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Abstract

We consider piecewise twice differentiable maps T on [0, 1] with indif-
ferent fixed points giving rise to infinite invariant measures and study their
behaviour on ergodic components. As we do not assume the existence of
a Markov partition but only require the first image of the fundamental
partition to be finite, we use canonical Markov extensions to first prove
pointwise dual-ergodicity which together with an identification of wander-
ing rates leads to distributional limit theorems. We show that T satisfies
Rohlin’s formula and prove a variant of the Shannon-McMillan-Breiman
theorem. Moreover, we give a stronger limit theorem for the transfer op-
erator providing us with a large collection of uniform and Darling-Kac
sets. This enables us to apply recent results from fluctuation theory.
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1 Introduction

Interval maps with indifferent (or neutral) fixed points form a rich family of
nontrivial infinite measure preserving transformations. They also serve as mod-
els for phenomena of intermittency. Most publications on the subject deal with
piecewise surjective maps (see e.g. [A3], [T1]-[T3]), whereas the results of [ADU]
apply to Markov maps with indifferent fixed points (see also Section 4.8 of [A0]).
The present note continues the study of the general non-markovian case begun
in [Z1].

To begin with, let us fix some notations. Throughout λ will denote one-
dimensional Lebesgue measure, and B will be the Lebesgue−σ−field of the
space under consideration. For any interval I and any point x ∈ cl(I), an
I−neighbourhood of x is meant to be a set of the form (x − ε, x + ε) ∩ I (and
thus need not contain x).
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Definition 1 A piecewise monotonic system is a triple (X,T, ξ), where X is
the union of some finite family ξ0 of disjoint bounded open intervals, ξ is a
collection of nonempty pairwise disjoint open subintervals (the cylinders of rank
one) with λ(X\

⋃
ξ) = 0, and T : X → X is a map such that T |Z is continuous

and strictly monotonic for each Z ∈ ξ.

Given such a system, we let ξn denote the family of cylinders of rank n,
that is, the nonempty sets of the form Z = [Z0, . . . , Zn−1] :=

⋂n−1
i=0 T

−iZi with
Zi ∈ ξ. We let fZ := (Tn |Z)−1 be the inverse of the branch Tn |Z . ∂ξ will
denote the collection of endpoints of members of ξ. The fundamental partition
ξ respectively the system (X,T, ξ) are said to be Markov if TZ ∩ Z ′ 6= implies
Z ′ ⊆ TZ whenever Z,Z ′ ∈ ξ. In this case there is an image partition T∗ξ (i.e.
a coarsest partition into intervals with respect to which each TZ, Z ∈ ξ is mea-
surable) which is refined by ξ.

Our maps will be assumed to be twice differentiable on each Z ∈ ξ and
satisfy

(A) Adler’s condition: T ′′/(T ′)2 is bounded on
⋃
ξ

as well as

(F) Finite image condition: Tξ = {TZ : Z ∈ ξ} is finite.

This is equivalent to the existence of a finite image partition T∗ξ. Sometimes T
will also be

(U) uniformly expanding, i.e. |T ′| ≥ τ > 1 on
⋃
ξ.

Definition 2 If conditions (A), (F), and (U) are satisfied, we will call (X,T, ξ)
(respectively T ) an AFU-system (AFU-map).

We are mainly interested in piecewise monotonic systems (X,T, ξ) satisfying
(A) and (F) for which condition (U) may be violated at a finite number of fixed
points: Assume that T is possibly nonuniformly expanding in that

(N) there is a finite set ζ ⊆ ξ such that each Z ∈ ζ has an indifferent fixed
point xZ satisfying Thaler’s assumptions as one of its endpoints, i.e.

lim
x→xZ , x∈Z

Tx = xZ and T ′xZ := lim
x→xZ , x∈Z

T ′x = 1,

and each xZ , Z ∈ ζ, is assumed to be a one-sided regular source, i.e.
T ′ decreases on (−∞, xZ) ∩ Z, respectively increases on (xZ ,∞) ∩ Z.
Moreover, T is uniformly expanding on sets bounded away from {xZ : Z ∈
ζ}, in the sense that lettingXε := X\

⋃
Z∈ζ ((xZ − ε, xZ + ε) ∩ Z) we have

|T ′| ≥ ρ(ε) > 1 on Xε for each ε > 0 .

Definition 3 If conditions (A), (F), and (N) are satisfied, we call (X,T, ξ)
(respectively T ) an AFN-system (AFN-map).
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Remark 1 Adler’s condition (A) ensures that the order of tangency of the
graph of T to the diagonal at xZ is high enough to render the invariant measure
infinite. (Recall that maps like x 7→ x + x1+p mod 1 with p ∈ (0, 1) have finite
absolutely continuous invariant measues, cf. Example 3 on p. 312 of [T1].) The
condition also excludes other phenomena which to some extent might compen-
sate the effect of an indifferent fixed point, see Example 1 in [Z1].

Remark 2 We require the xZ to be endpoints of cylinder sets Z only for no-
tational convenience. If this condition is not fulfilled in the first place, simply
dissect Z at xZ and replace it by the resulting intervals Z ′ and Z ′′. Clearly then
xZ′ = xZ′′ . Similarly, if the concave-convex condition for a regular source is
not satisfied on all of Z but only on some Z−neighbourhood of xZ , we need only
regard the latter as a separate cylinder to see that T is AFN anyway.

Remark 3 Glueing endpoints together we see that any piecewise monotonic
system in a trivial way is equivalent to one for which X is a single interval.
Conversely, we can dissect X at a finite number of points from ∂ξ to produce
some smaller connected components, thus altering ξ0. (We will make use of this
in Section 4.)

Our terminology thus is consistent with that of [Z1]. The following basic
structure theorem has been established there:

Theorem A (Structure and invariant densities of AFN-maps) If (X,T, ξ)
is an AFN-system, then there is a finite number of pairwise disjoint open sets
X1, . . . , Xm such that TXi = Xi mod λ, and T |Xi is conservative and er-
godic w.r.t. Lebesgue measure. Almost all points of D := X \

⋃
iXi are even-

tually mapped into one of these ergodic components. The tail-σ-field B∞ :=⋂
n≥1 T

−nB is discrete, so that each Xi admits a finite partition Xi = Xi(1) ∪
. . . ∪ Xi(l(i)) whose members are cyclically permuted by T , and for any j ∈
{1, . . . , l(i)}, T l(i) |Xi(j) is exact. The sets Xi(j) are finite unions of open in-
tervals, and hence so are the Xi. Each Xi supports an absolutely continuous
invariant measure µi (unique up to a constant factor) which has a lower semi-
continuous density hi of the form

hi(x) = 1Xi
(x) ·Hi(x) ·G(x) ,

where Hi satisfies 0 < C−1 ≤ Hi ≤ C for some constant C, and

G(x) :=
{ x−xZ

x−fZ(x) for x ∈ Z ∈ ζ
1 for x ∈ X\

⋃
ζ .

In particular, µi is infinite iff Xi contains a Z−neighborhood of some xZ , Z ∈ ζ.

Example 1 (Long branched piecewise affine maps whose range struc-
ture compensates an indifferent fixed point) It is not possible to replace
the finite image condition (F) by the weaker long branch condition infZ∈ξn

λ(TnZ) >
0 and still have the conclusions of Theorem A. For simplicity we give a piece-
wise affine example instead of a smooth one, as the basic idea will become equally
clear. Choose (an)n≥1 in X := (0, 1) strictly decreasing to 0, and let a0 := 1,
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Ai := (ai+1, ai), i ≥ 0. On A := (0, a1) we define T to be the continuous increas-
ing function mapping each Ai, i ≥ 1, affinely onto Ai−1. Then T |A will be con-
vex with a neutral fixed point at xA := 0 iff the slopes si := λ(Ai−1)/λ(Ai), i ≥ 1,
decrease to 1. If

∑
n≥0 an = ∞, tangency to the diagonal is high enough to give

an infinite invariant measure if we extend T to B := (a1, 1) by affinely mapping
B onto X. (For example, an ∼ c n−

1
p , p ≥ 1, corresponds to Tx = x + κx1+p

in the smooth setting.)
Still we can construct a map with T |A as above which preserves λ: For

a sequence a1 = b1 < b2 < · · · < bj ↗ 1 to be determined below, we let
Bj := (bj , bj+1) and define T |Bj

, j ≥ 1, to map Bj affinely onto Cj := (aj , 1).
With ξ := {A} ∪ {Bj : j ≥ 1}, (X,T, ξ) is a piecewise monotonic system
violating (F), but having long branches, since TnZ ⊇ C1 for any Z ∈ ξn, n ≥ 1.
However, no single branch T |Bj covers some neighbourhood of xA, so that little
mass is transported to sets close to xA, which can compensate the slow escape
of mass from there: Writing tj := λ(Cj)/λ(Bj) it is clear that T preserves λ iff
1 = s−1

i +
∑

j≥i t
−1
j for all i ≥ 1. This will hold iff t−1

j = s−1
j+1−s

−1
j for all j ≥ 1.

The latter condition implies bj+1−bj = λ(Bj) = λ(Cj)t−1
j = (1−aj)(s−1

j+1−s
−1
j ),

which (recalling b1 := a1) we finally use to define (bn)n≥1. It is easy to check
then that bn ↗ 1 as required.

Due to the simple structure of the sets Xi, and Remark 3, to study the
behaviour on ergodic components we need only consider maps of the following
type.

Definition 4 An AFN-map T will be called basic if it is conservative ergodic
and if also ζ is nonempty.

The absolutely continuous invariant measure µ of the basic map T thus is
infinite and has density h = H ·G with 0 < C−1 ≤ H ≤ C for some constant C.
Due to the fixed points any basic AFN-map in fact is exact (Theorem 2 of [Z1]).
The present paper is dedicated to a more detailed study of basic AFN-maps.

Of course, an AFN-map is a nonsingular transformation on (X,B, λ), i.e. T
is measurable and λ(B) = 0 implies λ(T−1B) = 0. Generally, when attributed
to such maps, ergodic properties such as ergodicity, conservativity, and exact-
ness will always be understood to hold with respect to Lebesgue measure unless
explicitely stated otherwise. To a nonsingular transformation we associate its
Perron-Frobenius (or transfer-) operator (PFO) P : L1(X,λ) → L1(X,λ) de-
fined by the relation∫

B

Pu dλ =
∫

T−1B

u dλ for u ∈ L1(X,λ) and B ∈ B.

By an obvious approximation procedure, Pu can also be defined for arbitrary
measurable functions of constant sign. For an AFN-map T the PFO and its
powers have explicit representations

Pnu(x) =
∑

y:T ny=x

gn(y)u(y) ,

where g = g1 := 1⋃
ξ ·|T ′|

−1 is the weight function of P, and gn+1 := gn ·(g◦Tn).
A measurable function u : X → [0,∞) is the density of a σ−finite invariant mea-
sure iff Pu = u. If µ is any measure with respect to which T is nonsingular, the
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PFO of T w.r.t. µ (defined as above with λ replaced by µ) will be denoted by
Pµ.

A survey of contents. We first collect some background material on induced
systems and canonical Markov extensions (C.M.E.s) in Section 2. In particular
we show that under suitable conditions the operations of canonically extending
a piecewise monotonic map and that of inducing on some subset commute, and
give a variant of Hofbauer’s results on the structure of the Markov graph for
the type of system relevant for us. In Section 3 we prove a lifting theorem for
AFU-maps. As we restrict our attention to absolutely continuous measures, our
approach to Markov extensions at a first look may appear somewhat pedestrian
(compare [Bu], [H1], or [K2]), but it serves in fact as a preparation for the proof
of our main limit theorem (Theorem 9). Still, before turning to the latter, we
give a series of results which can be derived from what has been established so
far: In Section 4 we construct special partitions for our system for which the
C.M.E. is particularly nice and apply Aaronson’s method to prove pointwise dual
ergodicity of the extension, implying that T also shares this property. In Section
5 we identify minimal wandering rates of AFN-maps admitting expansions at the
indifferent fixed points, which together with the preceding results shows that the
Darling-Kac limit distribution theorem applies to these maps. Sections 6 and 7
discuss entropy. Employing the lifting theorem we show that AFN-maps satisfy
Rohlin’s formula, and give a criterion for the entropy to be finite. Moreover,
we give a variant of the Shannon-McMillan-Breiman theorem extending a result
from [T2].

Sections 8 and 9 are devoted to the main result of this paper. Both state-
ment and proof of Theorem 9 generalise that of Thaler’s limit theorem ([T3]) to
our family of maps: There are positive constants an such that for any Riemann-
integrable function u, a−1

n

∑n−1
k=0 Pku→ λ(u)·h uniformly on sets bounded away

from the indifferent fixed points. As a consequence we can apply a beautiful
result of fluctuation theory to our situation (Section 11). Section 10 contains a
supplementary result showing that any pointwise dual ergodic transformation
has lots of sets which are not Darling-Kac, thus proving the assumptions of the
limit theorem to be quite natural.

2 Preliminaries on Induced Systems and Canon-
ical Markov Extensions

First-return maps. Let T be a nonsingular transformation of some σ−finite
measure space (X,B, λ). Consider a recurrent set Y ∈ B, i.e. one for which
Y ⊆

⋃
n≥1 T

−nY mod λ. (If in fact X =
⋃

n≥1 T
−nY mod λ, then Y is called a

sweep-out set.) Then the first return time function ϕ given by ϕ(x) := min{n ≥
1 : Tnx ∈ Y } is finite a.e.. We define the induced or first-return map TY : Y → Y
(mod λ) by TY x := Tϕ(x)x. The n−th return time on Y is then given by
ϕn(x) :=

∑n−1
k=0 ϕ(T k

Y x). If µ is a measure on B with 0 < µ(Y ) <∞, we let µY

denote its normalized restriction to Y : µY (A) := µ(Y )−1µ(A ∩ Y ). Generally,
objects associated with the induced map will notationally be identified by the
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subscript Y . We will need the following standard result (cf. [Sc], [T2])

Lemma 1 (First-return maps and invariant measures) Let T be a non-
singular transformation of some σ−finite measure space (X,B, λ), and Y ∈ B
some recurrent set.

1. If T has a σ−finite invariant measure µ, and 0 < µ(Y ) <∞, then µY is
invariant for TY . If (T, µ) is ergodic, then so is (TY , µY ).

2. If TY has a finite invariant measure ν � λ, then a σ−finite invariant
measure µ� λ for T with µY = ν(Y )−1ν is given by

µ(A) :=
∑
k≥1

ν
(
T−kA ∩ {ϕ ≥ k}

)
.

If (TY , ν) is ergodic, then (T, µ) is conservative ergodic.

Induced partitions and induced systems. We shall repeatedly make use
of the following notation: If ξ up to some null set is a partition of some space
(X,B, λ), we let ξ(x) denote the member of ξ containing x, which is well defined
for a.e. x ∈ X. We now let (X,T, ξ) be a piecewise monotonic system and
consider some recurrent set Y ⊆ X with return time ϕ. Moreover, we assume
that Y is the union of some finite family ξY,0 of disjoint open subintervals of
X, measurable ξ mod λ. We define the induced partition of ξ on Y to be
ξY :=

⋃
n≥1{{ϕ = n} ∩ Z ∩ T−nM : Z ∈ ξn, M ∈ ξY,0}, and for k ≥ 1 let

ξY,k :=
∨k−1

i=0 T
−i
Y ξY . We then have

ξY,k(x) = ξϕk(x)(x) ∩ T−ϕk(x)ξY,0(T
ϕk(x)x), x ∈ Y , k ≥ 1.

Therefore T k
Y ξY,k(x) = Tϕk(x)ξϕk(x)(x)∩ξY,0(Tϕk(x)x) and ξϕk(x)(x) ⊇ ξY,k(x) ⊇

ξϕk(x)+1(x). TY is piecewise monotonic, and ξY is its natural partition into in-
tervals on which it is continuous and monotonic. We shall call (Y, TY , ξY ) the
system which (X,T, ξ) induces on Y .

Canonical Markov Extensions. The concept of canonical Markov extensions
will constitute the key tool in our analysis. Following [K2],[K3] we use a variant
built up of whole image intervals, which is particularly convenient as we wish
to study iterated densities. Let (X,T, ξ) be a piecewise monotonic system. For
n ≥ 0 define Mn := {T kZ : Z ∈ ξk, 0 ≤ k ≤ n} and M :=

⋃
n≥0Mn. (All

members of M thus are connected sets.) For B ∈M, let B̂ := {(x,B) : x ∈ B},
M̂n := {B̂ : B ∈ Mn} and M̂ :=

⋃
n≥0 M̂n. Finally let X̂ :=

⋃
B∈M B̂ =⋃

M̂. The map T̂ given by T̂ (x,B) := (Tx, T (B ∩ ξ(x))) is well defined a.e. on
X̂, and for m ≥ 1 we have

T̂m(x,B) = (Tmx, Tm(B ∩ ξm(x)))

(cf. [K2]). The null set of points for which T̂ is undefined may be ignored
from the viewpoint of nonsingular ergodic theory (cf. [A0], Proposition 1.0.5).
The natural projection π : X̂ → X, π(x,B) := x is onto and satisfies π ◦ T̂ =
T ◦ π. Letting ξ̂ := M̂∨ π−1ξ we obtain a system (X̂, T̂ , ξ̂) which is Markov by
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construction and satisfies the definition of a piecewise monotonic system except
for the finiteness condition on X. It is called the canonical Markov extension
(C.M.E.) of (X,T, ξ). Objects associated to the C.M.E. will be written with a
hat-accent. Observe that the image partition T̂∗ξ̂ equals M̂. Notice also that
the construction (and hence T̂ ) strongly depends on the choice of ξ. X̂ will
be regarded as the sum of the spaces B̂, B ∈ M. One-dimensional Lebesgue
measure thereon will again be denoted by λ.

The following notation will be convenient: If M is some object (point, cylin-
der, or image interval) belonging to M̂n \ M̂n−1, then we say it is on level n,
and write Λ(M) := n. Notice that Λ ◦ T̂ ≤ Λ + 1.

The transfer operators P and P̂ respectively associated with T and T̂ are also
closely related to each other. For û : X̂ → [0,∞) measurable and (π∗û)(x) :=∑

π(x̂)=x û(x̂) we have π∗(P̂û) = P(π∗û). (π∗ is just the PFO of π.) Given

u : X → [0,∞) we define its lift to the base of (X̂, T̂ , ξ̂) to be the function û

vanishing on X̂ ∩ {Λ ≥ 1} for which π∗û = u.

Canonical Markov extensions and First-return maps. We will depend
on the observation that under suitable conditions the operations of inducing and
canonically extending piecewise monotonic systems essentially commute. (The
argument below applies whenever Y is a recurrent set for some nonsingular
piecewise invertible system, not necessarily one-dimensional.)

Definition 5 Let (X,T, ξ) be a piecewise monotonic system and let the recur-
rent set Y ⊆ X be a finite union of bounded subintervals of X. The partition
ξ will be called adapted to Y if (up to a set of measure zero) Y is a nonempty
union of cylinders from ξ, and if also ξY ⊆ ξ.

Remark 4 Starting with some system (X,T, ξ′) and some Y ⊆ X as above
which is measurable ξ′, we can refine ξ′ on Y by simply replacing it by ξ′Y
thereon, thus obtaining a partition ξ′′ := ξ′ ∨ {Y c, ξ′Y } which is adapted to Y
since ξ′′Y = ξ′Y as is easily seen.

Lemma 2 (Canonical Markov extensions and First-return maps) Let
(X,T, ξ) be a piecewise monotonic system, and let Y ⊆ X be a recurrent set. If
Y is measurable ξ0 and ξ is adapted to Y , then the following hold

1. Let (Ŷ , T̂Y , ξ̂Y ) be the C.M.E. of the induced system (Y, TY , ξY ), and de-
note by (π−1Y, T̂π−1Y , ξ̂π−1Y ) the system which (X̂, T̂ , ξ̂) induces on π−1Y .
Then ϕ◦π = ϕ̂, where ϕ and ϕ̂ respectively are the first-return times of Y
and π−1Y , and we have Ŷ ⊆ π−1Y , ξ̂Y = ξ̂π−1Y ∩ Ŷ , and T̂π−1Y |Ŷ = T̂Y .
Moreover, Ŷ is forward invariant, T̂π−1Y Ŷ ⊆ Ŷ , and π−1Y \ Ŷ is dissi-
pative: π−1Y =

⋃
n≥1(T̂π−1Y )−nŶ .

2. If, moreover, TY and T̂Y respectively have finite invariant measures µY

and µ̂Y with π∗µ̂Y = µY , then by the above µ̂Y trivially extends to an
invariant measure for T̂π−1Y by setting µ̂Y (π−1Y \ Ŷ ) = 0. The invariant
measures µ, µ̂ of T and T̂ obtained from the respective induced systems
TY and T̂π−1Y as in the second part of Lemma 1 then satisfy π∗µ̂ = µ.

7



Proof. Notice first that due to the extension property and the nature of π−1Y
we have ϕn ◦ π = ϕ̂n for n ≥ 1, and π−1Y is a recurrent set for T̂ , so that we
can indeed induce thereon. Y being measurable ξ0 we have ξY,0 ⊆ ξ0, that is,
MY,0 ⊆M0.

Let us make clear the implications of ξ being adapted to Y . Condition
ξY ⊆ ξ means that for x ∈ Y we have ξ(x) = ξY (x) and hence ξk(x) = ξY (x)
for k ∈ {1, . . . , ϕ(x)}. It follows that T kξ(x) ⊆ Y c for k < ϕ(x), while of course
Tϕ(x)ξ(x) ⊆ Y . We claim that in fact for each Z ∈ ξn ∩ Y , n ≥ 1, TnZ is
either contained in Y or in Y c. To see this, choose x ∈ Z so that Z = ξn(x) =⋂n−1

i=0 T
−iξ(T ix), and let j := max{i ∈ {1, . . . , n − 1} : T ix ∈ Y }. Writing

y := T jx we thus have ϕ(y) ≥ n− j, and according to the foregoing observation
Tn−jξn−j(y) therefore is contained in one of Y and Y c. Since on the other hand
Z ⊆ T−jξn−j(y), we find that TnZ ⊆ Tn−jξn−j(y), which proves our claim. As
a consequence, the identity ξY,k(x) = ξϕk(x)(x) ∩ T−ϕk(x)ξY,0(Tϕk(x)x), k ≥ 1
in the adapted case thus becomes

ξY,k(x) = ξϕk(x)(x) for x ∈ Y .

Looking at the construction of (Ŷ , T̂Y , ξ̂Y ) we therefore find that MY =
{T k

Y W : W ∈ ξY,k, k ≥ 0} is a subclass of M ∩ Y , M = {T kZ : Z ∈ ξk,

k ≥ 0}. Thus, Ŷ =
⋃
M̂Y ⊆

⋃ ̂(M∩ Y ) = π−1Y ⊆ X̂. ξ̂Y = ξ̂π−1Y ∩ Ŷ then
is automatically satisfied. Consider now x̂ = (x,B) ∈ π−1Y and notice that for
n ≥ 1,

T̂n
π−1Y x̂ = T̂ ϕ̂n(x̂)x̂ = T̂ϕn(x)(x,B) = (Tϕn(x)x, Tϕn(x)(B ∩ ξϕn(x)(x))).

B being open, there exists n0 ≥ 1 such that ξϕn(x)(x) ⊆ B whenever n ≥ n0.
For such n thus

T̂n
π−1Y x̂ = (Tϕn(x)x, Tϕn(x)ξϕn(x)(x)) = (Tn

Y x, T
n
Y ξY,n(x)) ∈ Ŷ ,

since Tn
Y ξY,n(x) ∈MY . Hence π−1Y =

⋃
n≥1(T̂π−1Y )−nŶ . If in particular x̂ lies

in Ŷ in the first place, then we may take n = n0 = 1 to obtain T̂n
π−1Y x̂ = T̂Y x̂.

As for the second part of the Lemma, notice that π−1 ◦ T−k = T̂−k ◦ π−1

implies that for any A ∈ B,

µ̂(π−1A) =
∑
k≥1

µ̂Y

(
T̂−kπ−1A ∩ {ϕ̂ ≥ k}

)
=

=
∑
k≥1

µ̂Y

(
π−1

(
T−kA ∩ {ϕ ≥ k}

))
=

=
∑
k≥1

µY

(
T−kA ∩ {ϕ ≥ k}

)
= µ(A).

The transition structure of Canonical Markov Extensions. It will be
crucial to know about the special transition structure of C.M.E.’s of finite-image
maps. To make this precise we introduce a natural successor relation on ξ̂ by
writing C → D iff D ⊆ T̂C. (To avoid excessive use of the hat notation, we will
not write Ĉ if it is clear that the cylinder belongs to ξ̂. Similarly for members
of M̂). The directed graph G := (ξ̂,→) thus obtained is the Markov graph of
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(X̂, T̂ , ξ̂). C will be called critical if cl(π(C)) ∩ ∂ξ 6=, that is, if its projection
shares an endpoint with the member of ξ it is contained in. The study of Markov
graphs associated with extensions of piecewise invertible systems initiated by
F.Hofbauer has led to a wealth of deep results. For our variant of Markov
extensions the following version of Hofbauer’s fundamental structure theorem
holds:

Lemma 3 (Structure of the Markov graph) Consider a piecewise mono-
tonic system (X,T, ξ) with C.M.E. (X̂, T̂ , ξ̂). For C ∈ ξ̂ let α(C) := inf{i ≥ 1 :
cl(π(T̂ iC)) ∩ ∂ξ 6=}, and assume that C is critical. Then, for 1 ≤ i < α(C),
T̂ iC is a member of both ξ̂ and M̂, and is in fact the only successor of T̂ i−1C
in G. Suppose that α := α(C) <∞ and let B := T̂αC ∈ M̂. The family B∩ ξ̂ of
successors of I := T̂α−1C consists of an (empty, finite, or countably infinite)
collection {Fj}j∈J of cylinders for which π(Fj) ∈ ξ, and at most two cylin-
ders Dk, k ∈ K, where K equals , {0}, or {0, 1}, for which π(Dk) is strictly
contained in some member of ξ. Moreover, at most one of the Dk satisfies
Λ(T̂Dk) > α+ 1, while trivially Λ(T̂Fj) ≤ 1 for j ∈ J .

Proof. The assertions follow by the arguments of Lemmas 12, 13 and Theorem
9 of [H3]: Let c ∈ ∂ξ be an endpoint of π(C) and assume that α < ∞. Then
at most two of the successors B ∩ Z, Z ∈ ξ̂ are proper subsets of cylinders. If
there are two, the projection π(D) of one of them has Tαc as an endpoint and
some d ∈ ∂ξ as the other. But then T (π(D)) equals Tα+1(C ∩ T−αξ(Tαc)) =
Tα+1(ξα+1(c)) ∈Mα+1.

If the system is AFN, then α(C) <∞ for C ∈ ξ̂. Let us call the vertex C a
knot if it has more than one successor. Although a knot need not be critical, all
its successors are. We next observe that the finite image property (F) implies
certain important finiteness properties of the C.M.E.:

Lemma 4 (Finiteness properties of the C.M.E.) Let (X,T, ξ) be a piece-
wise monotonic system such that α(C) < ∞ for each C ∈ ξ̂, and consider its
C.M.E. (X̂, T̂ , ξ̂). If (X,T, ξ) satisfies the finite image property (F), then each
M̂ ∩ {Λ = i}, i ≥ 1, is finite. Moreover, there exists η0 ≥ 1 such that any
B ∈ M̂ ∩ {Λ ≥ η0} contains at most one D ∈ ξ̂ for which Λ(T̂D) > Λ(D). In
particular, for any L ≥ η0 we have #M̂ ∩ {Λ = L} ≤ #M̂ ∩ {Λ = η0}.

Proof. Finiteness of the M̂ ∩ {Λ = i}, i ≥ 1, is immediate. To prove the
second statement, notice first that since each C ∈ ξ̂ ∩ {Λ = 0} is critical and
any E ∈ ξ̂∩{Λ > 0} is a successor of some E− ∈ ξ̂ with Λ(E−) = Λ(E)−1, any
E ∈ ξ̂ ∩{Λ > 0} is the endpoint Er of some finite path ϑ = (E0, . . . , Er), r ≥ 1,
in G with Λ(Ei+1) = Λ(Ei) + 1 for which E0 is critical while Ei, 0 < i < r are
not. Such a path will be called an increasing ladder ending at E. Notice that in
this situation we have α(E0) ≥ r. If in addition E is a knot, then α(E0) ≤ r+1.

Let η0 := max{α(C) : C ∈ ξ̂ ∩ {Λ = 0}} + 2 which is finite by (F), and fix
any B ∈ M̂ ∩ {Λ ≥ η0} containing more than one cylinder from ξ̂ (the other
case being trivial). Then B = T̂E for some knot E ∈ ξ̂ with Λ(E) = Λ(B)− 1.

If E is critical, then we are in the situation of Lemma 3 with C = E = I and
α(C) = 1. Hence there is at most one D ∈ ξ̂ ∩B for which Λ(T̂D) > 2, and we
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are done. If on the other hand E is not critical, we choose an increasing ladder
(E0, . . . , Er) ending in E, so that Lemma 3 applies with C = E0, I = E, and
α(C) = r+1. Therfore there is at most one D ∈ ξ̂∩B for which Λ(T̂D) > r+1.
According to the definition of η0, however, we must have Λ(E0) ≥ 1. Hence
Λ(B) = Λ(E) + 1 = Λ(E0) + r + 1 > r + 1, which proves our claim.

The following central lemma formalizes what is sometimes expressed by say-
ing that the entropy at infinity of the Markov graph is zero. It will enable us to
study essential aspects of the dynamics of T̂ by considering sets X̂ ∩ {Λ ≤ η}.

Lemma 5 (Counting paths which remain above their starting level)
Let (X,T, ξ) be a piecewise monotonic system such that α(C) < ∞ for each
C ∈ ξ̂, and consider its C.M.E. (X̂, T̂ , ξ̂). For any σ > 1 there exist η ≥ 1 and
κ > 0 such that for all C ∈ ξ̂ with Λ(C) ≥ η we have

#Γ∗(C, l) < κ · σl for l ≥ 1,

where Γ∗(C, l) := {γ = (C0, . . . , Cl−1) : C0 = C, Ci ∈ ξ̂ ∩ {Λ > Λ(C)} for
1 ≤ i < l, Ci−1 → Ci, and T̂Cl−1 ∈ M̂ ∩{Λ > Λ(C)}} is the collection of all
paths of length l− 1 in the Markov graph G which start in C and cannot return
to ξ̂ ∩ {Λ ≤ Λ(C)} even if another edge is adjoined. (If the last condition were
omitted, the corresponding family of paths could be infinite.)

When applying this result to finite image systems, we will always assume
that η has been chosen larger than η0 from Lemma 4. In particular then #{C ∈
ξ̂ ∩ {Λ = L} : Γ∗(C, l) 6= ∅} ≤ #M̂ ∩ {Λ = η}.

Proof. We label the edges of G as follows: If I ∈ ξ̂ has the unique successor
D we write ψ(I,D) := 0. Otherwise I is a knot. For any successor F of I
with π(F ) ∈ ξ we let ψ(I, F ) := 2. There are at most two further successors
Dk, k ∈ K ⊆ {0, 1} which we assume to be numbered in such a way that
Λ(T̂D0) ≥ Λ(T̂D1) in case there are two of them. We then let ψ(I,Dk) := k.
The label of an edge (I,D) tells us at what levels the successors of D can be
sited. If ψ(I,D) = 2, then all of them belong to {Λ ≤ 1}.

For fixed C ∈ ξ̂ with Λ(C) ≥ 2 paths γ = (C0, . . . , Cl−1) ∈ Γ∗(C, l) therefore
only contain edges labelled 0 or 1, and can thus be coded unambigously by
recording at each step the label of the edge, i.e. the map Ψ : Γ∗(C, l) → {0, 1}l−1

defined by Ψ(γ)i := ψ(Ci−1, Ci) is injective.
We claim that each label 1 edge in γ, except possibly the first one, is preceded

by at least Λ(C)−1 edges labelled 0, so that
∑l−1

i=1 Ψ(γ)i ≤ 1+l(Λ(C)−1)−1. To
see this, we fix such an edge (Ci−1, Ci) in γ. Starting from Ci we go back along
γ until we first meet a critical vertex Cj , i.e. we let j := max{m ∈ {0, . . . , i−1} :
Cm is critical} which is well defined unless (Ci−1, Ci) is the first label 1 edge in
γ). By Lemma 3 we then have Λ(T̂Ci) ≤ i − j + 1, and since γ ∈ Γ∗(C, l), it
follows that Λ(T̂Ci) > Λ(C), so that i− j ≥ Λ(C), which establishes our claim.
Hence, if Λ(C) ≥ η,

#Γ∗(C, l) ≤
∑

m≤(η−1)−1l+1

(
l

m

)
=: R(η, l) ,

and a straightforward application of Stirling’s formula shows that R(η, l) ≤ κ·σl

for l ≥ 1 provided η is sufficiently large, which gives the criterion for our choice
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of this constant.

3 Lifting absolutely continuous invariant mea-
sures of an AFU-system

In order to make use of auxiliary systems like C.M.E.s, we need control of the
respective invariant measures. We will in particular depend on the possibility
to construct an invariant measure for the C.M.E. of a basic AFN-map which
projects down onto the invariant measure of the original system by π∗. Our
approach will be to make a detour via some nice (i.e. AFU) induced system for
which the lifting theorem to follow applies, and then employ Lemma 2.

Proposition 1 (Lifting a.c.i.m.s of an AFU-system) Let (X,T, ξ) be an
AFU-system, and ν � λ an invariant probability measure for T . Then the
C.M.E. (X̂, T̂ , ξ̂) admits an invariant probability measure ν̂ � λ with π∗ν̂ = ν,
and ν̂ is ergodic if ν is.

Nevertheless, (X̂, T̂ , ξ̂) need not be conservative w.r.t. λ. If for example X
is an interval which is not covered by any single branch, then X̂ ∩ {Λ = 0} is
dissipative.

The present section is devoted to a proof of this result which is not properly
covered by the lifting theorems to be found for example in [K2], since we need
to deal with infinite partitions ξ. Equally important, this section serves as a
preparation and warm-up for the proof of our main limit theorem (Theorem 9
below), which will follow similar lines. In particular it will also make use of the
following application of Lemma 5 to AFU-systems ensuring that T̂ will not let
mass initially concentrated on the base of the extension escape to infinity.

Lemma 6 (Controlling the mass escaping to high levels of AFU-extensions)
Let (X,T, ξ) be an AFU-system with C.M.E. (X̂, T̂ , ξ̂). There exist η ≥ 1,
K ∈ (0,∞), and q ∈ (0, 1) such that for any measurable û : X̂ → [0,∞) sup-
ported on {Λ = 0} we have:

n−1∑
k=0

P̂kû(x̂) ≤ K · qΛ(x̂) ·

(
sup
{Λ≤η}

n−1∑
k=0

P̂kû

)
for x̂ ∈ X̂ ∩ {Λ > η}.

Proof. Let ρ := supX | T ′ |−1, then ρ ∈ (0, 1), and supX̂ ĝl ≤ ρl for l ≥ 1,
where ĝl =| (T̂ l)′ |−1 is the weight function of P̂l. Choose σ ∈ (1, ρ−1) and
apply Lemma 5 to obtain η and κ as specified there. Let q := σρ ∈ (0, 1).
We need some additional notations: For x̂ ∈ X̂ ∩ {Λ > η} and k ≥ 1 we let
Γ(x̂) := {(ŷ, l) : ŷ ∈ X̂ ∩ {Λ ≤ η}, T̂ ŷ, . . . , T̂ lŷ ∈ X̂ ∩ {Λ > η}, T̂ lŷ = x̂}, and
Γ(x̂, k) := {(ŷ, l) ∈ Γ(x̂) : l ≤ k}. Then, since û is supported on {Λ = 0},

P̂kû(x̂) =
∑

(ŷ,l)∈Γ(x̂,k)

ĝl(ŷ) · P̂k−lû(ŷ) .

Consequently,
n−1∑
k=0

P̂kû(x̂) =
∑

(ŷ,l)∈Γ(x̂)

ĝl(ŷ) ·
n−1−l∑

k=0

P̂kû(ŷ) ≤
∑

(ŷ,l)∈Γ(x̂)

ĝl(ŷ) ·
n−1∑
k=0

P̂kû(ŷ) .
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On the other hand, for any Ĝ : X̂ → [0,∞) we have

∑
(ŷ,l)∈Γ(x̂)

ĝl(ŷ) · Ĝ(ŷ) ≤

(
sup
{Λ≤η}

Ĝ

) ∑
C∈ξ̂, Λ(C)=η

#{(ŷ, l) ∈ Γ(x̂) : ŷ ∈ C} · ρl

≤

(
sup
{Λ≤η}

Ĝ

) ∑
C∈ξ̂, Λ(C)=η

∑
l≥Λ(x̂)−η

#Γ∗(C, l) · ρl

≤

(
sup
{Λ≤η}

Ĝ

)
2(#(M̂ ∩ {Λ = η}))κ q−η

1− q
· qΛ(x̂).

Here we use that each (ŷ, l) ∈ Γ(x̂) with ŷ ∈ C uniquely determines a path
γ(ŷ, l) = (C0, . . . , Cl−1) ∈ Γ∗(C, l) by the requirement that T̂ j ŷ ∈ Cj for
j = 1, . . . , l− 1, that is, [C0, . . . , Cl−1] = ξ̂l(ŷ). But of course the map (ŷ, l) 7−→
γ(ŷ, l) is injective on Γ(x̂) since T̂ l is injective on ξ̂l(ŷ). Therefore for every
l ≥ 1, #{(ŷ, l) ∈ Γ(x̂) : ŷ ∈ C} ≤ #Γ∗(C, l). Also, it is clear that (ŷ, l) ∈ Γ(x̂)
implies l ≥ Λ(x̂)− η and Λ(ŷ) = η. The final step is immediate from Lemma 5.
The assertion of the lemma now follows by taking Ĝ =

∑n−1
k=0 P̂kû.

The second ingredient is a compactness property of the densities pushed
forward on the extension. To formulate it we need

Definition 6 If (X,T, ξ) is a piecewise monotonic system with C.M.E. (X̂, T̂ , ξ̂),
a function û : X̂ → [0,∞) will be called admissible if there exists some nonempty
family P(û) ⊆ M̂ contained in {Λ ≤ m} for m sufficiently large such that û van-
ishes on (

⋃
P(û))c, but is strictly positive and differentiable on each B ∈ P(û).

We define the regularity of û on B to be RB(û) := sup{| û′(x) | /û(x) : x ∈ B}
if û > 0 on B, and RB(û) := 0 otherwise. Finally let R(û) := sup

B∈M̂RB(û).

Remark 5 If B is a bounded interval and û : B → (0,∞) satisfies RB(û) <∞,
then supB û ≤ κ infB û, where κ := exp(λ(B)RB(û)).

Lemma 7 (Iterated admissible densities for the C.M.E. of an AFU-
map) Let (X,T, ξ) be an AFU-map and consider an admissible function û on
its C.M.E. with R(û) < ∞. Let ûn := P̂nû, n ≥ 0, then each ûn is admissible
and for each member B of the image partition M̂ there exists rB ∈ (0,∞) such
that RB(ûn) ≤ rB for all n ≥ 0, and the same applies to the sequence (Ûn)n≥1

with Ûn :=
∑n−1

k=0 ûk. Moreover, the sequence (ûn)n≥0 is uniformly bounded on
B.

Proof. This gives a nice exercise on transfer operators and Adler’s condition.
Also, it is essentially contained in Lemma 13 below: The proof of that lemma
applies and due to uniform expansiveness we can replace Lemma 18 employed
there by a trivial geometric-series estimate.

Remark 6 If (Un)n≥1 is a sequence of positive functions on the bounded inter-
val B for which (R(Un))n≥1 is bounded, and (an)n≥1 is a sequence in (0,∞) such
that Un ≤ an for all n, then the sequence (an

−1Un)n≥1 is uniformly bounded
and uniformly Lipschitz on B. Therefore it is relatively compact in C(B) by the
Arzela-Ascoli theorem.
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Proof of Proposition 1. Assume first that the system is ergodic (w.r.t. λ).
Let u := 1X and û := 1X̂∩{Λ=0} be its lift to the base of X̂, then û is admissible

for (X̂, T̂ , ξ̂) and satisfies R(û) = 0 as well as π∗û = u. Write Un :=
∑n−1

k=0 Pku,
ûn := P̂nû, and Ûn :=

∑n−1
k=0 ûk. Lemma 7 applies to the sequences (ûn) and

(Ûn). Observe also that for B ∈ M̂, Ûn |B is positive for n ≥ Λ(B). Choose
η, K and q according to Lemma 6. The lower part {Λ ≤ η} of X̂ consists of
finitely many image-intervals B ∈ M̂. For n ≥ 1 thus bn := sup{Λ≤η} Ûn is
finite.

By Remark 6, for each B ∈ M̂ ∩ {Λ ≤ η} the sequence (b−1
n Ûn |B)n≥1 is

relatively compact in C(B). If on the other hand B ∈ M̂ ∩ {Λ > η}, then by
Lemma 6

Ûn |B≤ K qΛ(B) · bn for all n ≥ 1, (♦)

whence (b−1
n Ûn |B)n≥1 again is relatively compact in C(B). A standard diago-

nalisation argument therefore yields nk ↗∞ and Ĥ : X̂ → [0,∞) Lipschitz on
members of M̂ such that

1
bnk

Ûnk
−→ Ĥ uniformly on each B ∈ M̂.

By our choice of the bn and finiteness of M̂∩{Λ ≤ η}, Ĥ is not identically zero.
Observe that (λ(b−1

n Ûn))n≥1 is bounded: By (♦) we have

λ

(
1
bn
Ûn · 1X̂∩{Λ>η}

)
≤ λ(X)(#M̂ ∩ {Λ = η})

∑
l≥1

sup
X̂∩{Λ=η+l}

(
1
bn
Ûn

)
≤

≤ λ(X)(#M̂ ∩ {Λ = η})K(1− q)−1

for n ≥ 1. Also, (λ(b−1
n Ûn · 1X̂∩{Λ≤η}))n≥1 is bounded by uniform convergence.

Consequently, by Fatou’s lemma, λ(Ĥ) < ∞. Also, since λ(Ûn) = nλ(u)
we find that bn → ∞, which in turn implies that P̂Ĥ = Ĥ, since by the last
statement in Lemma 7 we have P̂Ĥ ≤ Ĥ (see for example p. 726 of [K3]). Thus,
ĥ := λ(Ĥ)−1Ĥ is the density of some invariant probability measure ν̂ � λ of T̂ .
It remains to prove that π∗ν̂ = ν. The estimate (♦) shows that the convergence
c−1
nk
Ûnk

−→ ĥ, with cn := λ(Ĥ)bn, is summably dominated on each fiber π−1(x),
x ∈ X, hence we have

π∗(ĥ) = π∗

(
lim

k→∞

1
cnk

Ûnk

)
= lim

k→∞
π∗

(
1
cnk

Ûnk

)
= lim

k→∞

1
cnk

Unk
.

Moreover it is clear that π∗(ĥ) is a probability density on X. But as n−1Un →
λ(X)h with h := dν/dλ weakly in L1 by ergodicity of T (and in fact uniformly,
cf. [Ry]), this implies that π∗(ĥ) = h. For ergodicity of ν̂ see Lemma 1 of [K2].

To treat the general case we need only consider ergodic measures ν. By
Theorem A, the corresponding ergodic component of T contains some cylinder
Z ∈ ξL whose indicator now serves as our initial density. Write u := 1Z and
let û be its obvious lift, then it is not hard to see that each ûn is bounded and
ûL is admissible for the extension (these are simple special cases of Lemmas 14
and 15 of Section 8), so that the argument used above again applies.
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4 Canonical Markov extensions of basic AFN-
maps and pointwise dual ergodicity

Modified systems. We introduce a few more notations. Let (X,T, ξ) be some
basic AFN-system. If Z ∈ ζ is a cylinder of T containing an indifferent fixed
point, we let Z(1) := Z\fZ(Z) and Z(n+1) := fZ(Z(n)) for n ≥ 1, i.e. Z(n) is
the set of points in Z leaving this cylinder under the n−th iterate of T . Clearly,
Z =

⋃
n≥1 Z(n). If N ≥ 1, we write X(N) := clX(

⋃
(ξ\ζ) ∪

⋃
Z∈ζ

⋃N
n=1 Z(n)),

which clearly is a sweep-out set for T .
Fix N ≥ 1 and let Y := X(N). ζ being finite, Y is the union of a finite

number of subintervals of X, and we denote the collection of their interiors by
ξY,0 (cf. Section 2). As we wish to apply Lemma 2, we slightly modify the
original system. We first let ξ′(Y ) := ξ ∨

∨
Z∈ζ

∨N
n=1{Z(n), Z(n)c} to make

Y a union of cylinders. (As this introduces only finitely many new cylinders,
Tξ′(Y ) is finite.) Next, we remove from X the endpoints of members of ξY,0,
thus obtaining a set X(Y ) ⊆ X whose partition into connected components,
henceforth denoted by ξ(Y )0, contains ξY,0. Finally, define ξ(Y ) := ξ′(Y ) ∨
{Y c, ξ′(Y )Y } as in Remark 4, which gives a partition of X(Y ) adapted to Y .

(X(Y ), T, ξ(Y )) and Y thus satisfy the assumptions of Lemma 2. In studying
ergodic properties of T we may restrict our attention to X(Y ), since X \X(Y )
is finite. However, the C.M.E.s of (X,T, ξ) and (X(Y ), T, ξ(Y )) are essentially
different.

Lemma 8 (Inducing on Y = X(N) and extending modified systems) If
(X,T, ξ) is an AFN-system, and Y := X(N) for some N ≥ 1, then (Y, TY , ξ(Y )Y )
is AFU. Furthermore, although (X(Y ), T, ξ(Y )) does not satisfy the finite-image
property (F), its C.M.E. (X̂(Y ), T̂ , ξ̂(Y )) still has some important finiteness
properties: For any n ≥ 1, X̂(Y ) ∩ {Λ ≤ n} has finite Lebesgue measure, and
letting M̂ denote its image partition, M̂ ∩ {Λ ≤ n} ∩ π−1Y is finite.

Proof. Properties (A) and (U) of TY do not depend on the partition and hold
because Y is bounded away from the indifferent fixed points. (Adler’s condition
can be verified as in Lemma 10 of [Z1].) Let us prove that TY ξ(Y )Y is finite.

Recall that if x ∈ Y ∩{ϕ = 1}, then ξ′(Y )Y (x) = ξ′(Y )(x)∩T−1ξ′(Y )Y,0(Tx) =
ξ′(Y )(x) ∩ T−1ξY,0(Tx). Hence ξ(Y )Y ∩ {ϕ = 1} = ξ′(Y )Y ∩ {ϕ = 1} ⊆
{Z ∩T−1M : Z ∈ ξ′(Y ), M ∈ ξY,0}, so that TY (ξ(Y )Y ∩{ϕ = 1}) ⊆ {TZ ∩M :
Z ∈ ξ′(Y ),M ∈ ξY,0} is finite since Tξ′(Y ) and ξY,0 are.

For k ≥ 2, ξ(Y )Y ∩ {ϕ = k} = {W ∩ T−1Z(N − 1 + k) : W ∈ ξ′(Y ), Z ∈ ζ},
hence T (ξ(Y )Y ∩ {ϕ = k}) = {TW ∩ Z(N − 1 + k) : W ∈ ξ′(Y ), Z ∈ ζ} is
finite as both ζ and Tξ′(Y ) are. Consequently, so is each TY (ξ(Y )Y ∩{ϕ = k}),
k ≥ 2. We claim that there is some k0 ≥ 2 such that

TY (ξ(Y )Y ∩ {ϕ = k}) = TY (ξ(Y )Y ∩ {ϕ = k0}) for k ≥ k0.

By finiteness of Tξ′(Y ) there exists k0 ≥ 2 such that any image intersecting a
set
⋃

k≥k0
Z(N + k) actually covers it, i.e. TW ∩Z(N + k) equals or Z(N + k)

whenever W ∈ ξ′(Y ), Z ∈ ζ, and k ≥ k0, which implies the claim. It follows
that TY ξ(Y )Y = TY (ξ(Y )Y ∩ {ϕ ≤ k0}) is finite, proving that (Y, TY , ξ(Y )Y ) is
AFU.
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To see that (X(Y ), T, ξ(Y )) violates the finite-image property (F), notice
that Y contains some W ∈ ξ such that TW covers a set of the form V :=⋃

n≥n0
Z(n), where Z ∈ ζ. On fW (V ) the induced partition ξ′(Y )Y therefore

refines β := {fW (Z(n)) : n ≥ n0}. But since T is injective on fW (V ) ⊆W , the
image of the infinite disjoint collection β is infinite, and hence so is Tξ(Y ).

Finally observe that Mn = {T kZ : Z ∈ ξ(Y )k, 0 ≤ k ≤ n} equals ξ(Y )0 ∪
M∗

n ∪ {Z(k) : Z ∈ ζ, k ≥ k0}, where M∗
n := {T kZ : Z ∈ ξ(Y )k ∩ {ϕ ≤ k0}, 0 ≤

k ≤ n}. It is not hard to see that each M∗
n is finite, which immediately implies

the remaining assertions.

Remark 7 In the situation of this Lemma, if (X,T, ξ) is conservative w.r.t. λ
(e.g. if it is basic), then for each Z ∈ ζ there is some Z−neighbourhood of xZ

covered by the image of some member of ξ ∩Y , which implies that the inclusion
Ŷ ⊆ π−1Y from Lemma 2 in this case cannot be strict.

Corollary 1 (Bounded variation of invariant densities) Let (X,T, ξ) be
an AFN-system. Then any invariant density h has a version which is of bounded
variation (and hence has one-sided limits) on each Y = X(N), N ≥ 1.

Proof. It is clear that we need only consider the ergodic case. By the above,
TY is AFU, thus admitting an invariant density hY of bounded variation (by
[Ry], cf. Section 6 of [Z1]). According to the first part of Lemma 1, we have
h |Y = hY .

Lemma 9 (Structure and invariant measure of the extension) Let (X,T, ξ)
be a basic AFN-map, and Y = X(N), N ≥ 1. Then (X̂(Y ), T̂ , ξ̂(Y )) is conser-
vative ergodic with respect to some infinite invariant measure µ̂ � λ for which
π∗µ̂ = µ.

Proof. Observe first that the induced system (Y, TY , ξ(Y )Y ) is AFU by Lemma
8 and ergodic by Lemma 1. It has the invariant probability measure µY � λ.
Proposition 1 shows that (Ŷ , T̂Y , ξ̂(Y )Y ) has an invariant probability µ̂Y � λ
with π∗ µ̂Y = µY , and is ergodic w.r.t. µ̂Y . Conservativity, ergodicity, and the
existence of a σ−finite invariant measure µ̂ for (X̂(Y ), T̂ , ξ̂(Y )) with π∗µ̂ = µ
now follow from Lemmas 1 and 2.

Pointwise dual ergodicity. Recall (cf. [A2] or Section 3.7 in [A0]) that a
conservative ergodic measure preserving map T on a σ−finite space (X,B, µ) is
called pointwise dual ergodic if there are positive constants an(T ), n ≥ 1, such
that

1
an(T )

n−1∑
k=0

Pk
µf −→ µ(f) a.e. as n→∞ for all f ∈ L1(µ).

The sequence (an(T ))n≥1 which then is uniquely determined up to asymp-
totic equivalence is called its return sequence. Aaronson’s method for prov-
ing this property for Markov maps can now be applied to the extension of
(X(Y ), T, ξ(Y )).

Lemma 10 Let (X,T, ξ) be a basic AFN-map, N ≥ 1, and Y := X(N). Then
(X̂(Y ), T̂ , ξ̂(Y )) is pointwise dual ergodic with respect to µ̂.
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Proof. Fix some Z ∈ ξ̂(Y ) ∩ Ŷ with µ̂(Z) > 0. Then the induced system
(Z, T̂Z , ξ̂(Y )Z) is piecewise onto and AFU. By Proposition 4.3.3, Corollary 4.7.8,
and Lemma 3.7.4 of [A0], Z therefore is a Darling-Kac set for T̂ , i.e. there are
constants an such that a−1

n

∑n−1
k=0 P̂k

µ̂1Z −→ µ̂(Z) uniformly mod µ̂ on Z (see
Section 8). According to Proposition 3.7.5 of [A0], T̂ thus is pointwise dual
ergodic.

The central result of this section now follows immediately: Since by Propo-
sition 3.7.6 of [A0] any factor of a pointwise dual ergodic system again has this
property, we obtain

Theorem 1 Any basic AFN-map T is pointwise dual-ergodic.

Remark 8 For a sequence (an)n≥1 in (0,∞), its asymptotic proportionality
class will be the family of all sequences (cn)n≥1 asymptotically equivalent to
some fixed positive multiple of it, i.e. cn ∼ c · an as n → ∞. For a pointwise
dual ergodic transformation, the asymptotic proportionality class of its return
sequence (an(T ))n≥1 is called the asymptotic type of T . By Propositions 3.7.1
and 3.3.2 in [A0], this gives an isomorphism invariant for such maps. (See sec-
tion 3.1 of [A0] for a discussion of notions of isomorphism for infinite measure
preserving transformations.)

Remark 9 It would also be desirable to directly prove pointwise dual ergodicity
of T by finding a set B ∈ B satisfying the hypotheses of Lemma 3.7.4 in [A0]
for T , since this would give further strong properties (see e.g. [AD], [ADF]).

5 Wandering rates and asymptotic distributional
behaviour

Having established pointwise dual ergodicity, we are going to identify the asymp-
totic type for a large class of AFN-maps. Besides explicating an isomorphism in-
variant (cf. Remark 8) this determines the asymptotic distributional behaviour.
We begin by identifying minimal wandering rates for T . Aaronson’s asymptotic
renewal equation together with Karamata’s Tauberian theorem then gives the
order of growth of an(T ). Sections 3.6 to 3.8 in [A0] are the basic reference for
the material discussed here.

Definition 7 Let T be a conservative ergodic measure preserving map on (X,B, µ),
and let A ∈ B+ := {A ∈ B : 0 < µ(A) < ∞}. The wandering rate of A is the
sequence given by

LA(n) := µ

(
n−1⋃
k=0

T−kA

)
for n ≥ 1.

Definition 8 For an AFN-map T we let E(T ) := {A ∈ B+: A ⊆ X(N) for
some N ≥ 1} = {A ∈ B+: A ⊆ Xε for some ε > 0} denote the class of
µ−positive sets bounded away from the indifferent fixed points.

The following result generalises Theorem 3 in [T2].
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Theorem 2 (Universality of wandering rates for E(T )) If T is a basic
AFN-map, then there exists a sequence (wn(T ))n≥1 in (0,∞) such that wn(T ) ↗
∞ and

wn(T ) ∼ LA(n) as n→∞ for all A ∈ E(T ).

The asymptotic equivalence class of (wn(T ))n≥1 will be called the wandering
rate of T . The family E(T ) being hereditary in the sense that B ⊆ A ∈ E(T ),
B ∈ B+ ⇒ B ∈ E(T ), its members have minimal wandering rates (cf. [A0], p.
134).

Proof. The proof of Theorem 3 in [T2] (which applies to piecewise onto maps)
can be adapted to work for general AFN-maps. The result also follows from
Corollary 3 in Section 8 (which does not depend on this section) and Theorem
3.8.3 of [A0].

Remark 10 The proportionality class of the wandering rate also gives an iso-
morphism invariant for AFN-maps (cf. the Proposition on p.80 of [T2]). This
can be useful in distinguishing between non-isomorphic maps for which the iden-
tification of the asymptotic type (an(T ))n≥1 via Theorem 4 below fails due to a
lack of regularity.

Next, we will express the orders of (wn(T )) and (an(T )) in terms of the
local behaviour of T at the indifferent fixed points. We need to observe that the
bounded factor H of the invariant density h has one-sided limits at the xZ , i.e.
for Z ∈ ζ there exists H(Z) := limx→xZ ,x∈Z H(x) ∈ (0,∞). This is immediate
from the formula for h obtained in the proof of Theorem 1 in [Z1] together with
Thaler’s inequality (Lemma 8 there). We will say that T admits nice expansions
if for all Z ∈ ζ there are aZ 6= 0 and pZ ≥ 1 such that

Tx = x+ aZ |x− xZ |pZ+1 + o
(
|x− xZ |pZ+1

)
as x→ xZ in Z,

in which case we write p := maxZ∈ζ pZ . Moreover, yZ will denote the endpoint
of Z ∈ ζ different from xZ .

Theorem 3 (Identifying the wandering rate of T ) If T is a basic AFN-
map, then

wn(T ) ∼
∑
Z∈ζ

H(Z)
n−1∑
k=0

∣∣fk
Z(yZ)− xZ

∣∣ as n→∞.

If T admits nice expansions, then, as n→∞,

wn(T ) ∼

 ∑
Z∈ζ,pZ=p

| aZ |−
1
p H(Z)

 ·{ log n if p = 1
p−

1
p p

p−1 n
1− 1

p if p > 1.

In particular, (wn(T ))n≥1 then is regularly varying with index 1− 1
p .

Proof. This is established by computing the wandering rate of the particular
set A := X(1) ∈ E(T ), which is convenient since

⋃n−1
k=0 T

−kA = X(n) for n ≥ 1.
The growth rate of (µ(X(n)))n≥1 only depends on the local type of T at the
points xZ , and the estimate is obtained in precisely the same way as in the proof
of Theorem 4 in [T2].
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Remark 11 Regular variation of the wandering rate can be characterized us-
ing the functions uZ(x) := (x − xZ)(T ′x − 1)(Tx − x)−1, x ∈ Z ∈ ζ. Ac-
cording to the proof of Theorem 2 in [T4] (in particular Lemma 3 there), if
limx→xZ ,x∈Z uZ(x) =: 1 + qZ exists (where necessarily qZ ∈ [1,∞]), then the
sequence (

∑n−1
k=0

∣∣fk
Z(yZ)− xZ

∣∣)n≥1 is regularly varying with index 1 − q−1
Z . In

case qZ ∈ (1,∞) the converse implication holds, too.

Theorem 4 (Identifying return sequences) Let T be a basic AFN-map for
which (wn(T ))n≥1 is regularly varying with index 1− α ∈ [0, 1], then

an(T ) ∼ 1
Γ(2− α)Γ(1 + α)

· n

wn(T )
as n→∞,

and (an(T ))n≥1 is regularly varying with index α. If, in particular, T admits
nice expansions, and α = 1

p , then, as n→∞,

an(T ) ∼

Γ(1 + α)Γ(2− α)
∑

Z∈ζ,pZ=p

| aZ |−α H(Z)

−1

·
{ n

log n if α = 1
(1− α)α−α nα if α < 1.

Proof. This follows from the preceding theorem and Proposition 3.8.7 in [A0]
since by Egorov’s theorem the hereditary family E(T ) contains uniform sets (in
fact, as remarked in the proof of Theorem 2, E(T ) contains uniform sets only,
see Section 8).

Remark 12 Theorem 4.8.7 in [A0] shows that in fact every sequence (bn) which
is regularly varying with index α ∈ (0, 1) can be realized as the return sequence
(an(T )) of some simple AFN-map T . See also the remark following that theorem.

Finally, an application of Corollary 3.7.3 in [A0] shows that such T exhibit
nice distributional limiting behaviour:

Theorem 5 (Aaronson-Darling-Kac limit theorem) Let T be a basic AFN-
map for which (an(T ))n≥1 is regularly varying with index α ∈ [0, 1]. Then for
any f ∈ L1(µ)with µ(f) 6= 0 we have

1
an(T )

n−1∑
k=0

f ◦ T k d=⇒ µ(f)W (α) as n→∞,

where the distribution of the lefthand sum can be taken with respect to an arbi-
trary fixed probability measure P � λ, and W (α) is a random variable on (0,∞)
having the normalised Mittag-Leffler distribution of order α, that is,

E
(
ezW (α)

)
=
∑
m≥0

Γ(1 + α)m

Γ(1 +mα)
zm .

Also, Theorem 1 of [ADF] applies in this situation (with additional assump-
tions if α /∈ (0, 1)) thus giving a second order ergodic theorem in measure.
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6 Entropy and Rohlin’s formula

Following [Kr], for any conservative ergodic measure preserving map T of some
σ−finite space (X,B, µ), we define the entropy of T (w.r.t. µ) to be

hµ(T ) := µ(Y )hµY
(TY ),

where Y is any set of positive finite measure, and hµY
(TY ) is the ordinary metric

entropy of a probability preserving map. By Abramov’s formula for the entropy
of induced maps this does not depend on the choice of Y . Basic properties of
this extended notion of entropy were established in [Kr]. Combined with the
concept of minimal wandering rates (in case these exist), this yields a strong
isomorphism invariant called normalised wandering rate (cf. Remark 2 on p. 94
of [T2]). There is also the corresponding concept of normalised asymptotic type,
cf. [A1]. We are going to prove

Theorem 6 (Rohlin’s formula) If (X,T, ξ) is a basic AFN-map with invari-
ant measure µ� λ, then

hµ(T ) =
∫

X

log |T ′| dµ .

We shall need part of the following useful observation.

Lemma 11 Let T be a measure preserving map of the probability space (X,B, ν),
and let ξ = {Z1, Z2, . . .} be a measurable partition of X such that for some
C ≥ 1 we have ν

(
Z ∩ T−1A

)
≤ C · ν(Z) ν(A) for any Z ∈ ξ, A ∈ B. Then

hν(T ) ≥ Hν(ξ)− logC, where Hν(ξ) := −
∑

Z∈ξ ν(Z) log ν(Z).

Proof. For n ≥ 1 we have ξn+1 = {Z ∩ T−1W : Z ∈ ξ, W ∈ ξn}, where of
course ξn :=

∨n−1
k=0 T

−kξ. Thus,

Hν(ξn+1) = −
∑

Z∈ξ,W∈ξn

ν(Z ∩ T−1W ) log ν(Z ∩ T−1W )

≥ −
∑

Z∈ξ,W∈ξn

ν(Z ∩ T−1W ) log(C · ν(Z) ν(W ))

= − logC −
∑
Z∈ξ

 ∑
W∈ξn

ν(Z ∩ T−1W )

 log ν(Z)

−
∑

W∈ξn

∑
Z∈ξ

ν(Z ∩ T−1W )

 log ν(W )

= − logC +Hν(ξ) +Hν(ξn) .

Hence, by induction, Hν(ξn) ≥ nHν(ξ) − (n − 1) logC for n ≥ 1, and there-
fore hν(T, ξ) ≥ Hν(ξ) − logC. Thus, if Hν(ξ) < ∞, then hν(T ) ≥ Hν(ξ) −
logC. If Hν(ξ) = ∞, apply the same reasoning to the finite partitions ξ(N) :=
{Z1, . . . , ZN ,

⋃
j>N Zj} which obviously satisfy the hypotheses of the lemma.

This yields hν(T ) ≥ Hν(ξ(N))− logC for any N ≥ 1, and the assertion follows
since Hν(ξ) = limN→∞Hν(ξ(N)).
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Remark 13 If (X,T, ξ) is a piecewise monotonic system satisfying (A) and
(F), then there exists some constant D such that λ(Z ∩ T−1A) ≤ D · λ(Z)λ(A)
whenever Z ∈ ξ and A ∈ B. If also (U) holds, then the density of any invariant
probability ν � λ is bounded away from zero and infinity (cf. Theorem A), so
that the assumptions of the lemma are satisfied. Hence, for any AFU-system
(X,T, ξ) with invariant probability ν � λ, Hν(ξ) = ∞ implies hν(T ) = ∞.

Proposition 2 (Entropy of the extension of an AFU-map) In the situ-
ation of Proposition 1 we have hν̂(T̂ ) = hν(T ).

Proof. Since (X,T, ξ, ν) is a measure-preserving factor of (X̂, T̂ , ξ̂, ν̂), we have
hν(T ) ≤ hν̂(T̂ ). If Hν(ξ) = ∞, therefore hν(T ) = ∞ = hν̂(T̂ ) by the preceding
remark. Hence we may assume thatHν(ξ) <∞, in which case the corresponding
part of the proof of Theorem 3 in [K2] applies.

Corollary 2 (Rohlin’s formula for AFU-maps) For any conservative er-
godic AFU-map T with invariant probability ν � λ, we have hν(T ) =

∫
X

log |T ′| dν.

Proof. See the proof of Proposition 1 in [DKU].

Proof of Theorem 6. Let Y := X(1), then hµ(T ) = µ(Y )hµY
(TY ) by defi-

nition. On the other hand,
∫

X
log |T ′| dµ = µ(Y )

∫
Y

log |T ′Y | dµY by the chain
rule (cf. p. 32 of [DKU] or the Lemma on p. 90 of [T2]). Hence T satisfies
Rohlin’s formula for µ iff TY does for µY , and the latter is true by Lemma 8
and the corollary above.

Rohlin’s formula leads to a convenient finiteness criterion: The arguments
given in the proof of the second part of Theorem 5 in [T2] easily carry over to
our situation to give

Theorem 7 (Finiteness of entropy) If (X,T, ξ) is a basic AFN-map with
invariant measure µ � λ, then hµ(T ) is finite iff HλX

(ξ) < ∞ (with λX de-
noting normalized Lebesgue measure) and λ(|uZ |) < ∞ for all Z ∈ ζ, where
uZ(x) := (x − xZ)(T ′x − 1)(Tx − x)−1, x ∈ Z is the function which already
appeared in Remark 11.

7 The Shannon-McMillan-Breiman theorem for
infinite measure preserving transformations

The pointwise ergodic theorem for information, often referred to as the Shannon-
McMillan-Breiman theorem states that for an ergodic probability preserving
map T and a generating partition ξ we have

−n−1 logµ(ξn(x)) −→ hµ(T ) as n→∞ for a.e. x ∈ X

whenever Hµ(ξ) <∞. If T preserves an infinite measure µ, Aaronson’s ergodic
theorem (Theorem 2.4.2 in [A0]) shows that constantly normalised pointwise
convergence is impossible even for sums Sn(f) :=

∑n−1
k=0 f ◦ T k, f ∈ L+

1 (µ) :=
{f ∈ L1(µ) : f ≥ 0, µ(f) > 0}, while in the finite situation we have Sn(f) ∼
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µ(f)·n. However, as observed in Theorem 5 of [T2] for piecewise surjective AFN-
maps, if we substitute this asymptotic equation, thus normalizing − logµ(ξn(x))
by µ(f)−1Sn(f)(x), pointwise convergence to the entropy may still take place
(see Theorem 8 below). We present a variant of Thaler’s approach which is
slightly more general and in particular applies to arbitrary AFN-maps.

Remark 14 Let (X,B, λ) be a σ−finite measure space and ξ a generating
λ−partition for T , i.e. ξn :=

∨n−1
k=0 T

−kξ ↗ B mod λ. We shall say that a
measure ν � λ is σ−finite mod λ on (ξn)n, if X can be covered mod λ by
ν−finite sets from

⋃
n ξn, that is, if for λ−a.e. x ∈ X, ν(ξn(x)) < ∞ for

n ≥ nx.
If both µ, ν are of this type and ν � µ, then applying the standard increasing

martingale theorem on the members of some µ− and ν−finite cover of X by sets
from

⋃
n ξn yields

ν(ξn(x))
µ(ξn(x))

−→ dν

dµ
(x) for µ− a.e. x ∈ X.

Lemma 12 (Localizing the asymptotics of information-type functions)
Let T be a nonsingular conservative transformation on some σ−finite space
(X,B, λ), and let ξ be a generating λ−partition of X. If there is some sweep-
out set Y on which

r(x) := lim
n→∞

− log λ(ξn(x))
sn(x)

exists, where sn(x) := Sn(1Y )(x), then the limit exists a.e. on X and is
T−invariant, i.e. r ◦ T = r mod λ.

Proof. We first show that for a.e. x ∈ X the sequence (qn(x))n≥1, where
qn(x) := log λ(ξn+k(x))− log λ(ξn(T kx)), is bounded for each k ≥ 1. We prove
that for fixed k and Z ∈ ξk it is in fact convergent for a.e. x ∈ Z.

If x ∈ Z, then λ(ξn+k(x)) = λ(Z ∩ T−kξn(T kx)) = m(ξn(T kx)), where
m(A) := T k

∗ (λ |Z)(A) = λ(Z ∩ T−kA). Since T is nonsingular, we have m �
λ. The assumption that r(x) should exist on some sweep-out set implies λ is
σ−finite mod λ on (ξn)n, and so is m. By Remark 14 and nonsingularity again,

m(ξn(T kx))
λ(ξn(T kx))

−→ dm

dλ
(T kx) for λ− a.e. x ∈ Z.

We claim that (dm/dλ)(T kx) is positive and finite a.e. on Z. In fact, λ(Z ∩
T−k{dm/dλ = 0}) = m({dm/dλ = 0}) = 0, and analogously for {dm/dλ = ∞}.
Hence for λ−a.e. x ∈ Z,

λ(ξn+k(x))
λ(ξn(T kx))

=
m(ξn(T kx))
λ(ξn(T kx))

−→ dm

dλ
(T kx) ∈ (0,∞),

so that qn(x) = log(λ(ξn+k(x))/λ(ξn(T kx))) converges as n→∞.
As for the assertion of the Lemma, for λ−a.e. x ∈ X there is some k ≥ 1

such that T kx ∈ Y . By conservativity also sn(x) → ∞ a.e. Existence of the
limit r(x) and its T−invariance now follow from the identity

− log(λ(ξn+k(x)))
sn+k(x)

=
sn(T kx)
sn+k(x)

(
− log(λ(ξn(T kx)))

sn(T kx)
− 1
sn(T kx)

log
λ(ξn+k(x))
λ(ξn(T kx))

)
.
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Theorem 8 (Shannon-McMillan-Breiman for AFN-maps) Let (X,T, ξ)
be a basic AFN-system with invariant measure µ� λ. If hµ(T ) <∞, then for
any f ∈ L+

1 (µ) we have

− logµ(ξn(x))
Sn(f)(x)

−→ hµ(T )
µ(f)

as n→∞ for µ− a.e. x ∈ X.

Moreover, for any measure ν � µ which is σ−finite mod λ on the sequence
(ξn)n≥1, and ν−a.e. x ∈ X we have − log ν(ξn(x))/Sn(f)(x) −→ µ(f)−1hµ(T ).

Proof. Notice first that hµ(T ) < ∞ means that hµY
(TY ) < ∞, where Y :=

X(1) (cf. Section 4), and by Lemma 8 and Remark 13 this impliesHµY
(ξ(Y )Y ) <

∞. The standard version of the Shannon-McMillan-Breiman theorem thus ap-
plies to TY and ξ(Y )Y proving that

− logµY (ξ(Y )Y,n(x))
n

−→ hµY
(TY ) = µ(Y )−1hµ(T ) for µA − a.e. x ∈ Y .

(Clearly ξ(Y )Y is a generator for TY , and ξ′(Y ) is for T .) The following obser-
vation is crucial: Writing sn(x) := Sn(1Y )(x) and recalling the construction of
ξ′(Y ) and ξ(Y ) in Section 4, and the fact that ξ′(Y )Y = ξ(Y )Y , we find that

ξ(Y )Y,sn(x)(x) ⊆ ξ′(Y )n(x) ⊆ ξ(Y )Y,sn(x)−1(x)

whenever these cylinders are well defined. Consequently, for µ−a.e. x ∈ Y ,

− logµY (ξ(Y )Y,sn(x)−1(x))
sn(x)

≤ − logµY (ξ′(Y )n(x))
sn(x)

≤
− logµY (ξ(Y )Y,sn(x)(x))

sn(x)

for n ≥ 1, which together with the result for TY yields

− logµY (ξ′(Y )n(x))
sn(x)

−→ hµ(T )
µ(Y )

as n→∞ for µ− a.e. x ∈ Y .

Here we use that due to conservativity sn(x) → ∞ and hence also sn−1(x) ∼
sn(x) a.e. For the same reason, we may replace µY above by its constant
multiple µ. Furthermore we can pass from ξ′(Y ) to ξ, since ξ′(Y ) refines ξ and
is coarser than ξ2, so that ξ′(Y )n−1(x) ⊇ ξn(x) ⊇ ξ′(Y )n(x). Hence

− logµ(ξn(x))
Sn(1Y )(x)

−→ hµ(T )
µ(1Y )

as n→∞ for µ− a.e. x ∈ Y ,

and Lemma 12 then shows that convergence in fact takes place on almost all of
X. Hopf’s ratio ergodic theorem finally ensures that we may replace 1Y by any
f ∈ L+

1 (µ).
The generalization to measures ν is immediate from Remark 14.

This pointwise convergence result immediately gives a distributional limit
theorem for the size of cylinders: In the situation of Theorem 5, if hµ(T ) < ∞
and ν � λ is as in Theorem 8, then

− log ν(ξn(.))
an(T )

d=⇒ hµ(T ) ·W (α),

where the distribution of the lefthand variable may be taken with respect to
any fixed probability measure P � λ.
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Remark 15 To justify the title of the section we emphasize that the argument
given is quite general: The conclusions of Theorem 8 hold whenever T is a
c.e.m.p.t. on a σ−finite space (X,B, µ) and ξ is a generating partition mod µ
such that there exists some Y ∈ B+ measurable ξ for which HµY

(ξY ) < ∞.
(Here we should actually employ a slightly modified definition of the induced
partition ξY , e.g. as

⋃
n≥1{{ϕ = n} ∩ Z : Z ∈ ξn}, since the one we have been

using makes sense in the piecewise monotonic situation only.)

8 A stronger limit theorem for the transfer op-
erator: Uniform convergence and Darling-Kac
sets

The following generalisation of Thaler’s limit theorem ([T3]) to our situation is
the main result of the present paper. It considerably sharpens Theorem 1 and
has beautiful probabilistic consequences (cf. Section 11 below).

Theorem 9 (Uniform convergence for the PFO of AFN-maps) Let
(X,T, ξ) be a basic AFN-system. Then there is a sequence (an(T ))n≥1 of pos-
itive real numbers such that for any Riemann-integrable function u on X, we
have

1
an(T )

n−1∑
k=0

Pku −→ λ(u) · h as n→∞,

uniformly on members of E(T ), where h is a version of the invariant density
dµ/dλ.

For a pointwise dual ergodic map T of some σ−finite space (X,B, µ) with
return sequence (an)n≥1, U(T ) shall denote the family of uniform sets, i.e.
those B ∈ B+ on which a−1

n

∑n−1
k=0 Pk

µf converges uniformly (mod µ) for some
f ∈ L+

1 (µ). B ∈ B+ is called a Darling-Kac set if a−1
n

∑n−1
k=0 Pk

µ1B converges
uniformly (mod µ) on B. The collection of these sets is DK(T ). As the invariant
density h of a basic AFN-map is bounded away from zero and infinity on each
member of E(T ), we find:

Corollary 3 (Uniform sets and Darling-Kac sets) Let (X,T, ξ) be a basic
AFN-map, then E(T ) ⊆ U(T ), and any B ∈ E(T ) satisfying λ(∂B) = 0 is a
Darling-Kac set for T .

We turn to the proof of Theorem 9, deferring the proofs of the following
lemmas to the next section. Although the proof could be shortened a bit by
making use of our previous results on pointwise dual ergodicity (Theorem 1 and
in particular Lemma 10), we prefer to give an independent approach, since the
arguments hidden in the results referred to there are even less elementary.

Below we shall work with C.M.E.s (X̂(Y ), T̂ , ξ̂(Y )), where Y = X(N) for
some N ≥ 1, and X(Y ), ξ(Y ) are as defined in Section 4. Recall that objects
associated with the C.M.E. (Ŷ , T̂Y , ξ̂Y ) = (Ŷ , T̂Y , ξ̂(Y )Y ) of the induced system
(Y, TY , ξY ) are identified by subscripts: M̂Y is the family of image-intervals of
TY which Ŷ is built up from (see Lemma 2), while ΛŶ and P̂Ŷ respectively are
the level function and the transfer operator of this tower.
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Lemma 13 (Iterated admissible densities for the C.M.E. of a basic
AFN-map) Let (X,T, ξ) be a basic AFN-map, and Y = X(N) for some N ≥ 1.
Consider an admissible function û on the C.M.E. of (X(Y ), T, ξ(Y )) satisfying
R(û) < ∞. Let ûn := P̂nû, n ≥ 0, then each ûn is admissible, and for each
member B of M̂Y ⊆ M̂ there is some rB ∈ (0,∞) such that RB(ûn) < rB for
n ≥ 0. The same is true for (Ûn)n≥1, where Ûn :=

∑n−1
k=0 ûk. Moreover, the

sequence (ûn)n≥0 is uniformly bounded on B.

For L ≥ 1 we let FL denote the collection of functions of the form u = 1A,
where A =

⋃
A, A ⊆ ξL, and A ∈ E(T ). Furthermore we define F :=

⋃
L≥1 FL.

Lemma 14 (Eventually admissible functions) If u ∈ FL, Y = X(N) for
some N ≥ 1, and û is the lift of u to the base of (X̂(Y ), T̂ , ξ̂(Y )), then P̂Lû is
admissible for this extension, and R(P̂Lû) <∞.

Lemma 15 If u : X → [0,∞) is bounded and measurable, then each Pnu,
n ≥ 1, is bounded on members of E(T ).

The following result is the key tool for our proof. It extends Lemma 6 to the
lift of Y = X(N) to the appropriate tower above T by dynamically embedding
the extension of (Y, TY , ξY ) therein as described in Lemma 2.

Lemma 16 (Controlling the mass escaping to high levels of the em-
bedded AFU-extension) Let (X,T, ξ) be a basic AFN-map, and Y = X(N)
for some N ≥ 1. For the C.M.E. of (X(Y ), T, ξ(Y )) there exist η ≥ 1, K ∈
(0,∞), and q ∈ (0, 1) such that for any measurable û : X̂(Y ) → [0,∞) supported
on Ŷ ∩ {Λ = 0} we have

n−1∑
k=0

P̂kû(x̂) ≤ K · qΛŶ (x̂) ·

(
sup

Ŷ ∩{ΛŶ ≤η}

n−1∑
k=0

P̂kû

)
for x̂ ∈ Ŷ ∩ {ΛŶ > η}.

Lemma 17 (Uniform convergence of projected iterated densities) In
the situation of the preceding lemma let u : X → [0,∞) be a bounded measurable
function supported on Y , and let û be its lift to the base of X̂(Y ). If for some
sequence nj ↗ ∞, positive constants bnj

, and some bounded measurable Ĥ :
Ŷ −→ [0,∞) we have b−1

nj

∑nj−1
k=0 P̂kû → Ĥ uniformly on members of M̂Y ,

then
1
bnj

nj−1∑
k=0

Pku −→ H uniformly on Y

with H := π∗Ĥ. If the functions
∑nj−1

k=0 P̂kû are continuous on members of
M̂Y , then H is continuous in each point of X \

⋃
B∈M̂Y

∂(πB).

Proof of Theorem 9. We first show the asserted convergence for functions
u ∈ F . By the Chacon-Ornstein theorem, (an)n≥1 then does not depend on u.
Fix u ∈ FL supported onX(M),M ≥ 1. The main step is to prove the following:
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CLAIM: There are positive constants an such that for any sequence ml ↗∞
of integers there is some subsequence (nj)j≥1 of (ml)l≥1 for which

1
anj

nj−1∑
k=0

Pku −→ h uniformly on members of E(T ) as j →∞ .

Proof of the claim. We abreviate
∑n−1

k=L Pku to Un. To begin with, let
Y := X(M), let û be the lift of u to the base of (X̂(Y ), T̂ , ξ̂(Y )), and write Ûn :=∑n−1

k=L P̂kû, n > L. Choose η, K, and q as in Lemma 16. By Lemma 2 and
Remark 7, Ŷ = π−1Y . As Ŷ ∩{ΛŶ ≤ η} consists of finitely many image-intervals
B ∈ M̂Y , Lemmas 13, 14 and Remark 5 imply that bn := supŶ ∩{ΛŶ ≤η} Ûn is

finite for each n > L. By Remark 6 and Lemma 13 for each B ∈ M̂Y ∩{ΛŶ ≤ η}
the sequence (b−1

n Ûn |B)n≥L is relatively compact in C(B). If on the other hand
B ∈ M̂Y ∩ {ΛŶ > η}, then by Lemma 16

Ûn |B≤ K qΛŶ (B) · bn for all n ≥ L, ()

whence (b−1
n Ûn |B)n≥L again is relatively compact in C(B). A standard di-

agonalisation argument therefore yields rj ↗ ∞ (which can be chosen to be
contained in any given subsequence ml ↗ ∞) and a function Ĥ : Ŷ → [0,∞)
Lipschitz on members of M̂Y such that (brj

)−1Û
rj
−→ Ĥ uniformly on each

B ∈ M̂Y . Lemma 17 ensures that (brj
)−1

∑rj−1
k=L Pku −→ H := π∗Ĥ uniformly

on Y = X(M). By our choice of the bn and finiteness of M̂Y ∩ {ΛŶ ≤ η}, Ĥ is
bounded and not identically zero, and because of () the same holds for H (on
X(M)).

The argument just given also shows that whenever N ≥ M , n(N)
j ↗ ∞,

b
(N)
j ∈ (0,∞), and H(N) : X(N) → [0,∞) are such that (b(N)

j )−1U
n

(N)
j

−→

H(N) uniformly onX(N), then there are some subsequence n(N+1)
j = n

(N)
ij

↗∞
of (n(N)

j )j≥1, positive constants b(N+1)
j , and a bounded measurable function

H(N+1) : X(N+1) → [0,∞) not identically zero, such that (b(N+1)
j )−1U

n
(N+1)
j

−→

H(N+1) uniformly on X(N + 1). In this case, however, there must be some
c ∈ (0,∞) for which H(N+1) = c·H(N) on X(N) and b(N+1)

j ∼ c·b(N)
ij

as j →∞.

Hence, we may take b(N+1)
j := b

(N)
ij

and H(N+1) with H(N+1) |X(N)= H(N) in
the first place.

Given any sequence ml ↗∞ of integers, we thus obtain H : X → [0,∞) not
identically zero, and a collection {(n(N)

j )j≥1}N≥M of sequences, each contained

in (ml)l≥1, for which each (n(N+1)
j )j≥1 is a subsequence of (n(N)

j )j≥1, such that
for any N ≥M , we have (b

n
(N)
j

)−1U
n
(N)
j

−→ H uniformly on X(N) as j →∞,

where the bn are those obtained in the first step (i.e. for N = M). The diagonal
sequence nj := n

(M+j)
j then satisfies

1
bnj

nj−1∑
k=L

Pku −→ H uniformly on members of E(T ) as j →∞ ,
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which by the last statement in Lemma 13 implies PH ≤ H (see p. 726 of [K3]),
and conservativity then gives PH = H. Therefore H = c · h a.e. for some
c = c(H) ∈ (0,∞).

To ensure that all subsequences converge to the same multiple of h, we now
fix x0 ∈ X(M) \

⋃
B∈M̂X(M)

∂(πB). Then each limit function H is continuous
in x0 by Lemma 17, so that H(x0) determines the factor c(H) (notice that
H(x0) > 0 since inf h > 0). Hence H(x0)−1H =: H1 is a fixed multiple of h,
continuous in x0, which does not depend on the subsequence and is characterized
by H1(x0) = 1. Moreover there is some n0 for which Un0(x0) > 0, whence
Un(x0) > 0 for n ≥ n0, and for such n we define an := Un(x0) ∈ (0,∞). For
any sequence (nj)j≥1 as above, anj

∼ H(x0)bnj
, and thus

1
anj

nj−1∑
k=L

Pku −→ H1 uniformly on members of E(T ) as j →∞.

T being conservative ergodic, we have an ↗∞. In view of Lemma 15, we may
therefore extend our range of summation to include k = 0, . . . , L − 1, which
completes the proof of the claim.

To finish the first part of the proof observe that by a straightforward subsequence-
in-subsequence argument uniform convergence to H1 in fact takes place along
the full sequence of positive integers.

The proof of the theorem is completed by an approximation argument. It is
sufficient to show that for any Riemann-integrable function u : X → [0,∞) and
every ε > 0 there are functions u and u satisfying the conclusion of the theorem
for which u ≤ u ≤ u and λ(u − u) < ε. Since ξ generates mod λ, on members
of E(T ) this can easily be done by finite linear combinations of functions in F ,
but any such function vanishes near the indifferent fixed points.

Since T 2 is basic and has the finite-image property (F), for each Z ∈ ζ, there
is some WZ ∈ ξ2 ∩ E(T ) such that T 2WZ covers some Z−neighbourhood VZ

of xZ . Hence, wZ := P21WZ
= 1T 2WZ

∣∣f ′WZ

∣∣ is positive and continuous on VZ .
Also, since 1WZ

∈ F , it is clear that wZ satisfies the conclusion of the theorem,
and it is easily seen that u can be approximated as required by finite linear
combinations of the wZ and functions from F .

9 Proof of the lemmas

For the proof of Lemma 13 we need

Lemma 18 In the situation of Lemma 13, if B ∈ M̂Y , then there is some
cB ∈ (0,∞) such that

F̂Z :=
n∑

s=0

∣∣∣f̂ ′[Zs+1,...,Zn−1]

∣∣∣ ≤ cB on B

whenever n ≥ 1 and Z = [Z0, . . . , Zn−1] ∈ ξ̂n(B) := {Z ∈ ξ̂n : T̂nZ ⊇ B}.
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Proof. The proof of Lemma 1 in [T3] shows that if (X,T, ξ) is an AFN-map,
there is some K ∈ (0,∞) such that for Xε := X \

⋃
Z∈ζ Z ∩ (xZ − ε, xZ + ε) we

have FZ :=
∑n

s=0 | f ′[Zs+1,...,Zn−1]
|≤ K · G̃(ε) on TnZ ∩ Xε for all n ≥ 1 and

Z = [Z0, . . . , Zn−1] ∈ ξn, where G̃(ε) := maxZ∈ζ G(xZ ± ε). This immediately
implies our lemma.

Proof of Lemma 13. Fix B ∈ M̂Y and n ≥ 1. It is clear that ûn is supported
on some set {Λ ≤ m} which by Lemma 8 has finite Lebesgue measure. By the
Markov property, ξ̂n(B) := {Z ∈ ξ̂n : T̂nZ ⊇ B} equals {Z ∈ ξ̂n : T̂nZ ∩B 6=},
whence ûn |B=

∑
Z∈ξ̂n(B)(û ◦ f̂Z)· | f̂ ′Z |. Since each summand either vanishes

on B or is strictly positive thereon, the same is true for ûn. Also, all summands
are differentiable on B, and writing σZ := sign(f̂ ′Z), we formally obtain

û′n =
∑

Z∈ξ̂n(B)

(û′ ◦ f̂Z) · (f̂ ′Z)2 · σZ

︸ ︷︷ ︸
=:

∑(1)
n

+
∑

Z∈ξ̂n(B)

(û ◦ f̂Z) · (f̂ ′′Z) · σZ

︸ ︷︷ ︸
=:

∑(2)
n

on B. (4)

By Adler’s condition (A), A := supZ∈ξ̂ supZ

∣∣∣f̂ ′′Z/f̂ ′Z∣∣∣ is finite. Logarithmic

differentiation and Lemma 18 for Z = [Z0, . . . , Zn−1] ∈ ξ̂n(B) thus give∣∣∣∣∣ f̂ ′′Zf̂ ′Z
∣∣∣∣∣ ≤

∣∣∣∣∣
n−1∑
s=0

f̂ ′′Zs
◦ f̂[Zs+1,...,Zn−1]

f̂ ′Zs
◦ f̂[Zs+1,...,Zn−1]

· f̂ ′[Zs+1,...,Zn−1]

∣∣∣∣∣ ≤ A · cB on B. ()

Therefore (û ◦ f̂Z)· | f̂ ′′Z |≤ AcB · (û ◦ f̂Z)· | f̂ ′Z | and | û′ ◦ f̂Z | · | f̂ ′Z |2≤
R(û) · (û ◦ f̂Z)· | f̂ ′Z |, whence (4) yields | û′n |≤ (R(û) + AcB) · ûn on B, and
we can take rB := R(û) +AcB .

To actually justify (4) we prove that both
∑(1)

n and
∑(2)

n are uniformly
convergent on B by first noticing that both are majorized by some constant
multiple of

∑
n :=

∑
{Z∈ξ̂n(B):û>0 on Z} | f̂

′
Z |. Now (in view of ()) supB |

f̂ ′Z |≤ infB | f̂ ′Z | · exp(AcBλ(B)) ≤ λ(Z) · λ(B)−1 exp(AcBλ(B)), and since û
is supported on a set of finite Lebesgue measure, we obtain a common upper
bound for the

∑
n, n ≥ 1.

The last assertion follows from Remark 5 since λ(û1) = λ(ûn) ≥
∫

B
ûndλ ≥

λ(B) infB ûn ≥ λ(B)κ−1
B supB ûn, where κB := supn≥1 exp(λ(B)RB(ûn)) <∞.

Proof of Lemma 14. Since on B ∈ M̂, P̂Lû = ûL =
∑

Z∈Â∩ξ̂L(B) | f̂
′
Z |,

where Â ⊆ ξ̂L ∩ {Λ = 0} is the obvious lift of A to X̂, the assertion is implicit
in the preceding proof.

Proof of Lemma 15. For any fixed N ≥ 1, let Y := X(N) and û be the
lift of u to the base of (X̂(Y ), T̂ , ξ̂(Y )). Then for some c ∈ (0,∞), û is domi-
nated by the admissible function ŵ := c · 1X̂∩{Λ=0}. By Lemma 13, each P̂nŵ

is bounded on members of M̂ ∩ π−1Y , and supported on {Λ ≤ n}. Hence
Pnu = π∗(P̂nû) ≤ π∗(P̂nŵ) is bounded on Y by Lemma 8.
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Proof of Lemma 16. In view of Remark 7, Ŷ = π−1Y . Consider the particular
AFU-system (Ŷ , T̂Y , ξ̂Y ) and recall the proof of Lemma 6. The estimate there,
when applied with Ĝ =

∑n−1
k=0 P̂kû (and not

∑n−1
k=0 P̂k

Ŷ
û as was the case then),

shows that for suitable η, K, and q we have for x̂ ∈ Ŷ ∩ {ΛŶ > η} and û of the
specified type∑

(ŷ,j)∈ΓŶ (x̂)

ĝŶ ,j(ŷ) ·
n−1∑
k=0

P̂kû(ŷ) ≤ K · qΛŶ (x̂) ·

(
sup

Ŷ ∩{ΛŶ ≤η}

n−1∑
k=0

P̂kû

)
,

where ΓŶ (x̂) := {(ŷ, l) : ŷ ∈ Ŷ ∩ {ΛŶ ≤ η}, T̂Ŷ ŷ, . . . , T̂
l
Ŷ
ŷ ∈ Ŷ ∩ {ΛŶ > η},

T̂ l
Ŷ
ŷ = x̂} and ΓŶ (x̂, k) := {(ŷ, l) ∈ ΓŶ (x̂) : l ≤ k} correspond to Γ(x̂), Γ(x̂, k)

in that proof.
For x̂ ∈ Ŷ ∩ {ΛŶ > η} and k ≥ 1 we let Υ(x̂) := {(ŷ, l) : ŷ ∈ Ŷ ∩ {ΛŶ ≤ η},

T̂ ŷ, . . . , T̂ lŷ /∈ Ŷ ∩ {ΛŶ ≤ η}, T̂ lŷ = x̂}, Υ(x̂, k) := {(ŷ, l) ∈ Υ(x̂) : l ≤ k}, and
ϕ̂j be the j-th return time to Ŷ . Then, as û is supported on Ŷ ∩ {Λ = 0} =
Ŷ ∩ {ΛŶ = 0}, we have

P̂kû(x̂) =
∑

(ŷ,l)∈Υ(x̂,k)

ĝl(ŷ) · P̂k−lû(ŷ)

=
∑

(ŷ,l)∈Υ(x̂,k)

ĝŶ ,
∑l

i=1 1Ŷ (T̂ iŷ)(ŷ) · P̂
k−lû(ŷ)

=
∑

(ŷ,j)∈ΓŶ (x̂,k)
ϕ̂j(ŷ)≤k

ĝŶ ,j(ŷ) · P̂
k−ϕ̂j(ŷ)û(ŷ) ,

since the map Υ(x̂, k) → {(ŷ, j) ∈ ΓŶ (x̂, k) : ϕ̂j(ŷ) ≤ k} given by (ŷ, l) 7→
(ŷ,
∑l

i=1 1Ŷ (T̂ iŷ)) is a bijection. We therefore obtain

n−1∑
k=0

P̂kû(x̂) =
n−1∑
k=0

∑
(ŷ,j)∈ΓŶ (x̂,k)

ϕ̂j(ŷ)≤k

ĝŶ ,j(ŷ)·P̂
k−ϕ̂j(ŷ)û(ŷ) ≤

∑
(ŷ,j)∈ΓŶ (x̂)

ĝŶ ,j(ŷ)·
n−1∑
k=0

P̂kû(ŷ).

Combining these observations we indeed find that if x̂ ∈ Ŷ ∩ {ΛŶ > η}, then

n−1∑
k=0

P̂kû(x̂) ≤ K · qΛŶ (x̂) ·

(
sup

Ŷ ∩{ΛŶ ≤η}

n−1∑
k=0

P̂kû

)
for n ≥ 1.

Proof of Lemma 17. Notice first that û satisfies the assumptions of Lemma
16, and for any m ≥ 1 and x ∈ X,∣∣∣∣∣ 1

bn

n−1∑
k=0

Pku(x)−H(x)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

x̂∈π−1(x)

(
1
bn

n−1∑
k=0

P̂kû(x̂)− Ĥ(x̂)

)∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣∣∣∣
∑

x̂∈π−1(x)
ΛŶ (x̂)≤m

(
1
bn

n−1∑
k=0

P̂kû(x̂)− Ĥ(x̂)

)∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
=:Dn(x,m)

+
∑

x̂∈π−1(x)
ΛŶ (x̂)>m

(
1
bn

n−1∑
k=0

P̂kû(x̂) + Ĥ(x̂)

)
︸ ︷︷ ︸

=:Sn(x,m)

.
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Let us again write Ûn :=
∑n−1

k=0 P̂kû. As M̂Y ∩{ΛŶ ≤ η} is finite, (bnj )
−1Ûnj →

Ĥ uniformly on Ŷ ∩ {ΛŶ ≤ η}, so that K∞ := supj≥1 supŶ ∩{ΛŶ ≤η}(bnj )
−1Ûnj

is finite. According to Lemma 16, if x̂ ∈ Ŷ ∩ {ΛŶ > η}, then

1
bnj

Ûnj
(x̂) ≤ KK∞ · qΛŶ (x̂) for j ≥ 1,

and the same estimate clearly applies to Ĥ(x̂). Therefore, if m > η, then for
x ∈ Y and j ≥ 1, since #(M̂Y ∩{ΛŶ = r}) ≤ #(M̂Y ∩{ΛŶ = η}) for r ≥ η by
Lemma 5,

Snj (x,m) ≤
∑
r>m

(#{x̂ ∈ π−1(x) : ΛŶ (x̂) = r}) 2KK∞ · qr ≤ const · qm.

Let ε > 0 be given. Choose m > η so large that qm < const−1ε/2, then
Snj (x,m) < ε/2 for x ∈ Y and j ≥ 1. But as M̂Y ∩ {ΛŶ ≤ m} is finite,
(bnj

)−1Ûnj
→ Ĥ uniformly on Ŷ ∩ {ΛŶ ≤ m}, and there is some j0 such that

Dnj
(x,m) < ε/2 for x ∈ Y and j ≥ j0. Hence | (bnj

)−1
∑nj−1

k=0 Pku(x)−H(x) |<
ε for x ∈ Y and j ≥ j0 as claimed.

To prove the second assertion observe that for x ∈ X\
⋃

B∈M̂Y ∩{ΛŶ ≤m} ∂(πB)
there is some neighbourhood V ⊆ Y such that each of the finitely many mem-
bers of M̂Y ∩ {ΛŶ ≤ m} ∩ π−1V has π−image covering V . The uniform limit
of π∗(1{ΛŶ ≤m}∩π−1V · (bnj )

−1Ûnj ) thus is continuous on V . Therefore, the os-
cillation of H in x, oscH(x) := limδ→0 sup{H(s) −H(t) : s, t ∈ (x − δ, x + δ)}
cannot exceed∑
r>m

∑
B∈M̂Y ∩{ΛŶ =r}

sup
j≥1

sup
B

(bnj
)−1Ûnj

≤
∑
r>m

#(M̂Y ∩{ΛŶ = r})KK∞ qr ≤ const·qm

provided m ≥ η. Hence oscH(x) = 0 for x ∈ X \
⋃

B∈M̂Y
∂(πB).

10 A general remark on Darling-Kac sets

Let (X,B, µ) be a nonatomic σ−finite measure space, T a c.e.m.p.t. thereon
which is pointwise dual ergodic, and write B+ := {B ∈ B : 0 < µ(B) < ∞}.
There are several interesting subclasses of B+ associated with T . We have al-
ready met the families DK(T ) ⊆ U(T ) and mentioned minimal wandering rates.
The collection of sets having minimal wandering rates will be denoted W(T ).
According to Theorem 3.8.3 of [A0] we have U(T ) ⊆ W(T ), and Proposition
3.8.2 there shows that W(T ) is strictly smaller than B+. While U and W are
hereditary, the following observation shows that in any case there are a lot of
sets which are not Darling-Kac: Any set can in a rather strong sense be ap-
proximated arbitrarily close from the inside as well as from the outside (unless
it equals the entire space) by sets which are not Darling-Kac.

Theorem 10 (Density of Non-DK sets) Let (X,B, µ) be a nonatomic σ−finite
measure space, T a c.e.m.p.t. thereon which is pointwise dual ergodic. Suppose
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that A,M ∈ B, A ⊆ M, are given, and that 0 < µ(A) < α < µ(M). Then
there exists some set E ∈ B satisfying A ⊆ E ⊆M and µ(E) = α, which is not
Darling-Kac.

Notice that this has nothing to do with µ being infinite.

Lemma 19 Let (X,B, µ) be a nonatomic σ−finite measure space, T a c.e.m.p.t.
thereon which is pointwise dual ergodic. Let B ∈ B+ be given. Then there exists
some C ∈ B+ such that

1
an

n−1∑
k=0

Pk
µ1C −→ µ(C)

pointwise but not uniformly mod µ on B. Moreover, given any set D ∈ B of
nonzero measure, and γ ∈ (0, µ(D)), C may be chosen to be contained in D,
and satisfy µ(C) = γ.

Proof. Let 0 < β < µ(X) be given and choose some sequence (βn)n≥1 of
positive numbers satisfying

∑
n≥1 nβn < β. Since µ is nonatomic, for any M ∈

B+ and δ ∈ (0, µ(M)) there is some M1 ⊆ M of measure δ. We can therefore
find a nonincreasing sequence (Bn)n≥1 of subsets of B with 0 < µ(Bn) ≤ βn.
Consider Z :=

⋂
n≥1

⋂n−1
k=0 T

−kBc
n, the set of points which do not enter any Bn

before the nth iteration. By our construction of (Bn)n≥1 we have µ(Zc) < β.
Let C be any subset of Z with positive measure. Then for any n ≥ 1,

C ⊆
⋂n−1

k=0 T
−kBc

n which implies that
∑n−1

k=0 Pk
µ1C vanishes on Bn. Therefore∣∣∣∣∣ 1

an

n−1∑
k=0

Pk
µ1C − µ(C)

∣∣∣∣∣ = µ(C) > 0 on Bn,

which is a set of positive measure in B. Thus a−1
n

∑n−1
k=0 Pk

µ1C cannot converge
uniformly mod µ on B.

If now D ∈ B, µ(D) > 0, and γ ∈ (0, µ(D)) are given, choose β < µ(D)− γ
in the first place. Then µ(Z ∩D) > γ, and we can indeed find some C ⊆ Z ∩D
with µ(C) = γ.

Proof of Theorem 10. If f, fn, g, gn (n ≥ 1) are realvalued functions on some
set B, and fn → f , gn → g pointwise on B, where convergence is uniform only
for one of these sequences, then fn + gn −→ f + g nonuniformly on B.

Employing Egorov’s theorem choose some B ⊆ A of positive measure such
that

1
an

n−1∑
k=0

Pk
µ1A −→ µ(A)

uniformly on B
as n→∞.

Apply the Lemma to obtain a set C ⊆ D := M\A of measure γ := α − µ(A)
such that

1
an

n−1∑
k=0

Pk
µ1C −→ µ(C) nonuniformly mod µ on B.
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Then E := A ∪ C satisfies A ⊆ E ⊆M , µ(E) = α, and

1
an

n−1∑
k=0

Pk
µ1E =

1
an

n−1∑
k=0

Pk
µ1A+

1
an

n−1∑
k=0

Pk
µ1C −→ µ(E)

nonuniformly mod µ
on B ⊆ E, B ∈ B+

by the introductory remark. Hence E cannot be Darling-Kac.

The moral of this result is that for the conclusion of Theorem 9 to hold,
the functions considered there must indeed be taken from some rather small
subclass of L1(λ), and the restriction to R-integrable ones is not just due to an
inferior method of proof.

11 Fluctuation theory

We finally describe a beautiful application of Theorem 9. Let T be a basic AFN-
map, and let A ⊆ X be any set of positive Lebesgue measure. We consider
successive visits to A and inspect the process at time n. Define Zn(x) :=
max{k ≤ n : T kx ∈ A}, where we follow the convention to put max = 0.
Furthermore let Yn(x) := min{k > n : T kx ∈ A}, and Vn(x) := Yn(x)− Zn(x).
To state the result we let Z(0) := 0, Z(1) := 1, and for α ∈ (0, 1) let Z(α) denote
a random variable on (0, 1) with density

z(α)(x) :=
sinπα
π

1
x1−α(1− x)α

, x ∈ (0, 1),

while we set V (0) := ∞, V (1) := 0, and for α ∈ (0, 1) let V (α) be a random
variable on (0,∞) with density

v(α)(x) :=
sinπα
π

1− (max{1− x, 0})α

x1+α
, x > 0.

Since by Corollary 3 we have E(T ) ⊆ U(T ) for any basic AFN-map T ,
Theorem 1 of [T4] applies to generalise Theorem 2 there as follows.

Theorem 11 (Thaler-Dynkin-Lamperti Arc-Sine law for AFN-maps)
Let T be a basic AFN-map for which (an(T ))n≥1 is regularly varying with index
α ∈ [0, 1]. Then for any A ∈ E(T ) the sequences (Zn), (Yn), and (Zn) defined
above satisfy

1
n
Zn

d=⇒ Z(α),
1
n
Yn

d=⇒ (Z(α))−1, and
1
n
Vn

d=⇒ V (α)

as n → ∞, where the distributions of the respective lefthand variables can be
taken with respect to any fixed probability measure P � λ.

Acknowledgments. I am indebted to G.Keller and M.Thaler for valuable
remarks and to F.Hofbauer for initiating this research.
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