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ROLAND ZWEIMÜLLER

Abstract. Similarity, that is, the existence of joint common extensions, de-
�nes an interesting equivalence relation for in�nite measure preserving trans-
formations T . We provide a su¢ cient condition, given in terms of return
processes to reference sets of �nite measure, for T to be similar to a Markov
shift. This is then shown to apply to various piecewise smooth dynamical
systems.

1. Introduction

The present paper is devoted to a structural property of certain in�nite measure
preserving transformations T . In general, such dynamical systems can have a large
variety of interesting ergodic properties, see [A0] for a wealth of information. Here,
we focus on situations which exhibit probabilistic properties parallel to classical
results for null-recurrent Markov chains. Establishing such limit theorems usually
depends on the existence of some reference set of �nite measure which has a return
process or induced system with good mixing (or related) properties. We refer to
[A0], [A2], [A3], [AD1], [ATZ], [T4], [TZ], [Z6], and [Z7] for samples of probabilistic
results in this setup. The goal of the present article is to show that many of these
systems not only behave like classical Markov chains on the surface, but that there
is a deeper structural relation. We are going to prove that many smooth in�nite
m.p.t.s are in fact similar to suitable renewal Markov chains, meaning that both
systems are factors of a common extension.

Throughout, all measure spaces (X;A; �) are supposed to be standard, i.e. A
is the Borel-�-algebra of some complete separable metric dX on X (w.l.o.g. with
diam(X) � 1), and � is �-�nite and non-atomic. We abbreviate �(u) :=

R
X
u d�.

Let T � and T be measure preserving transformations (m.p.t.s) on (X�;A�; ��)
and (X;A; �), respectively. For c 2 (0;1), a c-factor map from the measure-
preserving system T� := (X�;A�; ��; T �) onto T := (X;A; �; T ) is a measurable
map � : X� ! X with

� � T � = T � � and �� � ��1 = c �.
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This situation is denoted by � : T� c! T. If such a � exists, T� is called a c-
extension of T, and T a c-factor of T�. We allow c 6= 1 here, as there is no natural
normalization of in�nite measure spaces.
Two m.p. systems T1 and T2 are said to be similar, denoted T1 � T2, if

they possess a common extension, that is, if there exist an m.p. system T� and
c1; c2 2 (0;1) such that �1 : T�

c1! T1 and �2 : T�
c2! T2 for suitable ci-factor maps

�i. Otherwise T1 and T2 are strongly disjoint. While any two probability preserv-
ing transformations are similar, this notion provides a highly non-trivial equivalence
relation between in�nite measure preserving transformations. (The Cartesian prod-
uct T1 
 T2 is an extension, with c < 1, of T1 i¤ T2 preserves a �nite measure.)
There are invariants enabling the detection of uncountably many strongly disjoint
systems within certain classes of well-behaved transformations like, for example,
the renewal shifts below.

The �rst natural class of interest here are the Markov shifts. The basic object
of their similarity theory is the renewal chain with return distribution f = (fk)k�1
(where fk � 0, k � 1, with

P
k�1 fk = 1), that is, the irreducible recurrent Markov

chain on N0 = f0; 1; : : :g with transition matrix P [f ] = P = (pj;k)j;k�0 given
through p0;k := fk+1, pk+1;k := 1, and pj;k = 0 otherwise, which has a stationary
distribution with weights rk :=

P
j>k fj . The associated recurrent renewal sequence

u = (un)n�0 is given by u0 := 1 and un :=
Pn

k=1 fkun�k, n � 1. Equipping the
product space 
 := f! = (!i)i�0 : !i 2 N0g with product �-�eld B
 and the
Markov measure �[f ] with �[f ]([s0; : : : ; sn�1]) = rs0 ps0;s1 � � � psn�2;sn�1 for cylinder
sets [s0; : : : ; sn�1] := f! : !0 = s0; : : : ; !n�1 = sn�1g, and taking T to be the
shift on 
, we obtain the c.e.m.p. system R[f ] := (
;B
; �[f ]; T ), the (one-sided1)
renewal shift with return distribution f . Every Markov shift contains lots of renewal
shifts as factors (e.g. the return processes to its individual states).
Section 5 of [A0] discusses similarity of Markov shifts and, in particular, of lat-

tice random walks. Similarity of stable random walks on R and R2 is studied in
[A5]. In [AK] and [ALP], even isomorphism (existence of invertible factor maps)
of certain random walks is established.

Still, all positive results I am aware of focus on systems which are a priori given
as Markov chains. The purpose of the present work is to show that various types
of piecewise smooth dynamical systems with in�nite invariant measure which have
been studied in the literature are, in fact, similar to (renewal) Markov chains.

2. Main results

We need to recall a few basic concepts, and to �x notations. A �-partition of
the (standard) measure space (X;A; �) is a measurable partition mod �. If T is a
nonsingular map on (X;A; �), meaning that it is measurable with � �T�1 � �, its
transfer operator bT : L1(�)! L1(�) describes the evolution of probability densities
under T , that is, bTu := d(� � T�1)=d�, where � has density u w.r.t. �. Equiv-
alently,

R
X
(g � T ) � u d� =

R
X
g � bTu d� for all u 2 L1(�) and g 2 L1(�), i.e. bT

1For matters of similarity, it is immaterial whether we take one-sided or two-sided shifts, the
latter being the natural extensions of the �rst.



SIMILAR MEASURE PRESERVING TRANSFORMATIONS 3

is dual to g 7�! g � T . The operator bT naturally extends to fu : X ! [0;1)
measurable Ag, and T is conservative ergodic (c.e.) i¤

P
k�0

bT ku =1 a.e. for all
u 2 L1(�) with

R
u d� > 0. In the latter case, we can de�ne, for any Y 2 A with

�(Y ) > 0 the �rst return (entrance) time of Y by '(x) = minfn � 1 : Tnx 2 Y g,
x 2 X, and we let TY x := T'(x)x, x 2 X. The return-time partition of Y is
fY \ f' = kg : k � 1g, and whenever �Y is a partition re�ning the latter, we see
that the kth return time of Y , given by 'k :=

Pk�1
i=0 ' � TY , k � 1, is constant on

each W 2 �Y;k :=
Wk�1
j=0 T

�1
Y �Y (and we simply write 'k(W ) for its value on W ).

We are mainly interested in in�nite T -invariant measures �. Given Y 2 A with
0 < �(Y ) < 1, we can regard ' as a random variable on the probability space
(Y; Y \ A; �Y ), �Y (E) := �(Y )�1�(Y \ E). Asymptotic properties of its return
distribution, given by the (�rst) return probabilities fk(Y ) := �Y (Y \ f'Y = kg),
k � 1, determine the stochastic properties of the system. The probability measure
�Y is invariant under the �rst return map, TY restricted to Y . In other words,

(2.1) 1Y =
X
k�1

bT k1Y \f'=kg
Note the following interpretation of the functions on the right-hand side, if our
system starts with initial density �(Y )�11Y : Normalizing, we obtain the conditional
densities �(Y \f' = kg)�1 � bT k1Y \f'=kg =: Hk of our process at time k, given that
this is the time of its �rst return to Y . In other words, having returned at step k,
the process starts anew, this time with initial density Hk. The �rst return to Y
therefore constitutes a proper renewal if

(2.2) bT k 1Y \f'=kg = cTY 1Y \f'=kg = �(Y \ f' = kg) � 1Y for k � 1.

In fact, (2.2) is su¢ cient for Y to be a recurrent event for T , meaning that for
arbitrary integers 0 = n0 < n1 < : : : < nK ,

�Y

�
KT
k=0

T�nkY

�
=

KQ
k=0

unk�nk�1(Y ),

where un(Y ) := �Y (T
�nY ), n � 0, cf. [A0], [A1]. In this case, the return-time

process of Y , ('(T kY x))k�0 on (Y; Y \ A; �Y ), is iid, and

(2.3) T � R[f(Y )]

since � : T c! R[f(Y )] with � : X ! 
 given by �(x) := ((1Y c ') � Tn(x))n�0, and
c := 1=�(Y ).

Smooth dynamical systems usually do not come with an easily detected recur-
rent event. Instead, the best we can hope for is a geometrically nice set Y which
allows reasonable control of the cTY 1Y \f'=kg. (For example, [TZ] and [Z6] provide
conditions on the size of the collection f�(Y \ f' = kg)�1 � cTY 1Y \f'=kg : k � 1g
which, in the presence of regularly varying tails of f(Y ) := (fk(Y ))k�1, are suf-
�cient for various distributional limit theorems.) Below we formalize a condition,
central to the present paper, which roughly says that a version of the regeneration
property (2.2) holds if we allow parts of the initial density to perform more than
just one excursion from Y in order to recover. In fact, it is solely a property of
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the probability preserving induced system (Y; Y \ A; �Y ; TY ) and the return-time
partition.

De�nition 1. Let (Y;B; �; S) be a probability preserving system, and � a non-
trivial �-partition of Y . A regenerative partition of 1Y subordinate to �, is a col-
lection W = fwW : k � 1;W 2 �kg, where �k :=

Wk�1
l=0 S

�l�, and each2 wW is a
non-negative measurable function on W , such that

(2.4)
X
k�1

X
W2�k

wW = 1Y ,

and

(2.5) bSk(wW ) = �(wW ) � 1Y for all k � 1 and W 2 �k.
The sequence d(W) with dk(W) :=

P
W2�k �(wW ), k � 1, is the delay distribution

ofW, and we shall say thatW has integrable delay if �(W) :=
P

k�1 k dk(W) <1.

The �rst main result of the present paper states that the mere existence of an
induced system admitting such a W implies similarity to a certain renewal shift:

Theorem 1 (Regenerative extensions from regenerative partitions of unity).
Let T = (X;A; �; T ) be a c.e.m.p. system, and Y 2 A, 0 < �(Y ) < 1. If
the induced system S = (Y; Y \ A; �Y ; TY ) admits a regenerative partition of 1Y
W = fwW : k � 1;W 2 �kg, subordinate to a partition � re�ning the return-time
partition of Y , and if W has integrable delay, then

(2.6) T � R[f(W;')]

where the regeneration distribution f(W; ') of W under T is given by

fj(W; ') :=
X

k�1;W2�k:'k(W )=j

�Y (wW ), j � 1.

Speci�cally, there exists an extension T� = (X�;A�; ��; T �) of T, which possesses
a recurrent event Y � with return distribution f(W; ').

We give an explicit direct construction of a suitable extension in Section 3.
This su¢ cient condition is readily veri�ed for various classes of piecewise invertible
in�nite measure preserving transformations, since we will show that regenerative
partitions of unity exist whenever the induced system belongs to some folklore
family of transformations.
Consider a nonsingular piecewise invertible system (Y;B; �; S; �), meaning that �

is a �-partition of Y into open sets (w.r.t. a metric dY , w.l.o.g. with diam(Y ) � 1)
such that the restriction of S to any of its cylinders W 2 � is a nonsingular
homeomorphism onto SW . Let �n :=

Wn�1
k=0 T

�k� denote the family of cylin-
ders of rank n. The n-th iterate (Y;B; �; Sn; �n) again is a system of the same
type. All inverse branches, denoted3 vW := (Sn jW )�1 : SnW ! W , W 2 �n,

2In writing wW we tacitly assume that W =
Tk�1
l=0 Wl (with Wl 2 �) knows its rank k,

i.e. we identify the set W with the formal expression [W0; : : : ;Wk�1]. While we may have
W \ T�kZ = W (mod �) for some W 2 �k and Z 2 �, this (rather common) abuse of notation
will not cause any confusion. (Actually, in the presence of (2.5), no ambiguities are possible: We
have �(W nW \ T�kZ) = �(W \ T�kZc) =

R
Zc

bSk(1W ) d� > 0 since � is non-trivial and (2.5)

ensures bSk(1W ) > 0 a.e. on Y .)
3Same convention as in the previous footnote.
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have Radon-Nikodym derivatives v0W := d(� � vW )=d� = bSn1W . The system
(Y;B; �; S; �) is called uniformly expanding if there is some � = �(S) 2 (0; 1) such
that dY (vW (x); vW (y)) � � � dY (x; y) whenever x; y 2 W 2 �. To ensure good er-
godic properties, we will need some distortion control. As in [Z3], a real function u
will be called admissible on B � Y if it is Lipschitz with inf u > 0 or, equivalently,
if u > 0 and there is some r 2 (0;1) for which u(x)=u(y) � 1 + r � dY (x; y) for
x; y 2 B. In this case, the inf of all such r is the regularity RB(u) of u on B. A
natural version of Adler�s condition, suitable for this setup, is that there should be
some A = A(S) 2 [0;1) for which

sup
W2�

RSW (v
0
W ) � A.

The system is Markov if SW \ W 0 6= ? for W;W 0 2 � implies W 0 � W , and
piecewise onto if SW = X for all W 2 �. We call it a Rényi-system if it has a
uniformly expanding iterate SN , is piecewise onto, and satis�es Adler�s condition.
Any Rényi system has a unique invariant probability measure � � � (hence is
ergodic), and is also Rényi with respect to the latter. In this situation, there is
always a regenerative partition of unity:

Theorem 2 (Regenerative partitions of unity for Rényi-systems). Let
(Y;B; �; S; �) be a probability preserving Rényi-system. Then there exists a re-
generative partition W = fwW : k � 1;W 2 �kg of 1Y , subordinate to �, with
exponentially decaying delay distribution. In particular, W has integrable delay.

Combining these results we therefore obtain:

Theorem 3 (Induced Rényi systems mean similarity to Markov shifts). A
c.e.m.p. system T = (X;A; �; T ) inducing a Rényi-system S = (Y; Y \A; �Y ; TY ; �)
with � re�ning the return-time partition of Y � X is similar to a Markov shift.

This applies to large collections of (piecewise) smooth systems:

Example 1 (Random walks driven by expanding Markov maps). Sup-
pose that (Y;B; �; S; �) is a probability preserving uniformly expanding piecewise
invertible Markov system with #S� <1 satisfying Adler�s condition (hence Gibbs-
Markov in the sense of [A0], [AD2]). Any �-measurable map � : X �! Z de�nes a
Z-extension T = S� of S, that is the m.p.t. on the �-�nite in�nite measure space
(Y � Z;B 
P(Z); � 
 �), � denoting counting measure on Z, given by

T (y; g) := (Sy; g + �(y)).

We henceforth assume (see [AD2] for su¢ cient conditions) that T is conservative
and ergodic. A natural candidate for a good reference set of �nite measure is the
g = 0 section Y0 := Y �f0g. The �rst return map TY0 is easily seen to be a map of
the same type as S. Therefore, we can induce once more, on any cylinder of TY0 ,
to �nally obtain a Rényi-system. Consequently, T is similar to a renewal shift.

Example 2 (Interval maps with indi¤erent �xed points). An important
family of in�nite measure preserving dynamical systems is given by piecewise C2
interval maps with indi¤erent (neutral) �xed points. In [Z1], [Z2] we introduced and
studied a large class of such maps, generalizing earlier work from [A0], [A3], [ADU],
and [T1]-[T3]. For the precise description of these c.e.m.p. piecewise invertible
systems T = (X;A; �; T; �) on an interval, called basic AFN-maps, we refer to [Z1],
[Z2]. Much of their analysis relies on the fact that there are good sets Y = Y (T )



6 ROLAND ZWEIMÜLLER

(constructed there) with uniformly expanding induced map TY satisfying Adler�s
condition. In the special case of a Markov system, it is then clear that we can
induce once again, to get another set Y 0 � Y on which T induces a Rényi-system.
In the general non-markovian case, we appeal to Lemma 9 of [Z2] which provides
us with a markovian 1-extension bT of T possessing sets bY on which it induces a
Rényi-system. Hence, any basic AFN-map is similar to a renewal shift.

Example 3 (S-unimodal Misiurewicz maps with �at tops). This is another
type of interval maps with dynamics dominated by some neutral orbit. Extending
results of [BM], [Z4] studied S-unimodal Misiurewicz maps with degenerate critical
points, which are c.e.m.p. piecewise invertible systems T = (X;A; �; T; �) on an
interval, with � in�nite if the map is su¢ ciently �at at the critical point. Any map
of this type admits an interval Y on which it induces a Rényi-system (see the proof
of Theorem 1 of [Z4]), and hence is similar to a renewal shift.

3. Constructing a regenerative extension

Here is a proof of our �rst core result.

Proof of Theorem 1. Given a c.e.m.p. system T = (X;A; �; T ) with a set Y 2
A, 0 < �(Y ) < 1, and a regenerative partition W = fwW : k � 1;W 2 �kg of
1Y with integrable delay, we give an explicit construction of a �Y (W)-extension
T� = (X�;A�; ��; T �) of T with a suitable recurrent event Y �.

(i) We can represent W as a sequence (wj)j�1, and let � j := k if wj = wW for
some W 2 �k. We will construct, by specifying X�, a subspace (X�;A�; ��) of the
(�-�nite) product

(3.1) (X;A; �)
 (I;B; �)
 (N;P(N); �)
 (N0;P(N0); �)

where I := (0; 1) with Borel-�-�eld B and Lebesgue measure �, and � is counting
measure on the power set P(N0). Points in the product space will be written as
x� = (x; z; j; l), and we denote the canonical projections onto the �rst and the
last coordinate by � and �, respectively. We obtain X� by de�ning its level sets
X�
l := X

� \ f� = lg, l � 0, each of which is the union X�
l =

S
Ml of some count-

able family Ml of pairwise disjoint measurable sets. The Ml will be constructed
inductively: As soon as Ml is given, we de�ne T � a.e. on X�

l , which will be a
nonsingular map into X� \ f� � l + 1g. We then choose Ml to be a suitable
measurable partition of T �X�

l \ f� = lg.

The construction below involves the sets Wj 2 A, j � 1, and their images. To
avoid measurability problems, we replace the T lWj by (�xed versions of) the sets

(3.2) Wj;l := f bT l 1Wj;0
> 0g, j � 1 and l � 0.

(The same convention has tacitly been used in [Z5].) Note that (mod �)

(3.3) Wj;l \ Y =
�
Wj;l if l = 'i(Wj) for some i 2 f0; 1; : : : ; � j � 1g,
? otherwise,



SIMILAR MEASURE PRESERVING TRANSFORMATIONS 7

for 0 � l < '�(j) with '�(j) := '�j (Wj), j � 1, since W is subordinate to some
partition (mod �Y ) �Y of Y re�ning the return-time partition.

(ii) De�ningM0, and T � on X�
0 , requires more preparation: For x 2 Y we de�ne a

sequence of (possibly void) intervals Vx;j := (
Pj�1

i=0 wi(x);
Pj

i=0 wi(x)) � I, j � 1,
where w0(x) := 0. By (2.4) the Vx;j form a partition (mod �) �x of I. The sets
W 0
j := f(x; z) : x 2 X and z 2 Vx;jg, j � 1, then form a measurable partition (mod

�
 �) of Y � I with �
 �(W 0
j) = �(wj), and we de�ne (a.e. on Y � I) the integer

J(x; z) through (x; z) 2 W 0
J(x;z). For x 2 Y we let Fx : I ! I denote a Rényi-map

with fundamental partition �x mapping each nonempty Vx;j a¢ nely onto I, so thatcFx 1Vx;j = �(Vx;j) � 1I = wj(x) � 1I for x 2 Y and j � 1.

Then the skew-product map Gj : W 0
j ! X � I given by Gj(x; z) := (Tx; Fx(z)) is

nonsingular with cGj 1W 0
j
(x; z) = bT wj(x).

Now let M0 := fW �
j;0 : j � 1g where W �

j;0 := W 0
j � (j; 0), and de�ne T � on

X�
0 :=

S
M0 by

(3.4) T �(x; z; j; 0) :=

�
(Tx; Fx(z); j; 1) if 1 < '�(j),
(Tx; Fx(z); J(Tx; Fx(z)); 0) if 1 = '�(j),

By the above, this map is nonsingular, and we have

(3.5) cT � 1W�
j;0
=

�
1W�

j;1
if 1 < '�(j)

1X�
0

if 1 = '�(j)

�
�
��bT wj� � �� ,

where W �
j;1 := Wj;1 � I � (j; 1) for j � 1 with 1 < '�(j) (recall our conven-

tion about measurable images), and W �
j;1 := ? otherwise. Accordingly, we let

Ml+1 := fW �
j;1 : j � 1g.

(iii) GivenMl = fW �
j;l : j � 1g for some l � 1, we de�ne T � on X�

l :=
S
Ml by

(3.6) T �(x; z; j; l) :=

�
(Tx; z; j; l + 1) if l + 1 < '�(j),
(Tx; z; J(Tx; z); 0) if l + 1 = '�(j).

This is clearly nonsingular, and we see that for any g 2 L1(�),

(3.7) cT � (1W�
j;l
� (g � �)) =

�
1W�

j;l+1
if l + 1 < '�(j)

1X�
0

if l + 1 = '�(j)

�
�
��bT g� � �� .

where W �
j;l+1 := Wj;l+1 � I � (j; 1) for j � 1 with l + 1 < '�(j), and W �

j;l+1 := ?
otherwise. To conclude the inductive step, we letMl+1 := fW �

j;l+1 : j � 1g.

(iv) Steps (ii) and (iii) provide us with a nonsingular map T � on (X�;A�; ��). The
canonical projection �, henceforth restricted toX�, obviously satis�es T �� = ��T �.
The prospective recurrent event for T � is the set Y � := X�

0 =
S
j�1W

�
j;0. Our new

system has a simple tower structure w.r.t. the sets W �
j;l partitioning X

�, as

(3.8) W �
j;0

T��!W �
j;1

T��!W �
j;2

T��! : : :
T��!W �

j;'�(j)�1
T��! Y �.
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The �rst '�(j)� 1 steps in this chain are onto (mod ��) by construction. For the
last step, surjectivity (mod ��) will follow from (3.12) below. Note that the �rst-
return time '�(x�) := minfn � 1 : (T �)nx� 2 Y �g for Y � equals '�(j) on W �

j;0

(and, in particular, is �nite) a.e..

(v)We can now construct a �-�nite invariant measure �� � �� for T � by explicitly
specifying its density h� = d��=d�� on each W �

j;l. We start from �� restricted to
Y � \ A�, that is, h� := 1 on Y �. In particular,

(3.9) ��(W �
j;0) = �(wj) for j � 1, and ��(Y �) = �(Y ).

Then we just push this measure forward, i.e. given h� on W �
j;l with l + 1 < '

�(j),
we let

(3.10) h� := cT � (1W�
j;l
h�) on W �

j;l+1.

This de�nes a measurable function 0 � h� � 1 a.e. on X�, and hence a �-�nite
measure �� on A�, for which

(3.11) ��(W �
j;l) = �

�(W �
j;0) for j � 1 and 0 < l < '�(j).

Recalling (3.8) and the fact that the W �
j;l form a partition of X�, we see that

T �-invariance of �� is immediate if we check that �� jY �\A�= �� jY �\A� is invariant
under the induced map T �Y � , i.e. that dT �Y � 1Y � = 1Y � . The latter follows if we prove
that

(3.12) dT �Y � 1W�
j;0
= ��(W �

j;0) � 1Y � for all j � 1.

Since '� is constant on each W �
j;0, this also shows that Y

� is a recurrent event.
(And, of course, that T � is conservative.) Now combine the previously obtained
bits of information about cT �, given in (3.5) and (3.7), together with assumption
(2.5), and the fact that bT '�(j) h = bT '�j (Wj) h = cTY �j h for h supported on Wj , to
see that in case 1 = '�(j),

dT �Y � 1W�
j;0

= cT � 1W�
j;0

= 1Y �

��bT wj� � ��
= 1Y �

��cTY wj� � ��
= �(wj) � 1Y � ,
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while in case 1 < '�(j),dT �Y � 1W�
j;0

= cT �'�(j)�1 �cT � 1W�
j;0

�
= cT �'�(j)�1 �1W�

j;1

��bT wj� � ���
= cT �'�(j)�2 �1W�

j;2

��bT 2wj

�
� �
��

...

= 1Y �

��bT '�(j)wj

�
� �
�

= 1Y �

��cTY �j wj� � ��
= �(wj) � 1Y � ,

proving (3.12). Hence �� is invariant, conservative, and Y � is a recurrent event.

(vi) It remains to validate that � is a �Y (W)-factor map, i.e. that

(3.13) �� � ��1 = �Y (W) � �.
The projection � is nonsingular as a map of the space (3.1) containing (X�;A�; ��)
onto (X;A; �). Therefore �� � ��1 � �, and due to T � � = � � T �, this is a T -
invariant measure. T being conservative ergodic, we therefore have �� � ��1 = c �
for some c 2 [0;1], and it su¢ ces to show that
(3.14) ��(��1Y ) = �Y (W) � �(Y ).
By (3.3), W �

j;l \ ��1Y = ? unless l = 'i(Wj) for some i 2 f0; 1; : : : ; � j � 1g, in
which case W �

j;l � ��1Y . In view of (3.9) and (3.11) we therefore see that indeed

��(��1Y ) =
X
j�1

�j�1X
i=0

��(W �
j;'i(Wj)

) =
X
j�1

� j �(wj) = �Y (W) � �(Y ).

Using (3.13), and recalling what has been said about '� before, the return prob-
abilities of Y � turn out to be

f�k (Y
�) = ��Y �(Y � \ f'� = kg)

=
1

��(Y �)
� ��

 S
j�1:'�(j)=k

W �
j;0

!

=
1

�(Y )
�

X
j�1:'�(j)=k

� (wj) = fk(W)

for k � 1, as required. This completes the proof of the theorem. �

4. Regenerative partitions of unity for Rényi-systems

The existence of regenerative partitions of unity for probability preserving Rényi-
maps (Y;B; �; S; �), subordinate to �, will be derived from a variant of the coupling
argument which in [Z3] has been used to give an easy proof of exponential uniform
convergence bSn u! 1Y for admissible probability densities u.
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Proof of Theorem 2. (i) First, some preparations. It su¢ ces to prove the theo-
rem for some �xed iterate (Y;B; �; SM ; �M ) of our system: Uniform expansion and
Adler�s condition imply (by standard calculations) that there is some A1(S) <1
such that supn�1 supW2�n R(v

0
W ) � A1(S), where R is regularity. Therefore,

�(SjN )(1 + A(SjN )) � �(SN )j(1 + A1(S)) ! 0 as j ! 1, and we may (replac-
ing S by SM for M = jN su¢ ciently large if necessary) assume w.l.o.g. that
�0 := �(1 +A) < 1.

The powers bSm, m � 1, of the transfer operator bS are more explicitly given bybSm w = X
W2�m

bSm (1W w) =
X

W2�m

(w � vW ) � v0W ,

where all v0W are admissible and hence positive. A partition of a measurable func-
tion u � 0 on Y will mean a representation as a countable sum u =

P
i ui with

ui � 0 and measurable. Let w � 0 be a measurable function on W 2 �m. Then
any partition bSm w =

P
i ui, can be pulled back to W , i.e. there is a partition

w =
P

i wi such that bSm wi = ui. Simply take wi := (ui=v0W ) � Sm on W .

The same calculation as in the proof of Lemma 2 of [Z3] shows that for any
admissible u on Y and any Z 2 �, bS (1Zu) is admissible with regularity satisfying
a Doeblin-Fortet type inequality,

(4.1) R
�bS (1Zu)� � �0R(u) +A � max(R(u); A0),

where A0 := A=(1 � �0). For p 2 (0; 1) and eu admissible with p(1 + R (eu)) < 1,
Lemma 3 of [Z3] ensures that w := eu� p �(eu) � 1Y > 0 is admissible with
(4.2) R (w) � R (eu) + p(1 +R (eu))2

1� p(1 +R (eu)) .
To obtain w from eu means to remove the proportion p of its mass by subtracting
the appropriate multiple of 1Y , hence p �(eu) � 1Y , interpreted as a part of eu, is said
to be coupled with 1Y . Obviously, �(w) = (1� p)�(eu).
Now let r0 := 2A0, and henceforth �x p0 2 (0; 1) so small that

p0(1 + r0)
2 < 1 and 2r0 �

p0(1 + r0)
2

1� p0(1 + r0)2
� (1� �0)(r0 �A0).

A calculation based on (4.1) and (4.2) shows that

for p 2 (0; p0) and Z 2 �, if u is admissible with R(u) � r0,(4.3)

then so is w := bS (1Zu)� p �(1Zu) � 1Y , with R(w) � r0,
compare [Z3]. This will enable us to carry on coupling a de�nite proportion of mass
along individual cylinders of S.

(ii) We can now describe the construction of W = fwW : k � 1;W 2 �kg, by
induction on k. Put �0 := fY g, so that �k+1 = fW \ S�kZ : W 2 �k, Z 2 �g for
k � 0, and let uY := ewY := 1Y (with R(uY ) = 0 � r0), as well as wY := 0.
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Suppose that, for some K � 0, all k 2 f0; : : : ;Kg and W 2 �k, we have con-
structed non-negative measurable functions wW , and ewW on W such that

(4.4)
KX
k=1

X
W2�k

wW +
X
W2�K

ewW = 1Y

with

(4.5) wW ; ewW � 1W for 1 � k � K and W 2 �k,
satisfying

(4.6) bSk wW = �(wW ) � 1Y for 1 � k � K and W 2 �k,
and

(4.7) �

0@ X
W2�K

ewW
1A � (1� p0)K ,

where all

(4.8) uW := bSK ewW , W 2 �K , are admissible with R(uW ) � r0.
Below we show how to obtain, for all V 2 �K+1, functions wV and ewV such that
(4.4) to (4.8) are still satis�ed with K replaced by K + 1. It is then clear that
this procedure yields a regenerative partition W = fwW : k � 1;W 2 �kg of 1Y
subordinate to �, with dk(W) exponentially small, as required.

(iii) Pulling back the partitionbSK ewW =
P

Z2� 1Z uW ,

to W 2 �K , we obtain a partition
(4.9) ewW =

P
Z2� wW;Z ,

with

(4.10) bSK wW;Z = 1Z uW , Z 2 �,

which entails wW;Z � S�KZ, so that in view of wW;Z � ewW � 1W , we have
(4.11) 0 � wW;Z � 1W\S�KZ .

For Z 2 �, we de�ne functions uW\S�KZ via

(4.12) bS (1Z uW ) = uW\S�KZ + p0 �(1Z uW ) � 1Y ,
which, according to (4.3), gives admissible functions with R(uW\S�KZ) � r0 and
�(uW\S�KZ) = (1 � p0) �(1Z uW ). Due to (4.10) we can interpret (4.12) as a
partition of bSK+1 wW;Z , and pulling the latter back to W \ S�KZ (recall (4.11)),
we obtain a partition

wW;Z = ewW\S�KZ + wW\S�KZ ,

(hence (4.5) for K + 1) such thatbSK+1 ewW\S�KZ = uW\S�KZ , and(4.13) bSK+1 wW\S�KZ = p0 �(1Z uW ) � 1Y ,
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ensuring (4.6) and (4.8) for K + 1. Therefore (cf. (4.9)) we end up with

(4.14) ewW =
X
Z2�

ewW\S�KZ +
X
Z2�

wW\S�KZ ,

showing that (4.4) carries over to K + 1. The same is true for (4.7), since

�

0@ X
V 2�K+1

ewV
1A =

X
W2�K ;Z2�

(1� p0) �(1Z uW )

= (1� p0)
X
W2�K

� (uW ) = (1� p0) �

0@ X
W2�K

ewW
1A .

This completes the inductive step and hence the proof of the theorem. �
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