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ROLAND ZWEIMÜLLER

Abstract. For in�nite measure preserving transformations with a compact
regeneration property we establish a central limit theorem for visits to good
sets of �nite measure by points from Poissonian ensembles. This extends clas-
sical results about (non-interacting) in�nite particle systems driven by Markov
chains to the realm of systems driven by the weakly dependent processes gen-
erated by certain measure-preserving transformations.

1. Introduction

On a �rst encounter with in�nite ergodic theory one is immediately lead to ask
what an in�nite invariant measure can possibly tell us about the dynamics of a
transformation. Consider a conservative ergodic nonsingular map T on some �-
�nite measure space (X;A;m).
In the standard situation where T has an invariant probability measure �� m,

the pointwise ergodic theorem shows that for any A 2 A,

(1)
1

n
Sn(A) :=

1

n

n�1X
k=0

1A � T k �! �(A)
�-a.e. on X
as n!1,

meaning that the invariant measure �(A) of the set A asymptotically represents the
frequency of visits of a �-typical single orbit to A. Under additional assumptions
on the (mixing) behaviour of the map T and on the set A (satis�ed by various
nontrivial and interesting examples), it is in fact possible to establish a central
limit theorem (CLT) asserting that

(2) �

�
Sn(A)� n�(A)

�(A)
p
n

� t
�
�! 1p

2�

Z t

�1
e�

s2

2 ds
for every t 2 R
as n!1,

which provides us with detailed information about the convergence in (1) by clari-
fying the asymptotic form of the distribution of the T -occupation times Sn(A).
In contrast, if T preserves an in�nite (yet �-�nite) measure �� m, then

(3)
1

n
Sn(A) =

1

n

n�1X
k=0

1A � T k �! 0
�-a.e. on X
as n!1,
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for every A 2 A with �(A) < 1. While Hopf�s ratio ergodic theorem (e.g. [A0],
[H], or [Z3]) shows that ratios Sn(A)=Sn(B) of occupation times converge a.e. to
the ratios �(A)=�(B) of the respective measures, it does not identify an asymptotic
order of magnitude of the Sn(A). In fact, according to Aaronson�s ergodic theorems
(§2.4 of [A0]), no such order exists for a.e. convergence. Precise information in terms
of the distributions of the Sn(A) is available under certain additional assumptions,
cf. §3.6 of [A0] and [TZ], [Z4]. (And some information on the complicated pointwise
behaviour of Sn(A) for sets A of in�nite measure can be found in [ATZ].)

In what follows, we take a di¤erent point of view, which enables us to recover the
interpretation of � as giving the asymptotic frequency of visits also in situations
with �(X) = 1, which we assume from now on. The trivial limiting behaviour in
(3) means that the orbit of a typical single point which T attempts to distribute over
the in�nite space is hardly ever visible in a reference set of �nite measure. Why not
replace the randomly chosen single point, which works well in a probability space,
by some randomly chosen countable ensemble of points, distributed over the space
(X;A; �) (which is a countable disjoint union of probability spaces) in such a way
that we expect one point per unit measure? This, in essence, is what the Poisson
suspension does: It describes the simultaneous action of T on (suitable) countable
collections of points. Roughly speaking, T acts on ensembles x = fxigi�1 � X
via Tx := fTxigi�0, and it turns out that there is a natural invariant probability
measure � for T, making precise a natural random choice of x. Under suitable
assumptions T turns out to be ergodic for �, which immediately yields an ergodic
theorem for the orbits of countable ensembles, ensuring that for any A 2 A,

(4)
1

n
Sn(A) :=

1

n

n�1X
k=0

NA �Tk �! �(A) �-a.e. as n!1.

Here NA(x) =
P

i�0 1A(xi) denotes the number of points from x in A, and we will

call Sn(A) :=
Pn�1

k=0 NA � Tk the T-occupation time (up to time n) of A. We
thus recover the interpretation of �(A) as the average number of visits of orbits
to A if we start with �-typical countable ensembles x rather than single points.
The present note is devoted to the study of Poisson suspensions of certain in�nite
measure preserving transformations, and provides su¢ cient conditions for a CLT
of the form

�

�
Sn(A)� n�(A)

�n(A)
� t
�
�! 1p

2�

Z t

�1
e�

s2

2 ds
for every t 2 R
as n!1,

to accompany the strong law (4).

Here is a formal de�nition of the Poisson suspension (X;A;�;T) of the measure-
preserving system (X;A; �; T ), where (X;A; �) is �-�nite and T need not be invert-
ible: We let X denote the set of counting measures on (X;A), i.e. of all measures
x : A ! N0 = f0; 1; : : : ;1g, which we interpret as countable ensembles of points.
For any A 2 A the function NA : X ! N0 evaluates counting measures at A, that
is, NA(x) := x(A), x 2 X. Naturally, we want each NA to be measurable, and
hence equip X with the �-�eld A := �(NA : A 2 A) generated by them. Next, we
de�ne T : X! X by letting Tx := x � T�1, the image of the measure x under T .
Then T is easily seen to be measurable w.r.t. A, since by measurability of T each
NA �T = NT�1A, A 2 A, is measurable A.
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There exists a unique probability measure � on (X;A), called the Poisson ran-
dom measure with intensity �, such that for any �nite collection of pairwise disjoint
sets A1; : : : ; Al 2 A the corresponding NA1 ; : : : ;NAl

are independent random vari-
ables on (X;A;�), and each NA has a Poisson distribution P� with expectation
� = E�[NA] =

R
X
NA d� = �(A). It is easy to see that � � T�1 = � implies

� � T�1 = �: The distribution of (NA1
; : : : ;NAl

) under � � T�1 is � � T�1 �
(NA1 ; : : : ;NAl

)�1 = � � (NA1 �T; : : : ;NAl
�T) = � � (NT�1A1

; : : : ;NT�1Al
), the

�-distribution of (NT�1A1
; : : : ;NT�1Al

), which are independent (since the T�1Ai
are pairwise disjoint) Poisson variables on (X;A;�) with respective expectations
�(T�1Ai) = �(Ai).

In a more probabilistic language, (X;A;�;T) is a (non-interacting) in�nite par-
ticle system driven by the dynamical system (X;A; �; T ). In an ergodic theoretical
context, [CFS] introduce Poisson suspensions as abstract versions of ideal gas mod-
els. Situations in which the underlying system is (the shift-space representation of)
some Markov process have been studied earlier, see e.g. [P1], [P2] (discrete time)
or §VIII.5 of [D] (continuous time). In particular, the results of [P2] contain most
of Proposition 1 and Theorem 1 below for the special case of null-recurrent Markov
shifts on a countable alphabet. [P2] also covers certain Markov chains with general
state space, but depends on conditions not necessarily satis�ed for the dynamical
systems we are interested in. Our aim is to go beyond these processes with a clear-
cut dependence structure by extending a CLT which is known in that classical setup
to the family of transformations considered in [Z4].

2. Main result

Let T be a conservative ergodic measure preserving transformation (c.e.m.p.t.)
on the �-�nite space (X;A; �) with �(X) = 1. (We refer to [A0] for a wealth
of information on such situations.) In terms of its transfer operator bT : L1(�) !
L1(�), characterized by

R
X
(g � T ) � u d� =

R
X
g � bTu d� for all u 2 L1(�) and

g 2 L1(�), this means that bT1 = 1 ( bT naturally extends to fu : X ! [0;1)
measurable Ag), and

P
k�0

bT ku = 1 a.e. for all u 2 L1(�) with
R
u d� > 0. Let

H be a collection of probability densities w.r.t. �. If there is some K 2 N0 such
that infu2H infY

PK
k=0

bT ku > 0, we call H uniformly sweeping (in K steps) for Y .
The measure space is standard if A is the Borel-�-�eld of some complete separable
metric on X.
Important quantitative characteristics of T are given in terms of its return-time

distributions to suitable �xed reference sets: For Y 2 A with �(Y ) > 0 the �rst
return (entrance) time of Y is '(x) = 'Y (x) := minfn � 1 : Tnx 2 Y g, x 2 X, and
we let TY x := T'(x)x, x 2 X. The restricted measure � jY \A is invariant under the
�rst return map, TY restricted to Y , that is, 1Y =

P
k�1

bT k1Y \f'=kg a.e. If �(Y ) <
1, then ' is a random variable on the probability space (Y; Y \A; �Y ), �Y (E) :=
�(Y )�1�(Y \E). Under additional assumptions making Y a suitable reference set,
the asymptotics of the tail probabilities qn(Y ) := �Y (Y \ f'Y > ng) of its return
distribution, or the wandering rate of Y given by wN (Y ) := �(Y )

PN�1
n=0 qn(Y ) =

�(Y N ), where Y N :=
SN�1
n=0 T

�nY , N � 1, is decisive. We shall follow the conven-
tion of [TZ] and [Z4] to denote Y0 := Y and Yn := Y c \ f' = ng, n � 1 (which are



4 ROLAND ZWEIMÜLLER

disjoint with Y N =
SN�1
n=0 Yn and �(Yn) = �(Y ) qn(Y )).

As a warm-up, we point out how to interpret the wandering rate in terms of
the Poisson suspension. Note that for the following probabilistic laws to hold, no
special assumptions on the system or the sets are required: Poisson suspensions a
priori come with a lot of inbuilt independence. Note that (since Y n is the set of
points which visit Y within time f0; : : : ; n� 1g) NY n(x) can be interpreted as the
number of distinct points from the ensemble x 2 X which visit Y at least once
before time n. Similarly, �Y (x) := minfj � 0 : Tjx(Y ) > 0g represents the �rst
time at which some point from x 2 X visits Y .

Proposition 1 (Number of distinct visitors and waiting time for the �rst).
Let T be a c.e.m.p.t. on the �-�nite in�nite measure space (X;A; �), and let
(X;A;�;T) be its Poisson suspension. For every Y 2 A, 0 < �(Y ) < 1, the
variables NY n satisfy a strong law,

(5) E�[NY n ] = wn(Y ) and
NY n

wn(Y )
�! 1 �-a.e.,

and a central limit theorem,

(6) �

"
NY n � wn(Y )p

wn(Y )
� t
#
�! 1p

2�

Z t

�1
e�

s2

2 ds
for every t 2 R
as n!1.

Moreover,

(7) �[�Y � n] = e�wn(Y ), n � 1.

Proof. This is easy if we observe that NY n = NY0 + : : : + NYn�1 is a sum of
n independent Poisson variables with expectations E�[NYk ] = �(Yk) satisfying
E�[NY0 ] + : : :+ E�[NYn�1 ] = wn(Y )!1. We can now use standard facts about
Poissonian variables:
For example, (5) is equivalent to saying that the image Q of � under the map

x 7! (
Pn�1

j=0 NYj (x))n�1 gives full measure to the event fsn=wn(Y ) ! 1g in the
sequence space S := fs = (sj)j�1 : sj 2 N0g (with product �-�eld). But Q
coincides with the distribution of ! 7! (Nwn(Y )(!))n�1 2 S where (Nt)t�0 is a
Poisson process with E[N1] = 1 on (
;F ; P ). Now it is well known that (Nt)t�0
satis�es the strong law Nt=t ! 1 a.s. and a fortiori Nwn(Y )=wn(Y ) ! 1 a.s. We
therefore see that indeed Q[sn=wn(Y )! 1] = P [Nwn(Y )=wn(Y )! 1] = 1.
Checking the CLT (6) is a routine probability exercise (cf. Problem 27.3 of [B]),

using the characteristic function of the Poisson distribution P�,

(8) bP�(t) = exp ���(1� eit)� , t 2 R.
Finally, (7) is clear from f�Y � ng = fNY n = 0g and �(Y n) = wn(Y ). �

Recall that a measurable function a : (L;1) ! (0;1) is regularly varying of
index � 2 R at in�nity, written a 2 R�, if a(ct)=a(t) ! c� as t ! 1 for all c > 0.
We shall tacitly interpret sequences (an)n�0 as functions on R+ via t 7�! a[t].
R�(0) is the family of functions r : (0; ") ! R+ regularly varying of index � at
zero (same condition as above, but for t & 0). For background information we
refer to Chapter 1 of [BGT]. We write a(t) � b(t) as t ! 1 if a(t)=b(t) ! 1, and
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a(t) � b(t) as t ! 1 to indicate that the ratio a(t)=b(t) is bounded away from 0
and 1 for t � t0.

Remark 1 (Minimal wandering rates). The asymptotics of the wandering rate
(wN (Y )) does depend on the set Y , and there never are sets maximizing this
rate for a given system (cf. Proposition 3.8.2 in [A0]). Still, some transforma-
tions possess distinguished sets Y with minimal wandering rate, meaning that
limN!1wN (Z)=wN (Y ) � 1 for all Z 2 A, 0 < �(Z) <1. Equivalently, wN (Y ) �
wN (Z) provided �(Z) > 0 and Z � Y . This common rate then is an asymptotic
characteristic of the measure-preserving system, the wandering rate of T , (wN (T )).

We are now ready to state the main result of the present paper. It provides us
with a CLT for T-occupation times of a large family of sets - those contained in
some distinguished reference set Y having a compact regeneration property (and
hence minimal wandering rate, cf. Proposition 3.2 and Remark 3.6 of [TZ]). We
refer to [TZ], [Z4] for further information on this type of condition which (in a
slightly stronger form) was �rst used in [T3]. The assumption (10) on the set Y in
the result below is exactly the structural condition of Theorem 2.1 in [Z4] (which
in addition requires regular variation of (wN (Y ))).

Theorem 1 (T-occupation times inside compactly regenerative sets). Let
T be a c.e.m.p.t. on the �-�nite in�nite standard measure space (X;A; �), and let
(X;A;�;T) be its Poisson suspension. Then T is ergodic, and for any Y 2 A,
0 < �(Y ) <1,

(9)
1

n
Sn(Y ) �! �(Y ) �-a.e. as n!1.

Suppose, in addition, that Y is such that

(10) HY :=

(
1

wN (Y )

N�1X
n=0

bTn1Yn
)
N�1

is precompact in L1(�)
and uniformly sweeping,

then, for every E 2 Y \ A with �(E) > 0, and every probability measure � � �,

(11) �

�
Sn(E)� n�(E)

�n(E)
� t
�
�! 1p

2�

Z t

�1
e�

s2

2 ds
for every t 2 R
as n!1,

where

(12) �2n(E) := Var� [Sn(E)] �
n2

wn(Y )
as n!1.

If, moreover, (wN (Y )) 2 R1�� for some � 2 [0; 1], then

(13) �2n(E) �
2�(E)2

�(2� �)�(2 + �) �
n2

wn(Y )
as n!1.

We brie�y indicate a few situations in which the conditions of [Z4], and hence
our present results, apply. In each case we identify a large family E(T ) of good sets
E, i.e. each E 2 E(T ) is contained in some Y satisfying (10).

Example 1 (Random walks driven by Gibbs-Markov maps). Assume that
(M;B; �; R; �) is an ergodic probability preserving �bred system given by a Gibbs-
Markov map (cf. [A0], [AD]) with �nite image partition, #R� <1. Let � :M ! Z
be a �-measurable function and assume (see [AD] for de�nitions) that � is aperiodic,
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and that either � 2 L2(�) with
R
X
�d� = 0, or that the �-distribution of � is in the

strict domain of attraction of a nondegenerate stable distribution of order p 2 (1; 2).
Then the Z-extension T = R� of R, that is the map on the �-�nite in�nite measure
space (X;A; �) := (M �Z;B 
P(Z); � 
 �Z), �Z denoting counting measure on Z,
given by T (x; g) := (Rx; g+�(x)), is a c.e.m.p.t. Any set of the form Y :=M �D
with D � Z �nite satis�es (10), and we have (wN (Y )) 2 R1�� with � := 1=2 or
� := 1� 1=p 2 (0; 1=2), respectively (cf. §7.3 of [Z4]). Theorem 1 therefore applies
to any positive measure set from E(T ) := fE : �(E) boundedg, where �(x; g) := g.

Example 2 (Interval maps with indi¤erent �xed points). A large class of
in�nite measure preserving piecewise monotonic interval maps (X;A; �; T; �), called
AFN-maps, has been studied in [Z1], generalizing earlier results from [A0], [A3],
[T1]. We refer to [Z1] or [TZ] for de�nitions and notation. Their ergodic behaviour
is determined by a �nite set � � � of cylinders Z having an indi¤erent �xed point
xZ at the boundary. The considerations of §8 of [TZ] show that any set E from
E(T ) := fF 2 A :there is some " > 0 s.t. F \(xZ�"; xZ+")\Z = ? for all Z 2 �g,
is contained in some Y satisfying (10). Regular variation of (wN (Y )) depends on
details of the local behaviour of T at the xZ , see e.g. §4 of [T2].

Example 3 (S-unimodal Misiurewicz maps with �at tops). For further ex-
amples with dynamics governed by some distinct indi¤erent orbit are maps T on
the interval with �at critical points, i.e. points c at which all derivatives of T
vanish. [Z2] was devoted to �at S-unimodal maps T on an interval X := [a; b]
satisfying the Misiurewicz condition, meaning that there is some open subinterval
Y around c (w.l.o.g. a union of two cylinders) to which the orbit of c does not
return, cn := Tnc =2 Y for n � 1. As pointed out in §7.2 of [Z4], this set Y satis�es
(10), and we take E(T ) containing all measurable sets inside a su¢ ciently small
neighbourhood of c. Such a map T always possesses an absolutely continuous con-
servative ergodic invariant measure � which is in�nite i¤

R
log j T 0x j dx = �1.

Regular variation of (wN (Y )) depends on the local behaviour of T at c and on the
existence of the postcritical Lyapunov exponent of T , cf. Theorem 5 of [Z2].

3. Proof of Theorem 1

We follow the strategy used in [P2], adapting it to our setup. The speci�c di¢ cul-
ties are dealt with in the following auxiliary proposition, which exploits information
obtained in the proof of Theorem 2.1 of [Z4]. The latter result states that under
the assumptions on (X;A; �; T ) and Y in Theorem 1 above, plus (wN (Y )) 2 R1��
for some � 2 [0; 1], one has, for every f 2 L1(�) with �(f) 6= 0, distributional
convergence

(14)
1

an
Sn(f)

�
=) �(f)M�,

with respect to any probability measure � � �, where M� is a random variable
distributed according to the normalized Mittag-Le­ er law of order �, which is
uniquely characterized by its moments E[Mr

�] = r! (�(1 + �))
r=�(1 + r�), r � 1,

and

(15) an :=
1

�(Y )

Z
Y

Sn(Y ) d�Y �
1

�(1 + �)�(2� �) �
n

wn(Y )
as n!1.
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This is established by proving that the moments of Sn(Y ) w.r.t. �Y converge, i.e.

(16)
Z
Y

�
Sn(Y )

�(Y )

�r
d�Y � E[Mr

�] � arn as n!1.

Here we obtain further information in this direction:

Proposition 2 (The �-moments of T -occupation times). Let T be a c.e.m.p.t.
on the �-�nite in�nite measure space (X;A; �), and suppose that Y 2 A, 0 <
�(Y ) <1, is such that

(17) HY =

(
1

wN (Y )

N�1X
n=0

bTn1Yn
)
N�1

is precompact in L1(�)
and uniformly sweeping,

then, for every E 2 Y \ A with �(E) > 0, and every integer r � 1,

(18)
Z
X

Srn(E) d� � wn(Y )
Z
Y

Srn(E) d� � wn(Y )
�

n

wn(Y )

�r
as n!1.

If, moreover, (wN (Y )) 2 R1�� for some � 2 [0; 1], then

(19)
Z
X

�
Sn(E)

�(E)

�r
d� � r! (�(2� �))1�r

�(2 + (r � 1)�) � �(Y )wn(Y )
�

n

wn(Y )

�r
as n!1.

Before applying this to the Poisson suspension, we record a straightforward con-
sequence: Recall (cf. [A1] or §3.3 of [A0]) that a c.e.m.p.t. T on (X;A; �) is called
rationally ergodic if there exists some Y 2 A, 0 < �(Y ) < 1, satisfying a Rényi
inequality, i.e. there is some M 2 (0;1) such thatZ

Y

S2n(Y ) d� �M �
�Z

Y

Sn(Y ) d�

�2
for all n � 1.

Corollary 1 (Rational ergodicity). Let T be a c.e.m.p.t. on the �-�nite in�nite
measure space (X;A; �) and Y 2 A, 0 < �(Y ) <1, with (17). Then Y satis�es a
Rényi inequality.

Proof. Immediate from (18) in Proposition 2. �

Assuming Proposition 2, we can now argue as follows:

Proof of Theorem 1. (i) Ergodicity of Poisson suspensions of in�nite measure pre-
serving conservative ergodic automorphisms is established in [R], Proposition 2.6.2.
According to Theorems 3.1.5 and 3.1.7 of [A0], our system (X;A; �; T ) possesses
an (invertible) conservative ergodic natural extension (X 0;A0; �0; T 0), i.e. there is
a measurable factor map � : X 0 ! X with � � T 0 = T � � and �0 � ��1 = �. The
Poisson suspension (X0;A0;�0;T0) of the latter is ergodic by Roy�s result. There-
fore, ergodicity of (X;A;�;T) follows if we check that (parallel to Theorem 2.4.4
of [R] for automorphisms) generally

(20) the suspension of an extension is an extension of the suspension.

To see this, consider any extension (X 0;A0; �0; T 0) (not necessarily invertible,
with factor map �) of (X;A; �; T ), and de�ne � : X0 ! X by �x0 := x0 � ��1. As
the �-�elds A;A0 are generated by the evaluations NA, A 2 A, and N0

A0 , A0 2 A0,
respectively, measurability of � follows from that of the compositions NA � �,
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A 2 A, which is clear since NA � �(x0) = N0
A0(x0) where A0 := ��1A 2 A0. Next,

observe that T � � = � �T0 since
(T � �(x0))(A) = x0 � ��1 � T�1A = x0 � (T 0)�1 � ��1A = (� �T0(x0))(A)

for A 2 A. Analogous manipulations show that �0 � ��1 is the Poisson random
measure with intensity �, and hence equals �: For any A 2 A, the distribution �0 �
��1 �N�1

A of NA equals �0 �(N0
A0)�1 with A0 := ��1A 2 A0, and hence is P�0(A0) =

P�(A). The independence condition follows since ��1 preserves disjointness. This
completes the proof of (20).
Statement (9) is just the ergodic theorem for the suspension.

(ii) For the proof of the CLT (11) we let Sn := Sn(E), n � 1. For n 2 N and
r 2 N0 the number of points from an ensemble x which visit E exactly r times by
time n is NfSn=rg(x), and therefore

Sn(E) :=
n�1X
k=0

NE �Tk =
n�1X
r=1

rNfSn=rg.

Observe that for �xed n the sets fSn = rg, r 2 f1; : : : ; n�1g, are pairwise disjoint,
so that NfSn=rg, r 2 f1; : : : ; n� 1g, are independent Poisson random variables on
(X;A;�) with E�[NfSn=rg] = �(fSn = rg). Consequently,

(21) Var� [Sn(E)] =
n�1X
r=1

r2�(fSn = rg) =
Z
X

S2n d�,

so that (13) immediately follows from (19). For the same reason the characteristic
function of Sn(E) is

E� [exp (i � Sn(E))] =
n�1Q
r=1

E�
�
exp

�
i �rNfSn=rg

��
(22)

= exp

"
n�1X
r=1

�
ei�r � 1

�
�(fSn = rg)

#

= exp

�Z
X

�
ei�Sn � 1

�
d�

�
,

where � 2 R. Abbreviating �n :=
p
Var� [Sn(E)], n 2 N, we therefore �nd that

logE�
�
exp

�
i �
Sn(E)� n�(E)

�n

��
= ��

2

2
+Rn(�),

where

Rn(�) :=

Z
X

"
exp

�
i �
Sn
�n

�
�
 
1 + i �

Sn
�n

� 1
2

�
�
Sn
�n

�2!#
d�, � 2 R.

Therefore the CLT with respect to �,

�

�
Sn(E)� n�(E)

�n(E)
� t
�
�! 1p

2�

Z t

�1
e�

s2

2 ds
for every t 2 R
as n!1,

follows once we verify that

lim
n!1

Rn(�) = 0 for all � 2 R.
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But due to an easy standard estimate,

jRn(�)j �
j�j3

6
�
Z
X

S3n
�3n

d�,

and the integral on the right-hand side tends to zero, since the r = 2 and r = 3
cases of (18) in Proposition 2 ensure that�Z

X

S3n(E) d�

�2
= o

�Z
X

S2n(E) d�

�3
as n!1.

Finally, the extension to other measures � � � is immediate from Eagleson�s
theorem, cf. [E] or Corollary 1 of [Z5]. �

4. Proof of Proposition 2

The proof of this crucial proposition exploits a number of facts established in the
proof of Theorem 2.1 of [Z4]. Hardly surprising, the argument for the regularly vary-
ing case will depend on Karamata�s Tauberian theorem (KTT) and the Monotone
Density theorem for regularly varying functions (see [BGT] or Proposition 4.2 and
Lemma 4.1 of [TZ]), that is,

Lemma 1 (Karamata�s Tauberian theorem, Monotone density theorem).
Let (bn) be a sequence in [0;1) such that B(s) :=

P
n�0 bn e

�ns <1 for all s > 0.
Suppose that ` 2 R0 and � 2 [0;1). Then

(i) B(s) �
�
1
s

��
`
�
1
s

�
as s& 0, if and only if

(ii)
Pn�1

k=0 bk � n�`(n)=�(�+ 1) as n!1.
If (bn) is eventually monotone and � > 0, then both are equivalent to
(iii) bn � �n��1`(n)=�(�+ 1) as n!1.
In order to deal with non-regularly varying situations, we need to supply a few

less familiar tools from Karamata theory: A measurable function a : (L;1) !
(0;1) is O-regularly varying at in�nity, written a 2 OR, if for all c > 0,

0 < lim
t!1

a(ct)

a(t)
� lim

t!1

a(ct)

a(t)
<1.

OR(0) will denote the class of functions O-regular varying at zero (same condition,
but for t & 0). This is just one of several useful concepts generalizing regular
variation which still enable a meaningful asymptotic theory. For the reader�s con-
venience we explicitly state a few facts which we are going to use below. The �rst
observation is due to Feller (cf. Corollary 2.0.6 of [BGT]).

Lemma 2 (O-regular variation of monotone sequences). If (wN )N�0 is a
non-decreasing sequence in (0;1) with limN!1wc0N=wN < 1 for some c0 > 1,
then w 2 OR.
The argument to follow hinges on two Tauberian results for O-regular variation.

For the �rst, see Theorem 2.10.2 of [BGT] or [dHS].

Lemma 3 (de Haan-Stadtmüller O-Tauberian theorem). If (un)n�0 is a
sequence in (0;1), then the following are equivalent:

(i) (vN )N�0 := (
PN�1

n=0 un)N�1 is O-regularly varying at in�nity,
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(ii) U(s) :=
P

n�0 une
�ns, s > 0, is O-regularly varying at zero,

(iii) U(1=N) � v(N) as N !1.

Lemma 4 (O-Monotone Density Theorem). If (un)n�0 is a non-decreasing
sequence in (0;1) with (vN )N�0 := (

PN�1
n=0 un)N�1 O-regularly varying at in�nity,

then U(s) :=
P

n�0 une
�ns, s > 0, satis�es

(iv) U (1=N) � N u(N) as N !1.

Proof. This is a variant of Exercise 2.12.26 of [BGT]. Simply observe that vN �
N uN �

P2N
n=N un � v2N � const � vN and apply the preceding lemma. �

We are now ready for the

Proof of Proposition 2. (i) Since wN (Y ) = �(Y )
PN�1

n=0 qn(Y ) with qn(Y )& 0, we
have w2N (Y ) � 2wN (Y ) for all N � 0, which by Lemma 2 implies (wN (Y )) 2
OR. According to Lemma 3 this entails O-regular variation at zero of QY (s) :=P

n�0 qn(Y )e
�ns, s > 0, and hence also of s 7! (sQY (s))

�r=s for any r � 1.
Moreover,

(23) wN (Y ) � QY
�
1

N

�
as N !1.

The proof of Theorem 2.1 of [Z4] shows, without using regular variation, that
for any r � 1,

(�r) AY;r(s) :=
X
n�0

�Z
Y

Srn(Y ) d�Y

�
e�ns � 1

s

�
1

sQY (s)

�r
as s& 0.

As the right-hand side belongs to OR(0), we conclude that for any r � 1, the same
is true for AY;r. Using Lemma 3 again, we thus see that

(24)
NX
n=0

Z
Y

Srn(Y ) d� � AY;r
�
1

N

�
� N

�
N

QY (1=N)

�r
as N !1,

with all three sequences O-regularly varying. In particular, as the leftmost sum
is in OR and

R
Y
Srn(Y ) d� is non-decreasing in n, we can appeal to Lemma 4 to

obtain

(25)
Z
Y

Srn(Y ) d� �
�

n

QY (1=n)

�r
�
�

n

wn(Y )

�r
� arn as n!1,

with an := �(Y )�1
R
Y
Sn(Y ) d�Y . We thus have, for each r � 1, boundedness of the

moment sequence (
R
Y
(Sn(Y )=an)

r d�)n�1, and hence also of (
R
Y
(Sn(E)=an)

r d�)n�1
for any �xed E 2 Y \A. Moreover, we also see that limn!1

R
Y
(Sn(Y )=an)

r d� > 0.
Combining these two facts with Hopf�s ratio ergodic theorem we conclude (using
uniform integrability of the ((Sn(E)=an)r)n�1) that for any r � 1 and E 2 Y \A,

(26)
Z
Y

Srn(E) d� �
�
�(E)

�(Y )

�r Z
Y

Srn(Y ) d� � arn as n!1.

Together with (25) this gives the second part of (18).
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De�ne Rn := Sn(E)=an, n � 1. It is also shown in [Z4] that for any r � 1, and
E = Y the sequence

(27) (Rrn(E))n�1 satis�es the assumptions of Proposition 3.2 of [Z4],

which therefore applies to ensure that for E = Y we have

(28)
Z
Y

Srn(E) � h d� �
Z
Y

Srn(E) d�Y as n!1, uniformly in h 2 HY .

We claim that (27), and hence also (28) hold for every �xed E 2 Y \ A with
�(E) > 0: Note that

(29) Sn(E) = Sn�k(E) � T k on Yk, k 2 f0; : : : ; ng,

and the previously observed boundedness of all moment sequences gives weak pre-
compactness of (1YRrn(E))n�1. Finally we need to validate that

k(Rrn(E) � T �Rrn(E)) � uk1 �! 0 for all u 2 L1(�) supported on some YM .

But, precisely as in the case E = Y considered in [Z4] (cf. equation (4.9) there),
this follows from (26) via the mean-value theorem.

(ii) Now �x some E 2 Y \ A with �(E) > 0, and observe that due to (29),Z
X

Srn(E) d� =
nX
k=0

Z
X

Srn�k(E) � T k � 1Yk d� =
nX
k=0

Z
Y

Srn�k(E) � bT k1Yk d�.
As an immediate consequence, we see that

NX
n=0

Z
X

Srn(E) d� =
NX
n=0

wn+1(Y ) �
Z
Y

SrN�n(E) � hn d�,

where hN := wN+1(Y )�1
PN

n=0
bTn1Yn 2 HY . Since RX Srn(E) d� ! 1 as n ! 1,

(28) enables us to conclude that

NX
n=0

Z
X

Srn(E) d� �
NX
n=0

wn+1(Y ) �
Z
Y

SrN�n(E) d� as N !1,

andX
n�0

�Z
X

Srn(E) d�

�
e�ns =

�
1� e�s

� X
N�0

 
NX
n=0

Z
X

Srn(E) d�

!
e�Ns

�
�
1� e�s

� X
N�0

 
NX
n=0

wn+1(Y ) �
Z
Y

SrN�n(E) d�

!
e�Ns

= �(Y )QY (s) �
X
n�0

�Z
Y

Srn(E) d�

�
e�ns

� �(Y )2
�
�(E)

�(Y )

�r
QY (s) �

X
n�0

�Z
Y

Srn(Y ) d�Y

�
e�ns(30)

as s & 0, where the last step uses (26). We already know that each factor
in the rightmost expression is O-regularly varying, and therefore see that the
same is true for the leftmost expression. Therefore, by Lemma 3, the sequence
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(
PN

n=0

R
X
Srn(E) d�)N�0 belongs to OR, and by the obvious monotonicity of the

individual terms in these sums we can appeal to Lemma 4 to obtain, for any r � 1,

(31)
Z
X

Srn(E) d� �
1

n
QY

�
1

n

�
AY;r

�
1

n

�
� wn(Y )

�
n

wn(Y )

�r
as n!1,

where the second relation comes from (23) and (24).

(iii) Finally, assume that (wN (Y )) 2 R1�� for some � 2 [0; 1]. By KTT this means
that there is some function `, slowly varying at in�nity, such that

QY (s) =

�
1

s

�1��
`

�
1

s

�
for s > 0 and wn(Y ) � �(Y )

n1��`(n)

�(2� �) as n!1.

In the proof of Theorem 2.1 of [Z4], it is shown that in this case, for any r � 1,

(32)
X
n�0

�Z
Y

Srn(Y ) d�Y

�
e�ns � r!

s

�
1

sQY (s)

�r
as s& 0.

Therefore, (30) becomesX
n�0

�Z
X

Srn(E) d�

�
e�ns � r!�(Y )2

�
�(E)

�(Y )

�r �
1

s

�2+(r�1)�
`

�
1

s

��(r�1)
as s& 0. Applying KTT once again (and using monotonicity of (

R
X
Srn(E) d�)n�1),

we thus obtainZ
X

Srn(E) d� � �(Y )2
�
�(E)

�(Y )

�r
r!

�(2 + (r � 1)�) �n
1+(r�1)�`(n)�(r�1) as n!1.

and hence (19). �
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