewicz maps from a full family posess a postcritical Lyapunov exponent λ_c . Let T be a unimodal map. Recall that the *itinerary* of the point x is the sequence $\nu(x) = (\nu(x)_i)_{i\geq 1} \in \{0, C, 1\}^{\mathbb{N}}$ with $\nu(x)_i = 0$ if $T^{i-1}x < c$, $\nu(x)_i = C$ if $T^{i-1}x = c$, and $\nu(x)_i = 1$ if $T^{i-1}x > c$. Most important, the *kneading invariant* of T is the itinerary of its critical value c_1 , $\nu(T) := \nu(c_1)$. In any case, $\nu(T)_0 = 1$ and $\nu(T)_1 = 0$ unless the dynamics is trivial. There are various characterizations of those *admissible* sequences $\nu \in \{0, 1\}^{\mathbb{N}}$ which actually occur as the kneading invariant of some unimodal map, and we shall use a criterion from [B1], [B2] based on the kneading maps.

Given any symbol sequence $\nu = \nu_1 \nu_2 \ldots \in \{0, 1\}^{\mathbb{N}}$ starting with 1, there is a well defined *splitting* beginning at the second digit,

$$\nu = 1 \triangle_1 \triangle_2 \triangle_3 \dots$$

where each Δ_j is a *basic block*, meaning that it agrees with an initial segment of ν except for the last symbol, i.e. $\Delta_i = e_1 \dots e_{m-1} e_m = \nu_1 \dots \nu_{m-1} \nu'_m$, where $\nu'_m = \nu_m + 1 \mod 2$. Letting $\kappa := \min\{i \ge 1 : \nu_i = 1\}$, we obtain the *co-splitting* of ν which starts at the $\kappa + 1$ st digit,

$$\nu = 10 \dots 01 \widetilde{\bigtriangleup}_1 \widetilde{\bigtriangleup}_2 \widetilde{\bigtriangleup}_3 \dots$$

where again the Δ_j are basic blocks. Based on this construction, we define the *cutting*- and *co-cutting times* of ν by $S_0 := 1$, $S_k := S_0 + \sum_{j=1}^k |\Delta_j|$, and $\widetilde{S}_0 := \kappa$, $\widetilde{S}_k := \widetilde{S}_0 + \sum_{j=1}^k |\widetilde{\Delta}_j|$, where for any block \Box of symbols we let $|\Box|$ denote its length. Bruin's admissibility condition now states that

 ν is admissible iff differences $S_k - S_{k-1}$ and $\widetilde{S}_k - \widetilde{S}_{k-1}$ of (30)

consecutive cutting and co-cutting times again are cutting times,

in which case the kneading and co-kneading maps $Q, \tilde{Q} : \mathbb{N} \to \mathbb{N}$ of ν are well defined by $S_k - S_{k-1} = S_{Q(k)}$ and $\tilde{S}_k - \tilde{S}_{k-1} = S_{\tilde{Q}(k)}, k \ge 1$, and agree with the (co-) kneading maps of any unimodal map T with $\nu(T) = \nu$ (and the same is true for the (co-) cutting times). Recalling (20), we call an admissible $\nu \in \{0, 1\}^{\mathbb{N}}$ a Misiurewicz kneading sequence if \tilde{Q} is bounded, which is equivalent to $\sup_{j>1} |\tilde{\Delta}_j| < \infty$.

Proposition 2 (For typical Misiurewicz kneadings λ_c **exists)** Let μ_{σ} be any invariant Borel probability measure for the shift σ on $\{0,1\}^{\mathbb{N}}$. If the Misiurewicz kneading sequence ν is a typical point for μ_{σ} , then λ_c exists for any S-unimodal map T with kneading invariant ν .

Proof. Fix some T with $\nu(T) = \nu$. As ν is typical for μ_{σ} , its orbit $O(\nu) := (\sigma^n \nu)_{n \geq 0}$ is dense in the closed subshift $\Omega := \operatorname{supp}(\mu_{\sigma}) \subseteq \{0,1\}^{\mathbb{N}}$. We lift the potential $\log |T'|$ to Ω by first defining it on the orbit via $\psi(\sigma^n \nu) := \log |T'(c_{n+1})|$, $n \geq 0$. Now $\psi \mid_{O(\nu)}$ is easily seen to be uniformly continuous and hence extends to a unique uniformly continuous function ψ on Ω . Since ν is typical for μ_{σ} , we have $\lim_{n\to\infty} n^{-1} \sum_{k=0}^{n-1} \psi(\sigma^n \nu) = \lim_{n\to\infty} n^{-1} \log |(T^n)'(c_1)| = \mu_{\sigma}(\psi)$.

It remains to check that the concept of being typical for some shift-invariant probability is not void inside the comparatively small collection of Misiurewicz kneading sequences. We do so by showing that the latter essentially contains (for example) the golden mean subshift $\sum := \{\omega \in \{0,1\}^{\mathbb{N}} : \omega \text{ does not contain a block of two or more zeros}\}$, which has positive topological entropy $h_{top}(\sigma \mid_{\Sigma}) = \log((1 + \sqrt{5})/2)$. Hence there is a rich supply of invariant measures of positive entropy that live on Misiurewicz sequences.

Proposition 3 (Golden mean subshift gives Misiurewicz kneadings) For any $\omega \in \Sigma$,

$$\nu := 100111\omega$$

defines a Misiurewicz kneading sequence.

Proof. From the given initial block $\nu_1 \dots \nu_6 = 100111$ we read off that $S_0 = 1$, $S_1 = 2$, $S_2 = 3$, $\kappa = \widetilde{S}_0 = 4$, $\Delta_1 = \Delta_2 = 0$, and $\Delta_3 = \widetilde{\Delta}_1 = 11$, so that $\nu_1 \dots \nu_6 = 1 \Delta_1 \Delta_2 \Delta_3 1 = 1001 \widetilde{\Delta}_1$ in compliance with (30). To prove our claim, we show inductively that whenever we add blocks of the form $\Box = 1$ or $\Box = 01$ to our initial piece (which produces all sequences in Σ), we obtain a sequence ν whose basic blocks Δ_i and $\widetilde{\Delta}_j$ from the (co-)splitting above belong to $\{0, 11, 101\} =: \mathfrak{B}$ so that ν has bounded kneading and co-kneading maps.

Assume then that for some $n \ge 6$,

$$\nu_1 \dots \nu_n = 1 \triangle_1 \dots \triangle_i 1 = 1001 \widetilde{\triangle}_1 \dots \widetilde{\triangle}_j \tag{31}$$

with basic blocks from \mathfrak{B} . Adjoining $\Box = 1$ we obtain

$$\nu_1 \dots \nu_n \nu_{n+1} = 1 \triangle_1 \dots \triangle_i \triangle_{i+1} = 1001 \triangle_1 \dots \triangle_j 1$$

with $\triangle_{i+1} = 11 \in \mathfrak{B}$. Similarly, if instead we add $\Box = 01$, we get

$$\nu_1 \dots \nu_n \nu_{n+1} \nu_{n+2} = 1 \triangle_1 \dots \triangle_i \triangle_{i+1} = 1001 \widetilde{\triangle}_1 \dots \widetilde{\triangle}_j \widetilde{\triangle}_{j+1} 1$$

with $\triangle_{i+1} = 101$ and $\triangle_{j+1} = 0$ both in \mathfrak{B} . In any case, we are again in the situation of (31) with the roles of splitting and co-splitting interchanged, and we can continue with our construction.

7 More on limit distributions if μ is finite

Regular variation often is the key to questions about limit distributions and enables us to go beyond the regime of the classical CLT. Again we consider occupation times of the reference set Y = Y(T), thus asking for the asymptotic distributional behaviour of the ergodic sums $\mathbf{S}_n(1_Y) = \sum_{k=0}^{n-1} 1_Y \circ T^k$, $n \ge 1$. By now we are prepared to expect results analogous to those we have for maps with indifferent fixed points, and we will in fact see that the same method as in [Z2] applies to provides us with stable limit theorems. To formulate the result, we need to recall the limit laws we have to expect. A realvalued random variable R (respectively its distribution) is called *stable* (cf. [AD1] or [IL]) if for all a, b > 0 there are c > 0 and $d \in \mathbb{R}$ such that $aR + bR^* \stackrel{d}{=} cR + d$, where R^* is an independent copy of R and $R \stackrel{d}{=} S$ means equality of distributions. In this case $a^{\alpha} + b^{\alpha} = c^{\alpha}$ for some $\alpha \in (0, 2]$, called the *order* of R. Up to translation and scaling, any stable random variable belongs to the family $(\Xi_{\alpha,\beta})_{\alpha\in(0,2],\beta\in\mathbb{R}}$ of variables, indexed by the order α and the *skewness* parameter β , and defined by their characteristic functions

$$\mathbb{E}\left[e^{it\Xi_{\alpha,\beta}}\right] = \begin{cases} e^{-\frac{|t|^{\alpha}}{2}(1-i\beta\operatorname{sgn}(t)\tan(\frac{\alpha\pi}{2}))} & \text{if } \alpha \neq 1\\ e^{-\frac{|t|}{2}+i\frac{2\beta c}{\pi}t\log\frac{1}{|t|}} & \text{if } \alpha = 1. \end{cases}$$
(32)

(For $\alpha = 2$ this is the standard normal distribution $\mathcal{N}(0, 1)$.) The following is the counterpart to the CLT we obtained in the case $\alpha > 2$ as a consequence of the rate of mixing (cf. theorem 2).

Theorem 6 (Stable limit distributions for occupation times) Let T be an S-unimodal Misiurewicz map for which $\lambda_c := \lim_{n\to\infty} \frac{1}{n} \log |(T^n)'(c_1)| \in (0,\infty)$ exists.

a) If $\mathcal{V}(t) := V(e^{-t}) \in \mathcal{R}_{-2}$ and $\int_{1}^{\infty} \mathcal{V}(\sqrt{t}) dt = \infty$, then there is some $B_Y \in \mathcal{R}_{1/2}$ such that

$$\frac{1}{B_Y(n)} \left(\sum_{k=0}^{n-1} 1_Y \circ T^k - n\mu(Y) \right) \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} \mathcal{N}(0,\mu(Y)), \tag{33}$$

where B_Y is specified by $t\ell(B_Y(t)) \sim B_Y(t)^2$ with $\ell(t) := (\mu(Y)/\lambda_c)^2 h_Y(c) \cdot \int_1^t \mathcal{V}(\sqrt{s}) \, ds.$

b) If $\mathcal{V}(t) := V(e^{-t}) \in \mathcal{R}_{-\alpha}$ for some $\alpha \in (1,2)$, then there is some $B_Y \in \mathcal{R}_{1/\alpha}$ such that

$$\frac{1}{B_Y(n)} \left(\sum_{k=0}^{n-1} 1_Y \circ T^k - n\mu(Y) \right) \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} - \Gamma(1-\alpha) \cos(\frac{\alpha\pi}{2})\mu(Y)^{\frac{1}{\alpha}} \cdot \Xi_{\alpha,1}.$$
(34)

Here B_Y is specified by $t\ell(B_Y(t)) \sim B_Y(t)^{\alpha}$ with $\ell(t) := (\mu(Y)/\lambda_c)^{\alpha}h_Y(c) \cdot t^{\alpha}\mathcal{V}(t)$.

Example 6 (Continuation of example 1) Recall that $\mathcal{V}(t) \sim 2[pt/s]^{-\alpha}$ as $t \to \infty$. **a)** If p = 1/2, then $\int_1^t \mathcal{V}(\sqrt{s}) \, ds \sim 2(s/p)^2 \log t \to \infty$, and the theorem applies with $\ell(t) = 2h_Y(c)[(s\mu(Y))/(p\boldsymbol{\lambda}_c)]^2 \cdot \log t$ and $B_Y(t) = [(s\mu(Y)\sqrt{h_Y(c)})/(p\boldsymbol{\lambda}_c)] \cdot \sqrt{t \log t}$. **b)** If $p \in (1/2, 1)$, then (34) holds with $B_Y(t) = (2h_Y(c))^{1/\alpha}[(s\mu(Y))/(p\boldsymbol{\lambda}_c)] t^{1/\alpha}$.

Proof. We use the same device as in [Z2] and consider the centered observable $f^c := 1_Y - \mu(Y)$ and its induced version $f_Y^c : Y \to Y$, $f_Y^c := \sum_{k=0}^{\varphi^{-1}} f^c \circ T^k$. Notice that $f_Y^c = 1 - \mu(Y)\varphi$, which is bounded above and by theorem 5 satisfies

$$\mu_Y(\{f_Y^c < -n\}) \sim \mu_Y(\{\varphi > n/\mu(Y)\}) \sim (\mu(Y)/\lambda_c)^{\alpha} h_Y(c) \cdot \mathcal{V}(n).$$

By remark 2, (Y, T_Y, ξ_Y) is a Gibbs-Markov map in the sense of [A0], [AD1], and [AD2], and clearly φ and f_Y^c are measurable ξ_Y .

a) Divergence of $\int_{1}^{\infty} \mathcal{V}(\sqrt{t}) dt$ just means that $\int_{Y} \varphi^{2} d\mu_{Y} = \infty$, and by regular variation of the tail, the distributions of φ and f_{Y}^{c} are in the "nonnormal" domain of attraction of the normal law (cf. [IL], theorem 2.6.2). Applying the last corollary of [AD2], we see that

$$B_Y(n)^{-1} \sum_{k=0}^{n-1} f_Y^c \circ T_Y^k \stackrel{\mu_Y}{\Longrightarrow} \mathcal{N}(0,1),$$

with B_Y as in the statement of the theorem. Proposition 2 of [Z2] now gives

$$B_Y(\mu(Y)n)^{-1}\sum_{k=0}^{n-1} f^c \circ T^k \stackrel{\mathcal{L}(\mu)}{\Longrightarrow} \mathcal{N}(0,1),$$

which easily extends to $\stackrel{\mathcal{L}(\lambda)}{\Longrightarrow}$ convergence, thus proving (33).

b) Theorem 6.1 of [AD1] applies and provides us with a normalizing function $B_T \in \mathcal{R}_{1/\alpha}$ such that

$$B_Y(n)^{-1} \sum_{k=0}^{n-1} f_Y^c \circ T_Y^k \xrightarrow{\mu_Y} - \Gamma(1-\alpha) \cos(\alpha \pi/2) \cdot \Xi_{\alpha,1},$$

where B_Y is as specified. Using proposition 2 of [Z2] again, we end up with (34).

8 More on wandering rates and limit distributions if μ is infinite

In the infinite measure preserving case, too, regular variation of return distributions is crucial for strong stochastic properties to hold. First of all, it enables us to determine the asymptotics of wandering rates and return sequences.

Recall (see e.g. section 3.8 of [A0]) that the wandering rate of a set $E \in \mathcal{B}$, $0 < \mu(E) < \infty$, under a c.e.m.p.t. T is the sequence defined by $w_n(E) := \mu(\bigcup_{k=0}^{n-1} T^{-k}E) = \sum_{k=0}^{n-1} \mu(E \cap \{\varphi_E \ge k\}), n \ge 1$. The wandering rate depends on E, and, given T, there are no sets with maximal rate. Still, T may have sets E with minimal wandering rate, meaning that $\underline{\lim}_{n\to\infty} w_n(Z)/w_n(E) \ge 1$ for all $Z \in \mathcal{B}, 0 < \mu(Z) < \infty$. If this is the case, we let $\mathcal{W}(T) \subseteq \mathcal{A}$ denote the collection of sets which have minimal wandering rate under T, and simply write $(w_n(T))_{n\ge 1}$ for any sequence representing the asymptotic equivalence class of such $(w_n(E))$, which is then referred to as the wandering rate of T.

Theorem 7 (Wandering rates and return sequences) Let T be an S-unimodal Misiurewicz map for which $\lambda_c := \lim_{n\to\infty} \frac{1}{n} \log |(T^n)'(c_1)| \in (0,\infty)$ exists, and assume that $\mathcal{V}(t) := V(e^{-t}) \in \mathcal{R}_{-\alpha}$ for some $\alpha \in (0,1]$. Then Y = Y(T) has minimal wandering rate, and

$$w_n(T) \sim \boldsymbol{\lambda}_c^{-\alpha} h(c) \sum_{k=0}^{n-1} \mathcal{V}(k) \in \mathcal{R}_{1-\alpha} ,$$
 (35)

with $\sum_{k=0}^{n-1} \mathcal{V}(k) \sim n\mathcal{V}(n)/(1-\alpha)$ in case $\alpha < 1$. Moreover, the return sequence of T satisfies $a_n(T) \sim [\Gamma(2-\alpha)\Gamma(1+\alpha)]^{-1} \cdot n/w_n(T) \in \mathcal{R}_{\alpha}$.

Example 7 (Continuation of example 1) Recalling that $\mathcal{V}(t) \sim 2[pt/s]^{-\alpha}$, we find that

$$w_n(T) \sim 2h(c) \left(\frac{s}{p\lambda_c}\right)^{\alpha} \cdot \begin{cases} \log n & \text{if } p = 1\\ \frac{n^{1-\alpha}}{1-\alpha} & \text{if } p > 1, \end{cases}$$

and

$$a_n(T) \sim \frac{2h(c)}{\Gamma(2-\alpha)\Gamma(1+\alpha)} \left(\frac{s}{p\boldsymbol{\lambda}_c}\right)^{\alpha} \cdot \begin{cases} \frac{n}{\log n} & \text{if } p = 1\\ (1-\alpha)n^{-\alpha} & \text{if } p > 1. \end{cases}$$

Proof. By theorem 5, $w_n(Y) = \sum_{k=0}^{n-1} \mu(Y \cap \{\varphi > n\}) \sim \lambda_c^{-\alpha} h(c) \sum_{k=0}^{n-1} \mathcal{V}(k)$. By propositions 1.5.8 and 1.5.9a of [BGT], the rightmost term always belongs to $\mathcal{R}_{1-\alpha}$, and $\sum_{k=0}^{n-1} \mathcal{V}(k) \sim n\mathcal{V}(n)/(1-\alpha)$ if $\alpha < 1$. Since, moreover, Y is a uniform set for T (cf. corollary 1), theorem 3.8.3 of [A0] ensures that Y has minimal wandering rate. Proposition 3.8.7 of [A0] immediately gives the asymptotics of $(a_n(T))_{n\geq 1}$.

Without any effort, we can now apply corollary 3.7.3 of [A0] to obtain

Theorem 8 (Darling-Kac theorem) Let T be an S-unimodal Misiurewicz map for which $\lambda_c := \lim_{n\to\infty} \frac{1}{n} \log |(T^n)'(c_1)| \in (0,\infty)$ exists, and assume that $\mathcal{V}(t) := V(e^{-t}) \in \mathcal{R}_{-\alpha}$ for some $\alpha \in (0,1]$. Then for any $f \in L_1(\mu)$ with $\mu(f) \neq 0$,

$$\frac{1}{a_n(T)}\mathbf{S}_n(f) = \frac{1}{a_n(T)} \sum_{k=0}^{n-1} f \circ T^k \stackrel{\mathcal{L}(\lambda)}{\Longrightarrow} \mu(f) \cdot W^{(\alpha)}$$

where $W^{(\alpha)}$ is a random variable having the normalized Mittag-Leffler distribution of order α , that is, $\mathbf{E}[e^{zW^{(\alpha)}}] = \sum_{m \geq 0} \frac{\Gamma(1+\alpha)^m}{\Gamma(1+m\alpha)} z^m$.

Again, this applies to the Misiurewicz maps with $\lambda_c \in (0, \infty)$ from the family of example 1 (with the normalizations given in example 7), and $f := 1_Y$, Y = Y(T), thus completing the picture of the asymptotic behaviour of occupation times of Y for the whole parameter range $p \in \mathbb{R}_+$.

As another immediate probabilistic consequence of theorem 7, let us mention that the Dynkin-Lamperti type arcsin law of theorem 1 of [T4] applies to sets $A \in \mathcal{E}(T)$ for any S-unimodal Misiurewicz map T for which $\lambda_c \in (0, \infty)$ exists and $\mathcal{V}(t) := V(e^{-t}) \in \mathcal{R}_{-\alpha}$ for some $\alpha \in (0, 1]$.

Acknowledgments. I am indebted to G.Keller for stimulating and enlightning discussions. I am also grateful to M.Holland, O.Jenkinson, C.Liverani, and M.Thaler for motivating conversations. This research was supported by the Austrian Science Foundation FWF, project P14734-MAT. Part of this work was done during a visit to the SNS in Pisa.

References

- [A0] J.Aaronson: An introduction to infinite ergodic theory. American Mathematical Society, Mathematical Surveys and Monographs, Vol. 50, 1997.
- [A1] J.Aaronson: The asymptotic distributional behaviour of transformations preserving infinite measures. J. d'Analyse Math. <u>39</u> (1981), 203-234.
- [A2] J.Aaronson: Random f-expansions. Ann. Probab. <u>14</u> (1986), 1037-1057.
- [AD1] J.Aaronson, M.Denker: Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stochastics and Dynamics <u>1</u> (2001), 193-238.
- [AD2] J.Aaronson, M.Denker: A local limit theorem for stationary processes in the domain of attraction of a normal distribution. in: Asymptotic methods in probability and statistics with applications, St. Petersburg, June 28 - July 1 1998, Eds: N. Balakrishnan, I. A. Ibragimov, V. B. Nevzorov, Birkhäuser 2001, pp. 215-224.
- [Ba] V.Baladi: Positive transfer operators and decay of correlations. World Scientific 2000.
- [BM] M.Benedicks, M.Misiurewicz: Absolutely continuous invariant measures for maps with flat tops. Publ. Math. IHES <u>69</u> (1989), 203-213.
- [BGT] N.H.Bingham, C.M.Goldie, J.L.Teugels: Regular Variation. Cambridge University Press 1989.
- [B1] H.Bruin: Invariant measures of interval maps. PhD thesis, Delft 1994.
- [B2] H.Bruin: Combinatorics of the kneading map. Internat. J. Bifur. Chaos <u>5</u> (1995), 1339-1349.
- [H1] F.Hofbauer: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Part I: Isr. J. Math. <u>34</u> (1979), 213-237. Part II: Isr. J. Math. <u>38</u> (1981), 107-115.
- [H2] F.Hofbauer: The topological entropy of the transformation $x \mapsto ax(1-x)$. Mh. Math. <u>90</u> (1980), 117-141.

- [Ho] M.Holland: Slowly mixing systems and intermittency maps. preprint 2002.
- [Hu] H.Hu: Decay of correlations for piecewise smooth maps with indifferent fixed points. preprint.
- [IL] I.A.Ibragimov, Yu.V.Linnik: Independent and stationary sequences of random variables, ed. by J.F.C.Kingman. Wolters-Noordhoff, Groningen, Netherlands, 1971.
- [K1] G.Keller: Lifting measures to markov extensions. Mh. Math. <u>108</u> (1989), 183-200.
- [K2] G.Keller: Exponents, attractors, and Hopf decompositions for interval maps. Ergod. Th. & Dynam. Sys. <u>10</u> (1990), 717-744.
- [LSV] C.Liverani, B.Saussol, S.Vaienti: A probabilistic approach to intermittency. Ergod. Th. & Dynam. Sys. <u>19</u> (1999), 671-686.
- [MS] W.de Melo, S.van Strien: One-dimensional Dynamics. Springer 1993.
- [Mi] M.Misiurewicz: Absolutely continuous measures for certain maps of an interval. Publ. Math. IHES <u>53</u> (1981), 17-51.
- [Sa] O.Sarig: Subexponential decay of correlations. preprint, Warwick 2001.
- [T1] M.Thaler: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Isr. J. Math. <u>37</u> (1980), 303-314.
- [T2] M.Thaler: Transformations on [0,1] with infinite invariant measures. Isr. J. Math. <u>46</u> (1983), 67-96.
- [T3] M.Thaler: A limit theorem for the Perron-Frobenius operator of transformations on [0,1] with indifferent fixed points. Isr.J.Math. <u>91</u> (1995), 111-127.
- [T4] M.Thaler: The Dynkin-Lamperti Arc-Sine Laws for measure preserving transformations. Trans. Amer. Math. Soc. <u>350</u> (1998), 4593-4607.
- [Th] H.Thunberg: Positive exponent in families with flat critical point. Ergod. Th. & Dynam. Sys. <u>19</u> (1999), 767-807.
- [Yo] L.S.Young: Recurrence times and rates of mixing. Isr. J. Math. <u>110</u> (1999), 153-188.
- [Z1] R.Zweimüller: Ergodic properties of infinite measure preserving interval maps with indifferent fixed points. Ergod. Th. & Dynam. Sys. <u>20</u> (2000), 1519-1549.
- [Z2] R.Zweimüller: Stable limits for probability preserving maps with indifferent fixed points. preprint, Salzburg 2002.