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WAITING FOR LONG EXCURSIONS AND CLOSE VISITS TO
NEUTRAL FIXED POINTS OF NULL-RECURRENT ERGODIC
MAPS
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ROLAND ZWEIMULLER

ABSTRACT. We determine, for certain ergodic infinite measure preserving trans-
formations T, the asymptotic behaviour of the distribution of the waiting time
for an excursion (from some fixed reference set of finite measure) of length
larger than [ as [ — oo, generalizing a renewal-theoretic result of Lamperti.
This abstract distributional limit theorem applies to certain weakly expanding
interval maps, where it clarifies the distributional behaviour of hitting-times
of shrinking neighbourhoods of neutral fixed points.

1. INTRODUCTION

The study of fine probabilistic properties of weakly dependent stochastic processes
obtained from ergodic dynamical systems has become a very active field of research.
Given a conservative (i.e. recurrent) ergodic measure preserving transformation
(c.eem.p.t.) T on a o-finite measure space (X, A, u), and an initial distribution
v < [, i.e. a probability measure according to which the initial state Xo € X of
the dynamical system is chosen, iteration of T' generates the consecutive states of
the system, which form a sequence (X,)n>0 = (T"Xo)n>0 of random elements of
X, defined on the probability space (X, A, v).

One circle of questions which has recently attracted a lot of attention concerns
the behaviour of hitting times of subsets of X. For A € A, u(A) > 0, we let
wa(z) :=inf{n >1:T"x € A}, z € X, which is finite mod p. If 4,, € A, n > 1,
are sets of positive measure with A4,, \, @, we can think of (A4,,),>1 as a sequence
of asymptotically rare events and study, for some fixed v, the distributions of the
©4, asn — oo. It has been shown that for a large variety of probability preserving
(piecewise) smooth maps T with uniform or well-controlled weak hyperbolicity, and
natural A,, these hitting-time distributions do converge to the expected limit, that
is, to an exponential distribution. (And in fact the hitting-time processes often
tend to a Poisson process.) Relevant references include [GS], [CC], [AG], and [KL],
but this list is far from exhaustive.
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Some prominent families of transformations, parametrized according to the pre-
cise degree of weak hyberbolicity, exhibit a dramatic change of stochastic behav-
iour when we pass from the domain of invariant probabilities (the positively re-
current situation) to the regime of conservative infinite invariant measures (the
null-recurrent case) in parameter space. For a prototypical example, consider maps
T : [0,1] — [0,1] which are piecewise C? with two full branches and uniformly
expanding except for an indifferent fixed point at x = 0, e.g.

D P +1
Tx::{ x4 2Px for z € (0,1/2),

(1) 2 — 1 for z € (1/2,1),

where p > 0 is the aforementioned parameter determining essential features of
the processes (X,)n>0 generated by T. These T always possess a unique (up to
a constant factor) conservative ergodic (even exact) invariant measure p < A, A
denoting Lebesgue measure. For p < 1 it is finite, thus leading to an interesting
family of weakly hyperbolic probability preserving systems which has been the ob-
ject of intense study, see, for example, [Yo], [Sa], or [Go]. For p > 1, however, the
measure u is infinite, and we enter the null-recurrent world of infinite ergodic the-
ory. Here, too, maps like (1) constitute a basic class of well-studied examples, see
e.g. [A0]-[A2], [T1]-[T4], or [Z1], [Z2]. While various basic results from standard
(finite) ergodic theory cease to hold (most notably the pointwise ergodic theorem
with constant normalizations, cf. Section 2.4 of [A0]), some properties of positively
recurrent maps survive, in a weak sense, at the threshold parameter p = 1 where
the measure "has just become infinite". For example, there is a weak law of large
numbers for p = 1, but not for any p > 1, cf. [Al], [ATZ], [T3] and [TZ].

Another instance of a finite-measure result surviving the transition from p < 1
to p = 1 has been explored in [CGS], [CG] and [CI]: Consider, for T as in (1), the
family of intervals A, := [0, €] containing the neutral point = 0, which shrink to
zero as € N\, 0. While A(A.) — 0, these sets can, for p > 1, no longer be regarded
as asymptotically rare events in the sense of our dynamical system, since, on the
contrary, pu(A.) = oo and u(A¢) < oo for all e. (See [BZ] for really rare events.)
Nevertheless, in the p = 1 boundary case, the hitting-time distributions to these sets
converge, when suitably normalized, to an exponential law: According to Theorem
5 of [CG] or Theorem 3.3 of [CI], we have, writing 7¢ := ¢}y g and Y := (1/2, 1),

1

— T = & 0,
fyTed,UY Te as €\,

(2)
forv=MXNorv = py. Here puy (M) := p(YNM)/u(Y) is the conditional measure on
Y, the symbol == indicates distributional convergence w.r.t. the initial distribution
v, and € denotes an exponentially distributed random variable, i.e. (2) means that
forall t > 0, v({( [y Tedpy) ' 7c <t}) — 1—e " as e\, 0. (And it is not hard to
see that the normalizing factor is of order eloge as € \, 0.) The usual exponential
limit law for the hitting-time distributions thus persists at p = 1, illustrating once
again the amazing robustness of this phenomenon.

To the best of my knowledge, no information for the case p > 1 of "seriously
infinite" measures is available so far. The abstract distributional limit theorem of
the present paper enables us to clarify the asymptotic behaviour of the hitting-time
distributions of the sets [0, €] in this case. We will, in particular, show that for T
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as in (1), with p > 1,
(3) pQ2e)f T = Jijp  as e \0,

for any probability measure v < A. Here we let J,, a € [0,1), denote random
variables taking values in [0, 00), with distributions characterized by the following

recursion formulae for their moments (where, by convention, E[J] := 1)
r—1 i
N\ EL7]
4 ElJ)] =« <)°‘ for r > 1.
(@) =3 (3)r=55s

In particular, Jy = 0, and generally E[7,] = «/(1—«) and Var[7,] = «/[(2—a)(1—
a)?]. Regrettably, no explicit expression for the densities of these distributions is
available, but partial information, stated in terms of H, := J, + 1, can be found
in [La]. From the same paper one can also infer that the Laplace transforms are
given by

— 1
5 Tul(s) :=E e 7] = , s>0.
®) =Bl =

We will approach the above question about close visits by slightly shifting our
perspective. Instead of chasing small sets, we fix one good reference set Y of fi-
nite measure, disjoint from the target sets A, in such a way that hitting a small
set A is equivalent to staying away from Y for a long time. This transforms our
original question about hitting-times into one about asymptotic distributions of
waiting-times for long excursions from Y. In Sections 2 and 3 to follow, we for-
mulate and prove an abstract distributional limit theorem for such waiting times.
In Section 4 we use this result to answer the hitting-time question for interval maps.

2. LONG EXCURSIONS FROM GOOD REFERENCE SETS

We recall some basic concepts: A function a : (L,00) — (0,00) is regularly
varying of index p € R at infinity, written a € R,, if a(ct)/a(t) — ¢ as t — oo
for any ¢ > 0, and we shall interpret sequences (a,)n>0 as functions on Ry via
t +—— apy. Slow variation means regular variation of index 0. R,(0) is the family
of functions r : (0,d) — Ry regularly varying of index p at zero (same condition
as above, but for ¢ N\, 0). For background information we refer to Chapter 1
of [BGT]. Throughout we use the efficient convention that for a,,b, > 0 and
¥ € [0,00), an ~ ¥-by, as n — 0o means lim,_,« a, /b, =¥, even in case ¥ = 0. An
analogous convention applies to f(s) ~ ¥ - g(s) as s \, 0. We will repeatedly use
Karamata’s Tauberian theorem (KTT) for Laplace transforms and the Monotone
Density theorem, in the versions provided by Proposition 3.2 and Lemma 3.1 of
[TZ].

Strong distributional convergence R, ﬂ—ﬁg R of a sequence (Ry,),>1 of real-valued
measurable functions on the o-finite space (X, A, 1) means distributional conver-
gence R, == R w.r.t. all probability measures v < p. Similarly, R, ., R means
convergence in measure, R, — R, for all normalized v < p.

Let T be a c.em.p.t. on (X, A, p). Its transfer operator T : Ly (1) — Ly (1) de-
scribes the evolution of probability densities under T, that is, Tu = dvoT~1)/dpu,
where v has density u w.r.t. u. Equivalently, fX (goT) -udu= fX qg- Tu dp for all
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w € Ly(p) and g € Loo(pr). The operator T naturally extends to {u : X — [0, 00)
measurable A}.

For Y € A with u(Y) > 0 the first entrance time or hitting time of Y is
oy (r) == min{n > 1 : Tz € Y}, z € X, and we define Tyz := T¢r @y,
x € X. The restricted measure p |yn4 is invariant under the first return map,
that is, Ty restricted to Y. In other words, 1y = >, f’“lyﬁ{v:k} a.e. If
w(Y) < oo, the first return time, i.e. py restricted to Y, can be regarded as a ran-
dom variable on the probability space (Y, Y NA, py-). Assuming that Y is a suitable
reference set (to be explained below), the asymptotic behaviour of its return dis-
tribution, i.e. that of the (first) return probabilities fi(Y) := py (Y N {py = k}),
is an important characteristic governing the probabilistic properties of the sys-
tem. For distributional limit theorems regular variation of the tail probabilities
@ (Y) = 3 an k(YY) = py (Y N {py > n}), or the wandering rate of Y given
by wn(¥) = 1Y) SN gu(Y) = p(), where YN = UN 0 T0Y, N > 1, is
essential. Note that YV := |JN "'V, (disjoint), where (as in [TZ], [Z3]) we let

n=0

(6) Yo=Y and Y, =Y°N{py=n},n>1

The following theorem is the abstract core of the present paper. It will be
established via the renewal-theoretic approach developed in [T3], [TZ], and [Z3].
Condition (8), which formalizes what a good reference set is in this context, is a
slightly stronger version of the basic condition used in [Z3]. Via (9) we also impose
a variant of the sweeping condition used there (in the Darling-Kac theorem).

ForY € Aandl > 1, we let J;(Y)(z), € X, denote the time at which the first
excursion from Y of length larger or equal to [ starts,

(7) JY)(z):=inf{n>0:T "z e Y°N{py >1}}.

The asymptotic distributional behaviour of these variables is explained in

Theorem 1 (Waiting for long excursions from sets with compact first
returns). Let T be a c.e.m.p.t. on the o-finite measure space (X, A, ), and assume
that Y € A, 0 < u(Y') < o0, is such that

1 ~
8) £y = {Tklyﬁ{¢_k} ck>1, frY) > O} is precompact in Loo (1),

Jr(Y)
and
t—1 N fll
(9) there are t,lg > 1 for which  inf inf T’ M) S0,
REY 2T L)
If
(10) (wn(Y)) € Ri—a  for some a € [0,1),
then

1 "
(11) Z3(Y) =CS



WAITING FOR LONG EXCURSIONS 5

Remark 1. The first time at which the orbit (T™z), >0 actually observes a long
excursion is Hy(Y)(z) := inf{n>1—-1:TizeYforje{n—1+1,....,n}} =

J(Y)(z) + 1 — 1. The conclusion (11) is equivalent to H;(Y")/! LW Ho = To + 1,
which in [La] has been established for processes with an iid sequence of excursion
lengths. (That is, in the special case in which the ¢ o T{,, 7 > 0, are independent
random variables on (Y, Y N A, py).)

Remark 2. As in [TZ] and [Z3], regular variation of (wx(Y')) is a property of the
system (X, A, u, T) rather than a property of a particular set: By Proposition 3.2
and Remark 3.6 of [TZ], (8) implies that Y has minimal wandering rate, meaning
that limy_cown(Z)/wn(Y) > 1forall Z € A, 0 < u(Z) < oo. Such a minimal rate
(if it exists) is an important asymptotic characteristic of the system, the wandering
rate of T, denoted (wy (T)).

Remark 3. For the main application worked out here, Theorem 2 below, a much
simpler version of (9) suffices, namely

1~
12 inf  inf ([ —— T*1 -
(12) k21,}E(Y)>oHYI (fk(Y) Yn{“”_k})

However, we prove Theorem 1 under the more general condition (9), since this paves
the way for applications to more complicated situations, cf. Remark 4.

3. PROOF OF THEOREM 1

The argument to follow shows, in particular, that there are variables 7, with
moments given by (4). To begin with, we check that the distributions of the J,,
a € [0,1), are in fact uniquely determined by these moments. According to a
classical result of T. Carleman, it suffices to show that the series >, -, E[J7]~/?"
diverges. We show that N

r

(13) E[J}] < ( > for > 0.

l—«

If » = 0, this is trivial. For the inductive step, fix some r > 1 and assume that (13)
has been shown to hold up to r — 1. Then use (4) to see that indeed

a) < 22 () ()

=0
r—1
: u—w%@)“‘”“a—ww‘”“y’

proving (13) and hence the required divergence statement.

We now use a variant of the renewal-theoretic approach to distributional limit
theorems for infinite measure preserving transformations developed in [T3], [TZ],
and [Z3], to show that all moments converge. Our starting point is the following
dissection identity for J; := J;(Y), I > 1, on the distinguished reference set Y,

J {k—i—JloTk onYN{p=k},1<k<l,
l:

(14) 1 onY Nn{p>1}.

This results in
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Lemma 1 (Splitting moments at the first return). Let T be a c.e.m.p.t. on
the o-finite measure space (X, A, p), let Y € A with ¢ := ¢y, and J, :== J;(Y).
Then, for r > 1, we have

r—1 l
/ Ty, - Jidp =) <’") / S RTI T lygpny | - dp+ (Y 0 {p > 1),
Y im0 NIy G4

Proof. According to (14), we see that

/deu
Y

l

Z/ (k+Jz)rOdeu+/ ldu
=1’ YN {p=Fk} YNn{e>1}

l
= 37 [ PMlyaesr - (k4 D) duct Y 0 > 1)
k=1"Y

T

!
r . ~ )
= E (j) E k" J/ T*lynfpmiy - J) dp+ p(Y N {p > 1}).
k=1 Y

Jj=0

Separating the j = r term on the right-hand side and using 1y = 3, fklyﬂ{g,:k},
we obtain N

r—1 l
e . r RPN ;
/ <Z Tleﬁ{v’—k}) i dp = Z (j)/ (Z k' JTleﬁ{go_k}> -Jj dp
Y Y

k>l §=0 k=1
+uY N {p >1}),

which, due to T'1y, = Zk>lf’f1yﬁ{¢:k}, I >0, (cf. (2.3) of [TZ]) is what we
claimed. 0

We can now put the machinery of [TZ] and [Z3] to work.

Proof of Theorem 1. (i) Assume w.lo.g. that u(Y) = 1, and let J; := J;(Y),
[ >1, and ¢ := py. We observe first that the sequence (J;/1);>1 is asymptotically
T-invariant in measure, in the sense that

JlOT—Jl n

; — 0 asl— oo.

(15)
This follows from
(16) {JJ1oT =T >1}=YN{p=1} forl>2,

since we have v({p =1}) — 0 as | — oo for every probability measure v < p, as ¢
is finite a.e. Due to (15), strong distributional convergence (11) is automatic once

we prove that
1 "
(17) 7 Jl % \70&;

cf. Proposition 4.1 of [TZ]. Having confirmed that the distributions of the J, are
determined by their moments, we may verify (17) by showing that for all > 0,

(#) /Y <L;l>r dp — E[TJ)] asl— oo.
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The 7 = 0 case is trivial: by our conventions, [, (J;/0)° dp =1 for all I > 1.

(ii) By KTT (cf. Proposition 4.2 of [TZ]), (wn(Y))n>1 € R1—o means that there
is some £ € R such that

Qy(s) == ;m(Y) els = (i)laé (i) for s > 0.

Since @ < 1, we can also apply the monotone density theorem to see that the
non-increasing sequence (¢q;(Y));>o satisfies

1—
a A7) asl— oo.

(18) Ql(Y) ~ m

Using the differentiation lemma for regularly varying functions (specifically, part
b) of Lemma 4.1 of [TZ]), we can also conclude that

r+l—a
Wy (@) (1 1 as s \, 0
Qv (s) T'< r s ¢ s for all » > 0.
Letting Fy (s) := > .5, f(Y) e %, which satisfies 1 — Fy (s) = (1 — e~ *)Qy (s),
s > 0, we furthermore obtain

“R(s) = ()Y R (Y ) e

E>1
e NN /1 as s \, 0
~ ! = z
m(m) (s) g(s) for all m > 1.
Hence, appealing to KTT once again, we get

a(l —a) m—a as | — oo
—a)T(2—a) e for all m > 1.

l
(19) D KTA(Y) ~ =
k=1

(iii) Next we establish, by induction on r, the statement that for all r > 0,

(Or) /YJf du=0(") asl— oco.

For r = 0 this is trivial. For the inductive step we assume that (¢;) holds for
0 < j < r, where r > 1 is fixed. Consider the terms on the right-hand side of
Lemma 1: For each j we have

l l
(20) /Y (Zkrkalm{w_k}) I dp = <Zk’“jfk(Y)> : /Y I} un_jadp,

k=1 k=1

where, for [ > Iy := min{k > 1: f3(Y) > 0},

l m ik
_kmT"1 _
Zk_l YNn{p=k} €@

(21) Um,l ‘= 22:1 ()

("6/)//)7
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the closed convex hull of ¥ in L. (i), which is compact and, in particular,
bounded. Combining this with (18), (19) and (O;), we see for the complete right-
hand side in Lemma 1 that

(22) i (Z) /Y (El: ke f’qm{gp_k}) JY dp

§=0 k=1
+uYNn{e>1})=0 (lr_aﬁ(l))
as [ — 00. On the other hand we have
JoT?/=J;—j<J, onYNTY forl>j,

and hence
/ Ty, ~J[du:/ Ty, - (J] o T7) dp g/ Ty, - Jfdp forl>j.
Y YNT-iy Y
Letting v; := ql(Y)*lfllyl € co(9Y ), we therefore see, due to (9) and (18), that

/J[du
Y

t—1

0] /J[-ijvldu
Y

=0

T _ fYTZlYLJle:u'
O(‘/Ylevld'u>_O<la€(l) as | — oo.

Using Lemma 1 we can combine this with (22) to obtain (0,.).

(iv) We need some information on the behaviour of the J; outside Y. Generally,

(23) Ji<n+JjoT" onX forn>0,1>1.
Recalling the notation Y™ = UQ/I:_Ol Y,, we claim that for every » > 0 and M > 1,

J I
(24) {1yM . (/) > 1} is uniformly integrable.

In case M = 1 this is immediate from the (¢,41), 7 > 0. Now fix M and r, and
let Ry := (J;/l)". Forl > M > n we see, using T"1ly, < 1, and (23) plus its
consequence

C Y,NT"™R >27"K -1} for K >0,
that
T’ﬂ T
/ Rydp < / (A JioT)"
Y.n{R/>K} Yun{R>K} I
M+ J)"
s/ #duﬁf/ (1+ Ry)dp.
YN{R;>2-"K-1} ! YN{R;>2-"K—-1}

For fixed n, the rightmost integral tends to 0 as K — oo, uniformly in I, since
{1y R; : I > 1} is uniformly integrable. Taking the union over n € {0,..., M — 1},
we obtain (24).
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Similarly, it is not hard to check that for every » > 1, and any bounded proba-
bility density u supported on Y™ for some M = M (u), we have
— 0 asl— oo.

w (@)

(Note that, by (16), YM C {|J; 0T — J;| < 1} for [ > M, then use the mean-value
theorem.)

(v) We are now ready for the inductive step in the proof of (#,). The crude informa-
tion given by the (0y), i.e. boundedness of all moment sequences ( [, (J1/1)" dp)i>1,
r > 0, enables us to refine the previous argument. We claim that for all » > j > 0,

(26) / JV - up iy dp N/ Jldu  as | — oo,
Y Y

and that for all » > 0,

/Jf-vlduw/deu as [ — oo.
Y Y

To see this, we can appeal to parts a) and c) of Proposition 3.2 of [Z3], with
R, := (J;/1) and R; := (J;/1)", respectively: Although condition (3.10) there is
not satisfied in the present situation, we may replace it by (24) above, since the role
of condition (3.10) in Proposition 3.2 of [Z3] was exactly to ensure this property,
see equation (3.16) there. This proves (26).

Now fix r > 1 and assume (4,) for 0 < j < r. Recalling the representation (20)

and using (18), (19), and (26), we find for the complete right-hand side of Lemma
1 that

r—1 !
(27) 3 C) /Y ( K f’lem{go_k}> T dp 4 (Y 0 {p > 13)

Jj=0 k=1
r—1 .
1-a m B ) .
r2-a) aj;)(])r—j—a ATT() as | — 0.

Likewise, the left-hand side of Lemma 1 is now seen to satisfy

(28) / Ty, - J dp = ql(Y)/ J v dp
Y Y
. l—« . Jl "
~ Y LAy~ —— - 1" — ] d l .
V) [ i =t v [ () w1
Combining (27) and (28) yields (4,). O

4. CLOSE VISITS TO INDIFFERENT FIXED POINTS

We turn to our limit theorem for the distributions of waiting-times for close visits
to indifferent fixed points of infinite measure preserving interval maps. To avoid
undue technicalities we focus on prototypical maps T on X := [0, 1] with two full
branches and one indifferent fixed point at x = 0. Henceforth we assume that
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(a) for some ¢ € (0,1) the restrictions of T' to Zy := (0,¢) and Z; := (c,1)
are increasing C2-diffeomorphisms onto (0, 1) with inverses vy and v, and
T |z, extends to a C2-map on cl(Z;);

(b) the map T is expanding except for an indifferent fized point at x = 0, i.e.
forany € > 0, | TV |> p(e) > 1 on [e, 1], while T(0) = 0 and lim,\ o T'z = 1;
moreover this fixed point is a regular source, i.e. T’ is increasing on (0, dp)
for some d¢ > 0.

The family of maps T satisfying (a)-(b) will be denoted by 7. It is well known
(cf. [T1]) that any map T € 7 is conservative and exact (hence also ergodic) w.r.t.
Lebesgue measure A, and preserves a o-finite infinite measure p < A (unique up to
a multiplicative constant) with a positive density h which is continuous on (0, 1].
Let rp(z) :== x — vo(z), € [0,1]. We are going to prove

Theorem 2 (Asymptotic hitting-time distribution for neighbourhoods
of the neutral point). Assume that T € T satisfies r7 € Ri4,(0) for some
p € (1,00], and let « := 1/p € [0,1). Then the hitting-times of the sets [0, €|,
e € (0,1],

Te(z) :==inf{n > 1:T"x € [0, €},
converge in distribution,

1 L£(w)
Te = Ja  as €\, 0,
1) h

where I € R_1,4(0) is given by

Ir(e) == / _dr e € (0,1].

rr(x)’

(29)

Example 1 (The standard examples of indifferent fixed points). In the
frequently studied situation with Tz = x+ ax**P +o(x'*P) as z \, 0, one finds that
Ir(e) ~ [apeP]! as € \, 0, explaining (3) above.

We show how the abstract Theorem 1 implies this assertion.

Proof of Theorem 2. (i) The obvious natural reference set for T'is Y := (¢, 1]. The
well-known fact that the induced map Ty is uniformly expanding with full branches
and satisfies the (folklore) Adler condition sup |T’ v )2| < oo means, in particular,
very good distortion control in that the derivatives w = v’ of its inverse branches
v of arbitrary order have uniformly bounded regularity R(w) := supy (Jw'| /w).
Moreover, the invariant measure py of Ty has a density of finite regularity. As
a consequence, the family 9% of probability densities is uniformly bounded away
from zero, and also equicontinuous, hence precompact in Lo (p) by the Arzela-
Ascoli theorem.

Lemma 4 of [T2] shows that r € R14,(0) implies (wn(Y)) € Ri—o. (In fact,
these statements are equivalent if p < co.) Therefore, the assumptions of Theorem
1 are fulfilled, and we conclude that

1
(30) le(Y) =0 Jo asl— oo.
(ii) Starting from cq := 1 define ¢; := v}(co), | > 0 (so that ¢; = ¢), and observe
that

(g1,al =Y N{py =1} forl>1.
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Define L : (0,c] — N by requiring that cz41 < € < cpe). Due to the obvious
inclusions between the sets involved we then see that

JL(e)(Y) <7< JL(e)+1(Y) for e € (0, C].

Hence (30) implies

1 - T % Jo aseN,0

L(E) € « .
To finally obtain (29), note first that (by the monotone density theorem and Lemma
4 of [T2]) (¢;) € R—_qn. Together with Lemma 2 of [T1] this shows that It is the
asymptotic inverse to (¢;);>0 (unique up to asymptotic equivalence), and hence that

L(e) ~ Ir(e) as € \, 0. O

Remark 4. The interval maps above have the special property (12). Due to the
more flexible assumption (9) given in Theorem 1, the same argument applies to the
significantly more general family of those (not necessarily markovian) AFN-maps T
(as studied in [Z1], [Z2]) which have the same asymptotic behaviour at all of their
indifferent fixed points. (Condition (9) follows as in Theorem 8.1 of [TZ].)
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